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1 Introduction

The present work was motivated by a reexamination of some fundamental
constrained variational problems that arise in equilibrium theory in fluid dy-
namics and Magnetohydrodynamics. These problems lead formally to non-
linear eigenvalue problems as variational equations. Indeed, it is traditional
that many fundamental problems of mathematical physics can be formulated
as nonlinear eigenvalue problems of the form

−∆u = Λ(u), u ∈ H1
0 (Ω)

The profile function Λ(u) is usually expressed in the form Λ(u) = λf(u)
where f(u) is a known function and λ is a Lagrange multiplier.

However, these models do not always represent well the original physical
problem. For in the original variational formulation, the constraints of the
equilibrium formulation are derived from the conserved quantities associated
to the evolution of the dynamical equations and thus the profile function
is completely unknown and must be determined implicitly from the con-
straints.In MHD theory,such an objection was raised by Grad who introduced
so called generalized or queer differential equation involving differentiations
of the distribution function of u. These equations are purely formal unless
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u happens to be smooth with simple level sets. Nevertheless, Grad and his
colleagues introduced numerical techniques to solve these equations.

As a prototypical problem of the type that that arises in many physical
problems we pose the variational problem (P∞)

E(u) = frac12
∫

Ω
(|∇u|2 dx → min over u ∈M∞(ū).(1.1)

where for a given ū ∈ H1
0 (Ω),M∞(ū) is the class of functions which are

equimeasurable with ū. For simplicity we will assume thatū is non-negative.
The existence of a weak solution u ∈ H1

0 (Ω) of (P∞) is straightforward .
On the other hand, the construction of an appropriate variational equation
(that is a Lagrange multiplier rule to determine the profile function Λ(u))
satisfied by such a solution is unclear. Also unclear is the question of the
optimal regularity of the solution. The main source of difficulty in investi-
gating these questions lies in the nature of the family of constraints. Our
approach to this difficulty is to formulate a clear and conceptually simple
classical variational problem (Pn) which replaces the family of constraints
in (P∞) by a finite family of simpler constraints, and which approximates
(P∞) when n is large. Besides being more tractable analytically, the problem
(Pn) is also amenable to a numerical method of solution, the development of
which is a principal goal in this paper. One of the key points of our approach
is the construction of a finite element or constraint space in which the basis
functions have very special properties.

We introduce a partition {σi}
n
i=0 of the interval 0 ≤ σ < +∞ into n

subintervals 0 = σ0 < σ1 < . . . < σn−1 < σn = + ∞. For a partition of this
kind, we introduce the constraint functionals

Fi(u): =
∫

Ω
fi(u)dx (i = 1, . . . , n) where(1.2)

fi(s): =
∫ σi

σi−1

(s− σ)+ dσ = l/2 (s− σi−1)
2
+ − l/2 (s− σi)

2
+(1.3)

for s ∈ (we write s+ = max{s, 0} and s2+ = (s+)
2 .) Then we let

Mn(ū) = {u ∈ H
1
0 (Ω): Fi(u) = Fi(ū) for all i = 1, . . . , n}.(1.4)

The problem (Pn) is the following multiconstrained minimization problem
which may be viewed as a natural discretization of (P∞)

E(u)→ min over u ∈Mn(ū).(1.5)
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Equivalently, (Pn) may be expressed as

E(u)→ min subject to Fi(u) = γi (i = 1, . . . , n),(1.6)

where γi: = Fi(ū) =
∫ σi
σi−1

β(σ) dσ may be viewed as given data. The exis-
tence of a solution of (Pn) and the form of the variational equation that it
satisfies are given in the following result.

If ū is given so that γi > 0 for every i, then there exists a non-negative
minimizer u ∈ C2,β for (Pn) satisfying

−∆u =
n

∑

i=1

λif
′

i (u) for some λi ∈ .

One point that should be emphasized is that our finite constraint problem
yields exact solution of the relevant physical governing equations(for example,
the ideal MHD equations) and is an approximation only in the sense that
the full constraint space is not prescribed. Our approach is very different to
that of Laurence and Stredulinisky who introduce an approximation to the
Grad G.D.E. model that doesn’t enjoy this property.

As we have mentioned earlier, one of the principal goals of this paper
is to develop an efficient and justifiable numerical method to compute the
solutions of problem (Pn). To this end, we introduce an iterative procedure
which is designed to converge to the solutions of Pn. Our algorithm An may
be succinctly defined as follows:

Given u0 ∈Mn(ū), u
k+1 is the unique solution of the variational inequal-

ity

Eτ (u) = E(u) +
τ

2
〈u, u〉 → min subject to(1.7)

Fi(u
k) + 〈F ′i (u

k), u− uk〉 ≥ γi, i = 1, . . . , n(1.8)

which is defined in terms of a positive parameter τ and with the admissible
functions u lying in the constraint space Mn(ū) defined by the n linearized
inequality constraints.

For a discussion of the main ideas underlying our construction of algo-
rithm An the reader is referred to Appendix2. We do want to emphasize here
that the algorithm is designed to take maximal advantage of the convexity
of the basis functions fi(s) even though the variational problem Pn is highly
non-convex.
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Perhaps the main result of the paper is the following
Given any initialization u0 ∈Mn(ū), there exists a constant

C = C(Ω, E(u0), γ−11 . . . γ−1n , (∆σ)−1) so that if τ > C, the sequence uk

generated by the algorithm An converges strongly in H1
0 (Ω) to the set S of

critical points of the variational problem Pn, in the sense that dist(uk, S)→
0 as k → ∞ where dist(u, S) = inf {||u− v||H1

0 (Ω)
: v ∈ S})

We now discuss the organization of the paper. In Sections 2-4, we restrict
our discussion to a prototypical case of the class of variational problems that
hold our attention throughout the paper. In Section 2 we formulate the
prototype finite constraint problem (Pn), and establish its relation to the
problem(P∞. . Sections 2 contains the proof of Theorem 1.1 and illustrates
in a very clear and concrete way, some of the fundamental ideas of classical
optimization and duality theory. In particular, Lemma 2.3 and its relation
to the linear independence of the constraints is of independent interest. In
Section 3 we describe the algorithm (An)for solving (Pn), which is a globally
convergent iterative procedure. The basic convergence properties of this algo-
rithm are derived and a more concrete description of the algorithm is given in
terms of the so called dual variational problem. Section 4 contains the proof
of the convergence of the algorithm to a solution of our original problem.
The key step in the proof of the convergence is an apriori estimate (Lemma
4.3) which is of independent interest. In Section 5, we briefly indicate how to
extend the development of Sections 2-4 to include a free boundary interface,
to apply to distributions which change sign, and finally to apply to a more
general class of variational problems. Section 6(Appendix 2)contains a brief
description of the fundamental variational problems in MHD equilibrium
theory which partially motivated our prototype problems. In future work we
hope to elaborate on the method and ideas of the present paper to study the
more general problems of Appendix 1. In Section 7(Appendix 1) we collect
some remarks concerning (An) which help to clarify the construction of this
algorithm.

The following conventional notations will be used in the sequel. Let
Ω ⊆ N(N = 1, 2, . . .) be a bounded open set whose boundary, ∂Ω, is smooth
enough (say C1+β). We denote as usual Lebesgue measure on Ω by dx =
dx1 . . . dxN , x = (x1, . . . , xN ) ∈ Ω, and for any measurable subset A ⊆ Ω we
write |A| =

∫

A dx for its measure. The inner product and norm on L2(Ω) are
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denoted by

〈u, v〉 =
∫

Ω
u(x)v(x)dx , ||u|| = 〈u, u〉

1
2

The Sobolev space Hm(Ω)(m = 1, 2, . . .) is identified as the space of
those functions in L2(Ω) whose (weak) partial derivatives of order ≤ m are
in L2(Ω). The space H1

0 (Ω) consists of those functions which vanish in the
weak sense on ∂Ω, and H−1(Ω) is its dual with respect to the pairing 〈., .〉.
The class of continuous functions on Ω̄ = Ω ∪ ∂Ω is denoted by C0(Ω̄), and
Cm(Ω̄) ⊂ C0(Ω̄)(m = 1, 2, . . .) denotes the class of m times continuously
differentiable functions. Also, Cm,a(Ω̄)(0 < α ≤ 1) is the subclass of Cm(Ω̄)
consisting of those functions whose derivatives of order = m are Hölder con-
tinuous with exponent α; thus, C0,1(Ω̄) denotes the class of Lipschitz contin-
uous functions on Ω̄. All of these notations are adopted from the standard
reference [?], where the reader is referred for further details, if necessary.
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2 Formulation of problems (Pn) and (P∞).

Let Ω be a domain in n. We begin by posing the problem (P∞), which we
adopt as a model for the type of variational problems presented in Appendix 1
(where the reader is referred for an indication of the source of these problems
in mathematical physics). For a given function ū ∈ H1

0 (Ω), we consider the
class of functions which are equimeasurable with ū; namely, we let

M∞(ū) = {u ∈ H1
0 (Ω): | {u > σ} |=| {ū > σ} | for all σ ∈ }.(2.1)

The class M∞(ū) consists of all functions H1
0 (Ω) which are rearrangements

of ū (with respect to Lebesgue measure dx on Ω). This characterization can
also be phrased in terms of the standard rearrangement mapping [?] which
is u→ u∗ where

u∗(α): = inf {σ ∈ : | {u > σ} |> α} (0 ≤ α ≤ |Ω|).(2.2)

Then we see that

M∞(ū) = {u ∈ H1
0 (Ω): u∗(α) = ū∗(α) for 0 ≤ α ≤ |Ω|}.(2.3)

For the purposes of the present study, however, we prefer to define the class
M∞(ū) in terms of a certain infinity family of integral constraints.

