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Abstract

Working primarily within the conformal category, we develop comple-
mentary existence and rigidity theorems for periodic minimal surfaces
in �

n. Applying this theory, we prove:

1. Every flat three-torus contains an infinite number of genus 3
embedded minimal surfaces;

2. Necessary and sufficient conformal conditions for a closed Rie-
mann surface of genus g to conformally minimally immerse in a
flat 3- or (2g − 1)-torus;

3. The existence of distinct isometric minimal surfaces in flat tori;

4. Special results on the geometry of minimal surfaces of genus 3
and of classical examples of minimal surfaces in flat three-tori;

5. The determination of the group of symmetries of certain minimal
surfaces in �

3.

∗The research described in this paper was supported by research grant DE-FG02-
86ER250125 of the Applied Mathematical Science subprogram of the Office of Energy Re-
search, U.S. Department of Energy, and National Science Foundation grant DMS-8900285.
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1 Introduction

In 1760, Lagrange extended to two dimensions the Euler theorems on simple

integrals in the calculus of variations, and as an example, he proposed the

following problem. Given a closed curve C and a connected surface S bounded

by the curve; to determine S so that the enclosed area shall be a minimum.

Sixteen years later, Meusier found that such a surface S is minimal only if

the mean curvature of S is zero. Explicit physical solutions to this problem

were found by Plateau, who showed that soap films on wires were sometimes

least area among all surfaces having the wire as boundary. These studies

marked the birth of the theory of minimal submanifolds in �

3.

Many of the more intricate and beautiful examples of minimal surfaces in

�

3 have the additional property of being preserved by a group of translations.

The helicoid and Scherk’s surfaces are well known examples of surfaces with

this periodic behavior. During the middle of the nineteenth century, a thor-

ough investigation of periodic minimal surfaces was carried out by Schwarz

[55]. By extending Plateau’s construction to polygonal curves and then ex-

tending them by repeated reflection across the line boundaries, he found an

effective method for generating surfaces invariant under a lattice L of trans-

lations. The resulting quotient surfaces in �

3/L gave the first examples of

compact minimal surfaces in flat three-tori.

We will call a closed Riemann surface M periodic if it conformally mini-

mally immerses in a flat three-torus �

3. By lifting to the universal cover of

�

3, these periodic surfaces become the proper triply-periodic minimal sur-

faces in �

3.

The compactness of a minimal surface M in �

3 gives rise to restrictions

on the conformal type of M . Frequently, these conformal restrictions give

nontrivial geometric information about the lifted minimal surface in �

3. For

these reasons, we consider the following fundamental questions:

1. Which compact Riemann surfaces are periodic?
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2. How does the conformal structure of a periodic surface influence its

geometry?

Our first result on these questions is that a surface of genus two is never

periodic. Since every surface of genus two is hyperelliptic, this result follows

from our more general result that a hyperelliptic Riemann surface of even

genus is never periodic. We also find another family of nonperiodic Riemann

surfaces: Any nonsingular curve of degree four in ��� 2 fails to be periodic.

Thus, the classical Fermat curve of degree four in ��� 2, given in homogeneous

coordinates by x4 + y4 + z4 = 0, provides a good example of a nonperiodic

surface. The techniques of proof used here consist of a study of the relation-

ship of the Gauss map of a periodic minimal surface to the canonical curve

of the associated Riemann surface (see Definition 2.2).

Besides finding conformal obstructions to periodicity, we also begin the

development of a general existence theory. We define a real five-dimensional

family V of periodic hyperelliptic surfaces of genus three (see Theorems 7.1

and 10.1). The surfaces in this family are the ones that can be represented

as two-sheeted covers of the sphere branched over four pairs of antipodal

points. Since the minimal surfaces in the family V are embeddings, the

following result takes on particular significance. (See Theorem 3.2 for the

proof.)

Theorem 1.1 If f :M3 → �

3 is a minimal surface of genus three, then:

1. M3 is hyperelliptic;

2. There exist eight zeros of Gauss curvature;

3. The hyperelliptic automorphism is an isometry and is induced by an

inversion symmetry in �

3 through any zero of Gauss curvature of M3;

4. If f :M3 → �

3 is an embedding, then, after a translation, the zeros

of Gauss curvature of M3 are the order two points of �

3, where we

consider �

3 to be an abelian group.
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We also prove other existence theorems for minimal surfaces in flat tori.

Namely:

1. Every �

3 contains, for every odd integer k, an infinite number of non-

congruent embedded minimal surfaces of genus k. (Corollary 10.1).

2. If the genus g of Mg is greater than 3, then Mg will conformally mini-

mally immerse fully in a flat �

2g−1. A necessary and sufficient condition

for M3 to conformally minimally immerse fully in a flat �

5 is for it to

be hyperelliptic. (Theorem 9.1).

3. A closed surface M , orientable or not, will topologically minimally im-

merse in some flat �

3 if and only ifM = �

2 or χ(M) ≤ −2 where χ(M)

is the Euler characteristic of M . (Example 8.1 and Corollary 10.1).

4. Every flat �

4 contains an embedded orientable minimal surface of every

possible genus except genus 0. (Theorem 8.4).

Some of our deepest results are obtained by combining our rigidity and

existence theories. For example, we show that the Schwarz diamond (or D
surface) can be continuously deformed to its conjugate surface, the Schwarz

primitive (or P surface), through minimal surfaces of genus 3 in flat three-

tori.

The paper is organized as follows. In Section 2 we develop the background

material necessary for discussing the geometry of triply-periodic minimal sur-

faces. In Section 3 we develop some of the basic results on the geometry of

periodic surfaces with an emphasis on the geometry of the hyperelliptic ex-

amples. In Section 4 we discuss a fundamental restriction that the associated

canonical curve of a periodic surface must satisfy. In Section 5 we develop

the basic rigidity theory of periodic minimal surfaces that allows us to deal

with symmetry questions and other theoretical discussions in latter sections.

In particular, these rigidity results are the building block for the existence

theory developed in the following two sections. In Section 6 we investigate
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the theory and examples of periodic minimal surfaces that have more than

one isometric minimal immersion into flat three-tori. In Section 7 we con-

struct the family V of periodic minimal surfaces of genus 3 that we discussed

earlier. A variety of results of independent interest are developed in Sec-

tion 8. In Section 9 we explore the theory of periodic minimal surfaces in �

k.

In Section 10 we prove that: Every flat 3-torus contains an infinite number

of embedded genus 3 minimal surfaces. J. Hass, J. Pitts and H. Rubenstein

[17] have also proven this result.

The primary purpose of Section 11 is to bring the subject matter up to

date as well as to give credits to others for their contributions. In particular,

credit is given to T. Nagano and B. Symth for their research on triply-periodic

minimal surfaces that, in minor ways, overlaps with some of our results. Some

discussion of the recent appearances of periodic minimal surfaces in modeling

liquid crystals as well as the surface interfaces in block copolymers is also

given in this section. This section also includes a theorem, Theorem 11.1, on

the rigidity of properly embedded minimal surfacesM with infinite symmetry

group and whose quotient by their symmetry group have finite topology. This

theorem generalizes our earlier rigidity theorem for triply-periodic minimal

surfaces (Theorem 5.3).

Acknowledgements. Except for the material in Section 10, which was

worked out around 1980, and Theorem 11.3, which was proved in 1988, this

paper represents the research contained in my 1975 Ph.D. thesis at the Uni-

versity of California at Berkeley [26], [27]. I would like to express my sincere

appreciation to my teachers Blaine Lawson and Mark Green for sharing their

ideas and for taking a special interest in my thesis work. I offer a special

thanks to Lawson who directed my thesis and whose constant encouragement

and focus gave life to my own ideas during the writing of my thesis.
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2 Background material

The main purpose of this section is to develop the notion of a minimal sub-

manifold in Euclidean space, and to acquaint the reader with our notation

for future discussions.

To begin with, let (Mn, <>), or more conveniently, Mn, denote a C∞

n-dimensional Riemannian manifold. We will assume that all mappings be-

tween manifolds are C∞. If f :M → M is a proper isometric immersion,

then we will frequently identify M with its image, and refer to M ⊂ M as

an immersed submanifold.

For the convenience of the reader, we give a summary of our notation for

other standard objects in differential geometry:

1. TpM = the tangent space at p ∈M ; TM = the tangent bundle of M ;

2. ∆ = the Laplacian; ∇ = the unique Riemannian connection on M ;

3. H i(M, � ) = the ith De Rham cohomology group of M ;

4. H i(M) = the harmonic i-forms on M ;

5. H1(M, � ) = H1(M) = the first homology group of M ;

6. H1,0(M) = the holomorphic one-forms on a complex manifold M ;

7. Mg = a compact Riemann surface of genus g;

8. �

k = a flat k-dimensional torus;

9. f :Mg → �

k = a conformal minimal immersion, unless otherwise stated.

The Riemannian connection∇ onM induces the important second funda-

mental form on submanifolds. It is defined as follows: Assume that M ⊂M

is an embedded submanifold, and X, Y are extensions to M of vector fields
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X,Y on M . Then B(X,Y )(p) = (∇XY )N(p) gives rise to a well defined nor-

mal vector field on M . One can easily check that B is a symmetric tensor on

M with values in the normal spaces, and hence, B has a well defined trace.

Definition 2.1 The mean curvature vector field of Mn ⊂ M is K(p) =

trace(Bp) =
∑n

i=1 B(ei, ei), where {e1, . . . , en} is an orthonormal basis for

TpM . If K ≡ 0, then we call M ⊂M a minimal submanifold.

There is a simple explanation as to why the word minimal is attached to

a submanifold with zero mean curvature. Minimal submanifolds are charac-

terized as surfaces that in a small neighborhood of any point on the surface

minimize surface area with respect to local boundaries. Thus, they are the

higher dimensional generalization of geodesics, which minimize arc length

between any two close points. The proof of this geometric characterization

of minimal submanifolds is by way of the first and second variation of area

formulas. See [25] for details.

Well known examples of complete minimal surfaces in �

3 include the

catenoid and the helicoid. Physical realizations of compact minimal surfaces

with boundary in �

3 can be constructed by taking a bent circular piece of

wire and then dipping it in a soapy water solution; surface tension forces

an ideal soap film that forms on this wire to have zero mean curvature. In

higher dimensions, any complex submanifold of � n, ��� n, or a complex torus

is minimal with respect to the usual metrics on these spaces.

For the rest of this section, we will restrict our attention to minimal

submanifold in Euclidean n-space or in a flat torus �

n. Frequently, we will

assume that every �

n is canonically represented as �

n/L, where L is a lattice

in �

n. An easy calculation shows that if f = (f1, . . . , fn):M → �

n is an

isometric immersion, then the mean curvature vector field on M can be

computed by the formula K(p) = (∆f1(p), . . . ,∆fn(p)). Thus we have:

Theorem 2.1 A submanifold f :M → �

n is minimal if and only if the co-

ordinate functions are harmonic.
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In particular, the above theorem implies, after a possible translation, that

f can be represented by f(p) =
∫ p
p0
(h1, . . . , hn) where:

1. The hi = dfi are harmonic1 one-forms with no periods on M ;

2. The integration is carried out over any path joining the base point

p0 ∈M to p.

The above approach of integrating forms is useful in obtaining minimal

immersions of compact manifolds into flat tori. In general, a compact M k

may have harmonic one-forms that can be integrated to obtain minimal im-

mersions f :Mk → �

n, but it never has non-constant harmonic functions.

More precisely, we have the following:

Theorem 2.2 A submanifold f :M → �

n = �

n/L is minimal if and only

if, after a translation, f can be represented as f(p) =
∫ p
p0
(h1, . . . , hn), where

h1, . . . , hn are harmonic one-forms and the periods P = {∫γ(h1, . . . , hn) | γ ∈
H1(M, � )} are contained in the lattice L.

One of the beautiful classical theorems on Riemann surfaces states that

every Riemann surface of positive genus holomorphically embeds in a complex

torus called its Jacobian. In particular, every closed Riemann surface of

positive genus conformally embeds as a complex minimal submanifold in

some flat complex torus.

Theorem 2.3 (Abel-Jacobi Embedding Theorem) Let M be a closed

Riemann surface of positive genus g and let {ω1, . . . , ωg} be a basis for

H1,0(M). Then f(z) =
∫ z
z0
(ω1 . . . , ωg):M → �

n/L = J(M) (= Jacobian

of M) is a holomorphic embedding, where L is the lattice of period vectors

{∫γ(ω1, . . . , ωg) | γ ∈ H1(M, � )}.
1A real k-form ω on an n-dimensional Riemannian manifold is harmonic if it is both

closed and co-closed; i.e., dω = 0 and d ∗ ω = 0, where ∗ is the Hodge star operator.
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It is important to consider the conformal structure of a Riemann surface

when searching for minimal surfaces in tori. In fact, on two-dimensional

Riemannian manifolds, (M,<>), there is usually much to be gained by using

appropriate coordinate charts. When M is orientable, it is possible to pick

coordinates so that the metric ds2 = F (dx2 + dy2), and under change of

coordinates, angles are preserved. Such coordinates are called isothermal

coordinates and give M a conformal or complex structure.

From now on, we will consider all two-dimensional orientable surfaces as

Riemann surfaces and our mappings f :M 2 →M as conformal immersions.

In local coordinates, z = x + iy on M 2 we define ∂
∂z

= 1
2
( ∂
∂x
− i ∂

∂y
),

∂
∂z

= 1
2
( ∂
∂x

+ i ∂
∂y
). In these coordinates, the induced metric has the form:

ds2 = 2F |dz|2, the Laplacian can be expressed by ∆ = 2
F

∂
∂z

∂
∂z
, and the

Gauss curvature can be calculated by K = −1
F
∆ log(F ).

For a more complete discussion of the following, we refer the reader to

[25].

Suppose now that f :M → �

n is a minimal surface, and z is a local coordi-

nate system on M . Then, by Theorem 2.1, ∆f = ∂
∂z

∂
∂z
f = (∆f1, . . . ,∆fn) =

~0, implying that φ = ∂
∂z
f is a local holomorphic � n-valued function on M .

Since 4(φ ·φ) = |fx|2−|fy|2−2i〈fx, fy〉, and since the induced metric is given

by gxx = |fx|2 = 2 ·F , gyy = |fy|2 = 2 ·F, gxy = 〈fx, fy〉 = 0, we arrive at the

following equations:

φ2 =
n∑

k=1

φ2k = 0. (2.1)

|φ|2 =
n∑

k=1

|φ|2k = F. (2.2)

We get a well defined map G:M → � P n−1 defined by G(p) = the complex

line through the point (φ1(p), φ2(p), . . . , φn(p)) ∈ � n. Since
∑n

i=1 φ
2
i = 0, the

image ofG is contained in the quadricQn ⊂ ��� n−1 given by z21+z
2
2+. . .+z

2
n =

0 in homogeneous coordinates.
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Qn can be identified with the Grassman manifold G◦(2, n) of oriented

two-planes in �

n as follows: Let �

2 ⊂ �

n be a two-dimensional subspace

oriented by the pair of vectors (v1, v2), with |v1| = |v2| and v1 · v2 = 0, where

· is the dot product. One can easily show that the mapping I:G◦(2, n)→ Qn,

defined by I((v1, v2))= the complex line through v1 + iv2 ∈ Qn ⊂ ���

n−1, is

an isometry in the standard metrics on these spaces. Furthermore, after this

identification, the usual Gauss map G:M → G◦(2, n) given by translation

of the tangent space to the origin, agrees with the definition of G:M → Qn

given in the previous paragraph.

One consequence of these identifications is that the Gauss map for a

minimal surface in �

n becomes a holomorphic transformation. In �

3, it is

customary to define the Gauss map G:M → S2 by translation of the unit

normal vector to the origin. We will always take S2 oriented with respect

to the inward normal vector field, the orientation induced from � under

stereographic projection.

Proposition 2.1 f :M → �

3 is a minimal surface if and only if the Gauss

map G:M → S2 is holomorphic.

Proof. Identify TpM and TG(p)S
2 by parallel translation. Then the deriva-

tive matrix G∗ for G is a symmetric matrix. It follows that f :M → �

3 is

minimal if and only if G is conformal if and only if G is holomorphic. 2

Corollary 2.1 If f :M → �

3 is a minimal surface, then the points of zero

Gauss curvature are precisely the branch points of G:M → S2.

Proof. Since G:M → S2 is holomorphic, the Gauss curvature at p given by

det(G∗(p)). Hence, det(G∗(p)) = 0 if and only if G∗(p) is the zero matrix if

and only if p is a branch point of G. 2

Weierstrass and Enneper found a canonical representation for a minimal

surface in �

3 in terms of meromorphic data on the surface. A further study
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of formulas 2.1, 2.2, gives the Generalized Weierstrass Representation for all

minimal surfaces in �

n [25] or [48].

