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New Examples of Singly-Periodic Minimal Surfaces
and Their Qualitative Behavior

David A. Hoffman

1. Singly-Periodic Minimal Surfaces. I would like to describe some recent
research, concerning properly embedded minimal surfaces with periodicity that I
have been doing with Michael Callahan and Bill Meeks III. The work includes the
construction of new examples and the characterization of the qualitative behavior
of all examples in an important class. It is based, in turn, on an analysis of the
geometric behavior of such surfaces at infinity. This talk is divided into two
parts; the first discusses the examples and qualitative results; and the second
gives a feeling for the analytical background.
To begin, it is easy to see that any connected, triply-periodic embedded surface

in R3 must have a single topological end. That is, the part of such a surface
outside of any ball in R3 is a connected set. For any doubly-periodic surface,
Scherk’s First Surface for example, the same is true, although it is by no means
obvious. A proof of this fact will be described below.
For singly-periodic surfaces, things can get more complicated. Many singly-

periodic minimal surfaces have a single topological end. (In order to avoid confu-
sion, let me emphasize that we are counting ends of a surfaceM in R3, not in R3

mod T , where T is the cyclic group of symmetries. For example, Scherk’s First
Surface has four topological ends in R3/T .) Scherk’s Second Surface comes to
mind. However, this is not always the case. Riemann discovered a 1-parameter
family of connected, properly embedded minimal surfaces with an infinite num-
ber of flat ends.
The Riemann examples R possess a quite special set of properties:
(a) They have an infinite number of flat annular ends; (By an annular end of a

surface we mean an end that has a representative homeomorphic to a punctured
disk. Often such a representative is referred to as the end itself. For a properly
embedded minimal surface, we may choose this representative to be the image of
the punctured unit disk in the complex plane. An annular end is flat provided
it is asymptotic to a plane in R3.)
(b) They are invariant under a nontrivial translation T ;

The research described in this paper was supported by research grant DE-FG02-86ER250125

of the Applied Mathematical Science subprogram of the Office of Energy Research, U.S. De-
partment of Energy, and National Science Foundation grants DMS-8802858 and DMS-8611574

1980 Mathematics subject classifications. Primary 53C40

c1988 American Mathematical Society
0271-4132/88 $1.00 + $.25 per page

1



2 New Examples of Singly-Periodic Minimal Surfaces and Their Qualitative Behavior

(c) The surfaces R/T have genus 1 and 2 ends;
(d) The surfaces R/T have total curvature equal to −8π.
Inspired by these examples, we established the existence of an infinite family of

properly embedded, periodic minimal surfaces,Mk each with an infinite number
of flat annular ends [1].
These surfaces have the following properties:
(1) Mk has an infinite number of annular ends.
(2) Mk is invariant under the group of translations T generated by T : ~x 7→

~x+ (0, 0, 2).
(3) Mk/T has genus 2k + 1 and two ends.
(4) The symmetry group of Mk/T has order 8(k + 1).
(5) Reflection in the plane {x3 = n+ 1/2}, n ∈ Z, is a symmetry of Mk.
(6) Mk/T has finite total curvature −4π(2k + 2).
(7) All the ends of Mk are flat; they are asymptotic to the planes x3 = n,

n ∈ Z.
(8) Mk ∩ {x3 = n}, n ∈ Z, consists of k + 1 equally spaced straight lines

meeting at (0, 0, n).
(9) Mk ∩ {x3 = c}, c /∈ Z, is a simple closed curve.
(10) The subgroup R of the symmetry group of Mk consisting of rotations

about the x3-axis has order k + 1 and is generated by rotation by 2π/(k + 1).
(11) Mk is symmetric under reflection through the k + 1 vertical planes con-

taining the x3-axis and bisecting the lines of property 8.
(12) The full symmetry group ofMk is generated by T , R, one of the reflections

in 5, rotation about one of the lines in 8, and reflection through one of the planes
in 11.
We have proved that these surfaces are characterized by only a few of their

properties. In particular, properties 1–5 above imply properties 6–12. Thus,
if properties 1–5 are satisfied on a properly embedded minimal surface with a
translational symmetry T and more than one end, the surfaceMk/T must have
finite total curvature [2].
There is strong computational evidence that the surfaces Mk are the unique

in the sense that they are the only properly embedded minimal surface with
a translational symmetry and more than one end on which properties 1–5 are
satisfied. For each k, there is a one-parameter family of immersed minimal
surfaces, which must contain any surface satisfying the conditions above. A
surface in this family will be embedded and singly-periodic, and will satisfy
these conditions, provided a period vanishes. This period is a smooth function
of the parameter describing the family, and in [2], we show that this function
possesses a zero and is asymptotic to a linear function. Computations indicate
that it is also monotonic and hence its zero is unique. Nonetheless, there is the
remote possibility that this is not the case and that there is more than oneMk

satisfying the list of conditions.
We point out something quite interesting and (we believe!) nontrivial. Namely,

