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1 Introduction

We set forth in this paper rigorous justification of a new approach for

defining and then investigating the evolution of a hypersurface in �

n moving

according to its mean curvature. This problem has been long studied using

parametric methods of differential geometry: see, for instance, Gage []-[],

Gage-Hamilton [], Grayson [], Huisken []-[], etc., etc. In this classical setup,

we are given at time 0 a smooth hypersurface Γ0 which is, say, the connected

boundary of a bounded open subset of �

n. As time progresses we allow the
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surface to evolve, by moving each point in the opposite direction to the mean

curvature vector, at a velocity equal to (n − 1) times the absolute value of

the mean curvature at that point. Assuming this evolution is smooth, we

define thereby for each t > 0 a new hypersurface Γt. The primary problem

is then to study geometric properties of {Γt}t>0 in terms of Γ0.

For the case n = 2 this program has been successfully carried out in

great detail: see [], [], etc. For n ≥ 3, however, it is fairly clear that even if

Γ0 is smooth, a smooth evolution as envisioned above cannot exist beyond

some initial time interval. Imagine for instance Γ0 to be the boundary of a

“dumbbell” shaped region in �

3, as illustrated.

In view of [] and numerical calculations of Sethian [], we expect that as

time evolves, the surface will smoothly evolve (and shrink) up until a critical

time t∗ > 0 when the two ends pinch off, as drawn.
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After this time, the classical motion via mean curvature is undefined. In

addition, if it were possible to define the subsequent motion in some reason-

able way, we expect Γt for t > t∗ to comprise two pieces which pull apart at

time t∗. If this were so, then Γt would have changed topological type.

This possibility suggests inherent problems in the classical differential geo-

metric approach of regarding Γ0 as a parameterized surface: the parametriza-

tion will in general develop singularities .

What is needed is an alternative description of the evolution for all times

t > 0, sufficiently general so as to allow for the possible onset of singulari-

ties and attendant topological complications. To our knowledge there have

been two different such undertakings, by Brakke [] and by Osher-Sethian [].

Brakke’s dissertation [] recasts the mean curvature motion problem (even

in arbitrary codimension) into the setting of varifold theory from geometric

measure theory (cf. Allard []). Brakke defines and then constructs an appro-

priate generalized varifold solution , which is defined for all time (although it

may vanish after a finite time.) He then deduces many geometric properties

and under an additional density assumption establishes partial regularity.

The principal drawback seems to be the lack of any uniqueness assertion.

A completely different viewpoint is to be found in the paper [] by Os-

her and Sethian. Their approach, recast slightly, is this. Given the initial

hypersurface Γ0 as above, select some function g: �

n → � so that

Γ0 = {x ∈ �

n|g(x) = 0}.(1.1)

Consider then the parabolic PDE

ut = (δij −
uxiuxj
|Du|2 )uxixj in �

n × [0,∞)(1.2)

u = g on �

n × {t = 0},(1.3)

for the unknown u = u(x, t)(x ∈ �

n, t ≥ 0). Now the PDE (1.2) says that

each level set of u evolves according to its mean curvature, at least in regions
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where u is smooth and its spacial gradientDu does not vanish. Consequently,

focusing our attention on the set {u = 0}, it seems reasonable in view of (1.1),

(1.2) to define

Γt ≡ {x ∈ �

n | u(x, t) = 0}(1.4)

for each time t > 0. Osher and Sethian [] introduce various techniques to

study (1.2) and related PDE’s numerically, thereby to track computationally

the evolution of Γ0 into Γt(t ≥ 0). (Notice by the way that our utilizing (1.1)–

(1.3) amounts, in the language of fluid mechanics, to adopting an Eulerian

viewpoint, as opposed to the Lagrangian, parametric viewpoint of classical

differential geometry ; see also equation (2.2) below).

Our purpose here is to provide theoretical justification for this approach.

The undertaking is analytically subtle principally because the mean curvature

evolution equation (1.2) is nonlinear, degenerate, and indeed even undefined

at points where Du = 0. In addition, it is not so clear that our definition

(1.3) is independent of the choice of initial function g verifying (1.1). We will

resolve these problems by introducing an appropriate definition of a weak

solution for (1.2), inspired by the notion of so-called “viscosity solutions”

of nonlinear PDE as in Crandall-Lions [], Crandall-Evans-Lions [], Lions [],

Jensen [], etc. We then prove that there exists a unique weak solution of (1.2)

and further that definition (1.3) is then independent of the choice of initial

function g satisfying (1.1). We additionally check that {Γt}t≥0 so defined

agrees with the classical notion of motion via mean curvature, over any time

interval for which the latter exists. Finally we employ the PDE (1.2) to

deduce assorted geometric properties of {Γt}t≥0.
The main theoretical advantage of (1.1)–(1.3) as compared with Brakke’s

varifold methods seems to us to be the uniqueness assertion: the set Γt is

unambiguously defined by (1.3) once we have a uniqueness assertion for the

PDE (1.2). The primary disadvantage is that our techniques work only in
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codimension one.

We hope to establish in a forthcoming companion paper a partial regu-

larity theorem for {Γt}t≥0.
Our paper is organized as follows. In Section 2 we motivate and introduce

our definition of weak solution for (1.2) and in Section 3 prove the uniqueness

of a weak solution. Section 4 establishes the existence of a weak solution to

(1.2). In Section 5 we verify the independence of the definition (1.3) on

the choice of g. Section 6 contains a consistency check that the definition

(1.3) agrees with the classical motion by mean curvature, if and so long as the

latter exists. Sections 7 and 8 contain various geometric assertions, examples

of pathologies and conjectures.
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2 Definition and Elementary Properties of

Weak Solution

2.1 Heuristics

We start with a formal derivation of the mean curvature evolution PDE

(1.2). For this, suppose temporarily u = u(x, t) is a smooth function whose

spatial gradient Du = (ux1
, . . . , uxn) does not vanish in some open region

O of �

n × (0,∞). Assume further that each level set of u smoothly evolves

according to its mean curvature, as described in §1. We focus our attention

onto any one such level set, and for definiteness consider the zero sets

Γt ≡ {x ∈ �

n | u(x, t) = 0} (t ≥ 0).(2.1)

Let ν = ν(x, t) be a smooth unit normal vector field to {Γt}t≥0 in O. Then

1

n− 1
div(ν)ν

is the mean curvature vector field. Thus if we fix t ≥ 0, x ∈ Γt∩O, the point

x evolves according to the nonautonomous ODE
{
ẋ(s) = −[div(ν)ν] (x(s), s) (s > t)
x(t) = x

(2.2)

As x(s) ∈ Γs (s ≥ t), we have

u(x(s), s) = 0 (s > t),

and so

0 =
d

ds
u(x(s), s) = −[(Du · ν) div(ν)] (x(s), s) + ut(x(s), s).

Setting s = t, we discover

ut = (Du · ν) div(ν) at (x, t).

6



Choosing then

ν ≡ Du

|Du| ,(2.3)

it follows that

ut = |Du| div(
Du

|Du|) = (δij −
uxiuxj
|Du|2 )uxixj at (x, t).(2.4)

Similar reasoning demonstrates this PDE to hold throughout the region O.

Now, conversely, assume in some region O u is a smooth solution of (2.4)

with Du nonvanishing. Fix t > 0, x ∈ Γt ∩O and solve then the ODE (2.2),

(2.3). Since u solves (2.4), we deduce as above

u(x(s), s) = 0 (s > t)

Consequently the zero sets, and similarly all the level sets, of u evolve in O

according to their mean curvatures.

Since the motion of any level set thus depends only upon its own geometry,

and not that of any other level set, our PDE (2.4) should be invariant under

an arbitrary relabelling of these sets. Thus if Ψ: � → � is smooth with

Ψ′ 6= 0

we expect that

v = Ψ(u)

will also be a solution of (2.4) in the region O. A direct calculation ver-

ifies this. Hence we see that an arbitrary monotonic function of a solu-

tion is still a solution, this in strong contrast to the situation for uniformly

parabolic PDE’s. Indeed, we may informally interpret (2.4) as being somehow

“uniformly parabolic along each level set”, but being also totally degenerate

across different level sets.
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2.2 Weak solutions

The foregoing heuristics done with, we turn now to the full mean curva-

ture evolution equation:

ut = (δij −
uxiuxj
|Du|2 )uxixj in �

n × (0,∞)(2.5)

u = g on �

n × {t = 0},(2.6)

the function g: �

n → � being given. We want to define a notion of weak

solution to (2.5). Since however, the right hand side of the PDE cannot be

put into divergence form, we are not able to define a weak solution by means

of formal integration by parts of derivatives onto a smooth test function (as

for instance in Bombieri, De Giorgi, Giusti [, Section 1]). We will instead

follow Evans[], Lions [], Jensen [], etc. and define our weak solution in terms

of pointwise behavior with respect to a smooth test function. The primary

difficulty will be to modify extant theory to cover the possibility that Du

may vanish.

Definition 2.1 A function u ∈ C( �

n× [0,∞))∩L∞(�

n× [0,∞)) is a weak

subsolution of (2.5) provided for each φ ∈ C∞(�

n+1) if

u− φ has a local maximum at a point (x0, t0) ∈ �

n × (0,∞)(2.7)

then 



φt ≤ (δij −
φxiφxj
|Dφ|2

)φxixj at (x0, t0)

if Dφ(x0, t0) 6= 0,

(2.8)

and 



φt ≤ (δij − ηiηj)φxixj at (x0, t0)

for some η ∈ �

n with |η| ≤ 1, if Dφ(x0, t0) = 0.
(2.9)
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Definition 2.2 A function u ∈ C( �

n× [0,∞))∩L∞(�

n× [0,∞)) is a weak

supersolution of (2.5) provided for each φ ∈ C∞(�

n+1), if

u− φ has a local minimum at a point (x0, t0) ∈ �

n × (0,∞)(2.10)

then 



φt ≥ (δij −
φxiφxj
|Dφ|2

)φxixj at (x0, t0)

if Dφ(x0, t0) 6= 0,

(2.11)

and 



φt ≥ (δij − ηiηj) φxixj at (x0, t0)

for some η ∈ �

n with |η| 6= 1, if Dφ(x0, t0) = 0.
(2.12)

Definition 2.3 A function u ∈ C( �

n× [0,∞))∩L∞(�

n× [0,∞)) is a weak

solution of (2.5) provided u is both a weak subsolution and a weak superso-

lution.

As preliminary motivation for these definitions, suppose u is a smooth

function on �

n × (0,∞) satisfying

ut ≤ (δij −
uxiuxj
|Du|2 )uxixj

whenever Du 6= 0. Our function u is thus a classical subsolution of (2.5)

on {Du 6= 0}. Suppose now Du(x0, t0) = 0. Assume additionally there are

points (xk, tk)→ (x0, t0) for which Du(xk, tk) 6= 0 (k = 1, . . .). Then

ut ≤ (δij − ηkj η
k
j )uxixj at (xk, tk)

for ηk ≡ Du(xk,tk)
|Du(xk,tk)|

. Since |ηk| = 1 (k = 1, . . .) we may as necessary pass to a

subsequence so that ηk → η in �

n, |η| = 1. Passing to limits above, we find

ut ≤ (δij − ηiηj)uxixj at (x0, t0).
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If, on the other hand, there do not exist such points {(xk, tk)}∞k=1, then

Du = 0, and so D2u = 0 and u is a function of t only, near (x0, t0). Moving

to the edge of the set {Du = 0}, we see that u is a nonincreasing function of

t. Thus

ut ≤ (δij − ηiηj)uxixj at (x0, t0)

for any η ∈ �

n.