Lemma 2.1 The following statements are equivalent:

(a) u ∈M∞(ū)

(b)
∫

Ω
φ(u)dx =

∫

Ω
φ (ū) dx for all 0 ≤ φ ∈ C0()(2.4)

(c)
∫

Ω
(u− σ)+ dx =

∫

Ω
ū− σ)+ dx for all σ ∈ .

Proof. That (a) implies (b) is standard; (b) is equivalent to (a) when func-
tions of the form φ(s) = {0 s≤σ

1 s>σ are used, and so (b) holds for any function
φ(s) which is an increasing limit of step functions (in fact, for any nonneg-
ative Borel measurable function φ(s)). That (b) implies (c) is trivial. That
(c) implies (a) follows from differentiation of (c) with respect to the variable
σ. Precisely, the right derivative with respect to σ yields the desired result
since

t−1[(s− σ − t)+ − (s− σ)+] ↑ {
0 s≤σ
1 ≤σ as τ ↓ 0};
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then, by virtue of monotone convergence, it follows that

lim
t→0+

t−1{
∫

Ω
(u− σ − t)+dx−

∫

Ω
(u− σ)+dx} = |{u > σ}|

for every σ, and similarly with ū replacing u. This proves the claimed equiv-
alence. 2

The problem (P∞) is a constrained minimization problem whose objective
functional is

E(u): = 1/2
∫

Ω
|∇u|2 dx,(2.5)

and whose family of constraints is defined by (2.4). For a given ū ∈ H1
0 (Ω)

with ū ≥ 0 a.e. in Ω, we pose the variational problem (P∞)

E(u)→ min over u ∈M∞(ū).(2.6)

We assume that ū is nonnegative for the sake of simplicity in the exposition
here, deferring the general case until §4. Equivalently, (P∞) may be written
explicitly in terms of its constraints as (P∞)

E(u)→ min subject to
∫

Ω
(u− σ)+ dx = β(σ), 0 ≤ σ < + ∞,(2.7)

where β(σ): =
∫

Ω(ū− σ)+ dx may be viewed as given data.
The existence of a solution u ∈ H1

0 (Ω) of (P∞) is straightforward (see The-
orem 2. ). On the other hand, the construction of an appropriate variational
equation (such as a Lagrange multiplier rule) satisfied by such a solution is
not routine, and indeed remains an unanswered question. Equally unclear
is the question of the (optional) regularity of the solution. The main source
of difficulty in investigating these questions is, of course, the nature of the
family of constraints. With this in mind, we therefore proceed to formulate
the problem (Pn) which replaces the family of constraints in (P∞) by a finite
family of simpler constraints, and which approximates (P∞) when n is large.
Besides being more tractable analytically, the problem (Pn) is also amenable
to a numerical method of solution, the development of which is a principal
goal in this paper. Thus, (Pn) may be viewed as the natural discretization
of (P∞).

We introduce a partition {σi}
n
i=0 of the interval 0 ≤ σ < +∞ into n

subintervals 0 = σ0 < σ1 < . . . < σn−1 < σn = + ∞. For a partition of this
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kind, we introduce the constraint functionals

Fi(u): =
∫

Ω
fi(u)dx (i = 1, . . . , n) where(2.8)

fi(s): =
∫ σi

σi−1

(s− σ)+ dσ = l/2 (s− σi−1)
2
+ − l/2 (s− σi)

2
+(2.9)

for s ∈ . (We write s+ = max{s, 0} and simply s2+ = (s+)
2 for the sake of

brevity.) Then we let

Mn(ū) = {u ∈ H
1
0 (Ω): Fi(u) = Fi(ū) for all i = 1, . . . , n}.(2.10)

It is easy to verify that M∞(ū) ⊆Mn(ū) for any n, and that if a sequence
of partitions is taken so that max1≤i≤n−1 (σi − σi−1) → 0 and σn−1 → + ∞
as n→ + ∞, then M∞(ū) = ∩nMn(ū), the class Mn(ū) being defined by
the n-th partition in the sequence. (If ū ∈ C0(Ω̄), say, then it is not necessary
that σn−1 → + ∞, but rather it suffices that σn−2 ≤ supΩ ū < σn−1.)

The problem (Pn) is the following multiconstrained minimization problem

E(u)→ min over u ∈Mn(ū).(2.11)

Equivalently, (Pn) may be expressed as

E(u)→ min subject to Fi(u) = γi (i = 1, . . . , n),(2.12)

where γi: = Fi(ū) =
∫ σi
σi−1

β(σ) dσ may be viewed as given data. The exis-
tence of a solution of (Pn) and the form of the variational equation that it
satisfies are given in the next theorem.

Theorem 2.2 If ū is given so that γi > 0 for every i, then there exists a
minimizer u for (Pn) satisfying

(a) u ∈ H1
0 (Ω) ∩ C

2,β(Ω̄),

(b) u ≥ 0 in Ω,(2.13)

(c) −∆u =
n

∑

i=1

λif
′

i (u) for some λi ∈ .
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Proof. We invoke a standard argument to establish the existence of u. Let
uj ∈Mn(ū) be a minimizing sequence in the sense that

E(uj) = inf 〈E(ũ): ũ ∈Mn(ū)〉.

The sequence uj, being bounded in H1
0 (Ω), has a subsequence which con-

verges weakly in H1
0 (Ω) to a limit u. We write this subsequence as uj (after

reindexing) and we have

E(u) ≤ lim
j→∞

E(uj) = inf 〈E(ũ): ũ ∈Mn(n̄)〉,

Fi(u) = lim
j→∞

Fi(uj) = γi for each i = 1, . . . , n,

using respectively the lower semicontinuity of E with respect to weak conver-
gence in H1 and the continuity of each Fi with respect to strong convergence
in L2. Thus, the limit u ∈ H1

0 (Ω) solves (Pn).
Property (2.9b) follows from the observation that uj can be replaced by

|uj| in the above argument without changing the conclusion. (In fact, it is
not difficult to see that any solution of (2.9a,c) must be nonnegative.)

The variational equation (2.9c) satisfied by u is the standard Lagrange
multiplier rule. As is shown in the reference text [?], it suffices that the
functionals E,Fi:H

1
0 (Ω) → be C1 and that the gradients F ′1(u), . . . , F

′
n(u)

be linearly independent. It is immediate from their definitions that the func-
tionals involved are Fréchet differentiable with

〈E ′(u), v〉 =
∫

Ω
∇u · ∇v dx, 〈F ′i (u), v〉 =

∫

Ω
f ′i(u)v dx where

f ′i(s) = (s− σi=1)+ − (s− σi)+ (s ∈ ).(2.14)

Thus, interpreting these derivatives in the sense of distributions, we have

E ′(u) = −∆u ∈ H−1(Ω), F ′i (u) = f ′i(u) ∈ H
1
0 (Ω).(2.15)

Moreover, it is now clear that E,Fi are C
1 functionals. The crucial linear

independence of the gradients f ′i(u) (i = 1, . . . , n) will be deduced from the
following

Lemma 2.3 Let f(s) ∈ C1[0, ∞) ∩ C2p(0, ∞) satisfy f(0) = f ′(0) = 0,
f ′′(s) ≥ 0. Then for any 0 ≤ u ∈ H1

0 (Ω)
∫

Ω
f(u) dx ≤ c|Ω|

1
2 ||f ′′||L2(Ω)

∫

Ω
|∇u|2 dx if N = 2(2.16)
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∫

Ω
f(u) dx ≤ c||f ′′||

L
N
2 (Ω)

∫

Ω
|∇u|2 dx if N ≥ 2(2.17)

Proof. Suppose n ≥ 2 > p ≥ 2n
n+4

. Then by convexity of f ,

∫

Ω
f(u) dx ≤

∫

Ω
uf ′(u) dx ≤ ||u||

L
np

np−n+p (Ω)
||f ′(u)||

L
np
n−p (Ω)

(2.18)

and by the Sobolev inequality

||f ′(u)||
L

np
n−p (Ω)

≤ c ||∇(f ′(u)||Lp(Ω)

≤ c ||f ′′(u)||
L
2p
2−p (Ω)

||∇u||L2(Ω)
(2.19)

If N = 2 we take p = 1 and obtain from (2.18) (2.19)

∫

Ω f(u) dx ≤ c||u||L2(Ω) ||f
′′(u)||L2(Ω) ||∇u||L2(Ω)

≤ c||f ′′(u)||L2(Ω)
∫

Ω |∇u|
2 dx

proving (2.16). If N > 2, we choose p = 2N
N+4

and obtain from (2.18) (2.19),

∫

Ω f(u) dx ≤ c||u||
L
2N
N−2 (Ω)

||f ′′(u)||
L
N
2 (Ω)

||∇u||L2(Ω)

≤ c||f ′′(u)||
L
N
2 (Ω)

∫

Ω |∇u|
2 dx

2

Indeed, applying Lemma (2.3) to fi(u) establishes that each of the sets
{σi−1 < u < σi} has strictly positive measure (with a lower bound depending
only on upper bounds for γ−11 , . . . , γ−1n , E(u) and |Ω|).

Thus, if for some ci ∈ the identity 0 =
∑n

i=1 cif
′
i(u) holds a.e. in Ω , then

by restricting their identity to the sets {σi−1 < u < σi} we find successively
that c1 = 0, c2 = 0, . . . , cn = 0. Hence, the required linear independence of
the gradients of the constraint functionals is proved, and so (2.9c) follows for
some Lagrange multipliers λi (i = 1, . . . , n) uniquely determined by u.