Theorem 2.4 (Generalized Weierstrass Representation)

1. After a translation, any minimal surface f :M → �

n can be represented

by

f(z) = Re
∫ z

z0
(ω1, . . . , ωn),

where the ωi = gi(z) dz ∈ H1,0(M) have no real periods,
∑n

i=1 g
2
i = 0,

and
∑n

i=1 |gi|2 = F . Conversely, if f(z) = Re
∫ z
z0
(ω1, . . . , ωn) with ωi as

above, then f :M → �

n is an isometric minimal immersion.

2. When n = 3, ω1 = (1 − g2)η, ω2 = (1 + g2)iη, ω3 = 2gη for some

holomorphic one-form η and where g is the Gauss map composed with

stereographic projection onto � ∪ {∞}.

3. If �

n is replaced by �

n, then the above statements hold if the period

vectors P = {∫γ(ω1, . . . , ωn) | γ ∈ H1(M, � )} are contained in the

lattice of �

n.

When looking for minimal immersions of a simply connected surface M

into �

n, we need not worry about periods of the ω′
is. If f(z) =

Re
∫ z
z0
(ω1, . . . , ωn):M → �

3 is a simply connected minimal surface, then the

Generalized Weierstrass Representation implies that the associate surface at

angle θ, fθ(z) = Re[eiθ
∫ z
z0
(ω1, . . . , ωn)], is an isometric minimal immersion of

M into �

n. Whether M is simply connected or not, if fθ is well-defined, then

fθ is also called an associate surface at angle θ of f . The conjugate surface of

f is the associate surface fπ/2 and its coordinate functions are the harmonic

conjugates of the coordinate functions of f . Frequently, this conjugate surface

has special geometric relationships with the original surface. If f :M → �

3 is

a minimal surface and fπ/2 is well defined, then f =
√
2(f + i fπ/2):M → �

3

is a holomorphic isometric immersion.
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By applying the Calabi Rigidity Theorem for holomorphic curves in � n,

Calabi gave the following important characterization of isometric minimal

surfaces in �

3 [7].

Theorem 2.5 (Calabi Rigidity Theorem) If f, g :M → �

3 are isomet-

ric minimal immersions, then after a rigid motion, f = gθ for some angle

θ.

In our study of closed minimal surfaces in flat tori, the canonical curve

of a surface plays a fundamental role.

Definition 2.2 Let Mg be a compact Riemann surface of genus g, and let

ω1, . . . , ωg ∈ H1,0(Mg) be a basis for the holomorphic one-forms on Mg. Sup-

pose z = x + yi in local coordinates. If ωi(z) = fi(z)dz, then the vector

c̃(z) = (ω1(z), ω2(z), . . . , ωg(z)) = (f1(z), . . . , fg(z)) is well defined pointwise

up to a scalar multiple. Hence, we get an induced map c:Mg → � �

g−1 called

the canonical map of Mg. The curve c(Mg) ⊂ ���

g−1 is the canonical curve

of Mg.

Definition 2.3 A Riemann surface is hyperelliptic if it can be represented

as a two-sheeted branched cover H:M → S2 of the sphere.

The next theorem appears in Section 10 of [16].

Theorem 2.6 The canonical mapping c:Mg → ���

g−1 is an embedding if

and only if Mg is not hyperelliptic. If Mg is hyperelliptic, then c can be

factored, up to a linear isomorphism, by:

Mg

H ↙ ↘ c
���

1 −→ ���

g−1

V ,

where V (1, t) = (1, t, . . . , tg−1) in homogeneous coordinates.
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We now acquaint the reader with the elementary properties of hyperel-

liptic surfaces. Suppose that H:M → S2 is the two-sheeted covering of S2 of

a hyperelliptic surface M . The mapping Θ:M →M which interchanges the

points on the two sheets of H is called the hyperelliptic automorphism. The

fixed points of Θ are the branch points of H and are called the hyperelliptic

points.

The standard example of a hyperelliptic surface in �

3 is a symmetric

surface where Θ is rotation by 180◦ around the x-axis. See Figure 1 below

for an example with genus g = 5.
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Figure 1:

It is clear that M/Θ = S2, and that the quotient map is a two-sheeted

branched cover with 2(g + 1) branch points. If h ∈ H1(M), then h + Θ∗(h)

is invariant under the pull-back map Θ∗, and hence, descends to a harmonic

one-form on S2. Since the only harmonic one-form on S2 is the zero form,

we must have Θ∗(h) = −h. This result is well known and we state it as a

proposition.

Proposition 2.2 Let Mg be a hyperelliptic Riemann surface, and let h ∈
H1(M) be a harmonic one-form. Then Θ∗(h) = −h, where Θ is the hyperel-

liptic automorphism.

The next proposition is also well known.
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Proposition 2.3 If f :Mg → �

k
�

is a full holomorphic mapping, then f

factors through J(Mg); i.e., there exist a lift f̃ :Mg → J(Mg) and a “� -

linear” map A: J(Mg)→ �

k
�

such that

J(Mg)

f̃ ↗ ↓ A
Mg −→ �

k
�

f .

In particular, J(Mg) contains a codimension k complex subtorus contained

in the kernel of A.

Proof. Suppose f :Mg → �

k
�

is given by f =
∫
(ω1, . . . , ωk), where ωi ∈

H1,0(Mg). After completing the {ωi} to an ordered basis, define f̃ =
∫
(ω1, . . . , ωg), and define A to be projection on the first k factors. 2

3 The geometry of hyperelliptic minimal sur-

faces

Recall from the Introduction that a closed Riemann surface M is called

periodic if it conformally minimally immerses in a flat three-torus. In this

section, we begin our study of the geometry and conformal structure of these

periodic surfaces. The geometric tools of this investigation are the Gauss map

and the Gauss-Bonnet Theorem. Note that the Gauss map of an orientable

minimal surface in a flat three-torus is well defined. Some of the results in

this section were found independently by Nagano and Smyth [40] [41] [44].

See Section 11 for further credits.

Theorem 3.1 (Gauss-Bonnet Theorem) If f :Mg → �

3 is a minimal

surface of genus g, then the Gauss map2 G:Mg → S2 represents Mg as

a (g − 1)-sheeted conformal branched cover of S2.

2The Gauss or normal map is well defined on an oriented surface in a flat three-torus

by lifting the surface to �

3
.
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Proof. By Proposition 2.1, the Gauss map G:M → S2 for a minimal surface

in �

3 is holomorphic. Similarly, when f :Mg → �

3 = �

3/L is a minimal sur-

face, G is also holomorphic, and hence, exhibits M as a conformal branched

cover of S2. The usual Gauss-Bonnet Theorem states that the degree of G

is g − 1, where g is the genus of Mg. 2

Straightforward applications of the Gauss-Bonnet Theorem give rise to

the following restrictions on the topological and conformal type of minimal

surfaces in �

3.

Corollary 3.1 A surface of genus two is never periodic.

Proof. If a surface of genus 2 was periodic, then, by the Gauss-Bonnet The-

orem, the Gauss map would represent the surface as a one-sheeted branched

cover of S2. But any one-sheeted cover of S2 is again S2. 2

Corollary 3.2 A periodic surface of genus three is hyperelliptic.

Proof. By definition, a Riemann surface is hyperelliptic if it can be repre-

sented as a two-sheeted covering of S2. In the case of genus three, the Gauss

map provides this representation. 2

Corollary 3.3 If f :Mg → �

3 is a minimal surface of genus g, then Mg has

4(g − 1) zeros of Gauss curvature, counted with multiplicity.

Proof. Since the Gauss map G:Mg → S2 has degree g − 1, the Riemann-

Hurwitz formula implies there are 4(g − 1) branch points counted with mul-

tiplicity. By Corollary 2.1, we can identify the zeros of Gauss curvature with

the branch points. The corollary now follows. 2

The rest of this section is devoted to the study of minimal immersions of

hyperelliptic surfaces in flat tori.
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Proposition 3.1 If f :M → �

n is a hyperelliptic minimal surface, then:

1. The hyperelliptic automorphism is an isometry that is induced by an

inversion symmetry in �

n through any hyperelliptic point of f(M);

2. After a translation, the hyperelliptic points are contained in the set of

order two points in �

n. (Note 0 trivially has order two in the abelian

group �

n.)

Proof. After a translation, suppose that f is represented by f(p) =
∫ p
p0
(h1, . . . , hn), where hi ∈ H1(M) and p0 is a hyperelliptic point. Then, by

change of variables, we have

f(Θ(p)) =
∫ Θ(p)

p0

(h1, . . . , hn) =
∫ Θ(p)

Θ(p0)
(h1, . . . , hn) =

∫ p

p0

Θ∗(h1, . . . , hn) = −f(p),

since Θ∗ is multiplication by (−1) on the harmonic one-forms (Proposi-

tion 2.2). Hence, (−1): �

3 → �

3 leaves M invariant and fixes the hyper-

elliptic points.

If x is a hyperelliptic point, then the above equation shows that f(x) =

f(Θ(x)) = −f(x). Hence, every hyperelliptic point has order two or is 0 ∈
�

n. 2

One can easily verify that the following theorem holds on the four Schwarz

surfaces of genus three.

Theorem 3.2 If f :M3 → �

3 = �

3/L is a minimal surface of genus three,

then:

1. M3 is hyperelliptic;

2. The hyperelliptic automorphism is an isometry and is induced by in-

version symmetry in �

3 through any hyperelliptic point;

3. If f is an embedding, then after a translation, the set of zeros of Gauss

curvature can be identified with 1
2
L = order two points of �

3. (Note

0 ∈ 1
2
L trivially has order two.)
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Proof. By Theorem 3.1, the Gauss map G:M3 → S2 represents M3 as a

two-sheeted cover of S2 with simple branch points. Hence, by the Riemann-

Hurwitz formula, we get eight branch points or zeros of Gauss curvature.

Since there are precisely eight order two points in �

3, the theorem follows

from the previous proposition. 2

Theorem 3.3 A hyperelliptic surface of even genus is never periodic.

Proof. Let f :M → �

3 be a hyperelliptic minimal surface translated so as

to have a hyperelliptic point at the origin. By the proof of Proposition 3.1,

we have f(Θ(p)) = −f(p). We also have by Proposition 3.1 that Θ:M →M

is orientation-preserving, and is induced from an isometry in �

3 that leaves

invariant parallel lines. Hence, we can factor the Gauss map through the

hyperelliptic quotient:

M
Π↙ ↘ G

M/Θ = S2 −→ S2

G̃ .

Since the degree of Π is two, elementary degree theory implies that the degree

of the Gauss map is even. Hence, by the Gauss-Bonnet Theorem, the genus

of M must be odd. 2

Another application of Proposition 3.1 yields the following obstruction to

minimal embeddings in higher-dimensional tori.

Theorem 3.4 If f :M → �

n is an embedded hyperelliptic minimal surface

of genus g, then 2(g + 1) ≤ 2n.

Proof. We know by the Riemann-Hurwitz formula that there are 2(g + 1)

hyperelliptic points on M . By Proposition 3.1, these hyperelliptic points

must lie halfway from the origin to the corners of the fundamental region of

�

n in �

n, or they must lie at the origin; i.e., they are the order two points
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in �

n. Hence, there are 2n such positions for the hyperelliptic points. If

f :M → �

n is an embedding, then 2(g + 1) ≤ 2n (since f is one-one on the

hyperelliptic points). 2

The above formula easily proves our next corollary.

Corollary 3.4 A minimally embedded hyperelliptic surface in �

3 has genus

three.

Since any holomorphic immersion of a surface in a complex torus is min-

imal, the above theorem gives conformal obstructions to holomorphically

embedding a hyperelliptic surface into a complex torus. We list one of these

instances in the next corollary.

Corollary 3.5 A hyperelliptic surface of genus larger than seven will never

holomorphically embed in a complex two-dimensional torus.

The following theorem gives a natural interpretation of the classical Abel’s

Theorem for periodic minimal surfaces.

Theorem 3.5 (Abel’s Theorem for Periodic Surfaces) Let f :Mg → �

3

be a minimal surface and let G:Mg → S2 be its Gauss map. Then for all

s ∈ S2, q =
∑

p∈G−1(s) p ∈ �

3 (summed with multiplicity) is independent of

s ∈ S2.

Proof. Since G is holomorphic, the continuous map G̃:S2 → �

3 defined by

G̃(s) =
∑

p∈G−1(s) p, where the sum is taken with multiplicity, is locally a

vector sum of harmonic coordinate functions and hence is itself a harmonic

map. Since S2 is simply connected, G̃ lifts to the universal cover �

3 of �

3

with harmonic coordinate functions. Since a harmonic function on a closed

Riemann surface is constant, the lifted map is constant. Hence, G̃ is constant,

which proves the theorem. 2
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Remark 3.1 The above theorem holds for any meromorphic function F :Mg →
S2, not just the Gauss map.

Corollary 3.6 After a fixed translation, the three points of a periodic surface

of genus 4 with the same unit normal are coplanar, i.e. they lie on the quotient

of a plane passing through the origin.

Proof. Suppose M4 is a genus 4 minimal surface in a flat three-torus �

3.

After a fixed translation of M4, we may assume by Theorem 3.5 that p1 +

p2 + p3 = 0 ∈ �

3 for {p1, p2, p3} ⊂ G−1(s) for every s ∈ S2 not in the branch

locus of G. This implies p1, p2, and p3 are coplanar. 2

Our next theorem clarifies somewhat the extent to which the obstruction

theory for periodic surfaces may be pursued. In this direction, we conjecture:

Conjecture 3.1 If g > 2 is even, then there exists a full branched minimal

hyperelliptic surface of genus g in every flat �

3, and when g odd, this branched

immersion can be choosen to be free of branch points.

Conjecture 3.2 For every flat tori �

3 and k > 1, there exists an embedded

orientable minimal surface with Euler characteristic χ = −2(k − 1), and an

embedded non-orientable minimal surface with χ = −2k in �

3.

Theorem 3.6

1. For every g = 2k+1, k ≥ 1, there exists a periodic hyperelliptic surface

of genus g.

2. For every odd genus g, there exists an embedded minimal surface Mg

in some flat three-torus.

3. For every even Euler characteristic less than −1, there exists an em-

bedded non-orientable minimal surface M in some flat three-torus.
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Proof. Let M5 be the hyperelliptic surface of genus 5 described in Figure 1

at the end of Section 2. Let Ry:M5 →M5 be rotation by 180◦ around the y-

axis. Since Ry commutes with the rotation Θ around the y-axis and Θ is the

hyperelliptic automorphism on M5, M3 = M5/Ry is a hyperelliptic surface

of genus three. Since any two hyperelliptic Riemann surface Mg, M
′
g are

diffeomorphic by a diffeomorphism h satisfying hΘ = Θ′h, one can extend the

method used in the above example to show that every hyperelliptic surface

M3 has a two-sheeted cover by another hyperelliptic surface. Replacing the

surface M5 in the above figure by a surface with 2k + 3 holes, the above

argument shows that every hyperelliptic Riemann surface of odd genus has a

two-sheeted cover that is hyperelliptic. Hence, there exists a 2k-sheeted cover

of M3 by a hyperelliptic surface. Thus, by taking appropriate covers of the

Schwarz P surface, we get periodic hyperelliptic surfaces of genus g = 2k +1

for every k ≥ 1. This proves Part 1.

Part 2 follows by taking appropriate covers and lifts of the Schwarz P
surface into three-tori, or more concretely, by taking the quotient of the

surface in �

3 by appropriate sublattices.

Before proving Part 3, we outline the construction of a simple example

of a non-orientable periodic surface with Euler characteristic χ = −2, which
we call the S surface. Construction: Take a polygonal curve with 90◦ angles

with all sides of length L except the center lines of length 2L. Now solve the

Plateau problem for this curve.

%
%%

%
%%

p0

p1

p2

p3

p4

Figure 2:
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This surface represents an embedded non-orientable minimal surface of

Euler characteristic χ = −2 in the quotient torus �

3 with lattice L generated

by the vectors {p3 − p0, p2 − p1, p4 − p0}. By taking appropriate sublatices

L′ of L, one obtains the examples S/L′ described in Part 3 of the theorem.

2

Remark 3.2 A closed nonorientable surface of odd Euler characteristic will

not embed topologically in a three-torus. See [6] for this result. Also, the

Klein bottle K can not be minimally immersed in a flat �

3, since this would

imply that K has two linearly independent one-forms, which it fails to have.

4 The canonical curve of a periodic surface

In the last section we found that the Gauss-Bonnet Theorem gives rise to

restrictions on the conformal type of compact minimal surfaces in �

3. In

Section 2, we briefly discussed how the usual Gauss map G:M → S2 for a

minimal surface f(p) = Re
∫ p
p0
(ω1, ω2, ω3):M → �

3 can be identified with the

mapping G:M → Q3 ⊂ ���

2, where Q3 is the standard quadric in ��� 2 and

G = (ω1(p), ω2(p), ω3(p)) in homogeneous coordinates.