Further motivation for our definition of weak solution, and in particular,

explanation as to why we assume only |η| ≤ 1 in (2.9), (2.12), will be found

in subsection 2.4.

2.3 An equivalent definition

We write z = (x, t), z0 = (y0, t0).

Definition 2.4 A function u ∈ C(�

n× [0,∞))∩L∞( �

n× [0,∞)) is a weak

subsolution of (2.5) if whenever (x0, t0) ∈ �

n × (0,∞) and

{
u(x, t) ≤ u(x0, t0) + p · (x− y0) + q(t− t0)
+1
2
(z − zo)

TR(z − z0) + o(|z − z0|2) as z → z0.
(2.13)

for some p ∈ �

n, q ∈ � , R = (rij) ∈ Sn+1×n+1, then

q ≤ (δij −
pipj
|p|2 ) rij if p 6= 0(2.14)

and

q ≤ (δij − ηiηj) rij for some |η| ≤ 1, if p = 0.(2.15)

Definition 2.5 A function u ∈ C(�

n× [0,∞))∩L∞( �

n× [0,∞)) is a weak

supersolution of (2.5) if whenever (x0, t0) ∈ �

n × (0,∞) and

{
u(x, t) ≥ u(x0, t0) + p · (x− x0) + q(t− t0)
+1
2
(z − z0)

TR(z − z0) + o(|z − z0|2) as z → z0
(2.16)
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for some p ∈ �

n, q ∈ � , R = (rij) ∈ Sn+1×n+1, then

q ≥ (δij −
pipj
|p|2 ) rij if p 6= 0(2.17)

and

q ≥ (δij − ηiηj) rij for some |η| ≤ 1, if p = 0.(2.18)

Theorem 2.6 Definitions 2.1 and 2.4 are equivalent, and Definitions 2.2

and 2.3 are equivalent.

2.4 Properties of weak solutions

Theorem 2.7

(i) Assume uk is a weak solution of (2.5) for k = 1, 2, . . . and (2.13) uk → u

boundedly and locally uniformly on �

n × [0,∞). Then u is a weak

solution.

(ii) An analogous assertion hold for weak subsolutions and supersolutions.

Proof. 1. Choose φ ∈ C∞( �

n+1) and suppose first u − φ has a strict local

maximum at some point (x0, t0) ∈ �

n × (0,∞). As uk → u uniformly near

(x0, t0),

uk − φ has a local maximum at a point (xk, tk) (k = 1, 2, . . .)(2.19)

with

(xk, tk)→ (x0, t0) as k →∞.(2.20)

Since uk is a weak solution, we have either

φt ≤ (δij −
φxiφxi
|Dφ|2 )φxixj at (xk, tk)(2.21)
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if Dφ(xk, tk) 6= 0, or

φt ≤ (δij − ηki η
k
j )φxixj at (xk, tk)(2.22)

for some ηk ∈ �

n with |ηk| ≤ 1, if Dφ(xk, tk) = 0.

2. Assume first Dφ(x0, t0) 6= 0. Then Dφ(xk, tk) 6= 0 for all large enough k.

Hence we may pass to limits in the inequalities (2.21) to discover

φt ≤ (δij −
φxiφxj
|Dφ|2 ), at (x0, t0).(2.23)

3. Next, suppose Dφ(x0, t0) = 0. We set

ξk =

{
Dφ
|Dφ|

(xk, tk) if Dφ(xktk) 6= 0

ηk if Dφ(xk, tk) = 0
(2.24)

Passing if necessary to a subsequence we may assume

ξk → η.

Then |η| ≤ 1. Utilizing now (2.22), we deduce as well

φt ≤ (δij − ηiηj)φxixj at (x0, t0).(2.25)

4. If u−φ has only a local maximum at (x0, t0) we apply the above argument

to

ψ(x, t) ≡ φ(x, t) + |x− x0|4 + (t− t0)
4,

so that u − ψ has a strict local maximum at (x0, t0). Hence u is a weak

subsolution. Similar reasoning verifies that u is a weak supersolution as well.

2

Theorem 2.8 Assume u is a weak solution of (2.5) and Ψ: � → � is con-

tinuous. Then

v ≡ Ψ(u)

is a weak solution.
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Proof. 1. Assume first Ψ is smooth, with

Ψ′ > 0 on � .(2.26)

Let φ ∈ C∞(�

n+1) and suppose v−φ has a local maximum at (x0, t0). Adding

as necessary a constant to φ, we may assume
{
v(x0, t0) = φ(x0, t0)
v(x, t) ≤ φ(x, t) for all (x, t) near (x0, t0).

(2.27)

In view of (2.26)

Φ ≡ Ψ−1

is defined and smooth near u(x0, t0), with

Φ′ > 0.(2.28)

From (2.27) therefore, we see
{
u(x0, t0) = ψ(x0, t0)
u(x, t) ≤ ψ(x, t) for all (x, t) near (x0, t0)

(2.29)

where

ψ ≡ Φ(φ).(2.30)

2. Since u is a weak solution we see

ψt ≤ (δij −
ψxiψxj
|Dψ|2 )ψxixj at (x0, t0)(2.31)

if Dψ(x0, t0) 6= 0 and

ψt ≤ (δij − ηiηj)ψxixj at x0, t0)(2.32)

for some |η| ≤ 1, if Dψ(x0, t0) = 0. Now Dφ(x0, t0) = 0 if and only if

Dψ(x0, t0) = 0. Consequently (2.31) obtains if Dφ(x0, t0) 6= 0; in which case

we substitute (2.30) to compute

Φ′φt ≤ (δij −
(Φ′)2φxiφxj
(Φ′)2 |Dφ|2 ) (Φ

′φxixj + Φ′′φxiφxj) at (x0, t0)
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Since Φ′ > 0 we simplify and obtain

φt ≤ (δij −
φxiφxj
|Dφ|2 ) φxixj at (x0, t0).(2.33)

Suppose on the other hand Dφ(x0, t0) = 0. Then (2.32) is valid for some

|η| ≤ 1. We substitute (2.30) and compute

Φ′φt ≤ (δij − ηiηj) (Φ
′φxixj + Φ′′φxiφxj) at (x0, t0).

Since Dφ = 0, the term involving Φ′′ is zero. Thus

φt ≤ (δij − ηiηj)φxixj at (x0, t0).(2.34)

We similarly have the opposite inequalities to (2.33), (2.34) should v−φ have

a local minimum at (x0, t0).

3. Now assume instead of (2.20) that

Ψ′ < 0 on � .(2.35)

Then

Φ′ < 0 on �

as well. Thus (2.21) now implies

{
u(x0, t0) = ψ(x0, t0)
u(x, t) ≥ ψ(x, t) for all (x, t) near (x0, t0)

Since u is a weak solution, either

ψt ≥ (δij −
ψxiψxj
|Dψ|2 )ψxixj at (x0, t0)

if Dψ(x0, t0) 6= 0 or

ψt ≥ (δij − ηiηj)ψxixj at (x0, t0)
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for some |η| ≤ 1, if Dψ(x0, t0) = 0. Since now Φ′ < 0, we as above deduce

either (2.33) or (2.34).

4. We have so far shown that v = Ψ(u) is a weak solution provided Ψ is

smooth, with Ψ′ 6= 0. Approximating and using Theorem 2.2 we draw the

same conclusion if

Ψ′ ≥ 0 or Ψ′ ≤ 0 on � .

5. Next assume Ψ is smooth and there exist finitely many points −∞ = a0 <

a1, < a2 < . . . < am < am+1 = +∞ such that

Ψ is monotone on the intervals (aj, aj+1) (j = 0, . . . ,m)(2.36)

and

Ψ is constant on the intervals (aj − σ, aj + σ) (j = 1, . . . ,m)(2.37)

for some σ > 0.

Suppose v − φ has a maximum at (x0, t0). Then

u(x0, t0) ∈ (aj −
σ

2
, aj+1 +

σ

2
) for some j ∈ {0, . . . ,m}.

As Ψ is monotone on (aj − σ, aj+1 + σ) and u is continuous, we can apply

steps 1-4 is some neighborhood of (x0, t0) to deduce (2.33) or (2.34). The

reverse inequalities similarly obtain if v − φ has a minimum.

6. Finally suppose only that Ψ is continuous. We construct a sequence of

smooth functions {Ψk}∞k=1 each verifying the structural assumptions (2.36),

(2.37) so that

Ψk → Ψ uniformly on [−||u||L∞ , ||u||L∞ ].

Hence

vk = Ψk(u)→ v ≡ Ψ(u)

boundedly and uniformly. Then Theorem 2.2 asserts v to be a weak solution.

2
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3 Uniqueness and Comparison of Weak

Solutions

3.1 Preliminaries

Our plan, as in Jensen [], Jensen-Lions-Souganidis [], is to regularize using

sup and inf convolutions, defined as follows. Assume w: �

n × [0,∞) → � is

continuous and bounded. Then if ε > 0, we write

wε(x, t) ≡ sup{w(y, s)− 1
ε
(|x− y|2 + (t− s)2)},

y ∈ �

n

s ∈ [0,∞)
(3.1)

wε(x, t) ≡ inf{w(y, s) + 1
ε
(|x− y|2 + (t− s)2)}.

y ∈ �

n

s ∈ [0,∞)
(3.2)

for x ∈ �

n, t ∈ [0,∞). Note that since w is continuous and bounded, the

“sup” and “inf” above can be replaced by “max” and “min”.

Lemma 3.1 (Properties of sup and inf convolutions)

There exist constants A,B,C depending only on ||w||L∞(Rn×[0,∞)), such

that:

(i) wε ≤ w ≤ wε on �

n × [0,∞)

(ii) ||wε, wε||L∞(Rn×[0,∞)) ≤ A

(iii) If y ∈ �

n, s ∈ [0,∞) and wε(x, t) = w(y, s)− l
ε
(|x− y|2 + (t− s)2),

then

|x− y|, |t− s| ≤ Cε
1
2 ≡ σ(ε)(3.3)

A similar assertion holds for wε.

(iv) wε, wε → w as ε→ 0+, uniformly on compact subsets of �

n × [0,∞).
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(v) Lip (wε, wε) ≤ B
ε
.

(vi) The mapping

(x, t) 7−→ wε(x, t) +
1

ε
(|x|2 + t2)

is convex, and the mapping

(x, t) 7−→ wε(x, t)−
1

ε
(|x|2 + t2)

is concave.

(vii) Assume w is a weak subsolution of (2.5) in �

n × (0,∞). Then wε

is a weak subsolution on �

n × (σ(ε),∞). Similarly, if w is a weak

supersolution of (2.5), wε is a weak supersolution.

(viii) The function wε is twice differentiable a.e. and satisfies

wε
t ≤ (δij −

wε
xi
wε
xj

|Dwε|2 )w
ε
xixj

(3.4)

at each point of twice differentiability in �

n×(σ(ε),∞) where Dwε 6= 0.