Finally, the smoothness of u stated in (2.9a) can be derived from the stan-
dard regularity theory for elliptic partial differential equations. We introduce
the Green function g(x, x′), x, x′ ∈ Ω, defined by −∆xg(x, x

′) = γ(x − x′)
for x ∈ Ω, g(x, x′) = 0 for x ∈ ∂Ω, then we have

u(x) =
∫

Ω
g(x, x′)Λ(u(x′)) dx with Λ(s): =

n
∑

i=1

λif
′
i(s).(2.20)
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Since ||Λ(u)|| ≤ (max1≤i≤u |λi|) ||u|| we obtain Λ(u) ∈ L2(Ω), and hence
u ∈ C0(Ω̄), using elementary properties of g. Now differentiating (2.12) in
x we find that u ∈ C1(Ω̄). Thus, Λ(u) ∈ C0,1(Ω̄), and this is optional since
the Lipshitz function Λ(s) is piecewise linear. The statement (2.9a) that
u ∈ C2,β(Ω̄), is therefore a consequence of the global Schauder estimates
applied to the equation (2.9c). (It is assumed here that ∂Ω is of class C2,β,
at least.) This completes the proof of (2.9). 2

The function Λ(s) occurring in (2.12) will play a key role in our subsequent
analysis, and will be referred to as the profile function associated with a
solution u. For later reference we record its definition:

Λ(s) =

{

0 if s < 0
∑n

i=1 λif
′
i(s) if s ≥ 0,

(2.21)

where λ1 . . . , λn are real constants (the multipliers in Theorem 1.2). Such
a profile function is piecewise linear with slope Λ′(s) = λi on each interval
σi=1 < s < σi. (We recall that the partition of [0,+ ∞) into intervals
[σi−1, σi), i = 1, . . . , n, is indexed so that 0 = σ0 < σ1 < . . . < σn−1 <
σn = + ∞.) Clearly, Λ(s) is nondecreasing on [0,+ ∞) if and only if λi ≥ 0
for every i = 1, . . . , n. The monotone functions f ′i (s) (i = 1, . . . , n) may be
viewed as forming a basis for the space of profile functions - namely, those
functions Λ(s) which satisfy (i) Λ ∈ C0(), (ii) Λ(s) = 0 for s ≤ 0, (iii) Λ(s)
is linear (actually affine) on each interval σi=1 ≤ s ≤ σi. This basis, each
member of which is monotone, is related to the the standard basis consisting
of finite-elements φi(s) for the partition (or grid) {σi}

n
i=0 by the formulas

{

φ(s) = f ′i(s)/∆σi − f ′i+1(s)/∆σi+1 (i+ 1, . . . , n− 2)
φn−1(s) = f ′n−1(s)/∆σn−1, φn(s) = f ′n(s),

where ∆σi = σi − σi−1 denotes the increments. Then, at least when 1 ≤ i ≤
n−2, each piecewise linear φi(s) is supported on the interval σi−1 ≤ s ≤ σi+1

and is normalized by φi(σi) = 1. In terms of these finite-elements the profile
function is represented as

Λ(s) =

{

0 if s < 0
∑n−1

i=1 Λiφi(s) + λnφn(s) if s ≥ 0,

where Λi = Λ(σi); in other words, Λ(s) on 0 ≤ s ≤ σn−1 is satisfied as the
linear interpolant of its values Λi at the partition points (or grid nodes) σi.
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The representation (2.13) in terms of the monotone basis functions f ′i(s) will
be used throughout the sequel, however; its importance stems from the fact
that the constraint functionals Fi, like the objective functional E, are convex
for this choice of the functions fi(s).

Furthermore, it is a consequence of the definition of fi(s) in (2.7) that

n
∑

i=1

fi(s) =
1

2
s2+ (s ∈ ).(2.22)

Therefore, any admissible function u ∈Mn(ū) satisfies

1

2

∫

Ω
u2dx =

n
∑

i=1

γi =
1

2

∫

Ω
ū2dx.(2.23)

Indeed, if n = 1 (and so σ0 = 0 and σ1 = + ∞) then the class M1(ū) is
characterized precisely by the single constraint (2.15). In view of this fact,
we may say that the problem (Pn) constitutes a generalization or exten-
sion of the classical Rayleigh principle [?] characterizing variationally the
first eigenvalue-eigenfunction pair for the Laplacian operator −∆ on H 1

0 (Ω).
When n = 1, the problem (P1)

∫

Ω
|∇u|2dx→ min subject to

∫

Ω
u2+ = 2γ1(2.24)

yields a solution pair (u(1), λ
(1)
1 ) ∈ H1

0 (Ω) × to the usual linear eigenvalue
problem

−∆u(1) = λ
(1)
1 )u(1) in Ω, u(1) = 0 on ∂Ω,

which, in addition, is nonnegative in Ω. When n ≥ 2, the problem (Pn)
results in a solution pair (u(n), λ(n)) ∈ H1

0 (Ω)×
n of

−∆u(n) = Λ(n)(u(n)) in Ω, u(n) = 0 on ∂Ω, u(n) ≥ 0 in Ω,(2.25)

a nonlinear eigenvalue problem for which the vector of eigenvalues λ(n) =
(λ
(n)
1 , . . . , λ(n)n ) determines the (piecewise linear) profile function Λ(n)(s) ac-

cording to (2.13). In going from the linear problem (P1) to the general (and
nonlinear) problem (Pn) the familiar L2(Ω)-normalization ||u||2 = 2γ1 (=1,
say) is replaced by the family of constraints Fi(u) = γi(i = 1, . . . , n), which
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in effect amounts to constraining n L2(Ω)-expressions involving the lower
functions (u− σi)+ of u; namely, the constraints for (Pn) can be written as

||(u− σi−1)+ ||
2 − || (u− σi)+ ||

2 = 2γi (i = 1, . . . , n).(2.26)

The family of constraints (2.17) is therefore seen to be a strengthening of the
single constraint (2.15) in the usual Rayleigh principle (P1).

The sense in which the solutions u(n) of (Pn) approximate solutions u(∞)

(say) of (P∞) as n→ + ∞ can now be determined. As mentioned above, we
suppose that a sequence of partitions is taken with max1≤i≤n−1(σi−1−σi)→
0 and σn−1 → + ∞ as n → ∞ so that we are assured that M∞(ū) =
∩nMn(ū). By virtue of the bound E(u(n)) ≤ E(ū) < + ∞, every subsequence
of {u(n)}∞n=1 has a further subsequence that converges weakly in H1

0 and
strongly in L2. If we let u(∞) ∈ H1

0 (Ω) denote such a limit point of the solution
sequence u(n) for the multi-constrained problems (Pn) then we claim that
u(∞) is a solution of the (infinitely-constrained) problem (P∞). Indeed, any
admissible function ũ ∈M∞(ū) for (P∞) is admissible for each problem (Pn),
and hence, using the weak - H1

0 convergence, E(u(∞) ≤ lim inf E(u(n)) ≤
E(ũ), where n is understood to be tend to infinity along the subsequence.
Also, using the strong -L2 convergence, it is straightforward to verify that
u(∞) ∈M∞(ū) because it is evident that for any σ ∈ (0,+∞)

∫

Ω
(u− σ)+ dx = lim

n→∞

1

∆σi

∫

Ω
fi(u) dx,

where i = i(n, σ) is chosen so that σ ∈ [σi−1, σi) for each sufficiently large
n. (We recall that ∆σi: = σi − σi−1.) Thus the claim that u(∞) solves (P∞)
follows. This result can be stated in the form

dist(u(n), S∞)→ 0 as n→ + ∞,(2.27)

where S∞ = S∞(ū) is defined to be the set of solutions of (P∞) for a given
function ū; the distance function dist(u,S) from a point u ∈ L2(Ω) set
S ⊆ L2(Ω) is defined by

dist(u,S) = inf {||u− v||: v ∈ S}.(2.28)

That (2.18) is true is obvious from the above discussion. We remark that it
is necessary to consider the set of solutions of (P∞) since the uniqueness of
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its solutions has not been established and, in fact, may not hold in general.
The statement (2.18) allows us to conclude, at least, that for large n the
solution u(n) of (Pn) approximates some solution of (P∞) in the L2(Ω)-norm.
This conclusion justifies in part the discretization of the constraints for (P∞)
resulting in the finitely-many constraints for (Pn).

Before passing to the discussion of the algorithm for solving (Pn) we note
that a variant of this problem can also be employed. We now assume that
ū ∈ H1

0 (Ω) ∩ C
0(Ω̄) and let σn = supΩ ū (rather than σn = + ∞). With

respect to a partition 0 = σ0 < σ1 < · · · < σn−1 < σn < + ∞, we consider
the problem (P ′n)

E(u)→ min over u ∈Mn(ū), u ≤ σn a.e. in Ω.

This problem is of variational inequality type [?], being an obstacle problem
with no additional constraints. It can be shown that the analogue of Theorem
1.2 holds in the sense that there is a solution u ∈ H1

0 (Ω)∩C
1,1(Ω̄) satisfying

the equation

−∆u =
n

∑

i=1

λif
′
i(u) in {u < σn} ⊆ Ω.

(If {u = σn} has positive measure, then u is not necessarily twice continuously
differentiable, of course.) However, we shall restrict our further discussion to
(Pn), leaving the parallel development for (P ′n) to the reader.
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3 Construction of the algorithm for solving

(Pn).

We now proceed to define an iterative procedure which is designed to con-
verge to the solutions of (Pn). In this section we concentrate on describing
the algorithm in its general form and establishing its basic convergence prop-
erty. For a discussion of the main ideas underlying the construction of the
algorithm the reader is referred to Appendix 2.