property 9 is forced by properties 1-5. It is quite plausible that this should not be
the case. Consider the following construction. Take a boundary curve consisting
of the union of the positive x− and y− axes, which we shall label L0, together
with L1, the vertical translation of L0 by one unit. Suppose L0 ∪ L1 bounds an
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embedded minimal annulus, which lies in the convex hull of this boundary and
has all the symmetries of the boundary. Then this surface extends, by Schwarz
reflection, to an example with Properties 1-8 and 10, but certainly not Property
9. To establish that Properties 1-5 forced Properties 6-12 we had to prove, among
other things, that such a minimal annulus could not exist. We did this using a
variant of the Alexandroff reflection principle, as developed for minimal surfaces
by Rick Schoen [9] (see Lemma 3 of [2].)
A natural question to ask at this point is whether or not the examples Mk

may be given a helical twist. To make this precise, we will define a screw motion

of R3 to be the composition of a nonzero translation, T , and a rotation,R, about
the axis defined T . With this definition, we may consider a pure translation to
be a (degenerate) screw motion. We were able to show [2] that:
For every positive integer k and angle θ, 0 < |θ| < π

k+1
, there exists a properly

embedded minimal surface Mk,θ that has the following properties.
(i) Mk,θ has an infinite number of flat annular ends.
(ii) Mk,θ is invariant under the group of nondegenerate screw motions, S,

generated by (r, φ, z)→ (r, φ+ 2θ, z + 2).
(iii) Properties 3 and 6–10 above hold for Mk,θ, with T replaced by S.
(iv) The symmetry group of Mk,θ/S, has order 4(k + 1).

Remark 1. When θ = 0, the construction of Mk,θ yields a surface satisfying
all the conditions characterizing the examplesMk. If we knew that the surfaces
Mk and Mk,θ were unique, then we would have

Conjecture 1. {Mk,θ | θ ∈ (− π
k+1

, π
k+1

)} is a smooth, one-parameter family
of embedded minimal surfaces.

The examples Mk,θ and the Riemann examples R comprise all the known
properly embedded minimal surfaces with more than one end and infinite sym-
metry group. They share many geometric properties. We have been able to show
that this is not accidental.

Theorem 1. (First Structure Theorem) SupposeM is a properly embedded
minimal surface, with more than one end, whose symmetry group is infinite.
Then either M is the catenoid or:
(a) M has an infinite number of ends;
(b) M is invariant under a screw motion S;

(c) all annular ends of M are flat ends; (d) the total curvature of M̃ = M/S
is

C(M̃) = 2π(χ(M̃)− r(M̃)),

where r(M̃) is the number of ends of M̃ .

This theorem proved in [2] is a consequence of a more general structure theo-
rem:

Theorem 2. (Second Structure Theorem) Under the same hypotheses (M
is a properly embedded minimal surface, with more than one end, whose sym-
metry group is infinite) then either M is the catenoid or:
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(a) There exists a plane parallel to the limit tangent plane, whose intersection
with M consists of a finite number of simple closed curves;

(b) The symmetry group of M contains an infinite cyclic, normal subgroup,
generated by a screw motion S = T +R, where T is a translation and the index
of this subgroup is finite;

(c) If S = T +R and R 6= 0, the limit tangent plane is orthogonal to the axis
of S.

In the next section we shall give some indication of the analysis behind the
proof of this theorem.

Note, as is evident from the picture of Riemann’s example, that the axis of
translation is not orthogonal to the limit tangent planes. This is not a contra-
diction to the result above because the Riemann examples are invariant under a
degenerate screw-motion; that is, one without a rotational part.

For purposes of comparison, I should describe some very beautiful examples,
recently-discovered by H. Karcher and J. Pitts. They are asymptotic to two coax-
ial helicoids and resemble two such helicoids, one twisted by a fixed angle from
the other, with the intersection set replaced by a tower of tunnels resembling the
core of Scherk’s Second Surface. These surfaces have screw-motion symmetries
and would appear to violate the structure theorems above. However, they have
one topological end.

Using the Second Structure Theorem, we can establish the following topologi-
cal result: A doubly-periodic, properly embedded minimal surface in R3 has one

end and infinite genus (Corollary 2, Section 3 of [2]). The proof is relatively
straightforward:

Since the symmetry group of a doubly-periodic minimal surface does not have
a cyclic subgroup of finite index, the Second Structure Theorem above implies
that a connected doubly-periodic minimal surface has one end. If a doubly-
periodic minimal surface with translation group L has genus zero and one end,
then, topologically, it is a plane and its quotient in R3/L is a torus. Since a
closed minimal torus in a flat 3-manifold is totally geodesic (by Gauss-Bonnet),
we see that a nonplanar, doubly-periodic minimal surface must have one end
and infinite genus.

2. Limit Tangent Planes and Canonical Annular Ends. In this section, I
will describe a bit of the underlying theory on which the proofs of the Structure
Theorems are based. Recall that the Second Structure Theorem in the previous
section uses the existence of a unique limit tangent plane to the surfaces in
question. While this is plausible, it is not obvious that such a plane exists in
the generality that is required: we make no topological assumptions about the
minimal surfaces in question, except that they have more than one end.