Similarly, wε is twice differentiable a.e. and satisfies

wεt ≥ (δij −
wε xiwε xj

|Dwε|2 )wε xixj(3.5)

at each point of twice differentiability in �

n×(σ(ε),∞) where Dwε 6= 0.

Proof. 1. Assertions (i) and (ii) are clear from the definitions, for

A = ||w||L∞(Rn×[0,∞)) .

Statement (iii) follows from (ii), and then (iv) is a consequence of the uniform

continuity of w on compact sets. In light of estimate (3.3) we have (v) as

well.
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2. For each y ∈ �

n, s ∈ [0,∞), the mapping

(x, t) 7−→ w(y, s)− 1

ε
(|x− y|2 + (t− s)2) +

1

ε
(|x|2 + t2)

is affine. Consequently

(x, t) 7−→ sup [w(y, s)− 1
ε
(|x− y|2 + (t− s)2) + 1

ε
(|x|2 + t2)]

y ∈ �

n

s ∈ [0,∞)

= wε(x, t) + 1
ε
(|x|2 + t2)

is convex.

3. Assume φ ∈ C∞(�

n+1) and wε−φ has a local maximum at a point (x0, t0),

with t0 > σ(ε).

We then employ (3.3) to choose (y0, s0) ∈ �

n × (0,∞) so that

wε(x0, t0) = w(y0, s0)−
1

ε
(|x0 − y0|2 + (t0 − s0)

2).

Set

ψ(x, t) ≡ φ(x+ x0 − y0, t+ t0 − s0).(3.6)

Since wε − φ has a local maximum at (x0, t0) we compute

w(y0, s0) −1
ε
(|x0 − y0|2 + (t0 − s0)

2)− φ(x0, t0)
= wε(x0, t0)− φ(x0, t0)
≥ wε(x, t)− φ(x, t)
≥ w(y, s)− 1

ε
(|x− y|2 + (t− s)2)− φ(x, t)

for all (x, t) near (x0, t0) and all (y, s) ∈ �

n × [0,∞). Fix (y, s) close to

(y0, s0) and set

x = y + x0 − y0, t = s+ t0 − s0

above, to discover

w(y0, s0)− φ(x0, t0) ≥ w(y, s)− φ(y + x0 − y0, s+ t0 − s0).
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Using (3.6) we rewrite this to read

w(y0, s0)− φ(y0, s0) ≥ w(y, s)− ψ(y, s)

for all (y, s) near (y0, s0). Hence w − ψ has a local maximum at (y0, s0) and

thus

ψt ≤ (δij −
ψxiψxi
|Dψ|2 )ψxixj at (y0, s0)

if Dψ(y0, s0) 6= 0, and

ψt ≤ (δij − ηiηj)ψxixj at (y0, s0)

for some |η| ≤ 1, if Dψ(y0, s0) = 0. Since




Dψ(y0, s0) = Dφ(x0, t0), ψt(y0, s0) = φt(x0, t0)

D2φ(y0, s0) = D2φ(x0, t0),

we immediately obtain

φt ≤ (δij −
φxiφxj
|Dφ|2 )φxixj at (x0, t0)

or

φt ≤ (δij − ηiηj)ψxixj at (x0, t0)

according to whether Dφ(x0, t0) = 0 or not.

4. Owing to (vi), wε(x, t) + 1
ε
(|x|2 + t2) is convex in (x, t) or so is twice

differentiable a.e. according to a theorem of Alexandroff (see, e.g., Resetnjak

[], Krylov [, Appendix 2], etc.) Thus wε is twice differentiable a.e. 2

3.2 Comparison principle, uniqueness

Theorem 3.2 Assume that u is a weak subsolution and v is a weak super-

solution of (2.5). Suppose further

u ≤ v on �

n × {t = 0}.(3.7)
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Finally assume that
{
u and v are constant, with u ≤ v,
on �

n × [0,∞) ∩ {|x|+ t ≥ R}(3.8)

for some R ≥ 1. Then

u ≤ v on �

n × [0,∞).(3.9)

In particular, weak solutions of (2.5) are unique.

Proof. 1. Should (3.9) fail, then

max
(x,t)∈Rn×[0,∞)

(u− v) ≡ a > 0;

and so for α > 0 small enough,

max
(x,t)∈Rn×[0,∞)

(u− v − α t) ≥ a

2
> 0.(3.10)

According to (3.8) we have

uε = u, vε = v on {|x|+ t ≥ 2R}(3.11)

for all small ε > 0. Note further uε → u and vε → v uniformly. Consequently

if we fix ε > 0 small enough,

max
(x,t)∈Rn×[0,∞)

(uε − vε − α t) ≥ a

4
> 0.(3.12)

2. For each δ > 0 define for x, y ∈ �

n, t, t+ s ∈ [0,∞)

Φ(x, y, t, s) ≡ uε(x+ y, t+ s)− vε(x, t)− α t− 1

δ
(|y|4 + s4).(3.13)

Owing to (3.12) we see

max
(x,t),(x+y,t+s)∈Rn×[0,∞)

Φ ≥ a

4
> 0.(3.14)
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Choose now (x1, t1), (x1 + y1, t1 + s1) ∈ �

n × [0,∞) so that

Φ(x1, y1, t1, s1) = maxΦ(x, t), (x+ y, t+ s) ∈ �

n × [0,∞).(3.15)

Note in view of (3.11), (3.13) and Lemma 3.1 (ii) that such points exist.

Since Φ(x1, y1, t1, s1) > 0, (3.13) implies

|y1|, |s1| ≤ Cδ1/4(3.16)

3. We claim next that if ε, δ > 0 are fixed small enough,

t1, t1 + s,> σ(ε),(3.17)

with σ(ε) defined in (3.3). Indeed if t1 ≤ σ(ε), then

a
4
≤ Φ(x1, y1, t1, s1)
≤ uε(x1 + y1, t1 + s1)− vε(x1, t1)
= u(x1 + y1, t1 + s1)− v(x1, t1) +o(1) as ε→ 0
= u(x1 + y1, s1)− v(x1, 0) +o(1) as ε→ 0
= u(x1, 0)− v(x1, 0) +o(1) as ε, δ → 0
≤ o(1) as ε, δ → 0,

where we employed Lemma 3.1 (ii), (3.16), (3.7) and the continuity of u, v.

This is a contradition for ε, δ > 0 small enough, whence t1 > σ(ε). Owing to

(3.16) we may as necessary adjust δ smaller to ensure (3.17). Hereafter in

the proof α, ε, δ > 0 are fixed.

According to Lemma 3.1, (vii),

uε is a weak subsolution of (2.5) near (x1 + y1, t1 + s1)(3.18)

and

vε is a weak supersolution of (2.5) near (x1, t1)(3.19)

4. We now demonstrate

y1 6= 0.(3.20)
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Assume for contradiction that in fact y1 = 0. Then (3.13), (3.15) imply
{
uε(x1, t1,+s1)− vε(x1, t1)− α t1 − 1

δ
s41

≥ uε(x+ y, t+ s)− vε(x, t)− α t− 1
δ
(|y|4 + s4)

(3.21)

for all (x, t), (x + y, t + s) ∈ �

n × [0,∞). Put x = x1, t = t1, above and

simplify to obtain the inequality

uε(x1 + y, t1 + s) ≤ uε(x1, t1 + s1) +
1

δ
|y|4 + 1

δ
(s4 − s41)

for (x1 + y, t1 + s) ∈ �

n × [0,∞). Set r = s− s1 and rewrite to find

uε(x1 + y, t1 + s1 + r) ≤ uε(x1, t1 + s1) +
4
δ
s31r +

6
δ
s21r

2

+O(|r|3 + |y|4) as (y, r)→ (0, 0).

Since uε is a weak subsolution near (x1 + y1, t1 + s1) = (x1, t1 + s1) we may

invoke (2.7)′, (2.9)′ with x0 = x1, t0 = t1 + s1, p = 0, q = 4
δ
s31, rn+1,n+1 =

6
δ
s21, rij = 0 otherwise; giving

4

δ
s31 ≤ 0.(3.22)

Now go back and insert y = x1 − x, s = t1 + s1 − t into (3.21). This yields

after simplifications:

vε(x, t) ≥ vε(x1, t1) + (
4s31
δ
− α)(t− t1)− 6

δ
s21(t− t1)

2

+O(|x− x1|4 + |t− t1|3) as (x, t)→ (x1, t1).

Now vε is a weak supersolution near (x1, t1). Thus (2.10)′, (2.12)′, with

x0 = x1, t0 = t1, p = 0, q =
4s31
δ
− α, rn+1,n+1 = −6s21

δ
, rij = 0 otherwise,

imply
4s31
δ
− α ≥ 0.(3.23)

But now we have a contradiction with (3.22), since α > 0. This establishes

(3.20).

5. Note next that, in general, if f : �

m → � is convex, then so is the mapping

(w, z) 7−→ f(w + z) on �

2m. Consequently Lemma 3.1 (vi) asserts

(x, y, t, s) 7−→ uε(x+ y, t+ s) +
1

ε
((x+ y)2 + (t+ s)2)
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to be convex. As

(x, t) 7−→ −vε(x, t) +
1

ε
(|x|2 + t2)

is convex as well, we see that

(x, y, t, s) 7−→ Φ(x, y, t, s) + C(|x|2 + |y|2 + t2 + s2)

is convex near (x1, y1, t1, s1), for some sufficiently large constant C = C(ε, δ).

Since Φ additionally attains its maximum at (x1, y1, t1, s1) we may invoke

Jensen []: there exist points {(xk, yk, tk, sk)}∞k=1 such that

(xk, yk, tk, sk)→ (x1, y1, t1, s1),(3.24)

Φ, uε and vε are each twice differentiable
at (xk, yk, tk, sk) (k = 1, . . .),

(3.25)

Dx,y,t,sΦ(x
k, yk, tk, sk)→ 0,(3.26)

and

D2
x,y,t,sΦ(x

k, yk, tk, sk) ≤ o(1)I2n+2 as k →∞.(3.27)

6. Using (3.13), (3.25), we see

{
DxΦ(x

k, yk, tk, sk) = Duε(xk + yk, tk + sk)−Dvε(x
k, tk)

≡ pk − pk.
(3.28)

and {
DyΦ(x

k, yk, tk, sk) = Duε(xk + yk, tk + sk)− 4
δ
|yk|2yk

= pk − 4
δ
|yk|2yk(3.29)

Since yk → y1, we deduce from (3.26) that

pk, pk → 4

δ
|y1|2y1 ≡ p in �

n.(3.30)

Assertion (3.20) tells us p 6= 0 and so pk, pk 6= 0 for large enough k.

23



Again employing (3.13), (3.25) we note

{
Φt(x

k, yk, tk, sk) = uεt(x
k + yk, tk + sk)− vεt(x

k, tk)− α
≡ qk − qk − α.

(3.31)

As uε and vε are Lipschitz, we may assume, upon passing to a subsequence

and reindexing if necessary, that

qk → q, qk → q in � .(3.32)

Then (3.26) and (3.31) ensure

q − q = α.(3.33)

7. Next, (3.13) and (3.25) imply

D2
xφ(x

k, yk, tk, sk) = D2uε(xk + yk, tk + sk)−D2vε(x
k, tk)

≡ Rk −R
k
.