For a (fixed) positive constant τ , let Eτ be the following modified objective
functional

Eτ (u) = E(u) +
τ

2
||u||2 =

1

2

∫

Ω
[|∇u|2 + τu2] dx.(3.1)

Also, for any v ∈ H1
0 (Ω) let Ln(v) be the following class of admissible func-

tions

Ln(v) = {u ∈ H
1
0 (Ω): Fi(v) + 〈F

′
i (v), u− v〉 ≥ γi for all i}.(3.2)

We notice that in contrast to the classMn(ū) defined by n nonlinear equality
constraints, the class Ln(v) is defined by n linear (actually affine) inequality
constraints. (Ln(v) depends upon ū through the constants γi = Fi(ū), but
this dependence will not be emphasized in the notations.) In terms of these
definitions we construct a sequence of approximations (uk, λk) ∈ H1

0 (Ω) ×
n

to the solutions of the variational problem (Pn) as follows:
Algorithm (An) : given u0 ∈ Mn(ū), let (u

k, µk) ∈ H1
0 (Ω) × [0,+ ∞)n be

defined iteratively by solving the sequence of convex optimization problems:
uk+1 is the (unique) solution of

Eτ (u)→ min over u ∈ Ln(u
k)(3.3)

and µk+1 is the corresponding n-vector of nonnegative multipliers (uniquely
determined by uk+1); then let

λk+1 = µk+1 − τ.(3.4)

The algorithm (An) produces a well-defined sequence of approximations once
an initialization u0 and a constant τ are chosen. If suffices to take u0 = ū.
It will be shown in §4 that τ can be chosen sufficiently large to ensure the
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convergence of the iterative sequence (uk, λk) to the set S of solution of the
problem

{

E ′(u) =
∑n

j=1 λjF
′
j(u) for some λ1, . . . , λn ∈

Fi(u) = γi (i = 1, . . . , n);
(3.5)

namely, the set of all critical points for the problem (Pn) which satisfy the
given constraints (or, equivalently, belong to Mn(ū)). In the present devel-
opment τ will be viewed as a (fixed) positive parameter.

The iterate (uk+1, µk+1) in the algorithm (An) is characterized as the
solution of the equations

{

E ′(uk+1) + τuk+1 =
∑n

j=1 λ
k+1
j F ′j(u

k)

λk+1
i [Fi(u

k) + 〈F ′i (u
k), uk〉 − γi] = 0 (i = 1, . . . , n)

(3.6)

Indeed, these equations are precisely the Kuhn-Tucker conditions associated
with the convex optimization problem (2.22) which defines (An). The reader
is referred to [?] for a proof that (2.22) and (2.24) are equivalent provided
that there exists some ũ ∈ Ln(u

k) for which

Fi(u
k) + 〈F ′i (u

k), ũ− uk〉 > γi for every i = 1, . . . , n.

This so-called Slater condition follows from the convexity of the functional
Fi(u), which implies that

Fi(u
k) ≥ Fi(u

k+1) + 〈F ′i (u
k−1), uk − uk−1〉 ≥ γi (k = 1, 2, . . .).(3.7)

In addition, Fi(u
k) ≤ 〈F ′i (u

k), uk〉 since Fi(0) = 0. thus, it is readily ver-
ified that the required condition is satisfied by ũ = (1 + ε)uk with ε > 0.
It should be emphasized that the equations (2.24) characterize the iterate
(uk+1, µk+1) ∈ Ln(u

k) × [0,+ ∞)n; and it is implicitly assumed in (2.24)
that

Fi(u
k) + 〈F ′i (u

k), uk+1 − uk〉 ≥ γi,(3.8)

µk+1
i ≥ 0,(3.9)

for every i = 1, . . . , n. The vector µk+1 = (µk+1
1 , . . . , µk+1

u ) is called the
Kuhn-Tucker vector corresponding to the solution uk+1 of (2.22).

The above construction of the algorithm (An) depends fundamentally on
the convexity of the optimization problem (2.22); namely, it relies on the
strict convexity of the objective functional Eτ and the convexity of the class
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of admissible functions Ln(u
k), which is defined by n affine inequality con-

straints. The uniqueness of a minimizer uk+1 for (2.22) follows immediately
from these attributes. In turn, the uniqueness of the Kuhn-Tucker vector
µk+1 follows from the smoothness of the objective and constraint functionals
and the linear independence of the gradients F ′i (u

k). The latter property
can be proved exactly as in the proof of Theorem 1.2, now using (2.25) with
γi > 0.

We describe next a more explicit construction of the iterative procedure
(An) which furnishes us with a concrete numerical implementation of the
algorithm. Let Gτ denote the Green operator for the elliptic boundary value
problem

−∆w + τw = h in Ω, w = 0 on ∂Ω;(3.10)

that is, the solution is represented as w = Gτh where Gτ : L
2(Ω)→ H1

0 (Ω)∩
H2(Ω). For any v ∈ H1

0 (Ω) let

aij(v): = 〈f ′i(v), Gτf
′
j(v)〉(3.11)

ci(v): = γi − Fi(v) + 〈F ′i (v), v〉.(3.12)

for i, j = 1, . . . , n. (The dependence of these expressions on τ is left implicit,
for the sake of simplicity in the notation.) We consider the quadratic form

Q(µ; v): =
1

2

n
∑

i,j=1

aij(v)µiµj −
n

∑

i=1

ci(v)µi (µ ∈ n)(3.13)

This defines a positive-definite quadratic form on n whenever |{x ∈ Ω: σi−1 <
v(x) < σi}| > 0 for every i = 1, . . . , n. We check this fact by calculating

n
∑

i,j=1

aij(v)µiµj = 〈µ · f ′(v), Gτ [µ · f
′(v)]〉

where we write µ · f ′(v) =
∑n

i=1 µif
′
i(v). We then notice that the latter

expression is zero if and only if µ · f ′(v) = 0 a.e. in Ω. Arguing as in the
proof of Theorem 1.2, we deduce that µ1 = 0, µ2 = 0, . . . , µn = 0 successively,
as required.

We now claim that algorithm (An) is equivalent to the following explicit
iterative procedure: for u0 ∈ Mn(ū), let (uk, µk) ∈ H1

0 (Ω) × [0,+∞)n be
defined iteratively by

uk+1 =
n

∑

j=1

µk+1
j wj(3.14)
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where
wj = Gτ f

′
j(u

k),(3.15)

µk+1
j ≥ 0 and Q(µk+1; uk)

= min{Q(µ; uk): µi ≥ 0, i = 1, . . . , n}.
(3.16)

In other words, (uk+1, µk+1) is constructed from uk in a three-step process:
(1) each wj(j = 1, . . . , n) is found by solving (2.28) with h = f ′j(u

k); (2) µk+1

is taken to be the unique solution of the quadratic programming problem
(2.34); (3) uk+1 is assembled from µk+1

j and wj(j = 1, . . . , n) according to
(2.32). The verification of the claim that this procedure is equivalent to (An)
as stated earlier is standard. Calculating the variational inequalities satisfied
by the minimizer µk+1 of (2.34) we have for each i = 1, . . . , n

n
∑

j=1

aij(u
k)µk+1

j − ci(u
k)

{

≥ 0 if µk+1
i = 0

= 0 if µk+1
i > 0.

(3.17)

Also, combining (2.32) and (2.33) we have

−∆uk+1 + τuk+1 =
n

∑

j=1

µk+1
j f ′j(u

k) in Ω, uk+1 = 0 on ∂Ω.(3.18)

It is clear that (2.36) is a restatement of the first equation in (2.24); in turn,
it is evident from the definitions of aij and ci that (2.35) is equivalent to
the second equation in (2.24) together with the inequalities (2.26) and (2.27)
which supplement (2.24). Thus the claimed equivalence of the two forms of
the algorithm is verified.

It is interesting to note that the optimization problems (2.34) and (2.22)
are dual problems in the sense of convex analysis [?]. Indeed, we can directly
verify that

−Q(µ; uk) = min{Eτ (u)−
n

∑

i=1

µi[〈F
′
i (u

k), u〉 − ci(u
k)]: u ∈ H1

0 (Ω)}.

Then general theory informs us that the Kuhn-Tucker vector µk+1 corre-
sponding to the minimizer uk+1 for (2.22) is itself the maximizer for the dual
problem:

−Q(µ; uk)→ max over µi ≥ 0 (i = 1, . . . , n).
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The preceding construction of the explicit form of the iterative procedure
(An) may therefore be viewed as a specific case of the general duality theory.
We shall not need this level of generality in the sequel, however.

The algorithm (An) is devised to exploit as much as possible the important
fact that the objective and constraint functionals for the variational problem
(Pn) are convex. Even though (Pn) itself is not a convex optimization problem
because its constraints are nonlinear equalities, its convexity attributes are
enough to imply that the iterative sequence defined by (An) has very special
monotonicity and convergence properties. These properties are the focus of
our attention in the next two lemmas.
Lemma 3.1 For every k we have

Eτ (u
k+1 − uk) ≤ Eτ (u

k − Eτ (u
k+1)(3.19)

E(uk+1) ≤ E(u0).(3.20)

Proof. To prove (2.37) we use the identity

Eτ (u
k − Eτ (u

k+1) = 〈E ′τ (u
k+1), uk − uk+1〉 + Eτ (u

k+1 − uk).(3.21)

By virtue of (2.25) we have uk ∈ Ln(u
k). Therefore, (1 − t)uk+1 + tuk ∈

Ln(u
k) for all 0 ≤ t ≤ 1, as this class of functions is convex. Consequently,

since uk+1 solves (2.22) we get

Eτ (u
k+1) ≤ Et(u

k+1) + t(uk − uk+1)) =
Eτ (u

k+1) + t〈E ′τ (u
k+1), uk − uk+1〉 + 0(t2)

as t → 0+. Hence, 〈Eτ (u
k+1), uk+1 − uk+1〉 ≥ 0, and so (2.37) follows from

(2.39).
To prove (2.38) we note that

1

2
||u0||2 =

n
∑

i=1

γi ≤
n

∑

i=1

Fi(u
k+1) =

1

2
||uk+1||2.