By applying standard techniques of algebraic geometry to study G, we

shall develop some further theory for minimal surfaces in flat tori. This

theory includes both existence theorems and conformal obstructions for a

Riemann surface to be periodic, and we will prove theorems concerning the

existence of minimal surfaces in flat tori of dimension greater than three.

Throughout the rest of this section, we will assume that our minimal

immersions f :M → �

k are full, i.e., the image surface is not contained in a

proper flat subtorus.

Recall that the canonical curve of Mg in ��� g−1, denoted by c(Mg), is

given in homogeneous coordinates by c(p) = (ω1(p), . . . , ωg(p)), where {ωi}
is a fixed basis of H1,0(Mg).
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Theorem 4.1 Let f(p) = Re
∫ p
p0
(ω1, . . . , ωn):M → �

n be a conformal

branched minimal immersion. Suppose that k = rank {ω1, . . . , ωn} in H1,0(M)

is not equal to n/2. Then c(M) is contained in a quadric of rank r, for some

integer r ≥ 3 with 2k − n ≤ r ≤ k.

In particular, the canonical curve of a periodic surface is contained in a

quadric of rank 3.

Proof. After a possible reordering, assume that f(p) = Re
∫ p
p0
(ω1, . . . , ωn),

with ω1, . . . , ωk linearly independent holomorphic one-forms. Suppose that

the remaining one-forms ωk+1, . . . , ωn = ωk+s can each be expressed as a lin-

ear combination of the first k forms: ωk+1 =
∑k

j=1 a1jωj, . . . , ωn =
∑k

j=1 asjωj.

Note: s = k if and only if rank {ω1, . . . , ωn} = n/2. Suppose from now on

that k 6= n/2.

LetQ(x) = Q(x1, . . . , xk) be the quadratic form defined byQ(x1, . . . , xk) =

x21 + x22 + . . .+ x2k + (
∑k

j=1 a1jxj)
2 + . . .+ (

∑k
j=1 asjxj)

2.

Claim 4.1 Rank Q(x) ≥ k − s > 0. In particular, Q 6≡ 0.

Proof of Claim 4.1. The possibility of Q(x) = 0 is readily seen to be

equivalent to finding a solution x to the quadratic matrix equations AtA =

−Ik×k, where Ik×k is the k × k identity matrix, and A = (aij) is the s × k

coefficient matrix defined above. Clearly, rank (AtA) ≤ s. Therefore, rank

(Ik×k − AtA) ≥ k − s, and hence the rank Q(x) ≥ k − s > 0. 2

After an orthogonal change of basis to y1, . . . , yn, Q will be diagonalized,

so we may assume that Q(x1, . . . , xk) = Q(y1, . . . , yr) = y21 + . . .+ y2r , where

k−s ≤ r ≤ k. Since the mapping f(p) = Re
∫ p
p0
(ω1, . . . , ωn):M → �

n is min-

imal, the generalized Weierstrass representation implies Q(ω1, . . . , ωk) = 0.

From the above diagonalization procedure, we know that there exist linearly

independent α1, . . . , αr ∈ H1,0(M), with Q(α1, . . . , αr) = α21 + . . . + α2r = 0.

This implies that the canonical curve of M is contained in a quadric of rank

r, with 2k − n = k − s ≤ r ≤ k. Rank Q = 2 implies the canonical curve of
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Mg lies in a linear subspace of ��� g−1. Since this never occurs, r > 3, which

completes the proof of Theorem 4.1. 2

For every genus greater than 2, there are Riemann surfaces whose canoni-

cal curve fails to lie in a quadric of rank three, and hence, by the last theorem,

they are not periodic. In the case of genus 3, the surfaces whose canonical

curves are contained in a quadric are precisely the hyperelliptic surfaces.

Recall from the previous section that the Gauss map for a periodic sur-

face M3 represents M3 as a two-sheeted cover of S2; this implies that M3 is

hyperelliptic. Our next theorem generalizes this result from �

3 to �

5 and

proves the characterization of hyperelliptic surfacesM3 referred to in the last

paragraph.

Theorem 4.2

1. M3 is a nonsingular curve of degree four in ��� 2 if and only if M3 is

not hyperelliptic.

2. If M3 conformally minimally immerses in some �

3 or �

5, then M3 is

hyperelliptic.

Proof. (We refer the reader to Section 10 of [16] for further details in the

following proof.) Let V d−3: ��� 2 → ���

[(d−1)(d−2)/2]−1 be the Veronese map

given in homogeneous coordinates by monomials of degree (d− 3). It is well-

known that V d−3(M) is the canonical mapping, where M is a non-singular

curve of degree d in ��� 2. Thus, a non-singular curve of degree four in � � 2

is always canonical.

On the other hand, the canonical curve of a Riemann surface is singular if

and only if the surface is hyperelliptic. Therefore, M3 is a nonsingular curve

of degree four in ��� 2 if and only if M3 is not hyperelliptic. Furthermore,

the canonical curve of a hyperelliptic surface of genus 3 is the unique (up

to isomorphism) quadric of rank three in ��� 2. Since the quadrics in ��� 2

of rank three are homeomorphic to S2, it follows from the above discussion
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that the canonical curve of M3 is contained in a quadric if and only if M3 is

hyperelliptic. Hence, by Theorem 4.1, any M3 which conformally minimally

immerses in �

3 or �

5 is hyperelliptic. 2

Example 4.1 By Theorem 4.2, the Fermat curve of degree 4 in ��� 2 given in

homogeneous coordinates by x4+y4+z4 = 0 will never conformally minimally

immerse in �

3 or �

5.

If the canonical curve of M is contained in a quadric of rank k, then

after a change of basis, we may assume that it lies in the standard quadric

of rank k. This implies the existence of k linearly independent holomor-

phic one-forms ω1, . . . , ωk with
∑k

i=1 ω
2
i = 0. From the generalized Weier-

strass Representation, we can define a branched minimal immersion, f̃(p) =

Re
∫ p
p0
(ω̃1, . . . , ω̃k): M̃ → �

k on the universal cover M̃ ofM . If f̃(M̃) ⊂ �

k is a

closed subset of �

k, then the periods L = {Re ∫γ(ω1, . . . , ωk) | γ ∈ H1(M, � )}
form a lattice in �

k. Therefore, when the closure f̃(M̃) = f̃(M̃), we get an

induced branched minimal surface f = Re
∫
(ω1, . . . , ωk):M → �

k = �

k/L.

Much of the remaining work in this paper is an elaboration of the problem

discussed above: If c(M) ⊂ Qk, then do there exist conformal or geometric

conditions onM that guarantee the existence of holomorphic forms ω1, . . . , ωk

satisfying

1.
∑k

i=1 ω
2
i = 0;

2. L = {Re ∫γ(ω1, . . . , ωk) | γ ∈ H1(M, � )} is a lattice in �

k?

From this point of view, the next proposition gives us two families of

candidates for periodic surfaces.

Proposition 4.1 The canonical curve of a hyperelliptic surface is contained

in a quadric of rank three, as is the canonical curve of a non-singular curve

of degree > 4 in ��� 2.
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Proof. Theorem 2.6 states that the canonical curve of a hyperelliptic surface

Mg can be factored up to isomorphism of ��� g−1, as V ◦H where H:Mg →
S2 = ���

1, and V ((1, t)) = (1, t, t2, . . . , tg−1) in homogeneous coordinates.

Therefore, c(Mg) is contained in the quadric of rank three defined by the

equation z0z2 = z21 in homogeneous coordinates. This proves the first part of

the proposition.

If F :Mg → ���

2 is a nonsingular curve of degree d, then the canonical

curve is obtained from the composition Mg
F→ ���

2 V d−3→ ���

g−1, where V d−3

is the Veronese mapping given by monomials of degree d−3 : V d−3(x, y, z) =

(xd−3, xd−4y, xd−5y2, . . .). Then V d−3 ◦ F (Mg) ⊂ V d−3( ��� 2) is contained in

the quadric of rank three defined by the equations z0z2 = z21 . 2

The above proposition indicates that there might not be any general con-

formal obstructions for a hyperelliptic surface Mg to be a branched minimal

surface in some �

3. On the other hand, by pursuing the study of the canon-

ical map for a hyperelliptic surface Mg, we can prove that when the genus is

even, branch points always occur. This approach gives an algebric-geometric

proof of Theorem 3.3 that a hyperelliptic surface of even genus is never pe-

riodic.

5 The rigidity theory for minimal surfaces

The rigidity theory for minimal surfaces in �

3 is quite varied and interesting.

If one is dealing with a simply connected minimal surface M , then the set

of associate surfaces, parameterized by the circle, constitute the collection

of all non-congruent isometric minimal immersions of M in �

3. But if M

is not simply connected, then a minimal immersion of M might be rigid,

i.e., any other isometric minimal immersion is obtained by composition with

a symmetry of �

3. In fact, it is not difficult to show that the standard

embedding of the catenoid is the unique isometric minimal immersion of this

surface in �

3 up to congruence.
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An important extrinsic invariant of the congruence class of a minimal

immersion is its space group. The space group of a submanifold M ⊂ �

3 is

the group of isometries of M induced by symmetries of �

3. For example,

in Section 3, we showed that the space group of any hyperelliptic periodic

surface contains the hyperelliptic automorphism.

In this section we will investigate conditions on a periodic surfaceM that

insure the existence of more than one distinct isometric minimal embeddings

ofM into flat tori. Our first theorem gives restrictions on the conformal type

of such surfaces.

Definition 5.1 Two minimal immersions f :M → �

3
1 and g:M → �

3
2 are

distinct if their lifted mappings to �

3 differ by a symmetry of �

3. Note that

the lifted point set surfaces in �

3 may be congruent without implying that the

mappings differ by a symmetry of �

3.

Theorem 5.1 If there exist two distinct isometric immersions of M into

three-tori, then:

1. These immersions lift to holomorphic isometric immersions of M into

a complex three-torus;

2. The Jacobian of M contains a codimension-three complex torus.

Proof. After a translation, suppose that the first immersion

f1(p) = Re
∫ p
p0
(ω1, ω2, ω3). To show that f1 lifts to an isometric holomorphic

immersion, it is sufficient to check that the periods P = { 1√
2

∫
γ(ω1, ω2, ω3) |

γ ∈ H1(M, � )} form a lattice in � 3. Since ω1, ω2, ω3 are linearly indepen-

dent over � , showing P is a lattice is equivalent to proving that the clo-

sure of P , denoted by P , does not contain a linear subspace S ⊂ P . By

Theorem 2.5, we may assume that the second immersion, f2, is given by

f2(p) = Re [eiθ
∫ p
p0
(ω1, ω2, ω3)].

We know that the periods of f1 and f2 are discrete. This implies that

Re(S) = {~0} = Re(eiθS), or equivalently, S is contained in the kernels of
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both of the projections Re: � 3 → �

3 and Re ◦eiθ: � 3 → �

3. Since the in-

tersection of these kernels is {~0}, S = {~0}. This shows that P is a lattice,

and therefore the map f(p) = 1√
2

∫ p
p0
(ω1, ω2, ω3):M → �

3
�

= �

3/P is an

isometric holomorphic immersion.

The second part of the theorem follows from Proposition 2.3. 2

The same proof as above proves the following:

Theorem 5.2 If f :M → �

k
1 and g:M → �

k
2 are distinct associate surfaces,

then f and g lift to a holomorphic immersion into a complex r-dimensional

torus, for some r ≤ k.

To the best of my knowledge, all known classical examples of triply-

periodic minimal surfaces in �

3 isometrically and minimally immerse into two

or more distinct tori. In fact, for most of the classical examples, f :M → �

3
1,

the conjugate surface induces a minimal immersion fπ/2:M → �

3
2. Theo-

rem 5.1, 2. motivates the question: Is the Jacobian of a periodic surface ever

simple, i.e., does not contain a complex subtorus?

As the above discussion indicates, there might be many isometric minimal

immersions of a closed Riemannian surface into three-dimensional tori. By

Theorem 8.1, 3. there exist distinct isometric minimal embeddings of a surface

M into a fixed �

3. However, in �

3 the following strong rigidity theorem holds.

Theorem 5.3 (Rigidity Theorem) Any two proper triply-periodic isomet-

ric non-planar minimal immersions in �

3 are congruent.

Proof. Let f̃ : M̃ → �

3 be a proper non-planar triply-periodic minimal sur-

face and let f :M → �

3 be the quotient compact minimal surface, where

f(p) =
∫ p
p0
(ω1, ω2, ω3). Note that there always exists a cycle γ on M with

∫
γ(ω1, ω2, ω3) being a purely imaginary non-zero period vector. We can choose

the cycle γ to be a simple closed curve on M . Since Re[
∫
γ(ω1, ω2, ω3)] =

~0, [γ] = 0 ∈ H1(�

3) = π1(�

3) = the fundamental group of �

3. Hence, we
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can lift γ to γ̃ ⊂ M̃ . Therefore,
∫
γ̃(ω̃1, ω̃2, ω̃3) is a purely imaginary non-zero

period vector on M̃ . Since this period vector is imaginary, none of the as-

sociate mappings f̃ are well defined. Theorem 2.5 implies f̃ : M̃ → �

3 is the

unique isometric minimal immersion of M̃ up to congruence. 2

We conjecture that the above theorem holds in the following greater gen-

erality:

Conjecture 5.1 A properly embedded, nonsimply connected, minimal sur-

face in �

3 is rigid in the sense that any other isometric minimal immersion

is congruent to it.

We would now like to discuss the geometry of triply-periodic minimal

surfaces that have a infinite number of distinct isometric minimal immersions

in flat three-tori. To this end, we make the following definition.

Definition 5.2 A minimal surface f :M → �

3 satisfies Property P if for a

countable dense set of angles θ ⊂ S1, the associate surfaces fθ in �

3 induce

minimal immersions of M into flat three-tori.

Definition 5.3 A lattice L ⊂ �

3 is � -simple if for some c, d ∈ � , there

exists a basis of (d · L)⊗ � consisting of {v1, cv1, v2, cv2, v3, cv3 | vi ∈ �

3}.

Theorem 5.4 If f :M → �

3 is a minimal surface, then the following are

equivalent:

1. f is the real part of a holomorphic immersion into a complex three-torus

with a � -simple lattice.

2. f satisfies Property P.

3. There exist three distinct isometric minimal immersions of M into flat

three-tori. (Note fπ = −f is not considered to be distinct from f .)
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Proof. Assume Statement 1 holds and we shall prove Statement 2. After

a translation, assume that the lift f̃ :M → �

3
�

= �

3/L is given by f̃(p) =
∫ p
p0
(ω1, ω2, ω3) and f = Re(f̃). Suppose {v1, cv1, . . . , v3, cv3} is an � -simple

basis for (d ·L)⊗ � . Then for any n
m
∈ � , we have nvi+mcvi = (n+mc)vi ∈

(d ·L)⊗ � . By varying n
m
∈ � , it follows that eiθ(L⊗ � ) contains imaginary

three-dimensional rational subspaces for a dense set of θ ∈ S1. By projecting

along these subspaces, we get isometric minimal immersions of M into flat

three-tori.

Statement 2 implies Statement 3 by the definition of Property P.

It remains to show that Statement 3 implies 1. If there exist three distinct

isometric minimal immersions f1, f2, f3, then by Theorem 5.1 there exists a

lift f̃ :M → �

3
�

= �

3/L of f . We may assume that f2 = (f1)θ1 , f3 = (f1)θ2
and that 0 < θ1, θ2 <

π
2
.

Let Kj ⊂ L ⊗ � denote the kernels of the projections Πj restricted to

L ⊗ � , which give rise to fj, j = 1, 2, 3. Then K1 ⊂ i�

3, K2 ⊂ eiθ1 �

3, and

K3 ⊂ eiθ2 �

3. Let B = {v1, v2, v3} be a basis for Π1(L ⊗ Q). Note that

Π1(K2) = Π1(K3) = Π1(L⊗Q), since the dimension of each of these vector

spaces is three. For j = 1, 2, let dj = eiθj/ cos(θj), respectively. It follows

that B2 = {d1v1, d1v2, d1v3} is a basis for K2 and B3 = {d2v1, d2v2, d2v3} is

a basis for K3. Let d = 1/d1 and c = d2/d1. Then {v1, c v1, . . . , v3, c v3} is

an � -simple basis for (d · L)⊗Q.

2

Definition 5.4 A complex torus �

n
�

is said to be isogenous to ˜
�

n

�

if ˜�
n

�

is

a finite cover of �

n
�

.