(3.34)

Now (3.27) forces

Rk −R
k ≤ εkIn(3.35)

where εk → 0. Furthermore, Lemma 3.1 (vi) shows

Rk ≥ −CIn, Rk ≤ CIn,

for C = C(ε). Thus

−CIn ≤ Rk ≤ R
k
+ εkIn ≤ CIn.

We may consequently suppose, passing as necessary to subsequences, that

Rk → R, R
k → R in Sn×n,(3.36)

with

R ≤ R.(3.37)
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8. Now recall (3.25) holds and pk0 ≡ Duε(xk + yk, tk + sk), pk ≡ Dvε(x
k, tk)

are non-zero for large k. Since uε is a weak subsolution near (x1+ y1, t1+ s1)

and vε is a weak supersolution near (x1, t1), we thus have

qk ≤ (δij −
pki p

k
j

|pk|2 ) r
k
ij

and

qk ≥ (δij −
pki p

k
j

|pk|2 ) r
k
ij

for all large k. We send k to infinity, recalling (3.30), (3.32) and (3.36) to

obtain

q ≤ (δij −
pipj
|p|2 ) rij

and

q ≥ (δij −
pipj
|p|2 ) rij.

Subtract:

q − q ≤ (δij −
pipj
|p|2 ) (rij − rij).

Now the matrix ((δij − pipj
|p|2

)) is nonnegative and R − R is nonpositive, by

(3.37). Consequently

q − q ≤ 0,

a contradiction to (3.33). 2

3.3 Contraction property

Theorem 3.3 Assume that u and v are weak solutions of (2.5), such that
{
u and v are constant, with u = v,
on �

n × [0,∞) ∩ {|x|+ t ≥ R}(3.38)

for some R > 1. Then

max
0≤t<∞

||u(·, t)− v(·, t) ||L∞(Rn) = ||u(·, 0)− v(·, 0) ||L∞(Rn).(3.39)
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Proof. Should (3.39) fail, we may assume

max
(x,t)∈Rn×[0,∞)

(u− v) ≡ a > ||u(·, 0)− v(·, 0) ||L∞(Rn) ≡ b.

Then as in the proof of Theorem 3.2 as above, there exist α, ε, δ > 0 such

that

max
(x,t),(x+y,t+s)∈Rn×[0,∞)

Φ > b, where

Φ is defined by (3.13). We find a point (x1, y1, t1, s1) verifying (3.15) and

check (3.17) is valid provided ε, δ > 0 are small enough. The rest of the

proof follows that for Theorem 3.2. 2

4 Existence of Weak Solutions

4.1 Approximation; geometric interpretation

We turn our attention now to constructing a weak solution of the initial

value problem (2.5), (2.6). We will assume that

g is constant on �

n ∩ {|x| ≥ S}(4.1)

for some S > 0, and additionally, for the moment at least, g is smooth.

Our intention is to approximate (2.5), (2.6) by the PDE

uεt = (δij −
uεxiu

ε
xj

|Duε|2 + ε2
)uεxixj in �

n × (0,∞)(4.2)

uε = g on �

n × {t = 0},(4.3)

for 0 < ε < 1. (The superscript ε here and hereafter is only a label and does

not mean the sup− convolution (3.1).)

We interpret (4.2), (4.3) as follows. Assuming for the moment uε =

uε(x, t) to be a smooth solution of (4.2), (4.3), write y = (x, xn+1) ∈ �

n+1

and define

vε(y, t) ≡ uε(x, t)− εxn+1(4.4)
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Then |Dyv
ε|2 = |Duε|2 + ε2. Thus our PDE becomes

vεt = (δij −
vεyiv

ε
yj

|Dvε|2 ) v
ε
yiyj

in �

n+1 × [0,∞)(4.5)

vε = gε on �

n+1 × {t = 0},(4.6)

for

gε(y) ≡ g(x)− εxn+1.

As noted in §2, the PDE (4.5) says that each level set of vε evolves according

to its mean curvature. This is in particular the case for the zero level sets

Γεt ≡ {y ∈ �

n+1 | vε(y, t) = 0}.

But according to (4.4) each Γεt is a graph:

Γεt = {y = (x, xn+1) ∈ �

n+1 | xn+1 =
1

ε
uε(x, t)},

and Ecker and Huisken [] have shown the evolution of an entire graph by

mean curvature remains a smooth entire graph for all time.

Geometrically, if as in §1 we are given Γ0 as the boundary of a smooth,

bounded, simply connected open set U in �

n, we select a smooth function g

with g = 0 on Γ0, g < 0 in U , g > 0 in �

n−U . Then Γε0 ⊂ �

n+1 is the graph

{xn+1 = 1
ε
g(x)} as drawn.

For small ε,Γε0 roughly approximates the cylinder Γ0 × � . We may thus

hope that for moderate t > 0 and small ε > 0, the smooth graph Γεt will be
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close to the cylinder Γt × � , Γt denoting the evolution of Γ0 via its mean

curvature in �

n.

The idea then is that the complicated, possibly singular behavior of

{Γt}t≥0 in �

n will be approximated by the smooth evolution {Γεt}t≥0 in �

n+1,

in the sense that for a given t > 0,

Γεt ≈ Γt × �

if ε > 0 is very small. The illustrations provided make this expectation

appear plausible, although there are a number of subtleties.

4.2 Solution of the approximate equations

We now investigate the approximations (4.2), (4.3) analytically.

Theorem 4.1

(i) For each 0 < ε < 1 there exists a unique smooth, bounded solution uε of

(4.2), (4.3).

(ii) Additionally,

sup
0<ε<1

||uε, Duε, uεt|| L∞(Rn)×[0,∞)) ≤ C||g||C1,1(Rn)(4.7)

Proof. 1. For each 0 < σ < 1, consider the PDE

uε,σt = aε,σij (Du
ε,σ)uε,σxixj in �

n × [0,∞)(4.8)
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uε,σ = g on �

n × {t = 0},(4.9)

for

aε,σij (p) ≡ (1 + σ)δij −
pipj

|p|2 + ε2
(p ∈ �

n, 1 ≤ i, j ≤ n)

The smooth bounded coefficients {aij} satisfy also the uniform ellipticity

condition

σ|ξ|2 ≤ aε,σij (p)ξiξj, (ξ ∈ �

n)

for each p ∈ �

n, and consequently classical PDE theory gives the existence of

a unique smooth bounded solution uε,σ: see, e.g., Ladyzhenskaja, Solonnikov,

Uralcéva []. By the maximum principle,

||uε,σ||L∞(Rn×[0,∞)) = ||g||L∞(Rn)(4.10)

2. Now differentiate (4.8) with respect to x`:

uε,σx`t = aε,σij (Du
ε,σ)uε,σx`xixj + aε,σij pk (Du

ε,σ)uε,σx`xku
ε,σ
xixj

The maximum principle then implies

||Duε,σ||L∞Rn×[0,∞)) = ||Dg||L∞(Rn)(4.11)

Similarly

||uε,σt ||L∞(Rn×[0,∞)) = ||ut(·, 0)||L∞(Rn) ≤ C||D2g||L∞(Rn).(4.12)

3. Since

(1− L2

L2 + ε2
)|ξ|2 ≤ aε,σij (p)ξiξj (ξ ∈ �

n)

provided |p| ≤ L, we deduce from (4.10)-(4.12) and classical estimates that

we have bounds, uniform in 0 < σ < 1, on the derivatives of all orders of

{uε,σ}0<σ<1. Consequently, uniqueness of the limit implies for each multiin-

dex α,

Dαuε,σ → Dαuε locally uniformly as σ → 0,

for a smooth function uε solving (4.2), (4.3). Estimate (4.7) follows from

(4.10), (4.11), (4.12). 2

29



4.3 Passage to limits

Theorem 4.2 Assume g: �

n → � is continuous and verifies (4.1). Then

there exists a weak solution u of (2.5), (2.6), such that

u is constant on �

n × [0,∞) ∩ {|x|+ t ≥ R}.(4.13)

for some R > 0, depending only on the S from (4.1).

Proof. 1. Suppose temporarily g is smooth. Employing estimate (4.7) we

can extract a subsequence {uεk}∞k=1,⊂ {uε}, 0 < ε ≤ 1 so that εk → 0 and

uεk → u locally uniformly in �

n×[0,∞) for some bounded, Lipschitz function

u.

2. We assert now that u is a weak solution of (2.5), (2.6). For this, let

φ ∈ C∞(�

n+1) and suppose u − φ has a strict local maximum at a point

(x0, t0) ∈ �

n× (0,∞). As uεk → u uniformly near (x0, t0), u
εk −φ has a local

maximum at a point (xk, tk), with

(xk, tk)→ (x0, t0) as k →∞.(4.14)

Since uεk and φ are smooth, we have

Duεk = Dφ, uεkt = φt, D
2uεk ≤ D2φ at (xk, tk)

Thus (4.2) implies

φt − (δij −
φxiφxj

|Dφ|2 + ε2k
)φxixj ≤ 0 at (xk, tk).(4.15)

Suppose first Dφ(x0, t0) 6= 0. Then Dφ(xk, tk) 6= 0 for large k. We conse-

quently may pass to limits in (4.15), recalling (4.14) to deduce,

φt ≤ (δij −
φxiφxj
|Dφ|2 )φxixj at (x0, t0).(4.16)
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Next, assume instead Dφ(x0, t0) = 0. Set

ηk ≡ Dφ(xk, tk)

(|Dφ|(xk, tk)|2 + ε2k)
1
2

,

so that (4.15) becomes

φt ≤ (δij − ηki η
k
j )φxixj at (xk, tk).(4.17)

Since |ηk| ≤ 1, we may assume, upon passing to a subsequence and reindexing

if necessary, that

ηk → η in �

n

for some |η| ≤ 1. Sending k to infinity in (4.17), we discover

φt ≤ (δij − ηiηj)φxixj at (x0, t0).(4.18)

If u−φ has a local maximum, but not necessarily a strict local maximum

at (x0, t0), we repeat the argument above with φ(x, t) replaced by

φ̃(x, t) = φ(x, t) + |x− x0|4 + (t− t0)
4,

again to obtain (4.16) or (4.18).

Consequently, u is a weak subsolution. That u is a weak supersolution

follows analogously.

3. Finally we verify u satisfies (4.13). Upon rescaling as necessary, we may

as well assume

|g| ≤ 1 on �

n, g = 0 on �

n ∩ {|x| ≥ 1}.(4.19)

Consider now the auxilary function (cf. Brakke [ , p.25])

v(x, t) ≡ Ψ(
|x|2
2

+ (n− 1) t) (x ∈ �

n, t > 0),(4.20)
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for

Ψ(s) =

{
0 (s ≥ 2)
(s− 2)3 (0 ≤ s ≤ 2).

Then Ψ ∈ C2([0,∞)),

Ψ′(s) =

{
0 (s ≥ 2)
3(s− 2)2 (0 ≤ s ≤ 2),

Ψ′′(s) =

{
0 (s ≥ 2)
6(s− 2) (0 ≤ s ≤ 2)

In particular,

|Ψ′′(s)| ≤ C(Ψ′(s))1/2 (s ≥ 0)(4.21)

Now

vt − (δij − vxivxi
|Dv|2+ε2

) vxixj = (n− 1)Ψ′ − (δij − (Ψ′)2xixj
(Ψ′)2|x|2+ε2

) (Ψ′δij +Ψ′′xixj)

= Ψ′[(n− 1)− (δij − (Ψ′)2xixj
(Ψ′2|x|2+ε2

) δij]

−Ψ′′[(δij − (Ψ′)2xixj
(Ψ′)2|x|2+ε2

)xixj]

≡ A+B
(4.22)

We further compute

A = −Ψ′ ε2

(Ψ′)2|x|2 + ε2
≤ 0,(4.23)

since Ψ′ ≥ 0. Furthermore,

|B| = |Ψ′′| ε2|x|2
(Ψ′)2|x|2 + ε2

.