This yields the desired inequality since

E(uk+1) = Eτ (u
k+1)−

τ

2
||uk+1||2 ≤ Eτ (u

0)−
τ

2
||u0||2 = E(u0).

2
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The above lemma establishes that for any initialization u0 ∈ Mn(ū) the
sequence Eτ (u

k) is nonincreasing. This monotonicity property of the algo-
rithm (An) leads directly to the following (partial) convergence property of
the iterates uk.

Lemma 3.2 Let u ∈ H1
0 (Ω) be any H

1
0 -weak limit point of the sequence u

k.
Then there exists a unique vector µ = (µ1, . . . , µn) ∈

n such that

E ′τ (u) =
n

∑

j=1

µj F
′
j(u)(3.22)

µi [Fi(u)− γi] = 0 (i = 1, . . . , n)(3.23)

µi ≥ 0, Fi(u) ≥ γi (i+ 1, . . . n).(3.24)

Proof. We recognize that (2.40), (2.41), (2.42) are precisely the Kuhn-
Tucker conditions for the convex minimization problem

Eτ (ũ)→ min over ũ ∈ Ln(u),(3.25)

and that µ is the Kuhn-Tucker vector corresponding to the minimizer u.
Therefore, it suffices to show that u is indeed the solution of (2.43). Let
ukp → u weakly in H1

0 (Ω), and hence strongly in L2(Ω), as p→ + ∞. Given
an arbitrary ũ ∈ Ln(u) we consider the perturbation ũ + εu with ε > 0.
Recalling the definition of Ln(u), we find that for each i = 1, . . . , n

Fi(u) + 〈F ′i (u), (ũ + εu)− u〉 ≥ γi + ε〈F ′i (u), u〉 ≥ (1 + ε)γi.

This implies that for sufficiently large p

Fi(u
kp) + 〈F ′i (u

kp), (ũ + εu)− ukp〉 ≥ (1 + ε/2)γi,

by virtue of the continuity of the terms on the left-hand side of the latter
inequality with respect to strong L2 convergence. Consequently, ũ + εu ∈
Ln(u

kp) for sufficiently large p, and so we obtain

Eτ (u) ≤ Eτ (u
kp+1) ≤ Eτ (ũ+ εu),

where, in the first inequality, we invoke the monotonicity property (2.37) and
the lower semi-continuity of Eτ with respect to weak H1

0 convergence. Since

20



this inequality holds for arbitrarily small positive ε, we conclude that the
limit point u solves (2.43), as required. 2

The partial convergence result given in the above lemma provides the
first step in the proof that the iterates (uk, λk) defined by the algorithm
(An) converge in an appropriate sense to the critical points of (Pn). Indeed,
Lemmas 2.3 and 2.4 together permit us to conclude that any subsequence
of the iterative sequence {uk} ⊆ H1

0 (Ω) has a further subsequence which
converges (weakly in H1

0 and strongly in L2) to a solution u of (2.40), (2.41),
(2.42). But (2.42) can be written equivalently as

E ′(u) =
n

∑

j=1

λj F
′
j(u) where λj: = µj − τ,(3.26)

in view of the basic identity (2.14) which implies that

n
∑

i=1

f ′j(s) = s+ (s ∈ ).(3.27)

(Here we also use the fact that uk ≥ 0 for every k, and hence u ≥ 0, as follows
immediately from the explicit form of (An) - namely, (2.32), (2.33), (2.34).
Thus the addition of the term τ

2
||u||2 to the objective functional E(u) has the

effect of shifting the multipliers by τ , sending λi into µi = λi+τ . Accordingly,
a solution u of (2.40), (2.41), (2.42) is a critical point of the variational prob-
lem (Pn) provided that µi > 0 for every i = 1, . . . , n, since then the constraints
must be equalities Fi(u) = γi for every i = 1, . . . , n. The latter condition
can be ensured by choosing τ large enough (τ > max {0,−λ1, . . . ,−λn}) de-
pending on the multipliers γi corresponding to any solution u of (2.44). The
a priori estimate on max1≤i≤n |λi| needed to complete this argument is given
in Lemma 3.2, and so it provides the second step in the proof of conver-
gence of the algorithm (An). The complete convergence result is contained
in Theorem 4.1.
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4 Convergence Theorems

In the previous section we have studied the algorithm An:
Given u0 ∈Mn(ū), u

k+1 is the unique solution of the variational problem

Eτ (u) =
1
2

∫

Ω(|∇u|
2 + τu2)→ min

u ∈ H1
0 (Ω): Fi(u

k) + 〈F ′i (u
k), u− uk〉 ≥ γi, i = 1, . . . , n

(4.1)

which is defined in terms of a positive parameter τ and with linearized in-
equality constraints.

In this section we will show that τ can be chosen apriori so that the limit
points of the Algorithm An are solutions of our original problem Pn. More
precisely, we have

Theorem 4.1 Given any initialization u0 ∈Mn(ū), there exists
C = C(Ω, E(u0), γ−11 . . . γ−1n , (∆σ)−1) so that if τ > C, the algorithm An

given by (4.1) converges strongly in H1
0 (Ω) to the set S of critical points of

our original problem Pn, in the sense

dist(uk, S)→ 0 as h→ ∞

where dist(u, S) = inf {||u− v||H1
0 (Ω)

: v ∈ S})

Theorem 4.1 says that any subsequence of {uk} has a subsequence which
converges strongly in H1

0 (Ω) to an element of S. In numerical experiments,
the entire sequence {uk} converges. Whether or not this is the case is a deep
question but we have the following result which indicates that generically
there is only one limit point.

Proposition 4.2 Let S(u0) be the set of limit points of Algorithm An for a
given u0. Then either

(i) S(u0) contains exactly one point

or

(ii) S(u0) contains infinitely many points, none of which are isolated.

The key point in the proof of Theorem 4.1 is the following apriori estimate,
of independent interest.
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Lemma 4.3 Let u ∈ H1
0 (Ω) be a solution of

{

−∆u =
∑n

i=1 λif
′
i(u) in Ω

Fi(u) =
∫

Ω fi(u) ≥ γi > 0, i = 1, . . . , n
(4.2)

with E(u) ≤ E0 < ∞. Then

max
i
|λi| ≤ C = C(Ω, E0, γ

−1
1 , . . . , γ−1n , (∆σ−1))

where ∆σ = mini ∆σi.

Assuming the truth of Lemma 4.3 for the moment, let us give the

Proof of Theorem 4. As we indicated in the previous section, Lemmas 2.3
and 2.4 permit us to conclude that any subsequence of {uk} has a further
subsequence which converges weakly in H1

0 (Ω) and strongly in L2(Ω) to a
solution of (4.2) with

λi = µi − τ

Applying Lemma 4.3 we can conclude that λi > −C, or µi > τ −C. Hence if
we apriori choose a τ > C, we insure that the multipliers µi > 0, i = 1, . . . n.
This implies, by Lemma 2.4 that Fi(u) = γi, that is, u is a critical point of
our original problem Pn.

In order to complete the proof of Theorem 4.1, we need to show the strong
H1
0 (Ω) convergence of the subsequence, which we still call uk for convenience.

To see this, observe

||uk+1 − u||2
H1
0 (Ω)

=
∫

Ω∇u
k+1 · ∇(uk+1 − u)−

∫

Ω∇u · ∇(uk+1 − u)

=
∑

µk+1
i

∫

Ω(u
k+1 − u)f ′i(u

k)− τ
∫

uk+1(uk+1 − u)−
∫

Ω∇u · (u
k+1 − u)

=
∑

µk+1
i

∫

Ω(u
k+1 − u) f ′i(u

k) + o(1) as k → ∞

(4.3)

We claim that the µk+1
i are uniformly bounded. For uk+1 satisfies

−∆uk+1 + τ uk+1 =
∑

µk+1
i f ′i(u

k)

and so
∑

µk+1
i

∫

Ω u
kf ′i(u

k) =
∫

∇uk+1∇uk + τuk+1uk

≤ Eτ (u
k+1) + Eτ (u

k ≤ 2Eτ (u
0)

But,
∫

Ω u
kf ′i(u

k) ≥
∫

Ω fi(u
k) = Fi(u

k) ≥ γi, hence
∑

i µ
k+1
i γi ≤ 2Eτ (u

0).
Since γi > 0 ∀i, the µ

k+1
i are uniformly bounded as claimed.
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Now observe that for any v ∈ H1
0 (Ω) ∩ L

∞(Ω), v ≥ 0, we have

∑

i

∫

Ω
f ′i(v)

2 dx ≤ λ−1l (Ω)
∑

i

∫

Ω
f ′′i (v)|∇v|

2 =
1

λ1(Ω)

∫

Ω
|∇v|2 dx

since f ′′i (s) = χ{σi−1 < s < σi}. Hence,

∑

µk+1
i

∫

Ω(u
k+1 − u)f ′i(u

k) dx

= ≤ ||uk+1 − u||(
∑

i

∫

Ω(µ
k+1
i )2f

′2

i (u
k))

1
2 dx

≤ c||uk+1 − u|| → 0 as k → ∞
(4.4)
Therefore, (4.4) (4.5) show that ||uk+1 − u||H1

0 (Ω)
→ 0 as k → ∞. The proof

of Theorem 4.1 is complete. 2

We can also give the

Proof of Proposition 4.2. Recall from Lemma 2.3 that

Eτ (u
k+1 − uk) ≤ Eτ (u

k)− Eτ (u
k+1)

and consequently ||uk+1 − uk||H1
0 (Ω)

→ 0 as k → ∞. Using Theorem 4.1, we
can repeat the argument of [], [Proposition 2]. For the readers convenience
we will repeat the simple argument. Namely, it suffices to show that if S(u0)
contains one isolated point u, then the entire sequence converges to u.