Corollary 5.1 If f :M → �

3 is a minimal surface satisfying Property P,

then the Jacobian of M is isogenous to �

1
�

× �

1
�

× �

1
�

× �

g−3
�

, where the

first three elliptic curves are isomorphic.

Proof. If M satisfies Property P, then by Theorem 5.4, there is a full

holomorphic immersion of M into a complex three-torus �

3
�

= �

3/L with
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{v1, cv1, v2, cv2, v3, cv3} an � -simple rational basis for L. Clearly, �

3
�

contains

three elliptic curves spanned, respectively, by the pairs {vi, cvi} for 1 ≤ i ≤ 3.

Hence, �

3
�

is isogenous to �

1
�

× �

1
�

× �

1
�

. By the universality property of

J(M), we get the following commutative diagram:

J(M)
g→ �

3
�

↑ ↗ f̃ ↓
M →

f �

3 ,

where g is linear, and f̃ is the lift of f .

If K ⊂ J(M) is the kernel of g, then J(M) is finitely covered by �

3
�

×
�

g−3
�

, by a property of abelian varieties (see [24]). Since �

3
�

is covered by

�

1
�

× �

1
�

× �

1
�

, J(M) is isogenous to �

1
�

× �

1
�

× �

1
�

× �

g−3
�

. 2

In the next section we will discuss some classical examples of minimal

surfaces satisfying Property P. We now will investigate the space group of

an orientable periodic minimal surface.

Definition 5.5 Let f :M → �

3 be a minimal surface. Then the space or

symmetry group of f , denoted by Sf (M), is the group of isometries of M

induced by symmetries of M in �

3. We make the same definition of Sf (M) if

f :M → �

3. We will denote the orientation-preserving subgroup of Sf (M) by

S◦
f (M) and the orientation-reversing elements by Sr

f (M). Here, orientation-

preserving means that the isometry is orientation-preserving as a mapping

from M to M .

Remark 5.1 Later, when we study Sf (M) for f :M → �

3, we will always

assume that the induced map f∗:π1(M) → π1( �

3) is onto and that M is

orientable. This can be accomplished by taking a lift of M to a finite cover

of �

3.

Since pulling back forms is linear, we have:
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Lemma 5.1 Suppose f :M →M is a submanifold. If (α1, α2, α3)
t is a verti-

cal vector valued one-form and A is a 3×3 matrix, then f ∗(A(α1, α2, α3)
t) =

A(f ∗α1, f
∗α2, f

∗α3)
t.

Lemma 5.2 Let f :M → �

3 be a minimal surface represented by f(p) =

Re
∫ p
p0
ω, where ω = (ω1, ω2, ω3)

t is the transpose of the horizontal vector

valued one-form (ω1, ω2, ω3). If g:M → M is an isometry, then there is an

orthogonal matrix O and angle θ such that:

1. g∗(ω) = eiθO(ω), when g is orientation-preserving;

2. g∗(ω) = eiθO(ω), when g reverses orientation.

Proof. Since f ◦ g:M → �

3 is a minimal surface isometric to f , Part 1

follows from Theorem 2.5. Part 2 follows by a similar argument. 2

Lemma 5.3 Let g:M →M be an element of Sf (M) induced from an isom-

etry g̃: �

3 → �

3, where g̃ is given by an orthogonal matrix O followed by

composition with a translation. If f(p) = Re
∫ p
p0
ω, where ω = (ω1, ω2, ω3)

t,

and ωj = αj + i ∗ αj ∈ H1,0(M), then:

1. g ∈ S◦
f (M) implies g∗(ω) = O(ω);

2. g ∈ Sr
f (M) implies g∗(ω) = O(ω).

Proof. Let dx = (dx1, dx2, dx3)
t and let α = (α1, α2, α3)

t. Since g:M →M

is induced from g̃: �

3 → �

3, we have (f ◦ g) = (g̃ ◦ f). Applying Lemma 5.1,

we have g∗(α) = g∗(f ∗(dx)) = (f ◦ g)∗(dx) = f ∗(g̃∗(dx)) = f ∗(O(dx)) =

O f ∗(dx) = O(α). Note that g∗(∗αi) = ∗g∗(αi) if g is orientation-preserving,

and g∗(∗αi) = − ∗ g∗(αi) if g is orientation-reversing. The lemma follows

directly from these calculations. 2
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Lemma 5.4 Let f :M → �

3 be a minimal surface given by f(p) = Re
∫ p
p0
ω,

where ω = (ω1, ω2, ω3)
t. If g:M → M is a map such that g∗(ω) = O(ω) or

g∗(ω) = O(ω), then g ∈ Sf (M).

Proof. Suppose that g∗(ω) = O(ω). Then f(g(p)) = Re
∫ g(p)
p0

ω = Re
∫ g(p0)
p0

ω+
∫ g(p)
g(p0)

ω = t + Re
∫ p
p0
g∗ω = t + Of(p). A similar argument proves the case

g∗(ω) = O(ω). 2

Weierstrass proved that a straight line on a minimal surface gives rise to

a symmetry of the surface by reflection through the line. Furthermore, this

orientation-reversing isometry of the surface also extends to a symmetry on

the conjugate surface by reflection through a plane orthogonal to the line.

More generally, the next theorem explains the relationships between the space

groups of the different associate surfaces. We will say that a g ∈ Sf (M) has

linear part O to mean O is the linear part of the extended symmetry in �

n.

Theorem 5.5 Let f :M → �

3 be a simply connected minimal surface. Then

1. S◦
f (M) = S◦

fθ
(M) for all associate surfaces fθ.

2. If g ⊂ Sr
f (M), then g ∈ Sr

fθ
(M) for θ 6= 0, π if and only if fθ is the

conjugate surface, i.e., θ = ±π
2
. Furthermore, if g ∈ Sr

f (M) has linear

part O, then g ∈ Sr
fπ/2

(M) has linear part −O.

3. If g:M → M is an orientation-reversing isometry, then g ∈ Sfθ(M),

for some θ.

4. If g:M →M is an isometry of order 2, then g ∈ Sfθ(M), for some θ.

5. If g:M → M is a commutator of isometries, then g ∈ Sfθ(M) for all

θ.

6. S◦
f (M) is a normal subgroup of the isometry group of M . However,

Sf (M) is not, in general, a normal subgroup of the isometry group of

M .

33



Proof. Throughout this proof, let ω = (ω1, ω2, ω3)
t, α = Re(ω) and β =

Im(ω).

Suppose fθ(p) = Re(eiθ
∫ p
p0
ω) and g ∈ S◦

f (M) has linear part O. Then

fθ(g(p)) = Re(eiθ
∫ g(p)
p0

ω) = Re[eiθ
∫ g(p0)
p0

ω+ eiθ
∫ g(p)
g(p0)

ω] = t+Re[eiθ
∫ p
p0
g∗(ω)]

= t+Re[eiθO
∫ p
p0
ω] = t+Ofθ(p), where t = fθ(g(p0)). This proves Part 1.

If g ∈ Sr
f (M), then fθ(g(p)) = t + ORe(eiθ

∫ p
p0
ω) by Lemma 5.4. When

θ = π/2, fθ(g(p)) = t − Ofθ(p), and hence g extends to a symmetry of �

3.

Suppose now that θ 6= 0, π,±π/2. Then g∗(eiθω) = eiθO(ω). The linear

independence of the one-forms ω1, ω2, ω3 implies that if g∗(eiθω) = Õ(ω) for

some orthogonal matrix, then Õ = ±O. This leads to a contradiction since

we assumed that θ 6= 0, π,±π/2. Thus, we have proved that if g ∈ Sr
f (M),

then g ∈ Sr
fθ
(M) if and only if fθ is the conjugate surface.

Suppose g:M →M is an orientation-reversing isometry and that g∗(ω) =

eiθO(w). If σ = (σ1, σ2, σ3)
t = e−iθ/2ω, then

g∗(σ) = e−iθ/2eiθO(ω) = O(eiθ/2ω) = O(σ).

Hence, by Lemma 5.4, g extends to a self-congruence of the associate surface

f−θ/2 and this proves Part 3.

Suppose g:M →M is an orientation-preserving isometry of order 2, with

g∗(ω) = eiθO(ω). Since g2 = id, ω = (g∗)2(ω) = e2iθO2(ω), which implies

that e2iθO2 = I. Note that e2iθ = ±1, since bothO and I are real matrices. In

the case e2iθ = 1, we must have eiθ = ±1 and hence g ∈ Sf (M) by Lemma 5.4.

The possibility that −1 = e2iθ cannot occur: By taking the determinant of

both sides of the equation e2iθO2 = I, we get (−1)(det(O))2 = 1, which is

impossible. If g:M → M is orientation-reversing, then we have g ∈ Sfθ(M)

for some θ by Part 3. This proves Part 4.

Suppose an isometry g:M → M can be expressed as a commutator

of isometries f and h. For convenience, suppose f and h are orientation-

preserving. Then if f ∗(ω) = eiθ1O1(ω) and g∗(ω) = eiθ2O2(ω), where Oi is

an orthogonal matrix, we have

(fgf−1g−1)∗(ω) = eiθ1eiθ2e−iθ1e−iθ2O1O2O
−1
1 O−1

2 (ω) = O(ω)
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where O = O1O2O
−1
1 O−1

2 . Hence, by Lemma 5.4 and Part 1, g ∈ Sfθ(M) for

all θ. This proves Part 5.

The proof that S◦
f (M) is normal in the isometry group of M is a straight-

forward calculation similar to the proof of Part 5. For the classical Enneper’s

surface of total curvature 4π, one can check that the symmetry group is not

a normal subgroup of the isometry group. This completes the proof of the

theorem. 2

Corollary 5.2 Let f :M → �

n be a minimal surface and fπ/2:M → �

n be

the conjugate surface. Then g ∈ Sr
f (M) has linear part −In×n if and only if

g ∈ Sr
fπ/2

(M) extends to a pure translation in �

n.

Proof. By the proof of Theorem 5.5, 2., g ∈ Sr
f (M) has linear part −In×n if

and only if g ∈ Sr
fπ/2

(M) has linear part In×n. This proves the corollary. 2

6 Existence of non-congruent isometric pe-

riodic minimal surfaces

This section is a continuation and culmination of the work of Section 5. Here

we study classical examples of minimal surfaces in �

3 satisfying Property P

defined in Section 5. We recall that a minimal surface f :M → �

3 satisfies

Property P, if for a countable dense set of angles θ ∈ S1, the associate

surfaces fθ induce minimal immersions of M into flat tori. Before discussing

these examples, we first extend our rigidity study to minimal surfaces in flat

three-tori.

Definition 6.1 If f :M → �

n is a minimal surface, then the space group of

M = Sf (M) is the set of symmetries of M in �

n.

We note that whenever only one minimal surface f :M → �

n is being

considered, we will assume f does not lift to a cover of �

n and that M is
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orientable. Geometrically, this lift condition means that the lattice of �

n is

the natural lattice for the lifted periodic surface in �

n. We will denote this

second lattice by Lf (M) in cases of ambiguity.

Proposition 6.1 Let f̃ :M → �

3
�

= �

3/L be a holomorphic lift of the min-

imal surface f = Re(f̃):M → �

3.

1. If g ∈ S◦
f (M) has linear part O, then g ∈ S◦

f̃
(M) has linear part O.

2. If g ∈ Sr
f (M) has linear part O, then g ∈ Sr

f̃
(M) has linear part which

is complex conjugation followed by O.

Proof. Let ω = (ω1, ω2, ω3)
t. Let g ∈ S◦

f (M) and suppose g∗(ω) = O(ω).

Then a calculation similar to one in the proof of Theorem 5.5, 1. shows

f̃(g(p)) = f̃(g(p0)) + Of̃(p), where f̃(p) =
∫ p
p0
ω. To complete the proof of

Part 1, we need only show O:L→ L. We check this for ` =
∫
γ ω ∈ L, where

γ ∈ H1(M, � ). O(
∫
γ ω) =

∫
γ O(ω) =

∫
γ g

∗(ω) =
∫
g∗(γ)

ω ∈ L. If g ∈ Sr
f (M)

has linear part O, then g∗(ω) = O(ω). A calculation, similar in spirit to the

proof of the orientation-preserving case, also works to prove Part 2. 2

Proposition 6.2 Let f :M → �

3 = �

3/Lf (M) and g:M → �

3 be isometric

minimal immersions. If the Jacobian of M is simple (contains no complex

subtori) and the genus of M is different from three, then f and g are con-

gruent in �

3. In particular, the space group of f equals the isometry group

of M .

Proof. Note that if J(M) is simple, then for the lifted surfaces in �

3, f̃ =

t + O g̃ by Theorem 5.1, 2. Arguing as in the proof of Proposition 6.1, O

leaves Lf (M) invariant. Therefore, t+O: �

3 → �

3 is a congruence between

f and g. 2

Remark 6.1 Using Theorem 8.1, 3., it is easy to check that the conclusions

of Proposition 6.2 fail to hold when the genus of M is three or the Jacobian

of M is not simple.
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Through techniques similar to those used above, we can prove that the

number of isometric minimal immersions f :M → �

3 is finite. The next

theorem shows this result holds for n-dimensional minimal varieties in flat

tori.

Theorem 6.1 (Finiteness Theorem) The number of noncongruent iso-

metric minimal immersions of (Mn, <>) into a fixed flat k-torus �

k is fi-

nite.

Proof. Let H(M) = H1(M) denote the harmonic one-forms on Mn, and let

(H(M))k denote the k-fold Cartesian product H(M)× . . .×H(M). We now

define the norm of h ∈ (H(M))k by |h| = |(h1, . . . , hk)| = max{| ∫γi h| | 1 ≤
i ≤ p}, where γ1, . . . , γp are fixed representatives for a basis of H1(M, � ).

Claim 6.1 There exist r1, r2 > 0 such that whenever f =
∫
h:M → �

k =

�

k/L, h ∈ (H(M))k, is an isometric minimal immersion, then h ∈ B(r1, r2) =

{h ∈ (H(M))k | r1 ≤ |h| ≤ r2}.

Proof. If r1= length of the shortest ` ∈ L, then r1 ≤ |
∫
γi
h| ≤ |h| for all i.

If r2 is the length of the longest γi, then for some j, |h| = | ∫γj h| ≤ r2. 2

Now assume �

k has fixed coordinates induced from the representation

�

k/L. Note that Ip0
= {h ∈ (H(M))k | f(p) =

∫ p
p0
h:M → �

k/L is an

isometric minimal immersion} is a discrete subset of (H(M))k. This can be

shown by the following argument. When f, g ∈ Ip0
are close in (H(M))k,

then they are homotopic in �

k/L. Since two homotopic isometric minimal

immersions of (M,<>) into �

k are obtained by integrating the same har-

monic one-forms, they differ by a translation. This implies that f = g, and

hence Ip0
is discrete. Since Ip0

is a discrete closed subset of the compact set

B(r1, r2), Ip0
must be finite. 2

Many classical examples of periodic minimal surfaces have cubical lattices

for their tori, and have the standard linear symmetries of a cube in their space
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group. We will say that a minimal surface f :M → �

3/ �

3 has the symmetries

of a cube if S◦
f (M) has members with linear part

R1 =




0 0 1
1 0 0
0 1 0




and

R2 =




1 0 0
0 −1 0
0 0 −1




and if Sr
f (M) has an inversion symmetry T with linear part of T equaling

−I, where I is the 3× 3 identity matrix.

Theorem 6.2 Let f :M → �

3 be a minimal surface, and let f̃θ: M̃ → �

3

denote an associate surface on the universal covers. Suppose that

1. f lifts to a holomorphic immersion f :M → �

3
�

= �

3/L;

2. f has the linear symmetries of a cube.

Then for a dense set of angles θ in S1, the f̃θ induce minimal immersions of

M into flat tori. Furthermore, the triply-periodic surfaces corresponding to

these f̃θ are invariant under generically distinct lattices of translation.

Proof. By Proposition 6.1, the rigid motions R1, R2, and T lift to sym-

metries of M in �

3
�

= �

3/L. Applying the lift of T to `1 ∈ L, we get

T (`1) = −`1 which shows that complex conjugation leaves L invariant.

Hence, there exists `2 = i(a, b, c)t ∈ L, where a, b, c,∈ � and a 6= 0. Ap-

plying R2 to `2 we find that `3 = R2(a, b, c)
ti + (a, b, c)ti = (a,−b,−c)ti +

(a, b, c)ti = (2ai, 0, 0)t ∈ L. Now apply the lift of R1 to get the three vectors:

(2ai, 0, 0)t, R1(2ai, 0, 0)
t = (0, 2ai, 0)t, R1(0, 2ai, 0)

t = (0, 0, 2ai)t. Similarly,

we can find vectors (d, 0, 0)t, (0, d, 0)t, (0, 0, d)t ∈ L for some d ∈ �

+. Hence,

L⊗ � has a � -simple basis, and by Theorem 5.4, f :M → �

3 satisfies Prop-

erty P. This proves the first part of the theorem.
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By the Theorem 6.1, only a finite number of these minimal surfaces can

lie in any fixed �

3. Hence, the lattices for translation for the periodic fθ are

generically distinct. 2

Remark 6.2 Several classical examples of periodic surfaces satisfy the con-

ditions of the above theorem. These include the Schwarz diamond surface,

the Novious model, and A. Schoen’s O,C−TO surface. Earlier, Schoen [53]

proved that the Schwarz diamond surface satisfied Property P. His result

motivated our consideration of this problem.

