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Abstract

Using the method of Minkowski or Alexandrov one finds simple dis-

cretizations of elliptic Monge-Ampère equations, including the equa-

tion of graphs with prescribed positive Gaussian curvature. It is shown

how these discrete problems can be solved numerically, and computer

graphics of the piecewise linear, convex solutions are presented.

1 Introduction

Provided a sufficiently regular surface S ⊂ 3 can be represented as a graph

S = Sz = {(x, y, z(x, y)) : (x, y) ∈ Ω}

of a function z = z(x, y) defined in some domain Ω ⊂ 2, its most important

intrinsic geometric invariant, the Gauss curvature, can be computed as

κ =
zxxzyy − z2xy

(1 + z2x + z2y)
2

.

Thus, the inverse problem of trying to find a graph over Ω of prescribed

Gauss curvature amounts to the solution of the Monge-Ampère equation

zxxzyy − z2xy = ϕ(x, y)(1 + z2x + z2y)
2 .(1.1)
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Only slightly more general we here consider the equation

zxxzyy − z2xy = ϕ(x, y)R(zx, zy) ,(1.2)

with R = R(p, q) defined in 2, but immediately restrict ourselves to the

elliptic case ϕ = ϕ(x, y) > 0 on Ω and R = R(p, q) > 0 in 2. Without

further restriction z = z(x, y) can therefore assumed to be convex. Because

of its widespread occurrence in differential geometry the resulting Monge-

Ampère equation serves as an important model in the study of the Dirichlet

problem for a fully nonlinear partial differential equation of second order

(1.3)











zxxzyy − z2xy = ϕ(x, y)R(zx, zy) in Ω

z(x, y) = h(x, y) on ∂Ω .

In this context it is natural to assume also the domain Ω to be convex, in

order not to exclude even trivial boundary data h = h(x, y) right from the

beginning.

2 Numerical Procedure

We want to approximate classical solutions of (1.3) by piecewise linear con-

vex functions solving corresponding discrete problems first introduced by

Minkowski [4] and later revived by Alexandrov [1].

Theorem 1 . Let Ω ⊂ 2 be a convex polygon with corners B = [Bs, 1 ≤
s ≤ k] and distinguished interior points A = [Aj, 1 ≤ j ≤ N ]. Then for all

boundary values h = [hs, 1 ≤ s ≤ k] and positive weights µ = [µj, 1 ≤ j ≤ N ]

with
N

∑

j=1

µj < A(R): =
∫

2

dpdq

R(p, q)
(2.1)

there exists a unique convex, piecewise linear function z = z(x, y) on Ω ,

such that
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ω(R, z, Aj): =
∫

χz(Aj)

dpdq

R(p, q)
= µj , 1 ≤ j ≤ N,

(2.2)

z(Bs) = hs , 1 ≤ s ≤ k ,

and such that all interior vertices of the graph Sz project onto A, all boundary

vertices onto B.

Here χz denotes the generalized gradient map with

χz(x◦, y◦) : =

{

(p, q) ∈ 2: z(x, y) ≥ z(x◦, y◦) + p(x− x◦) + q(y − y◦)
for all (x, y) ∈ Ω

}

Thus χz(x◦, y◦) is the set of all supporting directions in (x◦, y◦) ∈ Ω, and it

is implicitly assumed that R = R(p, q) is at least locally integrable.

Theorem 2 . Let Ω be an arbitrary uniformly convex, bounded domain in
2, ϕ = ϕ(x, y) ∈ Cα(Ω), R = R(p, q) ∈ Cα(2), both positive, α ∈ (0, 1).

Assume
∫

Ω
ϕ(x, y)dxdy < A(R) =

∫

2

dpdq

R(p, q)
(2.3)

and ϕ(x, y) ≤ κdβ , R(p, q) ≤ C(1+p2+q2)γ with positive constants κ, c, γ, β,

2γ ≤ 3 + β , d : = dist∂Ω(x, y). Moreover, suppose we choose a sequence of

convex polygons Ωm , m ≥ 1 , Ω1 ⊂ Ω2 ⊂ . . . , with ∪∞

m=1Ωm = Ω, of

boundary points Bm = [Bm
s , 1 ≤ s ≤ k(m)] , Bm

s ∈ ∂Ωm , of interior points

Am = [Am
j , 1 ≤ j ≤ N(m)] , Am

j ∈ Ωm , limm→∞ k(m) = limm→∞N(m) =

∞, and of positive weights µ
m

= [µjm, 1 ≤ j ≤ N(m)] ,
∑N(m)

j=1 µjm <

A(R), such that for every disk D = Dρ(x◦, y◦) with radius ρ > 0 and center

(x◦, y◦) ∈ 2

lim
m→∞

∑

A
j
m∈D

µjm =
∫

D∩Ω
ϕ(x, y)dxdy.