Since u is isolated we can find disjoint neighborhoods N1 of u and N2
containing all other elements of S(u0). Let 2ε = dist(N1, N2). Since
||uk+1 − uk||H1

0 (Ω) ≤ ε. We claim that there is an integer k so that for k ≥
k1, u

k belongs either to N1 or N2. For otherwise, we can find a subsequence
uki lying in the complement of N1∪N2, contradicting Theorem 4.1. Since u ∈
S(u0) we can find a uk ∈ N1, with k ≥ max(k0, k1). The dist(uk+1, N2) ≥ ε
and so uk+1 ∈ N1. By induction uj ∈ N1 for j ≥ k and the proposition is
proven. 2

The remainder of the section will be devoted to the proof of Lemma 4.3.

Proof of Lemma 4.3. We first estimate |λ1|, . . . , |λn−1|. Set Λ(u) =
∑n

i=1 λif
′
i(u)

and let Λi = Λ(σi), i = 0, . . . , n− 1. Then

λ0 = 0 and λi = Λi−1 + λi∆σiΛ(s) = Λi−1 + λi(s− σi−1) on [σi−1, σi]
= Λi + λi(s− σi)

(4.5)
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Since λi = (Λi − Λi−1)/∆σi, it suffices to bound |Λ1|, . . . , |Λn−1|. We fix the
index i so that

|Λi| = max |Λj|1≤j≤n−1(4.6)

Then for s ∈ I =: [σi −
1
3
∆σi, σi −

1
6
∆σi],

|Λ(s)| ≥
1

3
|Λi|(4.7)

since |Λ(s)| ≥ |λi| ·
1
3
∆σi and |λi| ≤ 2 |Λi|

∆σi
.

Let φ(s) be a Lipschitz cut off function with φ(s) = 1 for s ∈ I, φ(s) = 0
for s ≤ σ̄i =

1
2
(σi−1 + σi) and s ≥ σi and 0 ≤ φ(s) ≤ 1. Using φ(u) as a test

function in (4.21) we have the identity

∫

Ω
φ′(u)|∇u|2 dx =

∫

Ω
φ(u)Λ(u) dx(4.8)

Since Λ(s) has one sign on the support of φ(s), it follows from (4.9) that

∫

{u∈I} |Λ(u)| dx ≤
∫

Ω φ(u)|Λ(u)| dx ≤
∫

Ω |φ
′(u)| |∇u|2 dx

≤ 6
∆σi

∫

Ω |∇u|
2 dx = 12(∆σi)

−1E(u)
(4.9)

Combining (4.10) and (4.8), we have

|Λi| ≤
36E(u)

(∆σi)|{u ∈ I}|
(4.10)

Thus to estimate |Λi| we need a positive lower bound for |{u ∈ I}|.
Let σ = σi−

1
3
∆σi, σ

′ = σi−
1
6
(∆σ)i so that I = [σ, σ′] ⊂ (σi−1, σi), |I| =

1
6
∆σi for some 1 ≤ i ⊆ n− 1. Define

fI(s) =
1

2
(s− σ)2+ − (s− σ′)2+)

Then
||f ′I(u)||

n
n−1Ω
L ≥ |I| |{u > Γn−1}|

n−1
n(4.11)

On the other hand, by the Sobolev inequality

||f ′I(u)||
n

n−1 (Ω)

L ≤ c
∫

Ω
f ′′I (u)|∇u| dx ≤ c|{u ∈ I}|E(u)

1
2(4.12)
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and by the Poincaré inequality.

2Fn(u) = ||(u− σn−1)+||
2
L2(Ω) ≤ Cn|{u > σn−1}|

2
NE(u).(4.13)

Combining (4.12) - (4.14) gives the required lower bound

|{u ∈ I}| ≥ cN |I|
2 Fn(u)

N−1E(u)−N .(4.14)

Together with (4.11) this gives the estimate

|Λi| ≤ CNE(u)N+1Fn(u)
1−N(∆σi)

−3 ≤ CNE
N+1
0 γ1−N

n (∆σ)−3.(4.15)

To complete the proof we need only bound |λn|. Consider

−∆u = Λn−1 + λn(u− σn−1) in {u > σn−1}(4.16)

Using (u− σn−1)+ as a test function in (4.17) yields the identity

∫

Ω
|∇(u− σn−1)+ + 2λnFn(u)(4.17)

Therefore,

γn|λn| ≤ E0 + |Λn−1| · (
|Ω|

λ1(Ω)
E0)

l
2(4.18)

Recalling (4.16) this gives

|λn| ≤ C(Ω, N1E0)γ
−2
n (∆σ)−3(4.19)

This completes the proof of Lemma 4.3. 2
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5 Generalizations.

In this section we give three separate extensions of the prototype problems
examined in the preceding sections. Since each extension is fairly straight-
forward our discussion here will be brief.

First, we introduce a free-boundary into problems (P∞) and (Pn). This is
accomplished simply by informing the constraints (2.4c) only on the interval
σ0 ≤ σ < +∞ for some given σ0 > 0. Thus, the problem (P∞) becomes

E(u)→ min subject to
∫

Ω
(u− σ)+ dx = β(σ), σ0 ≤ σ < +∞.(5.1)

Similarly, the problem (Pn) is defined with respect to a partition 0 < σ0 <
σ1 < . . . , < σn−1 < σn = + ∞, and the constraints for (Pn) are defined
by (2.6), (2.7) as before. Now, however, fi(s) = 0 for all s ≤ σ0 and
i = 1, . . . , n. the validity of Theorem 2.2 remains unaltered in this extension,
and a solution u of (Pn) satisfies −∆u = Λ(u) in Ω, u = 0 on ∂Ω, where

Λ(s) =

{

0 if s < σ0
∑n

i=1 λi f
′
i(s) if s ≥ σ0

This may be interpreted as the equivalent free-boundary problem

−∆u =

{

0 in {0 < u < σ0}
Λ(u) in {u > σ0}

(5.2)

|∇u| is continuous across {u = σ0},

the latter being the free-boundary condition. As a simple illustration, we
note that the case of one constraint (n = 1) yields

{

−∆u = λ1(u− σ0)+ in Ω, u = 0 on ∂Ω
∫

Ω (u− σ0)
2
+ = 2γ1,

which is a familiar free-boundary problem.
The algorithm (An) constructed in §3 and its convergence properties es-

tablished in §4 admit immediate generalizations in the extension just de-
scribed. Indeed, no essential changes in the above development are needed
to include the free-boundary into (Pn).
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Next, we consider an extension of (P∞) and (Pn) (without free-boundaries)
which allows u and ū to change sign in Ω. The requirement that ū ≥ 0 in Ω
is now relaxed, and the constraints in (P∞) are replaced by

{

∫

Ω(u− σ)+ dx = β+(σ) for 0 ≤ σ < +∞
∫

Ω(u− σ)− dx = β−(σ) for −∞ < σ ≤ 0,

where β+, β− are defined by ū (so that the above holds with ū substituted
for u). The extension of (Pn) is then defined with respect to two partitions
0 = σ+0 < σ+1 < . . . < σ+n−1 < σ+n = + ∞ and 0 = σ−0 > σ−1 > . . . >
σ−m−1 > σ−m = − ∞ for some n and m. The functionals F+i (i = 1, . . . , n) and
F−j (j = 1, . . . ,m) corresponding to these partitions are defined as before by
the convex functions

f+i (s) =
1

2
(s− σ+i=1)

2
+ −

1

2
(s− σ+i )

2
+

f−j (s) =
1

2
(s− σ−j−1)

2
+ −

1

2
(s− σ−j )

2
+;

also, the constraint values are taken to be

γ+i =
∫ σ−

i

σ+
i−1

β+(σ) dσ, γ−j =
∫ σ−

j−1

σ−
j

β−(σ) dσ.

The constraints for (Pn) are therefore replaced by the n + m constraints
F+i (u) = γ+i , F−j (u) = γ−j , and so an analogous variational problem is
defined, which we shall call (Pn,m). If each γ+i > 0 and each γ−j > 0, then
the analogue of Theorem 2.2 holds, and a solution of (Pn,m) satisfies −∆u =
Λ(u) in Ω, u = 0 on ∂Ω, where now

Λ(s) =
n

∑

i=1

λ+i f
+
′

i (s) +
m

∑

j=1

λ−j f
−
′

(s),

a piecewise linear function on −∞ < s < +∞ which is increasing whenever
λ+1 ≥ 0 and λ−j ≥ 0 for every i and j.