7 A family of conformally distinct periodic

minimal surfaces

As we saw in Remark 6.1, there exist several geometrically distinct examples

of isometric periodic minimal surfaces in �

3. However, the existence of these

surfaces depends on the existence of a periodic surface with certain symmetry

properties.

In this section, we again apply our theorems on isometry groups to get pe-

riodic minimal surfaces in �

3. We will show that Riemann surfaces satisfying

certain conformal restrictions are periodic.

Lemma 7.1 The group A of 3× 3 complex matrices A satisfying AAt = I,

induces all the fractional linear transformations L on Q3 ⊂ ��� 2.

Proof. If AAt = I, then A induces a linear map, Ã:Q3 → Q3, in homo-

geneous coordinates. Note that Ã = idQ3
if and only if A is plus or minus

the identity matrix. Hence, we get a two-to-one homomorphism ∼:A → L.
Since A and L have the same dimension, ∼ is two-to-one, and L is connected,

we have ∼ is onto. 2

Lemma 7.2 Let f :M → S2 = Q3 ⊂ ���

2 be a two-sheeted branched cover

of S2 by a surface of genus three. Then f is a canonical mapping.
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Proof. Let c = [(ω1, ω2, ω3)
t]:M3 → ���

2 be a canonical mapping for the

hyperelliptic surface M3 of genus three. From the discussion in Section 10 of

[16], we may assume, after a possible change of basis, that c:M3 → Q3 ⊂ ��� 2,
and c is a two-sheeted branched covering of Q3.

Therefore, c:M3 → Q3 is the hyperelliptic mapping on M3. Since this

mapping is unique up to a linear fractional transformation, by Lemma 7.1,

there is an A ∈ A with f = Ac = A[(ω1, ω2, ω3)
t]. This implies that f is a

canonical mapping. 2

Lemma 7.3 Let ω1, . . . , ωn ∈ H1,0(M), and let [ωp] = [ω1(p), . . . , ωn(p)] ∈
� �

n−1 in homogeneous coordinates. If g:M → M is conformal or anti-

conformal, then [(g∗ω)p] = [ωg(p)].

Proof. Suppose ωi(z) = fi(z)dz in local coordinates. Then (g∗ωi)(z) =

fi(g(z))g
∗dz. Therefore, [(g∗ω)p] = [f1(g(p)), . . . , fn(g(p))] = [ωg(p)]. 2

Lemma 7.4 Let ωi, αi ∈ H1,0(M), for 1 ≤ i ≤ n. If [ωp] = [ω1(p), . . . ,

ωn(p)] = [α1(p), . . . , αn(p)] = [αp] and ωp 6= 0 for all p, then ωi = λαi for

some λ ∈ � .

Proof. [ω] = [α] implies ω = fα, where f is meromorphic. If f is not

constant, then f(p) = 0 for some p. But ωp = f(p)αp = 0, a contradiction to

our hypothesis. Hence, f is a complex constant λ and ω = λα. 2

Lemma 7.5 Let f :M → S2 be a two-sheeted cover of S2 branched over

P = {p1, . . . , pk}. Then any diffeomorphism g:S2 → S2 with g(P ) = P is

covered by a diffeomorphism g̃:M →M .

Proof. If f :M → S2 is a two-sheeted cover of S2 branched over P , then it

can be constructed abstractly as follows: Take the representation

R:π1(S
2 − P )→ Perm {a, b}
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that sends each of the standard generators to the nontrivial permutation.

This representation gives rise to a two-sheeted cover f̃ : M̃ → S2−P . To get

f :M → S2, fill in the missing points above P ⊂ S2.

Let g:S2−P → S2−P be a diffeomorphism. Then for the induced maps

on fundamental groups, we have (g∗ ◦ f̃∗)(π1(M̃)) = f̃∗(π1(M̃)). Elementary

covering space theory implies that g lifts to g̃: M̃ → M̃ . When g:S2 → S2 is

a diffeomorphism with g(P ) = P , then it is clear that the lift of g|(S2 − P )

to M̃ can be extended to a lift g̃:M →M . 2

The next proposition is useful for calculating the isometry group for a

minimal surface. This is done in terms of the symmetries of the branch

points of the Gauss map on the surface.

Proposition 7.1 Let f :M → �

3 be a minimal isometric immersion. Sup-

pose that an isometry g:S2 → S2 with orthogonal matrix O lifts to a mapping

g̃ on M :
g̃

M −→ M
G ↓ ↓ G

S2 −→ S2

O ,

G = (ω) = Gauss map where ω = (ω1, ω2, ω3)
t. Then g̃:M → M is an

isometry, and g̃∗(ω) = eiθO(ω) or g̃(ω) = eiθO(ω), depending on whether g

is orientation-preserving or orientation-reversing.

Proof. We will consider S2 = Q3 ⊂ ��� 2, and let [ωp] = [ω1(p), ω2(p), ω3(p)].

If O:S2 → S2 is orientation-preserving, then by Lemma 7.3, O[ωp] = [ω̃g(p)] =

[(g∗ω)p]. However, in the case O:S2 → S2 is orientation-reversing, then

the mapping on Q3 is expressed as σ ◦ O:Q3 → Q3, where σ is complex

conjugation in homogeneous coordinates. For the orientation-reversing case,

we have σ◦O[ωp] = [ωg(p)] = [(g∗ω)p]. Hence, Lemma 7.4 implies g∗ω = eiθOω

if g is conformal, and g∗ω = eiθOω if g is anti-conformal. This calculation

implies g is an isometry on M . 2
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We now give an application of the last proposition. Let D denote the

Riemann surface of genus 3 corresponding to the triply-periodic Schwarz

diamond surface D in �

3. Let I(M) denote the isometry group of M , and

let |S| denote the size of a set S.

Corollary 7.1 Let f :D → �

3
1 and fπ/2:D → �

3
2 be the Schwarz diamond

and primitive surfaces, respectively. Then

1. If g:M3 → �

3 is a minimal surface, then |I(M3)| ≤ |I(D)| = 96, with

equality holding if and only if g:M3 → �

3 is a conjugate surface to the

Schwarz diamond surface.

2. I(D) = Sfθ(D) if and only if θ = 0, π, ±π/2.

Remark 7.1 Corollary 7.1 shows that the Schwarz diamond and primitive

surfaces display more symmetry than any other periodic surfaces of genus

three.

Proof. Let HA denote the group of isometries of S2 which leaves invariant

a subset A ⊂ S2. By Proposition 7.1 and Lemma 7.5, the isometry group

I(M3) of a minimal surface g:M3 → �

3 is isomorphic to � 2 × HA, where

A = the branch locus of the Gauss map. Since HA is largest when A is

the branch locus of the Gauss map for the Schwarz diamond surface, then

|I(M3)| ≤ |I(D)| with equality holding if and only if g:M3 → �

3 is an

associate to the Schwarz diamond surface. The Gauss map for a surface

of genus three is the hyperelliptic quotient, and the branch points of this

quotient mapping determine the surface uniquely. It is straightforward to

compute that |I(D)| = 96 which proves Part 1.

Part 2 follows from Parts 1 and 2 of Theorem 5.5. 2

Let Ip: �

n → �

n denote inversion through p ∈ �

n and let Tq: �

n → �

n

denote translation by q ∈ �

n. If Ip or Tq leaves M ⊂ �

3 invariant, then,

when no confusion arises, we denote the restrictions Ip|M and Tq|M by Ip by

Tq, respectively.
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Definition 7.1 If L ⊂ �

n is a subgroup of �

n and v ⊂ �

n, then let 〈L, v〉
denote the subgroup of �

n generated by L ∪ {v}.

Proposition 7.2 Suppose f :M → �

n
1 = �

n/L1 and fπ/2:M → �

n
2 = �

n/L2

are minimal surfaces. Then

1. Ip ∈ Sr
f (M) for some p ∈ �

n
1 if and only if Tq ∈ Sr

fπ/2
(M) for some

q ∈ �

n of order two.

2. If Ip ∈ Sr
f (M), then Ip has no fixed points, and fπ/2 induces a mini-

mal immersion fπ/2:M/Ip → �

n/〈L2, q2〉 of the non-orientable surface

M/Ip, where q2 is a lift of q (in Part 1) to �

n.

3. Suppose M has genus 3, n = 3, and Ip ∈ Sr
f (M). Then, after a

translation, f :M → �

3/L induces a minimal immersion f̃ :M/(Θ ◦
Ip) → �

3/〈L, Ip(h)〉, where h = 0 ∈ �

3 is a hyperelliptic point of M ,

and Θ:M →M is the hyperelliptic automorphism.

Proof. Part 1 follows from Corollary 5.2 and Proposition 6.1, 2.

Part 1 shows fπ/2(M)→ �

n is invariant under an additional translation

Tq; this implies Part 2.

By Proposition 3.1, a minimal surface f :M3 → �

3 is hyperelliptic and

has an inversion symmetry through each hyperelliptic point. Suppose f is

translated so that a hyperelliptic point h is at the origin in �

3. Since Θ, Ip ∈
Sf (M3),Θ ◦ Ip 6= id, and the linear part of Θ ◦ Ip = I3×3, we see that Θ ◦ Ip
extends to a symmetry in �

3 given by translation by Ip(h). Hence, f induces

a minimal immersion f̃ :M/(Θ ◦ Ip)→ �

3/〈L, Ip(h)〉. This proves Part 3. 2

Corollary 7.2 The Schwarz P and D surfaces, and Schoen’s crossed lay-

ers of parallels surfaces are all invariant under an additional orientation-

reversing translation. Their quotients by these larger lattices are embedded,

non-orientable, minimal surfaces of Euler characteristic χ = −2 in flat three-

tori.
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Many of the classical examples of periodic surfaces in �

3 satisfy the hy-

pothesis of Proposition 7.2, 2. Our next theorem proves the existence of a

large family of such surfaces.

Theorem 7.1 There is a real five-dimensional family V of periodic hyperel-

liptic Riemann surfaces of genus three. These are the surfaces which can be

represented as two-sheeted covers of S2 branched over four pairs of antipodal

points. Furthermore,

1. There exist two distinct isometric minimal immersions for each M3 ∈
V ;

2. These immersions are embeddings;

3. V induces a five-dimensional family Ṽ of embedded non-orientable min-

imal surfaces of Euler characteristic χ = −2.

Proof. Suppose {p1, p2, . . . , p8} consists of four pairs of antipodal points on

S2 = Q3 ⊂ ��� 2 and let f :M3 → S2 be the abstract two-sheeted cover of S2

branched over these points. Note that the antipodal map on Q3 is given in

homogeneous coordinates by complex conjugation.

By Lemma 7.2, f :M → Q3 is canonical and represented in homogeneous

coordinates by f(p) = [ω1(p), ω2(p), ω3(p)]
t = [ω(p)], where ωi ∈ H1,0(M)

and
∑3

i=1 ω
2
i = 0. By Proposition 7.1 and Lemma 7.5, the antipodal map on

Q3 lifts to an orientation-reversing isometry ã:M3 → M3 such that ã∗(ω) =

eiθ(−I)(ω) = eiθ(−1)(ω). If β = e−iθ/2ω, then ã∗(β) = −β.
Let g:M → J(M) = �

3/L be the Jacobi embedding defined by
∫ p
p0
β.

Suppose β = (β1, β2, β3)
t, and ` =

∫
γ β ∈ L for some γ ∈ H1(M, � ). Then

−` = ∫
γ −β =

∫
γ ã

∗(β) =
∫
ã∗(γ)

β ∈ L. This calculation shows that complex

conjugation leaves L invariant. Thus, L contains two rank-three subgroups

L1, L2 ⊂ L with L1 ⊂ �

3 and L2 ⊂ i�

3. By projecting J(M) orthogonally

onto the real and imaginary subspaces, one obtains two minimal immersions
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of M into three-tori. More precisely, from the generalized Weierstrass rep-

resentation, f(p) = Re
∫ p
p0
β:M → �

3
1 and fπ/2(p) = Re[eiπ/2

∫ p
p0
β]:M → �

3
2

are these minimal immersions.

We have shown that if M3 ∈ V , then there exist two distinct isometric

conformal minimal immersions of M3 into three-tori. We now prove that

these minimal immersions are embeddings. First note that the Schwarz dia-

mond surface D and its conjugate surface P are embedded in their natural

tori. Furthermore, by the construction of the minimal immersions in V ,

there exists a smooth family ft:M3 → �

3
t joining any minimal immersion

f1:M3 → �

3
1 in V to either f0:P → �

3
0 or f2:D → �

3
2 where f0(P ) = P and

f2(D) = D. For convenience, suppose we join f0 to f1. Let r ∈ [0, 1] be the

first time for which ft is not one-one, and suppose fr(p) = fr(q) for some

p 6= q.

Since fr is smooth and r is the first time fr is not one-to-one, the max-

imum principle for minimal surfaces implies that fr(M) = M̂ an embedded

surface and that fr, considered to be a map fr:M → M̂ , is a covering space

of M̂ . Since the hyperelliptic points H of M are at the half lattice points

of �

3, fr is one-to-one on the set of hyperelliptic points. But these points

are precisely the zeros of Gaussian curvature of fr(M). Then f−1r (fr(H))

are zeros of Gaussian curvature of M and so H = f−1
r (fr(H)), which implies

fr is not one-to-one on H. This contradiction implies that each minimal

immersion in Part 1 of the theorem is an embedding.

Part 3 of the theorem now follows directly from parts 2. and 3. of Propo-

sition 7.2. 2

Remark 7.2 All of the classical examples of periodic minimal surfaces of

genus three, except Schoen’s gyroid surface, are members of the family de-

scribed in Theorem 7.1.

We now give explicit analytic formulae for the periodic minimal surfaces

in the family V . Suppose M ∈ V with Gauss map G:M → S2 = � ∪
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{∞}. We may assume, after a possible rigid motion of the lifted surface

in �

3, that G is a branched cover of � ∪ {∞} with branch points P =

{a1, . . . , a4, a5 = −1/a1, . . . , a8 = −1/a4} in the complex plane and where

the product a1a2a3a4 is a positive real number.

In this case the plane curve of M is y2 = (z − a1) . . . (z − a8). In this

representation G is the meromorphic function z:M → � ∪ {∞}. If η =

(1/y)dz and ω = [(1 − z2), (1 + z2)i, 2z)η], then f(z) =
∫ z ω:M → J(M)

induces the Jacobi map of M . The projections f1 = Re(f) and f2 = Im(f)

are the two minimal embeddings described in Theorem 7.1.

The only classical example of a periodic minimal surface with no straight

lines or plane lines of curvature was Schoen’s gyroid surface. From Weier-

strass, a surface containing such lines always admits an orientation-reversing

isometry with a non-empty fixed point set. By Proposition 7.1. Lemma 7.5,

and Theorem 7.1, most of the minimal surfaces f :M3 → �

3 in the family V

have no orientation-reversing isometry with a non-empty fixed point set.

8 Specialized results

Theorem 8.1 Let M3 be the abstract hyperelliptic surface branched over the

eight roots of unity in � ∪ {∞} = S2. Then:

1. The plane curve of M3 is y
2 = x8 − 1.

2. There exists a conformal minimal embedding f :M3 → �

3 and f(M3)

is one of Schoen’s crossed layers of parallels surfaces (CLP).

3. In the induced metric, there is an isometry τ :M3 →M3 of order eight

such that f ◦ τ :M3 → �

3 is the conjugate surface to f .

4. J(M3) is isogeneous to a product of rectangular elliptic curves, two of

which are isomorphic.
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Proof. Part 1 follows from the uniqueness of a two-sheeted cover of S2 with

given branch locus.

The existence of a minimal embedding ofM3 in some �

3 is guaranteed by

Theorem 7.1. To check that M3 is some variant of the classical Schoen CLP

surface, we note that all of the CLP surfaces are all branched over antipodal

points on the equator of S2. By making appropriate proportional changes

in the lengths of the sides of the generating module for the CLP surface, we

find a surface branched over the eight roots of unity. See [53] for a picture

and further discussion of the CLP surface.