Now if |Ψ′| ≤ ε, then

|B| ≤ |Ψ′′||x|2 ≤ C|Ψ′′| (since Ψ′′ = 0 if |x| ≥ 2)

≤ C(Ψ′)
1
2 (by (4.21))

≤ Cε
1
2 .

(4.24)
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On the other hand if |Ψ′| ≥ ε, we have

|B| ≤ |Ψ′′| ε2

(Ψ′)2
≤ Cε2

|Ψ′|3/2 ≤ Cε1/2(4.25)

Combining (4.22) - (4.25) we find

vt − (δij −
vxivxj

|Dx|2 + ε2
) vxixj ≤ Cε

1
2

and so

wε
t ≤ (δij −

wε
xi
wε
xj

|Dwε|2 + ε2
)wε

xixj
in �

n × (0,∞)(4.26)

for

wε(x, t) = v(x, t)− Ctε
1
2 .(4.27)

Now

wε(x, 0) = Ψ (
|x|2
2

) = 0 if |x| ≥ 2.

and

wε(x, 0) = Ψ (
|x|2
2

) ≤ −1 if |x| ≤ 2.

Consequently, we see from (4.19) that

wε ≤ g on �

n × {t = 0}.(4.28)

Applying the maximum principle to (4.2), (4.3), (4.26) and (4.27), we deduce

wε ≤ uε in �

n × [0,∞)

for each 0 < ε < 1. Sending ε = εk to zero, we then have

Ψ (
|x|2
2

+ (n− 1) t) = v(x, t) ≤ u(x, t)

for all x ∈ �

n, t ≥ 0. Thus

u ≥ 0 if
|x|2
2

+ (n+ 1) t ≥ 2.
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Similarly,

w̃ε
t ≥ (δij −

w̃ε
xi
w̃ε
xj

|Dw̃ε|2 + ε2
) w̃ε

xixj
in �

n × (0,∞)(4.29)

w̃ε ≥ g on �

n × (0,∞),(4.30)

for w̃ε ≡ −wε. As above we consequently deduce

u ≤ 0 if
|x|2
2

+ (n+ 1) t ≥ 2.

Assertion (4.13) is proved.

4. According to the uniqueness assertion Theorem 3.2, in fact the full limit

lim
ε→0

uε = u

exists. Note also from Theorem 3.3 that

||u− ũ||L∞(Rn×[0,∞)) = ||g − g̃||L∞(Rn) ,(4.31)

if ũ is the solution built as above for a smooth initial function g̃ verifying

(4.1).

Suppose at last g satisfies (4.1), but is only continuous. We select smooth

{gk}∞k=1, satisfying (4.1) (for the same S) so that gk → g uniformly on �

n.

Denote by uk the solution of (2.5), (2.6) constructed above with initial func-

tion gk. Utilizing (4.30) we see that the limit

lim
k→∞

uk = u

exists uniformly on �

n × [0,∞). According to Theorem 2.2 u is a weak

solution of (2.5), (2.6). 2

34



5 Definition of the Generalized Evolution by

Mean Curvature

We now make precise the definition of the motion {Γt}t>0 for a given

initial hypersurface Γ0. In fact, let us assume now only that

Γ0 is a compact subset of �

n.(5.1)

Choose then any continuous function g: �

n → � satisfying

Γ0 = {x ∈ �

n | g(x) = 0}(5.2)

and

g constant on �

n ∩ {|x| ≥ S}(5.3)

for some S > 0. Utilizing Theorem 3.2, 4.1, we see that there is a unique

weak solution of the mean curvature evolution equation

ut = (δij −
uxiuxj
|Du|2 )uxixj in �

n × (0,∞)(5.4)

u = g on �

n × {t = 0},(5.5)

with

u constant on �

n × [0,∞) ∩ {|x|+ t ≥ R}(5.6)

for some R > 0.

Define then the compact set

Γt ≡ {x ∈ �

n | u(x, t) = 0}(5.7)

for each t > 0. We call {Γt}t>0 the generalized evolution by mean curvature

of the original compact set Γ0.

We must first verify that {Γt}t>0 is well-defined.
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Theorem 5.1 Assume ĝ: �

n → � is continuous, with

Γ0 = {x ∈ �

n | ĝ(x) = 0}(5.8)

and

ĝ constant on �

n ∩ {|x| ≥ S}.(5.9)

Suppose û is the unique weak solution of (5.4)-(5.6), with ĝ replacing g. Then

Γt = {x ∈ �

n | û(x, t) = 0}(5.10)

for each t > 0.

Consequently our definition (5.7) does not depend upon the particular

choice of initial function g verifying (5.2), (5.3).

Proof. 1. First, we may as well assume g ≥ 0 on �

n and thus u ≥ 0,

in �

n × (0,∞). Indeed, if g is negative somewhere, we can consider the

PDE (5.4)–(5.6) with |g| replacing g, the unique solution of which, owing to

Theorems 2.3, 3.2 is |u|. Our definition (5.7) is unchanged if we replace u by

|u|. Similarly we may suppose ĝ, û ≥ 0. Set

Γ̂t ≡ {x ∈ �

n | û(x, t) = 0} (t ≥ 0).

2. For k = 1, 2, . . . write E0 = ∅ and

Ek ≡ {x ∈ �

n | g(x) ≥ 1

k
} ;

so that

E1 ⊂ . . . Ek ⊂ Ek+1 ⊂ . . . , �

n − Γ0 =
∞⋃

k=1

Ek(5.11)

Define

ak ≡ max
Rn−Ek−1

ĝ > 0 (k = 1, . . .)(5.12)
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Then a1 ≥ a2 ≥ . . . and limk→∞ak = 0, according to (5.8) and (5.11). Next

define the continuous function

Ψ: [0,∞)→ [0,∞)

satisfying 



Ψ(0) = 0,
Ψ( 1

k
) = ak (k = 1, . . .)

Ψ linear on [ 1
k+1

, 1
k
] (k = 1, . . .)

Ψ constant on [1,∞)
Ψ non-decreasing

3. Write

g̃ = Ψ(g), ũ = Ψ(u).

Then ũ solves (5.4)–(5.6), with g̃ replacing g. Now

g̃ = ĝ on Γ0.

Furthermore, if x ∈ Ek − Ek−1, then

g̃(x) = Ψ(g(x))
≥ Ψ( 1

k
)

= ak
≥ ĝ(x) by (5.12)

Thus g̃ ≥ ĝ on �

n. Consequently, Theorem 3.2 asserts

ũ = Ψ(u) ≥ û ≥ 0 on �

n × [0,∞).

Thus if x ∈ Γt, û(x, t) = 0 and so x ∈ Γ̂t. Hence

Γt ⊆ Γ̂t.

The opposite inclusion is similarly proved and so

Γt = Γ̂t for each t > 0.
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In light of this theorem, we can regard the mappings

Γ0 7−→ Γt (t ≥ 0)

as defining a time-dependent evolution on the collection K of compact subsets

of �

n. Let us write

M(t)Γ0 ≡ Γt (t ≥ 0)(5.13)

explicitly to display the dependence of Γt on t and Γ0. Then

M(t):K → K

for each t ≥ 0, and M(0) is the identity operator. We will call {M(t)}t≥0
the mean-curvature semigroup on K.

To justify this terminology, let us verify the semigroup property

M(t+ s) =M(t)M(s) (t, s ≥ 0).(5.14)

Indeed if t, s > 0 and Γ0 ∈ K, choose any continuous function g satisfying

(5.2), (5.3). Let u be the corresponding unique weak solution of (5.4)–(5.6).

Then

M(t+ s)Γ0 = Γt+s = {x ∈ �

n | u(x, t+ s) = 0}.(5.15)

M(s)Γ0 = Γs = {x ∈ �

n | u(x, s) = 0}.(5.16)

To compute M(t)Γs we select any continuous function ĝ so that

Γs = {x ∈ �

n | ĝ(x) = 0}(5.17)

and ĝ is constant outside some large ball. We then find the unique weak

solution û of (5.4)–(5.6) (with ĝ replacing g) and set

M(t)Γs = Γ̂t = {x ∈ �

n | û(x, t) = 0}.(5.18)
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According to Theorem 5.1, this construction is independent of the particular

choice of ĝ satisfying (5.17). In particular, we may as well take

ĝ(x) = u(x, s) (x ∈ �

n).

Owing then to the uniqueness of a weak solution to (5.4)-(5.6) we have

û(x, t) = u(x, t+ s) (x ∈ �

n, t > 0)

Consequently (5.15), (5.18) imply

M(t+ s)Γ0 =M(t)M(s)Γ0,

as required. This establishes (5.14).

Note that we make no assertions concerning continuity of the mapping

(t,Γ0) 7−→M(t)Γ0.
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6 Consistency with Classical Motion by

Mean Curvature

We must now check that our generalized evolution by mean curvature

agrees with the classical motion, if and so long as the latter exists. Let

us therefore suppose for this section that Γ0 is a smooth hypersurface, the

connected boundary of a bounded open set U0 ⊂ �

n. According to Hamilton

[], Gage-Hamilton [], there exists a time t∗ > 0 and a family {Σt}0≤t<t∗ of

smooth hypersurfaces evolving from Σ0 = Γ0 according to classical motion

by mean curvature. In particular for each 0 ≤ t < t∗,Σt is diffeomorphic to

Γ0, and is the boundary of an open set Ut diffeomorphic to U0.

Theorem 6.1 We have

Σt = Γt (0 ≤ t < t∗)

where {Γt} is the generalized evolution by mean curvature defined in §5.

Proof. 1. Fix 0 < t0 < t∗, and define then for 0 ≤ t ≤ s the (signed)

distance function

d(x, t) =

{
−dist(x,Σt) if x ∈ Ut
dist(x,Σt) if x ∈ �

n \ Ut

As Σ =
⋃
0≤t≤t0 Σt is smooth, d is smooth in the regions

Q+ ≡ {(x, t) | 0 ≤ d(x, t) ≤ δ0, 0 ≤ t ≤ t0}

and

Q− ≡ {(x, t) | −δ0 ≤ d(x, t) ≤ 0, 0 ≤ t ≤ t0}

for δ0 > 0 sufficiently small.