Again the algorithm and its convergence properties require no essential
changes to handle the problem (Pn,m).
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Finally, we remark that a variable coefficient version of (Pn) can be treated
as a straightforward extension of the prototype problem. In this version the
objective and constraint functionals are taken to be

E(u) =
1

2

∫

Ω
{

N
∑

p, q=1

apq(x)uxp uxq + a(x)u2} dx

Fi(u) =
∫

Ω
b(x)fi(u) dx,

where the functions apq(x), a(x), b(x) belong to Cα(Ω̄)(0 < α < 1) and
satisfy the conditions

N
∑

p,q=1

apq(x)ξpξq ≥ θ|ξ|2 for all ξ ∈ N

a(x) ≥ 0, b(x) ≥ θ′

uniformly for x ∈ Ω for some positive constraints θ and θ′. Then a solution
of (Pn) solves the nonlinear elliptic eigenvalue problem.

{

−
∑

p,q
∂

∂xp
(apq(x)

∂u
∂xq

) + a(x)u = b(x)λ(u) in Ω

u = 0 on ∂Ω,

where Λ(s) is as before.
It is straightforward to check that our development in §2-4 as well as the

two preceded extensions can be carried out in this more general context.
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6 Appendix 1. Variational Problems in

Magneto Hydrodynamics.

Equilibrium problems in magneto hydrodynamics (MHD) supply some of
the main examples of multiconstrained variational problems of the kind that
we study in this paper. These model problems in plasma physics arise both
in controlled thermonuclear fusion research and in astrophysics. The classical
approach to solving these problems makes use of a general variational princi-
ple which characterizes equilibrium configurations of a plasma assumed to be
governed by ideal MHD. This principle depends upon determining the com-
plete family of quantities (expressed as volume integrals) which are conserved
under the governing evolution equations. Then it identifies an equilibrium
as a minimizer of the total energy over the class of configurations which
maintain given values of all of the other conserved quantities. Although this
general characterization can be stated formally for fully three-dimensional
configurations, we shall consider it only under an assumption of spatial sym-
metry - either two-dimensionality, axial symmetry or helical symmetry - since
then it takes a simpler and more tractable form. This particular form of the
variational principle for symmetric equilibrium configurations has been given
by Woltjer [?, ?], who has also determined the complete family of conserved
quantities. (He emphasizes the axially symmetric case, but his analysis can
be modified to apply as well to the other symmetric cases.) We shall briefly
describe the case of magneto static equilibrium (for which there is no mass
flow) in two-dimensions; we shall leave aside the minor technical modifica-
tions needed to treat axial or helical symmetry since, even though these cases
are important in real applications, they are the same conceptually.

We begin by posing an abstract variational problem similar to (P∞) which
encompasses the physical problems of interest as special cases. Let Ω ⊆ 2

be the cross-section of a cylindrical domain Ω × , and let (x1, x2) denote
the variable point in Ω and x3 be the ignorable coordinate. Consider the
minimization problem











∫

Ω [
1
2
|∇u|2 + h1(v1),+h2(v2)] dx→ min over

∫

Ω v1(u− σ)+ dx = β1(σ)
∫

Ω v2(u− σ)+ dx = β2(σ), (σ0 ≤ σ < +∞)
(6.1)

where the admissible triple (u, v1, v2) belongs to H1
0 (Ω) × Lr1(Ω) × Lr2(Ω)

for some 1 < r1, r2 < +∞. The given functions h1 and h2 are assumed
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to be smooth and strictly convex with h`(0) = h′`(v) = 0 and h`(z) =
O(|z|r`) as |z| → ∞ (` = 1, 2). As in (P∞), the two infinite family of con-
straints are parametrized by σ ∈ [σ0,+∞), and β1(σ) and β2(σ) are given
data.

The physical interpretation of (6.1) is as follows. The magnetic field
B = (B′, B2, B3), which is independent of x3, satisfies ∇ · B = 0 in Ω ×
and hence admits a representation B = (ux2 ,−ux1 , v1), where u is the flux
function (or stream function) for its poloidal part and v1 is its toroidal part.
The magnetic energy density (per unit volume) is then 1

2
|B|2 = 1

2
|∇u|2+ 1

2
v21.

The mass density ρ of the plasma is represented by v2. The internal energy
density (per unit volume) is given by ργ/(γ − 1), in accordance with the
polytropic law p = ργ with p denoting pressure. Therefore, the objective
functional represents total (potential) energy when we put

h1(v1) =
1

2
v21, h2(v2) =

vγ2
γ − 1

(6.2)

The interpretation of the constraints relies on differentiating them with re-
spect to the parameter σ, then there results

∫

{u>σ}
v1 dx = −β ′1(σ),

∫

{u>σ}
v2 dx = −β ′2(σ)

All of these integrals are extended over the interior of a (cylindrical) flux
surface {u = σ} - that is, a flux tube {u > σ}. But ideal MHD requires that,
in evolution, each flux tube must move with the flow preserving its strength
and mass. It is readily verified that the above integrals are, respectively,
the toroidal flux and mass of the flux tube {u > σ}, and hence they are
conserved quantities. (The conservation of poloidal fluxes is implicit in the
parametrization which uses the values of the flux function u.)

As is shown in Lemma 2.1, the constraints in (6.1) imply that all con-
straints involving integrals of the form

∫

Ω
v`φ(u) dx where φ is an arbitrary function.

Indeed, the latter integrals are used to express the family of conserved quan-
tities in [?, ?]. Roughly speaking, the functions (s−σ)+ (σ0 ≤ σ < +∞) are
chosen here as a particularly useful basis for the space of all functions φ(s).
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This allows us to give a more direct physical interpretation to these integrals.
Moreover, this also permits us to discretize the constraints in precisely the
same way as the prototype problem (Pn) is formed from (P∞). Recalling the
definition (2.7), we replace the infinite family of constraints in (6.1) by

{

∫

Ω v1 fi(u) dx = γ1i
∫

Ω v2 fi(u) dx = γ2i, (i = 1, . . . , n)

relative to a (fixed) partition 0 ≤ σ0 < σ1 < . . . < σn−1 < σn = +∞.
The resulting discretized version of the minimization problem (6.1) is now
accessible to analysis and computation. Its variational equations can be
calculated formally to be











−∆u = v1Φ
′1(u) + v2Φ

′
2(u)

h′1(v1) = Φ1(u)
h′2(v2) = Φ2(u),

(6.3)

where, by virtue of the Lagrange multiplier rule,

Φ`(s): =
n

∑

i=1

λ`i fi(s) (` = 1, 2)(6.4)

for some multiplier λ`i. The observation that v1 and v2 enter into these equi-
librium equations algebraically suggests immediately that they be eliminated.
This yields an equation for u alone:

−∆u = (h′1(Φ1(u))Φ
′
1(u) + (h′2)

−1(Φ2(u))Φ
′
2(u),(6.5)

which is a generalized form of the familiar Grad-Shafranov equation. In order
to express this equation more plainly, it is useful to introduce the convex
conjugate functions to h`(` = 1, 2) defined by h`(z

∗) = supz zz
∗ − h`(z).

Then (6.5) can be written as simply

−∆u = P ′1(u) + P ′2(u) with P`(s): = h∗` (Φ`(s)).(6.6)

Returning to the physical case, we find that

h∗1(z
∗) =

1

2
(z∗)2, h∗2(z

∗) = (
γ − 1

γ
z∗)

γ
γ−1 ,
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and consequently we obtain the relations

P1 =
1

2
v21, P2 = vγ2 .

It follows from these relations that the profile functions P ′1 and P ′2 in (6.6)
have the usual interpretations or current and pressure profiles, respectively,
in the Grad-Shafranov equation.

Of course, the principal novelty inherent in (6.6) lies in the fact that the
functions P ′` are not specified, but are instead determined along with the so-
lution u through (6.4). We see therefore that (6.6) is a “generalized (or queer)
differential equation” (GDE) in the sense of Grad et.al.[?, ?]. However, our
viewpoint differs from that proposed by Grad, who viewed a GDE as a highly
implicit equation for u which combined the elliptic operation ∆ and differen-
tiation with respect to the volume variable α = α(σ) = |{u > σ}|. Rather,
we recognize (6.6) as merely the v1, v2 - eliminated form of the standard vari-
ational equations for a solution triple (u, v1, v2) of the classical minimization
problem (6.1). Thus, by treating that variational problem directly we obviate
the need to introduce the notion of a GDE. On the other hand, the compelling
reasons put forward by Grad and others for prescribing conserved quantities
associated with the evolution equations governing ideal MHD in place of the
current and pressure profiles in the Grad-Shafranov equation retain their va-
lidity; indeed, they provide the main justification for our multi-constrained
variational approach.

The relevant physical problem also involves a free-boundary, the interface
between the (confined) plasma and the (surrounding) vacuum. This feature
can be introduced (as in §5) by fixing σ0 > 0 in (6.1). Then the free-boundary
is {u = σ0}, and {u > σ0} and {0 < u < σ0} are the plasma and vacuum
regions, respectively. The flux constant σ0 effectively specifies the (total)
poloidal flux in the vacuum region. an additional constraint

∫

Ω v1 dx = γ10
can be imposed to specify the (total) toroidal flux in the vacuum region.
(This is necessary since the basis functions fi(s) vanish for s ≤ σ0). The
mass density v2 will be positive in {u > σ0} and vanish in {0 < u < σ0}
whenever the solution satisfies λ2i ≥ 0 (i = 1, . . . , n), and this condition may
be expected to hold in general. The free-boundary, ∂{v2 > 0}, is therefore a
flux surface on which pressure vanishes, as required by the physical interface
conditons.