By Proposition 7.1, rotation Rz:S
2 → S2 around the z-axis by 45◦ lifts

to an isometry τ :M3 → M3. If τ ∈ Sf (M), then �

3 would have an order

eight linear self-congruence, an impossibility. In fact, τ 2 ∈ Sf (M); thus, by

Proposition 7.1, τ ∗(ω = (ω1, ω2, ω3)
t) = iRz(ω), where f =

∫
ω:M3 → �

3.

Hence, f ◦ τ :M3 → �

3 is the conjugate surface to f (up to congruence).

If f :M3 → J(M) = �

3/L is the holomorphic lift of the CLP surface,

then a calculation similar to the one in the proof of Theorem 6.2, shows

{(a, 0, 0), (b, 0, 0)i, (0, a, 0), (0, b, 0)i, (0, 0, c), (0, 0, d)i} ⊂ L. It follows that

J(M3) is isogeneous to a product of rectangular elliptic curves, two of which

are isomorphic. 2

By taking the lift of the CLP surface described in Theorem 8.1 to its

universal cover M̃ , we get a minimal immersion f̃ : M̃ → �

3. If τ̃ : M̃ → M̃ is

the lift of the order eight isometry τ, τ(z) = e2π i/8z, then f̃ ◦ τ̃ is congruent

to the conjugate surface of f̃ . (Note τ does not lift to natural covering space

M̂ ⊂ �

3 ofM .) The next corollary is a simple consequence of this discussion.

Corollary 8.1 There exists an orientation-preserving isometry τ̃ : M̃ → M̃

of a nonproper, simply-connected, triply-periodic minimal surface f̃ : M̃ → �

3

such that τ̃ does not extend to a congruence for any associate surface f̃θ. In

fact, τ̃ takes straight lines on f̃(M̃) to plane lines of curvature.

Remark 8.1 The above corollary contrasts sharply with our earlier rigidity

results:
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1. Any proper triply-periodic surface in �

3 is “rigid” (Theorem 5.3);

2. An orientation-reversing isometry of a simply-connected minimal sur-

face in �

3 always extends to a congruence for some associate surface

(Theorem 5.5, 3.).

Combining Theorems 8.1 and 8.2, we can prove the following rather surprising

corollary.

Corollary 8.2 The Schwarz diamond surface can be deformed through min-

imal surfaces of genus three in flat three-tori to its conjugate surface, the

Schwarz primitive surface.

Proof. In the family V of Theorem 7.1, we can continuously deform the

Schwarz diamond surface D to the CLP surface and join the conjugate CLP

surface to the conjugate surface of D. By Theorem 8.2, 3. we may identify

the CLP surface with the conjugate CLP surface as point sets. Consider

this deformation, via the Gauss map, as a path αt of 4 pairs of antipodal

points on S2 with α0 = D and α1 = CLP. Let α̃t be the path of conjugate

surfaces. Since α̃1 = CLP, deforming D along αt and then backwards along

α̃t, describes a method for continuously deforming the point set of D through

minimal surfaces of genus 3 to the point set of the conjugate surface of D. 2

The next theorem gives easily verifiable conditions for a periodic minimal

surface in �

3 or its conjugate surface to be a boundary in �

3.

Theorem 8.2 (Boundary Theorem)

1. If f :Mn → �

n+1 is an embedded, orientable, minimal submanifold and

Mn ⊂ �

n+1 is not totally geodesic, then Mn is homologous to zero in

�

n+1.

2. Suppose f :M k → �

n is a submanifold. If the translation Tq ∈ Sr
f (M

k),

then Mk is a boundary in �

n. If k is even and Iq ∈ Sr
f (M

k), then
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Mk is a boundary in �

n. (Recall Ip is inversion through p and Tq is

translation by q.)

3. If f :M → �

n
1 and fπ/2:M → �

n
2 are minimal surfaces, then f(M) is

a boundary in �

n
1 if and only if fπ/2(M) is a boundary in �

n
2 .

Proof. Since f =
∫
[f ∗(dx1), . . . , f

∗(dxn+1)]:M
n → �

n+1 is minimal, and

Mn ⊂ �

n+1 is not contained in a subtorus, the induced map on the har-

monic forms, f ∗:H1(�

n+1) → H1(Mn), is injective. This in turn implies

that f∗:H1(M
n, � ) → H1(�

n+1, � ) is surjective. Thus, we may assume

there exist γi:S
1 → Mn ⊂ �

n+1, 1 ≤ i ≤ n + 1, representatives for a basis

of H1(�

n+1, � ). Since Mn is orientable, the normal bundle of Mn is trivial,

and so we can push the curves γi off Mn. Hence, [γi] ∩ [Mn] = 0 where ∩
denotes the intersection pairing on homology. Since Hn( �

n+1, � ) is a free

abelian group and ∩ is a nondegenerate pairing on homology, M must be a

boundary in �

n+1. This proves Part 1.

Suppose Tq ∈ Sr
f (M

k), and I = (i1, . . . , ik). Let dxI = dxi1 . . . dxik . Then
∫

f∗(Mk)
dxI =

∫

f∗(Mk)
T ∗
q (dxI) =

∫

Tq∗f∗(Mk)
dxI =

∫

f∗(Tq∗Mk)
dxI = −

∫

f∗(Mk)
dxI .

Hence,
∫
M α = 0 for all α ∈ Hk( �

n). Since Hk( �

n, � ) is free and
∫
M α = 0

for all α ∈ Hk(�

n), Mk must be a boundary in �

n. A similar argument for

the inversion Ip in place of Tq completes the proof of Part 2.

Suppose f :M → �

n
1 is expressed as f = Re

∫
[ω1, . . . , ωn], where ωj = αj+

i∗αj ∈ H1,0(M), and fπ/2 = Im
∫
[ω1 . . . , ωn]:M → �

n
2 . Then for all i, j with

1 ≤ i < j ≤ n,
∫
f∗(M)

dxidxj =
∫
M αi ∧ αj =

∫
M ∗αi ∧ ∗αj =

∫
fπ/2∗(M) dyidyj.

This implies f(M) is a boundary in �

n
1 if and only if fπ/2(M) is a boundary

in �

n
2 . 2

Since the conjugate surface M ⊂ �

3 of the Novious model is not embed-

ded, it is difficult to visualize whether or not it is a boundary in �

3. However,

as the next corollary shows, M is a boundary in �

3.
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Corollary 8.3 If f :M → �

3
1 is an embedded minimal surface and the con-

jugate surface fπ/2:M → �

3
2 exists, then fπ/2(M) is a boundary in �

3
2.

Proof. This corollary follows immediately from Theorem 8.2, 3. 2

Remark 8.2 Part 1 of the Theorem 8.2 can be generalized to some other

interesting cases. In [40], Nagano and Smyth show that if f :M n → Nn+1 is a

harmonic map between compact oriented Riemannian manifolds and the Ricci

curvature of Nn+1 is non-negative, then f ∗:H1(Nn+1)→ H1(Mn) is injective

when Mn does not lie in the orthogonal trajectory of a parallel vector field.

Our proof of the Theorem 8.2 shows that if f is an embedding, then f(M n)

is a boundary in Nn+1 when f(Mn) satisfies this nondegeneracy condition.

If f, g:Mn → �

k are homotopic and are defined by integrating harmonic

one-forms, then f and g differ by a translation. This result follows directly

from the fact that homotopic maps induce the same mapping on cohomol-

ogy and from the Hodge Theorem: Every real cohomology class on a closed

Riemannian manifold contains a unique harmonic form. We conclude this

chapter with several simple but interesting applications of the above obser-

vation. The following proposition and its corollaries are well known but we

include them here for the sake of completeness.

Proposition 8.1

1. If f, g:Mn → �

k are homotopic isometric minimal immersions, then

they differ by a translation.

2. If f, g:Mn → �

k are homotopic isometric minimal immersions of a

complex manifold with respect to two Kahler metrics <>1, <>2, then

f differs from g by a translation.

Proof. We note that the proofs of 1. and 2. follow directly from the above

observation and from the fact that the harmonic one-forms on a Kahler man-

ifold only depend on the complex structure of M . 2
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Corollary 8.4 If f, g:Mn → �

k
�

are homotopic holomorphic immersions,

then they differ by a translation.

Corollary 8.5 If f, g:M 2 → �

k are homotopic conformal minimal immer-

sions, then they differ by a translation.

In particular, the last corollary shows that during a deformation through

non-congruent minimal surfaces in �

3, the conformal structure of the surfaces

must change.

The following material deals with the next fundamental conjecture.

Conjecture 8.1 Every flat �

3 contains an embedded minimal surface of ev-

ery genus except 0 and 2, an embedded nonorientable surface of χ = −2k for

all k ≥ 1 and an immersed nonorientable surface with χ = −(2k + 1) for all

k ≥ 1.

By our previous theorems, the immersion statement in the above con-

jecture is the best possible. The nonembedding theorem for nonorientable

surfaces, due to Bredon and Wood [6] shows that the embedding part of

the above conjecture is also the best possible. (Also recall Theorem 3.6 and

Remark 3.2 for related statements.)

Example 8.1 Construction of nonorientable periodic surfaces with χ = −(2k+
1), k > 1.

Let Γ be a polygonal curve inscribed on a cube with a stairway with k

proportional steps.
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k = 3

Let f :D → �

3 be the unique solution to the classical Plateau problem for

Γ and let M ⊂ �

3 be the triply-periodic surface generated by continually

reflecting the Plateau solution across the edges of Γ to get a triply-periodic

minimal surface in �

3. Then the quotient of M in �

3/L(M) induces a min-

imal immersion of a nonorientable surface with χ = −(2k + 1) where k is

the number of stairs. By carrying out the above construction on a rectan-

gular figure rather than a cube one produces a nonorientable surface with

χ = −(2k−1) in any �

3 = �

3/L where L is a lattice with an orthogonal basis.

This construction together with Theorem 10.1 proves the next theorem.

Theorem 8.3 If L is a lattice with an orthogonal basis, then �

3/L contains

a minimally immersed surface of every topological type possible.

Remark 8.3 After making proportional changes in the lengths of the sides of

the polygon described above and solving Plateau’s problem for Γ, one might

be able to show that some of the conjugate surfaces give rise to embedded

orientable surfaces of every even genus g > 2 in all rectangular flat �

3.

In Theorem 9.1, we will show that Mg will conformally minimally im-

merses fully in some flat �

2g−1 when g > 3. Furthermore, the similar result

holds for g = 3 if and only if Mg is hyperelliptic. These results lead one to

ask the following:
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Question 8.1 What is the smallest dimension n = n(g) such that every

Riemann surface of genus g will conformally minimally immerse in in some

flat n-torus?

Another partial result in the direction of Conjecture 8.1 is the following.

Theorem 8.4 Every flat �

4 contains an embedded minimal surface of every

genus g ≥ 1. Furthermore, these surfaces are holomorphic with respect to

some orthogonal almost-complex structure J .

Proof. The proof of this theorem is a straightforward examination of which

flat �

4 are the Jacobians of some surface of genus 2 with respect to some

orthogonal almost-complex structure J . The content of the theorem is that

every flat �

4 is the Jacobian of some surface of genus 2. 2

Further analysis along the directions of the above theorem easily yields

the following.

Theorem 8.5 A generic flat �

6 contains a full, embedded, minimal surface

of genus 3.

9 The existence of minimal surfaces in T k

In this section, we develop several techniques for proving the existence of

compact minimal surfaces in higher-dimensional flat tori. In general, we

will not assume that a given minimal surface f :M → �

k is full. We note

that f =
∫
(h1, . . . , hk):M → �

k lies fully in a subtorus of dimension equal

to the rank of {h1, . . . , hk} ⊂ H1(M). For example, any minimal surface

f :Mg → �

k is not full when k > 2g. It is important to keep this behavior in

mind when considering results such as the following.

Proposition 9.1 If f :M → �

k and g:M → �

r are conformal minimal

immersions, then (f, g):M → �

k × �

r is a conformal minimal immersion.
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Proof. Since f = Re
∫
(ω1, . . . , ωk) and g = Re

∫
(α1, . . . , αr), where ωi, αi ∈

H1,0(M) and
∑k

i=1 ω
2
i = 0 =

∑r
i=1 α

2
i , we have

∑k
i=1 ω

2
i +

∑r
i=1 α

2
i = 0. By

the generalized Weierstrass representation,

(f, g) = Re
∫
(ω1, . . . , ωk, α1, . . . , αr):M → �

k × �

r

is a conformal minimal immersion. 2

Note that if the f in Proposition 9.1 is an embedding, then so is (f, g)

and (f, g) is an immersion if g is only a branched immersion.

Recalling some results from Section 5, we arrive at the following special

result.

Corollary 9.1 Let f :M → �

3 be an embedded minimal surface satisfying

Property P. ThenM fully embeds as a minimal surface in flat �

k, 3 ≤ k ≤ 6.

Proof. If f = Re(ω1, ω2, ω3):M → �

3 satisfies Property P, then by The-

orem 5.4, 1., f lifts to a holomorphic immersion into �

3
�

= �

3/L with

an � -simple lattice. Suppose after an orthogonal transformation that {v1 =
(a, 0, 0), v2 = (b, d, 0), v3 = (e, f, g), cv1, cv2, cv3} is a � -simple basis for L⊗ � .

Then there exist holomorphic mappings g =
∫
ω3:M → �

1
�

and h =
∫
(ω2, ω3):M → �

2
�

. By applying Proposition 9.1 and checking ranks, we

get

1. (f, g):M → �

3 × �

1
�

is a minimal embedding full in some �

4 ⊂ �

3 ×
�

1
�

.

2. (f, h):M → �

3 × �

2
�

is a minimal embedding full in some �

5 ⊂ �

3 ×
�

2
�

.

2

The theorems in Section 6 show that many classical examples of surfaces

satisfy the conditions of Corollary 9.1. These surfaces include the Schwarz

P and D surfaces and the Novious model [46]. See [53] for a picture of the

Novious model.
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Lemma 9.1 If v = (a1, . . . , an) ∈ � n is non-zero, and if v 6∈ Q̃n = {(x1, . . . , xn) ∈
�

n | ∑n
i=1 x

2
i = 0}, then there exists an n× n matrix A and a non-zero con-

stant c ∈ � .

1. AtA = cI

2. Av = e1 = (1, 0, . . . , 0).

Proof. We will prove the lemma by induction on the number zv of non-zero

ai appearing in v = (a1, . . . , an). If zv = 1, then v = (0, . . . , 0, ai, 0, . . . , 0),

and there exists a permutation matrix O with Ov = (ai, 0, . . . , 0). A =

(1/ai)O gives the required matrix in this case.

Assume now that the lemma holds for zv = k. Since v = (a1, . . . , an) 6∈
Q̃n, then there is always a pair ai, aj, neither zero, with a

2
i+a

2
j 6= 0. LetO be a

permutation matrix such that Ov = (ai, aj, a3, . . . , an), and let A1 = (1/ai)O

so that A1v = (1, b1, . . . , bn). Let

A2 =




1
1+b2

1

b1
1+b2

1

0
−b1
1+b2

1

1
1+b2

1

0

0 0 I(n−2)×(n−2)


 ,

where I(n−2)×(n−2) is the (n − 2) × (n − 2) identity matrix. If A3 = A2A1,

then A3v has one more zero than v, and At
3A3 = c1I. Hence, A3v 6∈ Q̃n.

By induction, there exists an A4 with A4A3v = e1 = (1, 0, . . . , 0) such that

(A4A3)
t (A4A3) = c2I. This concludes the proof of the lemma. 2

Lemma 9.2 If the canonical curve of Mg is contained in some quadric in

� �

g−1, then there exist a flat torus �

2g−1 and a full conformal minimal im-

mersion f :Mg → �

2g−1.

Proof. Suppose that the canonical curve of Mg is contained in a quadric of

rank n. After a change of basis, we may assume c(Mg) ⊂ Qn where Qn is

the standard quadric of rank n. Hence, there exist n linearly independent
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holomorphic one-forms ω1, . . . , ωn with
∑n

i=1 ω
2
i = 0. Pick γ ∈ H1(Mg, � ) so

that v = (a1, . . . , an) =
∫
γ ω = (ω1, . . . , ωn)

t 6∈ Qn. This is always possible

since the rational period vectors P ⊗ � = {∫γ ω | γ ∈ H1(Mg, � )} ⊗ � are

dense in � n, and hence there is an ` ∈ P ⊗ � with ` 6∈ Qn. Since Qn is

defined by a homogeneous polynomial, no multiple of ` is a member of Qn.

Therefore, the required γ ∈ H1(Mg, � ) exists.

By the previous lemma, there is a matrix A with Aω = α,
∑n

i=1 α
2
i =

0 and
∫
γ α = (1, 0, . . . , 0)t. Now complete α1, . . . , αn to an ordered basis

α1, . . . , αg of H1,0(Mg) in such a way that
∫
γ(α1, α2, . . . , αg)

t = (1, 0, . . . , 0)t.