2. Now for each point (x, t) ∈ Q+ there exists a unique point y ∈ Σt verifying

d(x, t) = |x−y|. Consider now near (y, t) the smooth unit vector field ν = Dd
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pointing from Σ into Q+. Then

dt(x, t) = (div ν) (y, t)(6.1)

since {Σt}0≤t≤s is a classical evolution by mean curvature. Additionally, the

eigenvalues of D2d(x, t) are (see e.g. [[?], p.355])

{
−k1

1− k1d
, . . . ,

−kn−1
1− kn−1d

, 0

}
,(6.2)

k1, . . . , kn−1 denoting the principal curvatures of Σt at the point y, calculated

with respect to the unit normal field ν. Thus

∆d(x, t) = −
n−1∑

i=1

ki
1− kid

(6.3)

However (div ν) (y, t) = −(k1 + · · ·+ kn−1); and so (6.1) (6.3) imply

dt −∆d =

(
n−1∑

i=1

k2i
1− kid

)
d at (x, t).(6.4)

Since the quantity
∑ k2i

1− kid

is uniformly bounded and d ≥ 0 in Q+, we deduce from (6.4) that

d ≡ αe−λtd(6.5)

satisfies

dt −∆d ≤ 0 in Q+(6.6)

if λ > 0 is fixed large enough and α > 0 (to be selected later.) Furthermore,

|Dd|2 = |ν|2 = 1 and so

dxidxixj = 0 in Q+, 1 ≤ j ≤ n.
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The function d satisfies the same identity, whence (6.6) implies for each ε ≥ 0

that

dt −
(
δij −

dxidxj
|Dd|2 + ε2

)
dxixj ≤ 0 in Q+.(6.7)

We see therefore that d is a smooth subsolution of the approximate mean

curvature evolution PDE (4.2) in Q+.

3. Choose any Lipschitz function g: �

n → � so that g(x) = dist(x,Σ0) near

Σ0, {g = 0} = Σ0 and g(x) is a positive constant for large |x|. For 0 < ε < 1

the approximating PDE (4.2) (4.3) then has a continuous solution uε which

is smooth in �

n × (0,∞). Additionally we have

Γt = {x ∈ �

n | u(x, t) = 0} t ≥ 0.(6.8)

Now u = g = δ0 > 0 on {(x, 0) | dist(x,Σ0) = dist(x,Γ0) = δ0} and as u is

continuous, we thus have

u ≥ d

2
> 0 on {(x, t) | d(x, t) = δ0}(6.9)

for 0 ≤ t ≤ t0, provided t0 > 0 is small enough. Hence (6.9) implies

uε ≥ d

4
on {(x, t) | d(x, t) = δ0}

for 0 ≤ t ≤ t0, 0 < ε ≤ ε0 if ε0 > 0 is sufficiently small. Consequently there

exists 0 < α < 1 so that

uε ≥ d on {(x, t) | d(x, t) = δ0}(6.10)

for 0 ≤ t ≤ t0, 0 < ε < ε0, d defined by (6.5). Since 0 < α < 1, we have

uε ≥ d on {(x, 0) | 0 ≤ d(x, t) ≤ δ0}(6.11)

Furthermore, g ≥ 0 implies uε ≥ 0 and so

uε ≥ d on {(x, t) | d(x, 0) = 0}(6.12)
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4. Combining (6.10)-(6.12) we see that uε ≥ d on the parabolic boundary of

Q+. Since d solves (6.7) and uε solves (4.2), the maximum principle implies

uε ≥ d in Q+

Let ε→ 0 to deduce

u > 0 in the interior of Q+(6.13)

A similar argument using instead

d = −αε−λtd

shows

u > 0 in the interior of Q−.(6.14)

Since u > 0 in (Rn\{dist(x,Σ0) ≤ δ0})× [0, t0], we deduce from (6.13) (6.14)

and (6.8) that

Γt ⊆ Σt = {x | d(x, t) = 0} 0 ≤ t ≤ t0.(6.15)

5. Now define a new function ĝ: �

n → � so that ĝ(x) = d(x, 0) (the signed

distance function to Σ0 = Γ0) near Σ0 = Γ0, {ĝ = 0} = Σ0, and ĝ(x) is a

positive constant for large |x|. Let û denote the unique weak solution of (2.5)

(2.6) (4.13) for this new initial function ĝ. According to Theorem 5.1

Γt = {x ∈ �

n | û(x, t) = 0} (t ≥ 0)(6.16)

Since ĝ < 0 in U0 we know by continuity that û < 0 somewhere in Ut,

provided 0 ≤ t ≤ t0 and t0 is small. Similarly û > 0 somewhere in �

n − U t

for each 0 ≤ t ≤ t0. Fix any point x0 ∈ Σt and draw a smooth curve C

in �

n, intersecting Σt precisely at x0 and connecting a point x1 ∈ Ut where
û(x1, t) < 0 to a point x2 ∈ �

n − U t where û(x2, t) > 0. As û is continuous,
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we must have û(x, t) = 0 for some point x on the curve C. However (6.15)

and (6.16) say that the set {û(·, t) = 0} lies in Σt. Thus û(x0, t) = 0. Since

x0 denoted any point on Σt we deduce from (6.15) (6.16) that

Γt = Σt if 0 ≤ t ≤ t0.(6.17)

We have consequently demonstrated that the classical motion {Σt}0≤t<t
and the generalized motion {Γt}t≥0 agree at least on some short time interval

[0, t0].

6. Write

s ≡ sup
0≤t<t∗

{t | Γt = Σt},

and suppose s < t∗. Then

Γt = Σt for all 0 ≤ t < s

and so, using the continuity of u solving (2.5) and (2.6) for g as above, we

have

Γs ⊇ Σs

On the other hand if x ∈ �

n−Σs, there exists r > 0 so that B(x, r) ⊂ �

n−Σt

for all s− ε ≤ t ≤ s, ε > 0 small enough. Using this we easily deduce x 6∈ Γs.

Hence

Γs = Σs.

But then applying steps 1–5 we deduce

Γt = Σt

for all s ≤ t ≤ s + s0 < t∗, if s0 > 0 is small enough. This contradicts the

definition of s, and so in fact

s = t∗.

2
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7 Geometric Properties of Generalized

Evolution by Mean Curvature

We devote this section to establishing some elementary properties of

the generalized evolution by mean curvature

Γ0 7−→M(t)Γ0 ≡ Γt (t ≥ 0).(7.1)

for Γ0 a compact subset of �

n.

7.1 Localization and extinction

First of all, it is known that if Γ0 is the sphere ∂B(0, R), then

Γt =





∂B(0, R(t)) if 0 ≤ t < t∗

{0} if t = t∗

∅ if t > t∗
(7.2)

where

R(t) ≡ (R2 − 2(n− 1) t)
1
2 for 0 ≤ t ≤ t∗ ≡ R2

2(n− 1)
.(7.3)

This assertion follows in our approach by noting

u(x, t) = Ψ (|x|2 + 2(n− 1) t)

is a weak solution of (5.4), where Ψ: � → � is smooth with

{
Ψ′ ≥ 0, Ψ < 0 on [0, R),
Ψ > 0 on (R, 3R), Ψ ≡ 1 on [3R,∞).

(7.4)

By making comparisons with the shrinking sphere (7.2) we derive now

some elementary properties of the general motion (7.1). (Cf. Brakke [ , p.

29-30]).
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Theorem 7.1 (a) If Γ0 ⊂ B (0, R), then

Γt = ∅ for t >
R2

2(n− 1)
(7.5)

(b) We have

Γt ⊆ co (Γ0) (t ≥ 0).(7.6)

with co (Γ0) denoting the convex hull of Γ0.

Proof. 1. Assume first Γ0 ⊂ B(0, R − ε) for some ε > 0. Let g: �

n → � be

continuous, with

Γ0 = {g = 0}, g = 1 on �

n ∩ {|x| ≥ 2R}.

Set

ĝ(x) = Ψ (|x|2),

with Ψ satisfying (7.4) selected so that

ĝ ≤ g on �

n.

Then

û ≤ u on �

n × [0,∞),

for û(x, t) = Ψ (|x|2+2(n−1) t) and u the weak solution of (5.4)-(5.6). Thus

u > 0, and so Γt = ∅, if t > R2

2(n−1)
.

In the general case, replace R by R+ ε in this argument and send ε→ 0.

2. Suppose Γ0 ⊂ �

n
+ = {xn > 0}. Choose R >> 1 so large that

Γ0 ⊂ B (Ren, R),

for en = (0, 0, . . . , 0, 1). By the argument in step l., we deduce

Γt ⊂ B (Ren, R(t))
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for 0 ≤ t ≤ R2

2(n−1)
, R(t) defined as above. In particular,

Γt ⊆ �

n
+ for all t ≥ 0.

Replacing �

n
+ in this argument by any open half space containing Γ0, we

deduce (7.6). 2

7.2 Comparison of different sets moving by mean cur-
vature

Theorem 7.2 Let Γ0, Γ̂0 be compact subsets of �

n and denote by {Γt}t≥0, {Γ̂t}t≥0
the corresponding generalized motions by mean curvature. Suppose also

Γ0 ⊆ Γ̂0.(7.7)

Then

Γt ⊆ Γ̂t for each t > 0.(7.8)

We see therefore that if a compact set Γ0 lies within another Γ̂0 at time

zero, then the subsequent evolution Γt of Γ0 lies within the subsequent evo-

lution Γ̂t of Γ̂0. We will see in §8 that this assertion provides us with a

powerful tool for studying specific examples.

Proof. Choose continuous functions g, ĝ: �

n → [0,∞) so that

Γ0 = {g = 0}, Γ̂0 = {ĝ = 0},

and g, ĝ constant on �

n ∩ {|x| ≥ S} for some S > 0. Replacing g by g + ĝ if

necessary, we may assume

ĝ ≤ g on �

n.(7.9)

Now let û, u denote the corresponding weak solutions of (5.4)-(5.6). Then

(7.9) implies

0 ≤ û ≤ u on �

n × (0,∞)
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Thus x ∈ Γt implies x ∈ Γ̂t, and so (7.8) is valid. 2

Theorem 7.3 Assume Γ0, Γ̂0 are nonempty compact sets and {Γt}t≥0, {Γ̂t}t≥0
are the subsequent generalized motions by mean curvature. Then

dist(Γ0, Γ̂0) ≤ dist(Γt, Γ̂t) (t ≥ 0).(7.10)

By definition dist(Γt, Γ̂t) = +∞ if Γt = ∅, Γ̂t = ∅, or both.

Proof. 1. We may assume dist(Γ0, Γ̂0) > 0. Choose g: �

n → � so that




Γ0 = {g = 0}, Γ̂0 = {g = 1},
g = 2 on �

n ∩ {|x| ≥ s} for some S,

Lip(g) = dist(Γ0, Γ̂0)
−1 .

(7.11)

Then

Γt = {u = 0}, Γ̂t = {u = 1},(7.12)

with u denoting the corresponding weak solution of (5.4)–(5.6).

2. From the contraction property, Theorem 3.3, we see that

Lip(u(·, t)) ≤ Lip(g) (t ≥ 0).(7.13)

If Γt 6= ∅, Γ̂t 6= ∅, choose points x ∈ Γt, x̂ ∈ Γ̂t so that

|x− x̂| = dist(Γt, Γ̂t).

Then using (7.11)–(7.13) we compute

1 = u(x̂, t)− u(x, t) ≤ Lip(u)|x− x̂| ≤ dist(Γ0, Γ̂0)
−1 dist(Γt, Γ̂t).