We conclude this discussion by noting some special cases of the above de-
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velopment. First, we consider the case of an incompressible fluid (or plasma)
which we obtain by setting v2 = 1 (uniform density) in (6.1). Equivalently,
we may achieve this limit case by taking the exponent γ to infinity; then we
can verify that the compressible solutions tend to an incompressible solution
in the limit. Second, we have the case of a purely poloidal magnetic field
which we get by putting v1 = 0. This specialization of (6.1) results in a
substantial simplification since one family of constraints is dropped. Third,
we combine the two preceding cases and we arrive at the prototype problem
(P∞) or its discretized form (Pn), both posed in terms of u alone.

With this result in mind we remark that it is possible to construct algo-
rithms analogous to (An) which iteratively solve the more general problem
(6.1), at last under favorable circumstances. However, a convergence theory
similar to that given in §3-5 for the prototype problem is not yet available
for this general problem, owing mainly to the lack of joint convexity of the
constraint functionals in (6.1).
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7 Appendix 2. Some Comments On

Algorithm (An).

This appendix is included in order to indicate the main ideas underlying
the algorithm (An) presented formally in the preceding section. As such the
comments given here tend to emphasize the conceptual rather than logical
development of general iterative procedure for solving the variational problem
(Pn).

The globally convergent iterative procedure (An) can be considered as the
product of a development consisting of three stages. At each of these stages
a key ingredient in the algorithm is introduced. Therefore, it is useful when
explaining the algorithm (An) to describe the form that it takes at each stage
of its development. We now proceed to give such a description, stressing the
ideas involved rather than the details of proof.

The first stage of (An) consists, in essence, of an iterative procedure which
is based upon linearizing the nonlinear equality constraints occurring in the
minimization problem (Pn). This first form of (An) is defined iteratively by
the equations

−∆uk+1 =
n

∑

j=1

λk+1
j f ′j(u

k) in Ω, uk+1 = 0 on ∂Ω(7.1)

∫

Ω
[fi(u

k) + f ′i(u
k)(uk+1 − uk)] dx = γi (i = 1, . . . , n).(7.2)

For a fixed initialization u0 ∈ Mn(ū), this iterative procedure defines a se-
quence (uk+1, λk+1) ∈ H10(Ω) × n which is intended to converge (in some
suitable sense) to a solution of (Pn). Moreover, since the defining equations
(7.1) and (7.2) are linear in (uk+1, λk+1), the explicit construction of that
iterative pair from uk is a routine matter. First, we solve the linear elliptic
problems

−∆wj = f ′j(u
k) in Ω, wj = 0 on ∂Ω (j = 1, . . . , n);(7.3)

second, we find λk+1 ∈ n by solving the n × n system of linear algebraic
equations

∑

aij(u
k)λk+1

j = ci(u
k) (i = 1, . . . , n),(7.4)
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where, as in (2.29) and (2.30) with τ = 0,

aij(u
k) =

∫

Ω
∇wi · ∇wj dx ci(u

k) = γi −
∫

Ω
[fi(u

k)− f ′i(u
k)uk] dx;

third, we set

uk+1 =
n

∑

j=1

λk+1
j wj.(7.5)

This algorithm treats the constraints in (Pn) which the main source of dif-
ficulty in the problem, by replacing them at each iterative step with their
linearization about the previous iterate. If the iterative sequence (uk+1, λk+1)
converges to (u, λ) ∈ H1

0 (Ω)×
n (in norm, say ), then u is a critical point of

(Pn), or equivalently, (u, λ) solves (S), meaning that

∫

Ω
∇u · ∇v dx =

n
∑

j=1

λj

∫

Ω
f ′j(u)v dx(7.6)

∫

Ω
fi(u) dx = γi (i = 1, . . . , n)(7.7)

for all v ∈ H1
0 (Ω). Thus, the constraints (7.7) on solutions are retrieved from

the linearized constraints (7.2) on iterates. Furthermore, it is noteworthy that
the defining equations (7.1), (7.2) are precisely the variational equations for
the convex minimization problem

E(u)→ min subject to
Fi(u

k) + 〈F ′i (u
k), u− uk〉 = γi (i = 1, . . . , n);

(7.8)

and it is obvious that uk+1 is the unique minimizer for (7.8) and λk+1 is the
uniquely determined multiplier vector for uk+1.

Although the problem (Pn) is itself nonconvex having constraints that
are nonlinear equalities, the convexity of its objective and constraint func-
tionals implies that under certain conditions the sequence of iterates enjoys
special monotonicity and convergence properties. One consequence of these
convexity attributes is the inequality.

∫

Ω
fi(u

k+1) dx ≥
∫

Ω
[fi(u

k) + f ′i(u
k − uk)] dx = γi(7.9)

which holds unconditionally for every k and each i = 1, . . . , n. Hence, the
iterate uk+1 may be said to satisfy the constraints (7.7) in a relaxed sense with
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inequalities replacing the equalities. From (7.9) combined with Lemma 4.2 it
follows that the sets {x ∈ Ω: σi−1 < u(x) < σi} have positive measure. Using
the argument given in the proof of Theorem 2.2 the positive-definiteness of
the n× n matrix A = (aij(u

k)) is therefore ensured, since for any ξ ∈ n

n
∑

i, j=1

aij(u
k)ξiξj =

∫

Ω
|∇(ξ · w|2 dx > 0

unless ξ · w = 0 in Ω, which is equivalent to ξ · f ′(uk) = 0 in Ω. Thus, the
invertibility of A is derived from (7.9), and in turn the explicit construction
of the iterate (uk+1, λk+1) is seen to be well-defined. Another consequence of
convexity is the monotonicity of the values of the objective functional along
the iterative sequence, but, unlike (7.9), this property requires that a further
condition be satisfied–namely, λk+1

i ≥ 0 for each i = 1, . . . , n. A simple
calculation making use of (7.1), (7.2) and (7.9) yields the result:
E(uk)− E(uk+1)− E(uk+1 − uk) =

∫

Ω∇u
k+1 · ∇(uk − uk+1) dx

=
∑n

j=1 λ
k+1
j

∫

Ω f
′
j(u

k)(uk − uk+1) dx

=
∑n

j=1 λ
k+1
j {

∫

Ω fj(u
k) dx− γj}

≥ 0.

Therefore,

E(uk+1) ≤ E(uk) and E(uk+1 − uk)→ 0 as k → +∞,(7.10)

provided that every λk+1
i is nonnegative. Moreover, this condition also fur-

nishes an upper bound on |λk+1|, as is evident from the estimate

E(uk+1) + E(uk) ≥
∫

Ω∇u
k+1 · ∇uk dx

=
∑n

j=1 λ
k+1
j

∫

Ω f
′
j(u

k)uk dx

≥
∑n

j=1 λ
k+1
j γj.

These properties lead directly to a (generalized) convergence result for the it-
erative sequence. Specifically, it follows that every subsequence of (uk+1, λk+1)
has a further subsequence which converges to a solution u, λ) of (7.6), (7.7),
with the subsequence of uk+1 converging to u weakly in H1

0 and strongly in
L2. In other words, the iterative procedure produces a sequence which con-
verges (in the sense of minimum distance) to the set S of solutions whenever
the condition λk+1

j ≥ 0 can be enforced.
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One would expect that the latter condition could be satisfied if the ini-
tialization u0 of the above iterative procedure is taken close enough to a
solution of (Pn) which itself satisfies λi ≥ δ > 0(i = 1, . . . , n) for some δ. In
addition, the monotonicity property (7.10) suggests that, at least typically,
the iterates should converge to a local minimum of E rather then merely a
solution of S. Thus, the utility of this provisional form of the algorithm for
computing solutions of (Pn) is demonstrated within certain limits. On the
other hand, the condition that λk+1

j ≥ 0 is quite stringent and cannot be
expected necessarily to hold when either (i) u0 is not close enough to a local
minimizer or (ii) a solution u for which some λi are negative is sought.

The second stage of (An) is a modification of the above iterative pro-
cedure which weakens the above condition. Now the parameter τ > 0 is
introduced and (uk+1, λk+1) is defined by the analogues of equations (7.1),
(7.2) where −∆ is replaced by −∆+τ and λk+1

j is replaced by λk+1
j +τ . With

these substitutions made throughout the above algorithm, it can be verified
that the analogues of the above mentioned monotonicity and convergence
properties hold provided that λk+1

i ≥ −τ for each i = 1, . . . , n; with these
modification it can be seen that E is replaced by Eτ = E + τ(F1+ · · ·+Fn),
which is exactly the functionals defined in (2.20). This device for shifting
the iterative multipliers by τ rests crucially on the identity (2.14), and hence
on the structure of the family of constraints imposed in (Pn). Presumably,
with this second form of (An) in hand one would expect to be able to treat
the general case of (Pn) provided that the initialization of the iterative pro-
cedure is close enough to a solution. The choice of a suitable τ would then
be dictated by the magnitude of the negative λi values corresponding to the
solution.

The third stage for (An) is precisely the content of §3. The final form
of the algorithm differs from the preceding forms in that the (linearized)
constraints imposed at each iteration are now relaxed to inequalities. As is
shown in Lemma 2.3 and 2.4, the monotonicity and (partial) convergence
properties of this iterative procedure hold unconditionally, since µk+1

i ≥ 0
by necessity. Therefore, the algorithm (An) defines a sequence (uk+1, λk+1)
which converges in the sense explained above given as arbitrary initialization
u0. This means that (An) is a globally convergent iterative procedure, in
contrast to its two provisional forms with equality constraints. In essence,
the reason for this property of (An) lies in the fact that it takes full advan-
tage of the convexity attributes of the objective and constraint functionals.
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It is necessary however to show that the resulting solution u satisfies the con-
straints (7.7) as equalities. This is accomplished by choosing τ large enough
depending on the solutions of S (not on the iterates) so that λi + τ > 0 for
each i, and hence that each constraint must be active.
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