Then, given any sequence of boundary values hm = [hms , 1 ≤ s ≤ k(m)] with

piecewise linear extensions on ∂Ωm converging uniformly to h = h(x, y) on
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∂Ω, the piecewise linear, convex solutions zm = zm(x, y) , (x, y) ∈ Ωm, of the

corresponding discrete problems (2.2) converge uniformly on Ω to a unique

solution z ∈ C2,α(Ω) ∩ C◦(Ω) of the classical problem (1.3).

For arbitrary Ω uniform convexity means that through every boundary point

there exists a circle enclosing Ω with uniformly bounded radii.

Each function zm being defined only on Ωm, uniform convergence on Ω of

course means that for all ε > 0 these exists m◦ with

|zm(x, y)− z(x, y)| < ε for m ≥ m◦ and (x, y) ∈ Ωm .

Convergence of the boundary values may be defined via homeomorphisms

between ∂Ωm,m ≥ 1, and ∂Ω, provided by projection along rays from a

fixed origin. For a more detailed discussion of the results above we refer to

[2] and the references therein.

Given any bounded uniformly convex Ω ⊂ 2, we might assume its center

of mass being the origin, and think of ∂Ω given in polar coordinates. Then,

Ωm,m ≥ 1, can be taken to be the polygon determined by its boundary

vertices Bm = [Bm
s , 1 ≤ s ≤ k] on ∂Ω, where

Bm
s = ( r(θs) cos θs , r(θs) sin θs ) , θs =

2π

k
(s− 1) ,

and we always take k = 6m. Then, for any boundary function h ∈ C◦(∂Ω) we

can fix hm = [hms , 1 ≤ s ≤ k] by setting hms = h(Bm
s ). We chose the number of

interior points in Am = [Am
j , 1 ≤ j ≤ N ] as N = 1+3m(m−1) = 1+

∑m−1
i=1 6i

with Am
◦
the origin and the remaining 3m(m−1) points distributed on (m−1)

equidistant layers as

Am
j = (

i

m
r(θs) cos θs ,

i

m
r(θs) sin θs ) , 1 ≤ i ≤ m− 1 ,

1 ≤ s(i) ≤ 6i , θs = π
s− 1

3i
, j = 1 + 3i(i− 1) + s .

Starting from a central hexagon it is easy to determine a regular triangulation

Tm of Ωm with interior vertices Am and boundary vertices Bm. Given a
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function ϕ = ϕ(x, y) ∈ Cα(Ω), the weights µ
m

= [µjm, 1 ≤ j ≤ N ] are taken

to be

µjm =
1

3

6
∑

i=1

∫

∆i(Aj)
ϕ(x, y)dxdy , where ∆i(Aj) , 1 ≤ i ≤ 6 ,

are the triangles of our triangulation Tm having Aj as vertex. Then, if with

some R = R(p, q) ∈ Cα(2) inequality (2.3) and the growth conditions on

ϕ and R in Theorem 2 are satisfied, the corresponding sequence of dis-

crete solutions zm = zm(x, y) will indeed converge to the desired solution

of (1.3). As explained in [3], taking the boundary conditions into account,

the function zm = zm(x, y) is uniquely determined by its values in the vertices

zm,j = zm(A
m
j ) , 1 ≤ j ≤ N . Thus a problem as (2.2) with Ω, z, A, µ,B, h

replaced by Ωm, zm, A
m, µ

m
, Bm, hm respectively constitutes a nonlinear sys-

tem in N(m) variables, which we solved numerically by a Newton method

with variable step length.

Difficulties arise from the fact, that, as necessary in each step, in order

to compute the values ω(R, zm, Aj) , 1 ≤ j ≤ N , and the derivatives with

respect to zm,j with all vertices (Am
j , zm(Aj)) given, we have to find the

unique possible connectivity satisfying the convexity condition. We have to

determine the whole graph of zm with its facets and edges as part of the

convex hull of both all vertices in the interior and on the boundary. The

most important use of a variable step length is to ensure that all points

(Am
j , zm(Aj)) are in fact true vertices of the corresponding graph, and all

sets χzm
(Aj) in gradient space have nonvoid interior. For more details we

have to refer to [2] again.