This proves (7.10). 2

Inequality (7.10) says in particular that two hypersurfaces evolving under

generalized motion by mean curvature do not ever move closer to each other

than they were initially. In particular, Γt ∩ Γ̂t = ∅ for all t > 0 provided

Γ0 ∩ Γ̂0 = ∅. Notice that this property is essential for our approach of

representing the evolving surfaces as the level sets of a continuous function.
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7.3 Positive mean curvature

Now let us assume that Γ0 is a smooth connected hypersurface, the bound-

ary of a bounded open set U ⊂ �

n. We will suppose additionally that

div(ν) > 0 on Γ0,(7.14)

ν denoting the outward unit normal vector field to Γ0 (extended smoothly to

some neighborhood of Γ0). Inequality (7.14) says that Γ0 has positive mean

curvature with respect to the outer unit normal field. Consequently, if Γ0

evolves according to mean curvature, we see from (2.2) that initially at least

the motion is directed into U .

We show now that in fact Γt lies in U for all t ≥ 0, and that Γt contin-

ues to have positive mean curvature, this last statement interpreted in an

appropriate weak sense.

Informally our idea is to solve (5.4)–(5.6) by separating variables. Indeed

we will show

u(x, t) ≡ v(x)− t (x ∈ U, t > 0),(7.15)

where v is the (unique) weak solution of the stationary problem

− (δij −
vxivxj
|Dv|2 ) vxixj = 1 in U(7.16)

v = 0 on ∂U = Γ0.(7.17)

We will show that

Γt = {x ∈ U | v(x) = t} (t ≥ 0),(7.18)

so that Γt ⊂ U (t ≥ 0) and Γt = ∅ for t ≥ t∗ ≡‖ v ‖L∞(U). Note also that in

any open region where v is smooth and |Dv| 6= 0, we can rewrite (7.16) to

read

div(ν) =
1

|Dv| > 0,
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for

ν ≡ − Dv

|Dv|
As ν is the outward pointing unit normal field along Γt ≡ {v = t}, we can

informally interpret our PDE (7.16) as implying Γt to have positive mean

curvature for 0 ≤ t < t∗.

To carry out the foregoing program rigorously, let us first define v ∈ C(U)

to be a weak solution to (7.16) provided for each φ ∈ C∞( �

n) if

u− φ has a local maximum (minimum) at a point x0 ∈ U,

then 



−(δij −
φxiφxj
|Dφ|2

)φxixj ≤ (≥) 1 at x0

if Dφ (x0) 6= 0

(7.19)

and 



−(δij − ηiηj)φxixj ≤ (≥) 1 at x0

for some η ∈ �

n with |η| ≤ 1, if Dφ (x0) = 0.
(7.20)

Theorem 7.4 There exists a unique weak non-negative solution v of (7.16),

(7.17). Furthermore, there exist constants A, a > 0 so that

a dist(x,Γ0) ≤ v(x) ≤ √nA dist(x,Γ0) x ∈ U
|Dv(x)| ≤ √nA(7.21)

Proof. 1. Similarly to §4, we approximate (7.16), (7.17) by the uniformly

elliptic PDE

− (δij −
vεxiv

ε
xj

|Dvε|2 + ε2
) vεxixj = 1 in U(7.22)

vε = 0 on ∂U = Γ0(7.23)

for 0 < ε ≤ 1. We will construct upper an lower barriers for (7.22), (7.33) of

the form

v(x) = λg(d(x)), d(x) = dist(x,Γ0)
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in a neighborhood U0 = {0 < d(x) < 2δ0} of Γ0 on which d(x) is smooth.

Owing to the mean curvature condition (7.14), d(x) satisfies

− c2 ≤ ∆ d ≤ −c1 < 0 dxidxjdxixj ≡ 0(7.24)

in this region. We then compute using (7.21)

Mv ≡ (δij −
vxivxj
|Dv|2+ε2

) vxixj = λ(g′∆ d+ g′′)− λ3

λ2g′2+ε2
g′2g′′

= λg′∆ d+ ε2λg′′

λ2g′2+ε2

(7.25)

Choosing g(t) = δ20 − (t − δ0)
2, we find from (7.24), (7.25) that Mv ≥

−cλδ0 − 2λ > −1 for λ sufficiently small. Since v = 0 on ∂U0, v < vε in U0

by the maximum principle. In particular, vε > λδ20 on {d(x) = δ0} and so

vε > λδ20 on {d(x) > δ0}. These estimates give the lower bound

vε(x) ≥ a d(x) in U

with a independent of ε. To obtain the corresponding upper bound, we choose

g(t) = ln(2δ0/2δ0 − t)

Then g(t) is convex on [0, 2δ0) and satisfies

g(0) = 0, g′ ≥ 1

2δ0
, g′′ = g′2, g′(2δ0) = +∞(7.26)

Again using (7.24)–(7.26), we find

Mv ≤ −cλ+
ε2

λ
< −1

for λ sufficiently large. Since ∂v
∂v

= +∞ on {d(x) = 2δ0} (ν the exterior

normal to U0) we find that vε < v in U0 by a simple variant of the maximum

principle. This gives the estimate

vε ≤ Ad(x) for 0 < d(x) < δ0.(7.27)

51



To complete our preliminary estimates, we observe that (7.27) implies |Dvε| ≤
A on Γ0. By differentiating (7.22) with respect to x`, we see that any deriva-

tive vεx` achieves its maximum and minimum on Γ0. Thus

|vεx` | ≤ A in U and so |Dvε| ≤ √nA in U.

In particular vε ≤ √nAd(x) in U0.
2. As a consequence of step 1., we derived the uniform bounds

sup
0<ε≤1

‖vε ‖c1(U) <∞

Hence we may extract a subsequence {vεk}∞k=1 ⊂ {vε}0<ε≤1 so that εk → 0

and vεk → v uniformly on U . Now as in the proof of Theorem 4.2, we verify

that v is a weak solution of (7.16).

3. The uniqueness of this weak solution v will follow from the characterization

of {Γt}t≥0 below. 2

Theorem 7.5 Let {Γt}t≥0 denote the generalized evolution by mean curva-

ture starting with Γ0. Then

Γt = {x ∈ U | v(x) = t}

for each t ≥ 0.

Proof. 1. Define u(x, t) ≡ v(x) − t for x ∈ U, t > 0. It is then straightfor-

ward to verify that u is a weak solution of

ut = (δij −
uxiuxj
|Du|2 )uxixj in U × (0,∞)(7.28)

set

Γ̂t ≡ {x ∈ U | v(x) = t} = {x ∈ U | u(x, t) = 0} (t > 0)(7.29)
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2. Now let

ũ(x, t) = |u(x, t)| = |v(x)− t| (x ∈ U, t > 0)

In view of Theorem 2.3 ũ is a weak solution of




ũt = (δij −
ũxi ũxj
|Dũ|2

) ũxixj in U × (0,∞)

ũ = t on ∂U × [0,∞)
ũ = v on U × {t = 0}.

(7.30)

3. Choose any smooth function g: �

n → � so that

{
Γ0 = {g = 0}, g ≥ 0
g is constant on �

n{|x| ≥ S} for some S > 0.
(7.31)

Let w ≥ 0 be the unique weak solution of

{
wt = (δij −

wxi
wxj

|Dw|2
)wxixj in �

n × (0,∞)

w = g on �

n × {t = 0},(7.32)

so that

Γt = {x ∈ �

n | w(x, t) = 0} (t ≥ 0).(7.33)

According to our construction in §4, w is Lipschitz in t, and so

|w(x, t)| ≤ c t (x ∈ Γ0, t > 0).(7.34)

for some constant c.

4. Employing now (7.21), (7.27) and (7.30), we see that

w = αw

satisfies {
w ≤ v on U × {t = 0}
w ≤ t on ∂U × (0,∞)

(7.35)

if α > 0 is sufficiently small.
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Now the proof of our Comparison Theorem 3.2 can be straightforwardly

modified to show from (7.26), (7.28), (7.31) that

w ≤ ũ in U × [0,∞).

Thus x ∈ Γ̂t implies x ∈ Γt, and so

Γ̂t ⊆ Γt for t ≥ 0.

Similarly selecting

w = β w

for some β >> 1, we deduce

ũ ≤ w in U × [0, t0).

Thus

Γt ⊆ Γ̂t for t ≥ 0.

2

7.4 Convexity

Theorem 7.6 Assume Γ0 is the boundary of a smooth convex bounded open

set U . Then there exists t∗ > 0 such that Γt is the boundary of a convex,

nonempty open set for 0 ≤ t < t∗ and Γt is empty for t > t∗.

Proof. 1. Because of §7.3 it suffices to consider the stationary PDE

(δij −
vxi vxj
|Dv|2 ) vxixj , = −1 in U, v = 0 on Γ0 = ∂U(7.36)

We will show that {x ∈ U | v(x) > A} is convex for 0 ≤ t < t∗, for

t∗ = sup v. In fact, we will show that
√
v(x) is concave using ideas of Korevaar
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[] and Kennington []. The motivation for considering
√
v comes from the

corresponding linear problem ∆v = −1.
Formally, if u =

√
v, with v satisfying (7.36), than u satisfies

(δij −
uxiuxj
|Du|2 )uxixj = −

1

2u
in U(7.37)

This suggests we consider approximations uε =
√
vε satisfying

Muε = (δij −
uεxiu

ε
xj

|Duε|2+ε2
)uεxixj = − 1

2uε
in U

uε = 0 on Γ0
(7.38)

(
δij −

vεxiv
ε
xj

|Dvε|2 + 4ε2vε

)
vεxixj =

1

2

ε2 |Dvε|2
|Dvε|2 + 4ε2vε

− 1(7.39)

Because the convexity arguments are very sensitive to the form of the

equation, we are forced into making a nice approximation uε to (7.37) and

then making due with nastier approximations vε to (7.36).

2. We next demonstrate the existence of a solution uε ∈ C2(U)∩C1/2(U) to
(7.38). Consider

Muε,δ ≡
(
δij −

uε,δxi
uε,δxj

|Duε,δ |2+ε2

)
uε,δxixj = − 1

2(uε,δ+δ)
in U

uε,δ = 0 on Γ0
(7.40)

Equation (7.40) being uniformly elliptic and strictly coercive in uε,δ, the

existence of a solution uε,δ ∈ C2+α(U) is well-known [GT].

Choose a large ball BR(P ) containing U with dist(P,U) ≥ R/2, and let

r = |x− P |.
Set w = (2R− r). Then

Mw +
1

2(w + δ)
= −(n− 1)

r
+

1

2(2R− r)
≤ −(n− 1)

R
+

1

3R
< 0

Since w > 0 on ∂U, w > uε,δ in U by the maximum principle. Hence

0 ≤ uε,δ < 2R in U(7.41)
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with R independent of ε, δ.

Next, let w = λ
√
d(x) in {0 < d(x) < δ0}. Using formula 7.25 of §7.3

(with g(t) =
√
t) we find

Mw +
1

2(w + δ)
≤ − cλ√

d(x)
+

1

2(λ
√
d+ δ)

< 0

for λ sufficiently large. If in addition, we choose λ so that λ
√
δ0 ≥ 2R, then

w ≥ uε,δ on ∂{0 < d(x) < δ0}, and thus w ≥ uε,δ on {0 < d(x) < δ0} by the

maximum principle. In particular

0 ≤ uε,δ ≤ A
√
d(x) in U(7.42)

with A independent of ε, δ.