Define βk ∈ H1,0(M) by

β1 = α1
β2k−2 =

√
2αk

β2k−1 = iαk for 2 ≤ k ≤ n
β2k−2 = αk

β2k−1 = iαk for n+ 1 ≤ k ≤ g .

By the definition of βk, we have
∑2g−1

i=1 β2i = 0.

It is now straightforward to show that

f(p) = Re[i
∫ p

p0

β = (β1, . . . , β2g−1)]:Mg → �

2g−1/L = �

2g−1,

where L = Re{i ∫δ β | δ ∈ H1(Mg, � )}, is a full conformal minimal immersion.

We note that L is a lattice, since i
∫
γ β = (i, 0, . . . , 0) is purely imaginary and

because f is full. Note also that there are no branch points since when-

ever {h1, . . . , h2g−1} ⊂ H1(Mg) are linearly independent, they never have a

common zero. 2

Theorem 9.1

1. A surface of genus 3 will minimally immerse fully in a flat �

5 if and

only if it is hyperelliptic.
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2. A surface of genus g ≥ 4 will always minimally immerse fully in �

2g−1.

(Note: We already proved in Section 3 that a surface of genus 2 will

never minimally immerse in �

3.)

Proof. By Theorem 4.2, 2., any minimal surface of genus 3 that minimally

immerses in �

5 is hyperelliptic. Since the canonical curve of a hyperelliptic

surface of genus 3 is contained in a quadric, Lemma 9.2 proves Part 1. Since

c(Mg) is always contained in a quadric when g ≥ 4, Lemma 9.2 also implies

Part 2. 2

Definition 9.1 We will say that a minimal immersion f :M → �

k lifts to

�

r
�

if there exist a commutative diagram:

f̃

�

r
�

i
↪→ �

k/L
↑ ↓ Re

M
−→
f �

k ,

where L = {∫γ(ω1, . . . , ωk) | γ ∈ H1(M, � )}, f̃ =
∫
(ω1, . . . , ωk), and f =

Re f̃ . Equivalently, L is a discrete subgroup of � k of rank = 2r.

Theorem 9.2 If f :M → �

k is a branched minimal surface that lifts to a

holomorphic map into �

r
�

, then for each s, k ≤ s ≤ 2r, M conformally

minimally immerses fully in some �

s.

Proof. Our proof is by induction on s, with k ≤ s ≤ 2r. If s = k, f :M → �

k

is the conformal minimal immersion which lifts to a complex torus �

r
�

.

Now assume that the theorem holds for s = n with k ≤ n < 2r, and we

will show it true for s = n+ 1. By our induction hypothesis, we have a con-

formal minimal immersion f that factors through the following commutative

diagram:

f̃

�

r
�

i
↪→ �

n/L
↑ ↓ Re

M
−→
f �

n ,
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where L is a discrete subgroup of rank = 2r.

Let A =

(
I(n−1)×(n−1) 0

0 B

)
,

where B is a 2×2 matrix such that BBt = I2×2, B is not real, and B is close

to I2×2. Note that AAt = I(n+1)×(n+1).

Now pick a basis {v1, v2, . . . , v2r−n} for ker(Re |L) ⊗ � ⊂ i �

n. After an

orthogonal transformation, we may assume that vj ∈ i�

j ⊂ i�

n for each

j, 1 ≤ j ≤ 2r − n. If the original vi are appropriately chosen, the harmonic

form components appearing in Re(A(ω1, . . . , ωn, 0)) will span an (n + 1)-

dimensional subspace of H1(M).

By the generalized Weierstrass representation, there is a full non-proper

minimal immersion g = Re
∫
A(ω1, . . . , ωn, 0): M̃ → �

n+1 on the universal

cover M̃ of M . The map g factors as

h
V n
�

i
↪→ �

n+1

↑ ↓ Re

M̃
−→
g

�

n+1 ,

where V n
�

is the complex subspace spanned by L′ = {A ∫γ(ω1, . . . , ωn, 0) |
γ ∈ H1(M, � )}.

Since we chose A so that {v1, v2, . . . , v2r−n−1} spanned the kernel of

Re ◦A: � n+1 → �

n+1, A(L′) is a lattice in �

n+1. Therefore, g induces a

conformal minimal immersion f ′:M → �

n+1 = �

n/Re(L′). (It is an im-

mersion for B sufficiently close to I2×2.) It follows that f ′ lifts to A( �

r
�

) ⊂
�

n+1/A(L), and by induction, this finishes the proof of the theorem. 2

The hypothesis for the next corollary is satisfied for all known classical

examples of periodic minimal surface in �

3.

Corollary 9.2 Suppose an associate surface to f = Re
∫
(ω1, . . . , ωk):M →

�

k
1 is periodic; i.e., there exists fθ:M → �

k
2 for some θ. If r = the number

of � -independent ω′
is defining f , then for each s, k ≤ s ≤ 2r, M conformally

minimally immerses fully in a �

s.

58



Proof. By Theorem 5.2, f lifts to a holomorphic map into �

r
�

. Now apply

Theorem 9.2. 2

Corollary 9.3 If f :M3 → �

3 is a minimal surface of genus 3, then M3

minimally immerses fully in a �

4, �

5, and �

6.

Proof. In this case, f lifts to J(M3), which has complex dimension 3. The-

orem 9.2 implies the corollary. 2

10 Proof of the main existence theorem

The main result of this section is that every flat three-torus contains an

infinite number of examples in the family V of genus 3 periodic surfaces

described in Theorem 7.1. What we will show is that every �

3 contains an

infinite sequence Σ1, . . . ,Σk, . . . of nonorientable embedded minimal surfaces

with Euler characteristic χ = −2 and such that limi→∞Area(Σi) =∞. The

existence of these new examples is based on an abstract mini-max type proof

that is independent of the work in previous sections.

Let T 3 = �

3/ �

3 where �

3 is the integer lattice in �

3 and let F ⊂ T 3 be

the quotient torus of the x1x2-plane in T 3. Let σ:T 3 → T 3 be the diagonal

translation of order 2. Consider the surface Σ in T 3 obtained from F and F+

(0, 0, 1
2
) by taking their connected sum along vertical line segments ` and σ(`).

Do this so that σ(Σ) = Σ and let Σ = Σ/σ ⊂ T
3
= T 3/σ. See Figure 3 below

for a picture of Σ. Let F denote the image of F in T
3
. It is straightforward

to check that Σ is isotopic in T
3
to P/σ, where P is the Schwarz primitive

surface. Let R:T 3 → T 3 be the rotation around the diagonal vector (1, 1, 1)

by 120◦ and note that R commutes with σ. Let R:T
3 → T

3
denote the

associated quotient linear isometry. Since P is invariant under R, P/σ is

invariant under R. Hence, R(Σ) is isotopic to Σ.
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Figure 3:

If F̃ is a subtorus of T
3
that represents the same � 2-homology class as

F , then there exists a linear automorphism L:T
3 → T

3
with L(F ) = F̃ and

such that L lifts to a L:T 3 → T 3. Note that the linear automorphisms of

T 3 are generated by R and ∆, ∆ defined by e1 → e1 + e2, e2 → e2, e3 → e3.

Note also that Σ is isotopic to ∆(Σ) where ∆:T
3 → T

3
is the associated

quotient map. Recall that the surface Σ is obtained from F by taking and

adding a handle along a vertical line segment in T
3
. Since ∆(F ) = F and

∆ preserves the vertical, ∆(Σ) is isotopic to F by adding a vertical handle.

Hence ∆(Σ) is isotopic to Σ. Since L is a composition of products of ∆ and

R, both of which preserve the isotopy class of Σ, the isotopy class of F̃ can

be obtained by a single surgery on Σ. This proves the following lemma.

Lemma 10.1 Suppose F̃ ⊂ T
3
is a subtorus that represents the � 2-homology

class of Σ. Then F̃ is isotopic to a surface obtained by doing surgery on Σ.

This lemma will be used in the proof of the following theorem.

Theorem 10.1 Let �

3 be an arbitrary flat three-torus. Then there exists an

infinite sequence of embedded minimal surfaces Σ1, . . . ,Σk, . . . in the family

V given in Theorem 7.1. Furthermore, the Σk can be choosen to have area

greater than k.
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Before proving Theorem 10.1, we briefly outline the main idea. Af-

ter lifting to two-sheeted covers of flat three-tori, it is sufficient to prove

that our original �

3 contains an infinite sequence Σ1, . . . ,Σk, . . . of nonori-

entable minimal surfaces the family Ṽ described in Theorem 7.1 and such

that Area(Σk) > k.

After composing with a linear isomorphism of �

3 with T 3, consider Σ to

be contained in �

3. By Lemma 10.1, the surface Σ is “isotopic by surgery”

to any fixed flat two-torus in the � 2-homology class of Σ. Suppose � 1 and

� 2 are two flat tori in �

3 which represent the � 2-homology class of Σ but

represent different � -homology classes. Furthermore, choose � 1 and � 2 so

that Area( � 1) > Area(� 2) > n. Recall that flat two-tori in �

3 are strong

local minima to the area functional on the space of � 2-currents representing

a � 2-homology class and the local minima � 1, � 2 can be joined by a path,

Σt, 1 > t > 2, such that the Σt limit as varifolds to � 1, � 2, respectively, as

t→ 1 or 2 and for any such path Area(Σt) > Area(� 2). The general of mini-

max principle for minimal surfaces, first developed by Morse-Tompkins [39]

and Shiffman [56], states that in the space of paths Σt joining the local area

minima � 1, � 2, there should exist an a path whose maximum area surface

Σ̃ has area which is minimal over all such paths. The surface Σ̃ is then

called a mini-max surface and it is an unstable minimal surface. Since Σ̃ is

a mini-max, its area is at least as big as Area( � 2) > n.

While the above guiding mini-max principle is easy to state, in princi-

ple it is usually difficult to apply because the spaces involved are infinite

dimensional. By working with paths of harmonic maps, we shall reduce the

question of finding the minimal Σ̃ to finding the required mini-max on a fi-

nite dimensional space which is the Teichmoeller space of Σ. The following

proof of the existence of Σ̃ given below was found around 1980. It seemed

clear to the author at that time that the results of Meeks, Simon and Yau

[34] and Simon [57] could be used to prove the existence of the minimax Σ̃.

This second approach has been made rigorous by Hass, Pitts and Ruben-

stein ([17] and [49]) and yields a variation of our proof on the existence of
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Σ̃. Their approach is much more general than ours and works in the case of

general Riemannian three-manifolds. This completes our outline of the proof

of Theorem 10.1.

Proof of Theorem 10.1. Let T denote the Teichmoeller space associ-

ated to the nonorientable surface M of Euler characteristic χ = −2. Let

L:T 3= �

3/ �

3 → �

3 be a linear isomorphism and let f :M → �

3 be the map

induced by L◦i where i:M → Σ ⊂ T 3 is a parametrization of Σ. For every

Mτ ∈ T , there is a corresponding harmonic map fτ :Mτ → �

3 in the ho-

motopy class obtained by integrating the harmonic forms that represent the

three cohomology classes represented by the closed forms f ∗(dx1), f
∗(dx2),

and f ∗(dx3). Consider the energy functional E: T → �

+ where E(Mτ ) is the

energy of fτ . The critical points of E correspond to the harmonic, branched,

conformal maps. A straightforward calculation shows that f :Mτ → �

3 in-

duces an isomorphism of H1(Mτ , � )/(Torsion) to H1( �

3, � ). Corollary 1 in

[31] states that the fτ that are critical points of E, i.e. the minimal fτ , are

smooth embeddings. (In our case this regularity property also follows from

the fact that the E-critical fτ are smooth embeddings via Theorem 7.1.)

Let T denote the compactification of T and recall that T is a compact,

complex analytic variety. An estimate of Schoen and Yau (see, for example,

Lemma 3.1 in [54]) (also see Sachs and Uhlembeck [52]) implies: If Mτ ∈ T
and Mτ contains a simple closed geodesic α in the hyperbolic metric on Mτ

and fτ (α) is homotopically nontrivial in �

3, then the energy of fτ is very large

when the length of α is very small. Suppose γ ⊂M is a simple closed curve

and f(γ) is homotopically nontrivial in �

3. It follows that if Mτi converges

to a “surface” N ∈ ∂T so that γ becomes homotopically trivial in the limit

surface, then the energy E(Mτi) → ∞ as i → ∞. On the other hand, since

�

3 has nonpositive curvature, if {Mτj} ⊂ T is an infinite sequence diverging

to ∂T and E(Mτj) is uniformly bounded, then a subsequence of the f(Mτi)

converges to a harmonic map of a “surface” f̃ :N → �

3 where N ∈ ∂T . (This
is clear since the total energies of the maps fτi are uniformly bounded and
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there can be no “bubbling” since �

3 cannot contain a minimal 2-sphere. Also

see the proof of the solution of the free boundary value problem in [36] where

a similar situation occurs.) From the simple topology of M , we conclude

that N is a torus obtained by a surgery on a simple closed curve on M and

f̃ is a linear harmonic map on a flat two-torus N = �

2. Note that f̃ is well

defined up to translation as a limit of some subsequence of the fτj .

Let ∂T̃ denote the tori in ∂T which are obtained by surgery on a simple

closed curve on M that is homotopically trivial under f in �

3. Let T =

T ∪ ∂T̃ . By the above discussion, we can extend E to a continuous proper

map Ẽ: T̃ → �

+.

Note that each path component C of ∂T̃ naturally corresponds to a Teich-

moeller space of conformal structures on a flat two-torus. Since the associated

harmonic maps of �

2 into �

3 are linear, it is well known that Ẽ|C is proper

and has a unique critical point (the global minima for Ẽ|C) corresponding

to the conformal structure of the image flat torus in �

3. By Lemma 10.1 and

the earlier discussion, ∂T̃ contains an infinite number of path components

and Ẽ restricted to each path component has a unique critical point. Each

of these boundary critical points is a minima for Ẽ on its path component.

Note also that this minima of Ẽ|C is also a local minima for Ẽ, since a flat

torus is area minimizing. Also by Lemma 10.1, the values of Ẽ at these local

minima for Ẽ on ∂T̃ are arbitrarily large since the flat two-tori represent-

ing the same � 2-homology class as f(M) = Σ, have arbitrarily large area in

different � -homology classes.

We will prove that T̃ contains a sequence of critical values Mτi ∈ T of

Ẽ and E(Mτi) → ∞ as i → ∞. This existence proof will also show that

the harmonic map fτi :Mτi → �

3 is harmonic, branched, conformal, minimal

surface.

First we construct a map F : T̃ → T̃ with the property that Ẽ(Mτ ) ≤
Ẽ(F (Mτ )) with equality if and only if fτ is conformal. Suppose fτ :Mτ → �

3

is an immersion, then F (Mτ ) is the surface f(Mτ ) with the pulled back

63



conformal structure. Since the energy of a map is greater than or equal to

twice its area with equality if and only if the map is conformal and since

harmonic maps into �

3 minimize energy for a fixed conformal structure,

Ẽ(Mτ ) ≤ Ẽ(F (Mτ )) with equality if and only if fτ is conformal. Suppose

Mτ ∈ T . The main theorem in [31] concerning the regularity of the Albanese

map of a nonorientable surface into its Albanese variety states, in our case,

that: A given harmonic map fτ :Mτ → �

3 is either a smooth embedding

or else is a rank 1 map which is also a smooth embedding outside of some

simple closed curve and this simple closed curve collapses to a point in �

3

(since fτ :M → �

3 is in this case the Albanese map of Mτ ). In particular,

it still makes sense to pull back the “conformal” structure on Mτ to get a

new conformal structure F (Mτ ) and E(F (Mτ ) ≤ E(Mτ ). It follows that the

fixed points of F are the branched conformal minimal immersions related to

Ẽ.

We now prove the existence of the required critical points Mτi . Choose

a sequence of local minimal Ni ∈ ∂T of Ẽ such that Ẽ(Ni) → ∞ as i →
∞. Since Ni is a strong local minimal of Ẽ, for ε sufficiently small the

compact component C(i, T ) of Ẽ−1([0, T = Ẽ(Ni)+ε]) containingNi contains

no other fixed point of F . There is a smallest ti > Ẽ(Ni), such that Ni

is in the component C(1, ti) of Ẽ−1([0, ti]) that contains N1. Let Mτi ∈
∂C(i, ti)∩∂C(1, ti). Note that F (C(i, t)) ⊂ C(i, t). Also, note that F (Mτi) ∈
Int(C(i, t)), unless Mτi ∈ T and fτi is conformal. Similarily, F (Mτi) ∈
Int(C(1, ti)) unless fτi is conformal. Since Int(C(i, ti))∩ Int(C(1, ti)) = ∅, fτi
must be conformal. Since the fτi is conformal, E(fτi) = 2 · Area(fτi), and
E(fτi) > Ẽ(Ni) > i, we conclude that Area(fτi) >

i
2
. As remarked at the

beginning of the proof, the critical points of E are smooth embeddings. The

existence of these fτi completes the proof of Theorem 10.1. 2

Corollary 10.1 Let M be either a closed orientable surface of odd genus

or a closed nonorientable surface of odd Euler characteristic. Then every

flat three-torus �

3 contains an infinite sequence {M1,M2, . . .} of embedded
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minimal surfaces, each diffeomorphic to M . Furthermore, this sequence can

be choosen so that Area(Mn) > n for all n.