Some definitions are necessary. A subsurface E ⊂M is an end-representative

if it is a closed noncompact subset of M with compact boundary. We say that a
surfaceM has more than one end if it contains two or more pairwise-disjoint end
representatives. Finally, a surface Σ in a region R ⊂ R3 is said to be a surface of
least area in R if every compact subdomain D ⊂ Σ has least area among surfaces
in R with boundary ∂D.
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An end of a complete minimal surface of finite total curvature has a well-
defined limit normal vector and limit tangent plane [2]. Recall that a properly
embedded minimal surface M of finite total curvature has the property that all
of its limit tangent planes coincide and thus it makes sense to speak of the limit
tangent plane to M . We have generalized the notion of limit tangent plane to
apply to any properly-embedded minimal surface with more than one end, and
have shown that in this case, there is a unique limit tangent plane.

Lemma 1. SupposeM ⊂ R3 is a properly embedded minimal surface. Let E be
an end-representative ofM with smooth boundary and having the property that
M − (E) is noncompact. Then S = ∂E bounds a smooth, properly-embedded,
noncompact, least-area surface Σ of finite total curvature given in Lemma 1 in
the closure of one of the components of R3 −M .

The limit tangent plane of Σ will be called a limit tangent plane to M .

Theorem 3. If M is a properly embedded minimal surface in R3 with more
than one end, it has a unique limit tangent plane.

We will refer to the limit plane defined by Theorem 3 as the limit tangent
plane to M .
This tangent plane is the one referred to by the Second Structure Theorem.

Its existence allows us to begin the analysis of that theorem. Beginning with a
properly embedded minimal surface with more than one end and infinite sym-
metry group,we show first that one of the ends of a least-area surface Σ of finite
total curvature in the closure of one of the components of R3 −M must have a
flat end. The tangent plane P to this flat end is, of course, parallel to the unique
limit tangent plane. By using a version of the maximum principle at infinity [7]
[8] we can perturb this tangent plane to the flat end to insure that it intersects
M transversally in a compact set. This shows that there exists a plane parallel
to the limit tangent plane, whose intersection withM consists of a finite number
of simple closed curves.
Without loss of generality, we may assume that P is horizontal and equal to the

(x, y)-plane. Let S be the orientation-preserving symmetries of M whose linear
part fixes the vertical vector (0, 0, 1). Because of the existence of a unique limit
tangent plane, every element of the symmetry group of M either preserves or
reverses (0, 0, 1). Observe that S can contain no horizontal translations because
P ∩M must be compact. Therefore S consists of pure vertical translations, screw
motions with vertical axis and rotations with vertical axis. It follows that the
index of S in Sym(M) is either 1, 2 or 4. We now concentrate on the orbit of
P under S . Since P ∩M is compact, the end of P is a positive distance from
M , which means that the orbit of P under S consists of a family of horizontal
planes, indexed by their third coordinate, z. Since we are assuming thatM is not
the catenoid, S must act discretely. Thus S cannot consist entirely of rotations.
Therefore, there exists a minimum positive height, achieved by an element S
of S. This is the required screw-motion generator of a cyclic, infinite normal
subgroup of isometries. It is evident from the previous paragraph that the cyclic
subgroup generated by S has finite index, asserted in the second statement of
the Second Structure Theorem.
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Let L be the slab in R3 between the plane P and the plane S(P ). It is clear
that L ∩M is not compact; otherwise, M would have one end, a contradiction.
It follows that the S − orbit of L ∩M contains an infinite number of distinct
ends, as claimed in Statement 1 of the First Structure Theorem.
In order to prove the aforementioned fact that ifM has one annular end it has

infinitely many, we need to use a technical result about the existence of canonical
end representatives:

Proposition 1. (Canonical Representation of Annular Ends) Each an-
nular end of a complete, nonsimply-connected, oriented minimal surface has a
unique representative whose boundary is a closed geodesic. These representa-
tives have pairwise-disjoint interiors. If the boundaries of two such annular ends
touch, they coincide and M is an annulus.

The cyclic subgroup generated by S acts freely on the collection of canonical
annular ends of M . Suppose there is one canonical annular end. If there were
not an infinite number of distinct canonical annular ends, then at least one of
the annular ends would have to be fixed. But then the (compact) boundary of
this end would be invariant under an infinite cyclic group of symmetries. It is
easy to see that in this circumstance, that this end would be invariant under
an action of S1 by rotation, forcing M to be the catenoid. This proves that if
M has one annular end, it has infinitely many, unless M is the catenoid. We
can now evoke the Annular End Theorem of [4] which states that any properly
embedded minimal surface M can have, at most, two annular ends of infinite
total curvature. But the S−orbit of any annular end contains an infinite number
of annular ends. Hence every annular end of M must have finite total curvature.
An annular end of finite total curvature is asymptotic to either the plane or
the catenoid. A straightforward argument using the existence of the plane P
will show that the annular ends must be “flat”, i.e. asymptotic to planes. This
completes the proof of Statement 3 of the First Structure Theorem.
It is hoped that these few details give a feel of the technicalities involved in

the proof of the Structure Theorem.
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