3 Computer Graphics

The first numerical computations of functions zm = zm(x, y) approximating

solutions of (1.3) where done on an IBM mainframe at the University of

California at Santa Cruz. There we also could get reasonable wireframe and

raster computer graphics, but there was no fast and immediate connection

between the computing engine and the graphics device. We continued our
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work at the SFB 256 in Bonn, where the final version of our program has

been developed on the Silicon-Graphics IRIS-3D workstation. For debugging

and performance tests on our algorithms the immediate availability of even

simple wireframe graphics at any given moment during program execution

turned out to be extremely helpful. Because often one is not so much inter-

ested in the solution of a single particular Dirichlet problem but rather would

like to study the behavior of the solution as boundary values, parameters in

the equation, or even the domain are changing, our program allows the on-

runtime specification of several parameters which pick the desired functions

ϕ,R, h and the domain Ω out of one-parameter families encoded in corre-

sponding subroutines. One more parameter controls the graphics display;

you might want to see a model of the final result only, or alternatively get a

glimpse of the graph Sz after each single Newton step.

As starting point of this numerical imitation of the continuation method

mentioned above it is useful to have some explicitly known solutions. For Ω

an ellipse,

Ω = {(x, y) ∈ 2:
x2

a2
+ y2 < 1},

and constant right hand side c > 0, we have

z(x, y) = b (
x2

a2
+ y2)− b , b =

a
√
c

2
,

as solution of zxxzyy − z2xy = c with vanishing boundary data. A spherical

cap yields a graph with constant Gauss curvature; thus for the unit disk

D = D1(0) and constant c , 0 < c ≤ 1, we get

z(x, y) =
√
R2 − r2 −

√
R2 − 1 , R2 =

1

c
, r2 = x2 + y2;

as solution of

zxxzyy − z2xy = c (1 + z2x + z2y)
2

with trivial boundary data again.
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For example to study the one-parameter family of functions solving

zxxzyy − z2xy = 4 in the unit circle D,

z(x, y) = λ cos θ for 0 ≤ θ < 2π , x = cos θ, y = sin θ,

we start with the paraboloid z(x, y) = x2 + y2 − 1 solving the problem

for λ = 0; then we change the parameter step by step, always using the

solution found in the step before to construct reasonable initial values for

our Newton solver. The shaded images Ia, Ib, Ic show the solutions for

λ = 0.2, λ = 0.6, λ = 1.0 respectively. All graphs shown in this section

were computed with the choice m = 20 , k = 120 , N = 1141 , and consist of

6m2 = 2400 triangular facets. II shows the solution of (1.3) for

ϕ(x, y) = 1 + x+ 2y2 , R(p, q) = (1 + p2 + q2)
3

2 ,

and constant boundary data. The family corresponding to ϕ(x, y) = 1 +

µ(x+ 2y2) , 0 ≤ µ ≤ 1 had been considered.

Returning to the case of prescribed Gauss curvatureR(p, q) = (1+p2+q2)2

we must take β ≥ 1 in Theorem 2. Thus, ϕ = ϕ(x, y) has to vanish Lipschitz

continuously on ∂Ω, for us to be sure that a solution of (1.3) exists for

all boundary values. Nevertheless even if this last conditions is not met, all

discrete solutions zm = zm(x, y) will still exist provided inequality (2.3) hence

condition (2.1) is satisfied. The functions solving

zxxzyy − z2xy =
3

4
(1 + z2x + z2y)

2 in D

z(x, y) = λ cos 3θ for 0 ≤ θ < 2π , x = cos θ, y = sin θ

for λ = 0.2 and λ = 0.4 are shown by III. All graphics in this paper has

been produced at the University of Massachusetts at Amherst using the VPL

graphics programming environment, as described in [3]. Output device had

been the Apple LaserWriter and for color display the RasterTechnologies

Model I/380.
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After fixing a coloring of the lower hemisphere, in RGB - terms for example

R = −z , G =
1 + x

2
, B =

1 + y

2
,

x2 + y2 + z2 = 1 , z ≤ 0,

we could color each facet differently according to its unit outward normal; we

used simple flat shading at this point, for Gouraud shading later resulted in

less interesting images. Some specular parallel light and point light sources

were added to produce a more realistic impression. IVa, IVb, IVc show

solutions on the ellipse

Ω = {(x, y) ∈ 2 :
x2

a2
+ y2 < 1}

with a = 3
2
, corresponding to

ϕ(x, y) =
1

2
+ µ(2− x2) , R(p, q) = (1 + p2 + q2)2

z(x, y) = h(θ) = λ cos 2θ on ∂Ω

for (λ, µ) = (0, 0) , (λ, µ) = (0, 1
8
) , (λ, µ) = ( 3

10
, 1
8
) respectively. Here the

deformation of a spherical cap into the graph IVa had to be computed first.
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