Proof. Let M and �

3 be given and fixed. Elementary covering space theory

and the proof of Theorem 10.1 imply that �

3 is a finite cover of another

flat three-torus ̂
�

3
and such that �

3 contains a surface Σ ∈ V of Euler

characteristic χ = −2 and such that the lift Σ̂ of Σ to �

3 is diffeomorphic to

M . (See Figure 2 at the end of Section 3 for a representative possible picture

of Σ.) Recall from the proof of Theorem 10.1 that ̂�
3
contains an infinite

sequence, Σ1,Σ2, . . . of embedded minimal surfaces that are homotopic to

Σ and such that Area(Σn) > n. Hence, the lifts Σ̃1, Σ̃2, . . . to �

3 yield a

sequence of embedded minimal surfaces that are diffeomorphic to M and

such that Area(Σ̃n) > n. This completes the proof of the corollary. 2

11 Recent developments and further credits

The most important applications of periodic minimal surfaces arise from

problems in classical function theory. More precisely, periodic holomorphic

minimal surfaces in � n play a fundamental role in the classical theory of

Riemann surface theory via Abel’s theorem. Namely, a necessary and suf-

ficient condition for a divisor Σ(pi − zi) on a closed Riemann surface M to

be a divisor of a meromorphic function is for this sum of points to equal the

identity element in the Jacobian of M when we consider M to be a subset of

this torus. In fact, the Jacobian J(M) is naturally isomorphic to the abelian

group Div0/Div(M∗) where Div0 are the divisors of degree zero on M and

Div(M∗) are the divisors of the not identically zero meromorphic functions

on M .

A nonorientable “Riemann surface” M with a conformal-anticonformal

structure no longer has holomorphic forms but it still has harmonic one-

forms. By integration of a basis of H1(M), one obtains a harmonic map

f :M → A(M) where f(p) =
∫ p(h1, . . . , hn) and A(M) = �

n/P where P =
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{∫γ(h1, . . . , hn) | γ ∈ H1(M)}. As shown in [31], f is not always one-to-one,

however, it is a smooth one-to-one immersion when f is a branched minimal

immersion. We used this regularity theorem in the proof of Theorem 10.1.

The minimal surfaces in �

n that arise from compact nonorientable minimal

surfaces in their Albanese varieties yield a rich collection of nonholomorphic

examples of n-periodic minimal surfaces in �

n.

Micallef has proven some interesting results on stable n-periodic mini-

mal surfaces. First he has shown that an orientable stable minimal surface

in a four-dimensional flat torus is always holomorphic with respect to some

orthogonal almost-complex structure on the torus [37]. He has also shown

that a full, stable, hyperelliptic minimal surface in a flat torus is holomor-

phic with respect to some orthogonal almost-complex structure [38]. On the

other hand, a simple dimension calculation shows that there are stable min-

imal surfaces of genus four in most flat eight dimensional tori that are not

holomorphic with respect to any orthogonal almost-complex structure.

The classical theory of triply-periodic minimal surfaces in �

3, rather than

being motivated by problems in classical function theory, is inspired by the

intricacy and geometric beauty of the classical examples. In [53] Schoen

published a number of images of models of the classical examples as well as

many new examples that he found. Based on Schoen’s manuscript, Karcher

has recently written a short treatise on some of the examples of Schoen.

Karcher’s manuscript includes computer graphics images of some of these

examples as well as some related, interesting, new examples [23]. Also, see

the publications [21] and [22] of Karcher for a variety of new examples of

periodic minimal surfaces.

More recently, interest in triply-periodic minimal surfaces has arisen from

their appearance as dividing surfaces or as surface interfaces in physical prob-

lems. For example, in materials such as crystals, that arrange themselves in

a triply-periodic structure, triply-periodic minimal surfaces appear in sur-

prising contexts. For instance, a solid state physicist might model a Fermi

surface (or equipotential surface) in a crystal of salt by the Schwarz primitive
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surface P that closely approximates the actual Fermi surface geometrically.

Triply-periodic minimal surfaces have been used to model liquid crystals

that arise in oil-water-surfactant microemulsions and to model dividing sur-

faces in certain microemulsions of block copolymers. Since one might expect

the area or energy of these surfaces to be stable with respect to smooth

variations, it is natural to ask why minimal surfaces arise in such problems

when it is well known that there are no stable orientable minimal surfaces

(other than the plane) in �

3. (See [11] or [13].) A possible reason for their

occurrence is that there do exist orientable minimal surfaces in flat three-tori

that are stable with respect to volume preserving variations. Since every

physically allowable variations for a surface interface preserves volume of the

complements, it is not so surprising that a least energy interface might be

representable by a minimal surface. The Schwarz P and D surfaces, as well as

A. Schoen’s gyroid surface, have all been shown to be stable in their natural

flat three-tori with respect to volume preserving variations (see the work of

M. Ross [51]). This stability property for these three surfaces helps to explain

why all three apparently occur as surface interfaces in liquid crystal exper-

iments. The recent appearance of the Schwarz D, as well as other periodic

minimal surfaces, as dividing surfaces in block copolymer microemulsions has

been hailed as major breakthrough in the field of polymer science and has

led to the hope of the creation of materials with new physical properties. In

general, these dividing surfaces are assumed to be close to constant mean

curvature periodic surfaces, not just zero mean curvature ones. For a discus-

sion of this recent work see the work of Anderson, Henke, Hoffman, Martin

and Thomas [1][2]. (Also see [3].)

In the remainder of this section we will bring some of the material that

appears in the earlier sections up to date as well as to give credits to oth-

ers for overlaps with their work. Starting at the beginning, one must of

course give credit to Riemann [50] and Schwarz [55] who gave the first ex-

plicit examples of triply-periodic minimal surfaces and who contributed the

basic theoretical results on which the subject began. Some of the elementary
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results of Section 3, such as Theorem 3.1 and Corollaries 3.1, 3.2 and 3.3

were almost certainly known to these two fathers of the subject. In any case,

these results, as well as a majority of the remaining results of Section 3, were

found independently by Nagano and Smyth at about the same time as this

author. They also obtained a few of the results in some latter sections and

we refer the interested reader to their papers listed in our bibliography for

further results in the subject.

Recently, some of the results in Section 5 on the rigidity of periodic min-

imal surfaces has been adapted to deal with the case of complete embedded

minimal surfaces of finite total curvature in �

3. These adaptations by Hoff-

man and Meeks [19] have proven to be important in the construction of new

examples of complete embedded minimal surfaces of finite topology in �

3.

Choi, Meeks and White [10] were able to generalize our rigidity theorem

for triply-periodic minimal surfaces in �

3 (Theorem 5.3). They prove that

any properly embedded minimal surface f :M → �

3 with more than one

end is, up to congruence, the unique isometric minimal immersion of M

into �

3. In particular, the symmetry group of such an M is equal to its

isometry group. Also, Meeks and Rosenberg [33] have been able to show

that any properly embedded, doubly-periodic minimal surface is, in the same

way, rigid. These results give rise to a conjecture that is closely related to

our earlier Conjecture 5.1 on the rigidity of nonsimply connected, properly

embedded, minimal surfaces.

Conjecture 11.1 The symmetry group of a properly embedded, minimal

surface in �

3 is equal to its isometry group.

The above conjecture represents an apparently deep property of properly

embedded minimal surfaces. All known properly embedded minimal surfaces

M in �

3 either have more than one end, and so are rigid by the earlier

stated result of Choi-Meeks-White, or M/ Sym(M) has finite topology and

Sym(M) is infinite. The previous statement and the next theorem show that

Conjecture 11.1 holds for all known examples of minimal surfaces.

68



Theorem 11.1 Suppose M is a properly embedded, minimal surface in �

3

with infinite symmetry group and such that the quotient ofM by its symmetry

group has finite topology. Then, the symmetry group of M is equal to the

isometry group of M .

The proof of the above theorem, which we postpone for the present mo-

ment, is based on a recent result of Meeks and Rosenberg [32]. Roughly

stated, their theorem says that if M is a properly embedded minimal surface

in �

3 and if a fundamental region of a discrete subgroup of Sym(M) has finite

topology, then this fundamental region also has finite total curvature. IfM is

a properly embedded, connected surface in �

3 with infinite symmetry group

and M is not a surface of revolution, then Sym(M) contains a discrete sub-

group G that acts freely on �

3 as a group of translations or G is generated by

a screw motion symmetry. Thus, M is either triply-periodic, doubly-periodic

or one-periodic (generated by a translation or screw motion symmetry). One

can then study M by studing the quotient surface M/G ⊂ �

3/G. The rough

statement of the Meeks-Rosenberg theorem given earlier then translates into

the following:

Theorem 11.2 (Meeks-Rosenberg) A properly embedded minimal sur-

face in a complete nonsimply connected flat three manifold has finite total

curvature if and only if it has finite topology.

Meeks and Rosenberg also show that complete minimal surface of finite

total curvature in a flat three-manifold can be expressed in terms of analytic

data on the conformal compactification of the surface which, by a theorem

of Huber [20], is a compact Riemann surface. We shall call this data the

Weierstrass data for the surface. It follows from Theorem 11.2 and the theory

of finite total curvature minimal surfaces in nonsimply connected, flat, three-

manifolds �

3/G, as developed in [32], that if M ⊂ �

3/G has finite topology,

then the asymptotic behavior ofM is very restricted. In fact, ifG is generated

by a screw motion that is a rotation around the z-axis by an angle θ, 0 ≤
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θ ≤ π, then each end ofM ⊂ �

3/G is asymptotic to a helicoid end, a flat end

or to a vertical half annulus in �

3/G. When an end of M is asymptotic to

a vertical flat end, as is Scherk’s singly-periodic surface, the end is called a

Scherk type end of M . With this background discussion completed, we prove

the following restatement of Theorem 11.2.

Theorem 11.3 Let M be a connected, properly embedded, minimal surface

in �

3, invariant under an infinite discrete group G of isometries of �

3. If

M/G has finite topology, then every isometry of M extends to an isometry

of �

3.

Proof. Suppose M is not a plane. We can assume (by taking a finite index

subgroup) that G acts freely on M in an orientation preserving manner and

N = �

3/G is isometric to �

3, � × � or �

3/Sθ where Sθ is a right hand screw

motion with axis being the z-axis and with rotation angle θ. We will also

assume that G is a maximal subgroup satisfying these properties.

If N is isometric to �

3 or � × � , then M is doubly-periodic and this case

of Theorem 11.3 was proved in [33]. Hence, we can assume N = �

3/Sθ.

We know all the ends of M/G are of the same type: planar, Scherk

or helicoidal type ends. We consider each possibility separately. We use

the following statement proved in [10]: M is rigid (i.e. any two isometric

minimal immersions of M in �

3 are congruent) provided there is a plane in

�

3 whose intersection with M contains a compact cycle along which M is

transverse to the plane.

First suppose all the ends of M/G are planar. Then these planar ends

lift to parallel planar ends in �

3, and one can choose a plane between two

consecutive planar ends of M that meets M transversally in a compact set.

Hence Theorem 11.3 is true in this case.

Now assume the ends of M/G are Scherk type ends. Choose a vertical

plane P in �

3, not parallel to any end, and such that P is tangent to M at

exactly one point p. P/G is an annulus and intersects M/G is an analytic
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compact cycle with a singularity at p. It is compact because P is not parallel

to any Scherk end. Now it’s not hard to see that a small parallel translation

of P yields a transverse intersection of P/G withM/G, that contains a simple

closed curve null homotopic on P/G. This curve lifts to �

3 and Theorem 11.3

follows here as well.

Assume now that M/G has helicoidal type ends. By Theorem 5.5, 6.,

S◦
f (M) is a normal subgroup of Iso(M) where f :M → �

3/G denotes the

inclusion map. Suppose h:M → M is an isometry. Since S◦
f (M) is normal,

h is the lift of a map ĥ:M/S◦
f (M) → M/S◦

f (M). Since the ends of M/G

are helicoidal, all elements of S◦
f (M) are screw motions or rotations with a

common axis and we may assume that this axis is the z-axis. In particular,

S◦
f (M) is abelian and G is a normal subgroup with S◦

f (M)/G a cyclic group.

Hence, the quotient map Q:M/G → M/S◦
f (M) is a finite cyclic branched

covering space. Let E be some collection of annular ends representatives of

M/S◦
f (M) that are disjoint from the branch locus of Q and such that E is

invariant under ĥ. Let Q̃: Ẽ → E denote the cyclic covering space where

Ẽ = Q−1(E) and Q̃ = Q|Ẽ. Note Ẽ contains annular end representatives

of M/G. Since M/G is embedded in �

3/G, S◦
f (M)/G acts on Ẽ so that for

every component C of Ẽ, Q̃|C:C → Q̃(C) has constant degree. Elementary

covering space theory (for cyclic covering spaces) implies that ĥ|E lifts to a

map h̃: Ẽ → Ẽ.

Suppose (ω1, ω2, ω3) are the Weierstrass forms for f :M → �

3. Since M

has “horizontal helicoidal type ends”, h∗(ω3) = eiθω3 for some θ. Let ω̃3

denote the quotient form of ω3 onM/G. SinceM/G has helicoidal type ends

and M/G is embedded in �

3/G, ω̃3 has a local expression on any component

C of Ẽ, conformally parametrized by the punctured unit disk, of the form

(a−1/z + a0 + a1z + . . .)dz where a−1 is a fixed nonzero imaginary number

whose absolute value is independent of C. (See [32] for this representation.)

Note that {a−1,−a−1} is an invariant of ω̃3, i.e., is not dependent on the

parametrization of C by the unit disk. By considering h̃|C:C → h̃(C) to

be a conformal parametrization of h̃(C) by C, the invariance of a−1 up to
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sign shows that (h̃|Ẽ)∗(ω̃3|Ẽ) = ±ω̃3|Ẽ. This implies that h∗(ω3) = ±ω3
and hence eiθ = ±1. This means that h extends to an isometry of �

3. The

proof of the nonorientation preserving case, h∗(ω3) = eiθω3, is similar to the

orientation preserving case and will be left to the reader. This completes the

proof of the theorem in the case that M/G has helicoidal type ends. Since

every end of M/G is planar, Scherk or helicoidal, Theorem 11.3 is proved. 2

Remark 11.1 The embeddedness assumption in Theorems 11.2 and 11.3 is

clearly needed as is demonstrated by the following example. Let Hθ denote the

associate surface of the helicoid H for any θ 6= ±π
2
, 0, π. Then the orientation

reversing symmetries of Hθ do not extend to �

3 even though Hθ is a properly

immersed minimal surface invariant under a group of translations and the

quotient surface by these translations has finite topology.

In [30] Meeks proved that a nonflat embedded minimal surface M ⊂ �

3

of genus g separates �

3 into two 1-handlebodies. Such a decomposition of a

closed three-manifold is called a Heegaard splittings of genus g. In general,

a flat three-manifold can have topologically distinct Heegaard splittings of

the same genus. However, Meeks conjectured that two Heegaard splittings

of �

3 of the same genus are isotopic (see Conjecture 1 in ([28])). It would

follow from this result that if M1,M2 are two triply-periodic minimal sur-

faces in �

3, then there exists a homeomorphism of �

3 taking M1 to M2.

Meeks conjectured this result as well. Recently, C. Frohman [14] proved a

deep and general topological result that implies Meeks’ conjecture for triply-

periodic minimal surfaces in �

3. Shortly after Frohman proved his theorem,

M. Boileau and J. P. Otal [5] proved the stronger result that Heegaard split-

tings of �

3 are unique up to isotopy. Finally, based on Frohman’s study

of one-ended Heegaard splittings of �

3, Frohman and Meeks proved that a

one-ended minimal surface in �

3 is topologically unknotted [15]. In other-

words, two such homeomorphic minimal surfaces differ by a homeomorphism

of �

3. A topological result of Callahan, Hoffman and Meeks [9] states that
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a doubly or triply-periodic minimal surface must have one end and, as a

consequence of the Frohman-Meeks theorem, any two such surfaces differ by

a homeomorphism of �

3. Another related topological uniqueness theorem

was proved by Meeks and Yau [35]. Their theorem states that a properly

embedded, minimal surface in �

3 of finite topology is unknotted.
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