Estimate (7.42) implies that

|uε,δ(x)− uε,δ(y)| ≤ c|x− y|1/2 if x ∈ U, y ∈ Γ0(7.43)

with c independent of ε, δ. We show that (7.43) holds for all x, y ∈ Ω by

the following well known argument (see e.g. [G]). Given x, y ∈ Ω we set

τ = y − x, Ωτ = {z ∈ �

n|z − τ ∈ Ω} and uε,δτ (z) = uε,δ(z − τ). Note that

Ωτ is open and non-empty since y ∈ Ωτ . On Ω ∩ Ωτ , both uε,δ and uε,δτ

satisfy (7.40) and hence the difference w = uε,δ−uε,δτ satisfies a linear elliptic

equation of the form Lw+ c(x)w = 0 with c(x) ≤ 0. Hence by the maximum

principle,

|w(y)| ≤ max
z∈∂(Ω∩Ωτ )

|w(z)|

Since for z ∈ ∂(Ω ∩ Ωτ ) either z ∈ ∂Ω or z − τ ∈ ∂Ω we have by (7.43) that

|uε,δ(y)− uε,δ(x)| = |uε,δ(y)− uε,δτ (y)| ≤ c|x− y|1/2(7.44)

Finally, in order to pass to the limit for a sequence δk ↘ 0, we need to

establish interior estimates for uk = uε,δk .

||uk||C2+α(U ′) ≤M(ε, dist(U ′,Γ0))(7.45)
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withM independent of δk. By Schauder theory, (7.45) follows from an interior

gradient estimate

||Duk||L∞(U ′) ≤ C(ε, dist(U ′,Γ0))

which in turn follows from Theorem 15.5 of [GT]. Therefore, we have estab-

lished the existence of a (unique) solution uε of (7.38), and in addition

0 ≤ uε ≤ A
√
d(x)

|uε(x)− uε(y)| ≤ c|x− y|1/2
0 ≤ uε ≤ 2R

(7.46)

with A,C,R independent of ε.

3. Before we proceed to the proof of the concavity of uε, we shall need to

establish the lower bound

uε ≥ a d(x)(7.47)

with a independent of ε.

Consider w = λg(d(x)) in {0 < d(x) < 2δ0} with g(t) = (δ20−(t−δ0)2)1/2.
Then from formulas (7.24), (7.25) we find

Mw ≥ −λδ0
g

(
c+ ε2δ0

λ2(d−δ0)2+ε2(δ20−(d−δ0)
2)

)

≥ −λδ0
g

(c+ 1
δ0
) for λ ≥ ε

and so

Mw +
1

2w
≥ −λ

g
(δ0c+ 1) +

1

2λg
≥ 0

for ε2 ≤ λ2 = 2(δ0c+1). With this choice, uε ≥ w in {0 < d(x) < 2δ0}, and
as in §7.3 the estimate (7.47) follows easily.

4. We can now show that uε is concave. For x, y ∈ U set z = λx+(1−λ)y, λ ∈
(0, 1) fixed. The concavity function of uε, Cλ:U × U → � is defined by

Cλ(x, y) = uε(z)− λuε(x)− (1− λ)uε(y)
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The fundamental concavity maximum principle for C was established by

Korevaar [ ] for a large class of equations aij(Du)uij = b(x, u,Du). His

result states that for b strictly monotone in u and jointly convex in (x, u),

then Cλ cannot have a negative interior minimum on U × U . In the case at

hand, b = − 1
2u

fails to satisfy Korevaar’s condition. However, Kennington’s

improved concavity maximum principle [ , Theorem 3.1] works under the

assumption that − 1
b
is convex. In our case − 1

b
= u, so the inf of Cλ is not

attained on U × U .

To complete the proof we must essentially show that uε is concave near

Γ0. Since uε =
√
vε satisfies (7.38) (7.39), it is straightforward to see that

vε ∈ C2+α(U) and Dvε · ν ≥ a > 0 for ν the interior normal to Γ0. Using the

strict convexity of U it is easy to check that

uε`` =
1

2
√
vε
vε`` −

(vε`)
2

4(vε)3/2

is strictly negative near Γ0. It follows easily that Cλ ≥ 0 on U × U (for

complete details, see Lemma 2.4 of [ ] or the proof of Theorem 3.1 of [CS]).

This completes the proof that uε is concave.

5. Since uε is concave, it follows that |Duε| 6= 0 on each levelset of uε below

the maximum of uε. It follows that all these levelsets are smooth convex

hypersurfaces.

We claim that these levelsets have uniformly bounded principal curva-

tures. To see this, it suffices because of the convexity of these levelsets to

know that the mean curvature H with respect to the inward normal is uni-

formly bounded. But

−H|Duε| = (δij−
uεxiu

ε
xj

|Duε|2 )u
ε
xixj

= − 1

2uε
−uεxiuεxjuεxixj(

1

|Duε|2−
1

|Duε|2 + ε2
).

Since uε is concave we conclude that

0 ≤ H ≤ 1

2uε|Duε|

58



and therefore H is uniformly bounded on each of the levelsets below the

maximum of uε.

6. We complete the proof of Theorem 7.6 by showing that vε → v uniformly

on U , where v is the unique solution of (7.36) constructed in Theorem 7.4.

Since uε satisfies (7.38), vε satisfies

|vε(x)− vε(y)| ≤ 4RC|x− y|1/2 x, y ∈ U.

Hence, we may choose a sequence εk → 0 with

vεk → v uniformly on U.

We assert that v is a weak solution of (7.36). As before, it suffices to consider

φ ∈ C∞( �

n) with v − φ having a strict local maximum at a point x0 ∈ U .

As vεk → v uniformly near x0, v
εk − φ has a local maximum at a point xk

with xk → x0 as k →∞.

Since vεk and φ are smooth, we have

Dvεk = Dφ, D2(vεk − φ) ≤ 0 at xk.

Thus (7.39) implies

−
(
δij −

φxiφxj
|Dφ|2 + 4ε2kv

εk

)
φxixj ≤ −

ε2k
2

|Dφ|2
|Dφ|2 + 4ε2kv

εk
+ 1(7.48)

at xk. Suppose first Dφ(x0) 6= 0. Then Dφ(xk) 6= 0 for large k. Consequently

we may pass to the limit in (7.48) (since 0 ≤ vεk ≤ 4R2) to deduce,

−
(
δij −

φxiφxj
|Dφ|2

)
φxixj ≤ +1 at x0.

Next, assume instead Dφ(x0) = 0 and set

ηk ≡ Dφ(xk)

(|Dφ(xk)|2 + 4ε2kv
εk)1/2
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so that (7.48) becomes

− (δij − ηki η
k
j ) φxixj ≤ −

ε2k
2

|Dφ|2
|Dφ|2 + 4ε2kv

ε
k

+ 1 at xk.(7.49)

Since |ηk| ≤ 1 we may pass to a subsequence and reindex if necessary and

assume

ηk → η in �

n

for some |η| ≤ 1. Sending k to infinity in (7.49) we discover

− (δij − ηiηj) φxixj ≤ 1 at x0.(7.50)

Consequently v is a weak subsolution. Similarly, we find that v is a weak

supersolution and the proof of Theorem 7.6 is complete. 2
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8 Examples, Pathologies, Conjecture

In this concluding section, we note various odd behavior allowed by our

generalized mean curvature flow

Γ0 7−→M(t)Γ0 = Γt (t ≥ 0)

8.1 Instantaneous extinction

Suppose Σ0 is the smooth, connected boundary of a bounded open subset

U0 ⊂ �

n, and let Γ0 be a compact subset of Σ0. If Γ0 = Σ0, then we know

from § 6.1 that at least for small times t > 0 Γt is the classical evolution via

mean curvature.

What happens if Γ0 is a proper subset of Σ0?

Theorem 8.1 Assume that Γ0 is compact, Γ0 ⊆ Σ0, Γ0 6= Σ0. Then

Γt = ∅ for each t > 0(8.1)

If we take Γ0 to be, say, Σ0 with a small disk removed, we may informally

regard (8.1) as asserting Γ0 “pops” instantly. In this heuristic interpretation,

we may think of Γ0 as somehow having so much mean curvature concentrated

along its boundary within Σ0 that the hole then widens infinitely fast

The proof of Theorem 8.1 will be given later, after the next assertion,

which is of independent interest. Assume now that Σ̂0 is the smooth con-
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nected boundary of a bounded open set Û0 ⊂ �

n and that

Σ̂0 ⊂ U 0,(8.2)

where Σ, U are as above. Thus the surface Σ̂0 lies within the closed region

U enveloped by Σ0. Suppose further that

Σ̂0 6= Σ0(8.3)

Choose then a time to > 0 so small that the classical evolutions {Σt} and

{Σ̂t} starting at Σ0 and Σ̂0, respectively, exist at least for times 0 ≤ t ≤ t0.

Theorem 8.2 We have

Σt ∩ Σ̂t = ∅ for 0 < t ≤ t0(8.4)

We are thus asserting that even if Σ0 and Σ̂0 coincide except for a very

small region:

then for any positive time 0 < t ≤ t0 the subsequent evolutions will have

completely broken apart:

The point is that the PDE describing evolution by mean curvature is “uni-

formly parabolic along the surface” and thus admits infinite propagation
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speed for disturbances.

We will give the proof of Theorem 8.2 (as well as an interesting new proof

of the short time existence of classical mean curvature flow) in a separate

paper [ ] using the signed distance function d(x, t) that we have introduced

in § 6. Suffice it to say here that one can also prove this result by covering

Σ0 and Σ̂0 by overlapping balls small enough so that restricted to each ball

,Σt and Σ̂t can be written as a graph. Since the mean curvature evolution

equation is uniformly parabolic for small t0 and Σ̂0 6= Σ0, in at least one of

the balls the surfaces Σt and Σ̂t must instantly separate. Thus in each ball

the surfaces must also separate.

Proof of Theorem 8.1. Given Γ0 and Σ0 as in Theorem 8.1 we may choose

a smooth, nearby surface Σ̂0 to Σ0 satisfying (8.2) (8.3) and

Γ0 ⊂ Σ̂0

Owing then to Theorem 7.2 we have

Γt ⊆ Σt ∩ Σ̂t

for small t > 0. Assertion (8.1) now follows from (8.4). 2

8.2 Development of an interior

The forgoing demonstrates that a “large” initial set Γ0 can instantly van-

ish under the generalized mean curvature flow. An opposite and perhaps

more surprising phenomenon is that the set Γt for t > 0 may develop an

interior, even if Γ0 had none.

The simplest example occurs if we take Γ0 to be the union of the coordi-

nate axes in the plane �

2:
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(Ignore for the moment that Γ0 is not compact and so our theory in § 2.7

in not really applicable.) To discover heuristically at least the subsequent

evolution of Γ0, consider instead the simpler figure as drawn.

As for instance in Brakke [ , Figure 3 in the Appendix] we expect this corner

to evolve into this shape

for times t > 0. Since Γ0 is composed of four rotated copies of this corner,

we expect from Theorem 7.2 that Γt will look like:
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This assertion is at variance wtih Brakke [ , Figure 5 in the Appendix]. Our

Γt presumably contains the set

which he draws as one of the (nonunique!) evolutions for Γ0. We conjecture

that our Γt contains all of the evolutions for Γ0 allowed by Brakke.

The discussion above can be modified to apply to various compact figures

Γ0, to which our theory does apply. We leave it to the reader to provide at

least a heuristic proof that the set Γ0 ⊂ �

2 as drawn below will develop an

interior.

We conjecture that if Γ0 = Σ0 is, as above, the boundary of a smooth
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open set, then Γt will never have an interior.
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