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Abstract

1 Introduction

We present in this paper a new, elementary, and fairly concise proof

of short time existence for the classical motion of a smooth hypersurface

evolving according to its mean curvature. In this problem we are given

initially a smooth connected hypersurface Γ0 which is the boundary of a

bounded open set U ⊂ n. We then allow Γ0 to evolve in time into a family of

surfaces {Γt}t>0 by moving each point on Γt (t ≥ 0) in the opposite direction

to its mean curvature vector, at a velocity equal to (n−1) times the absolute

value of the mean curvature. Our intent is to verify that for small times at
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least, the classical motion as envisioned in fact exists and is unique. This

assertion was first proved by R. Hamilton [4], and we discuss below the

relation of our work to his.

This is a companion to our paper [2], wherein we defined and then studied

a generalized notion of evolution via mean curvature, existing for all times

and agreeing with the classical motion, if and so long as the latter exists. This

generalized evolution is constructed in [2] by first building an appropriately

defined unique weak solution of the PDE

ut = (δij −
uxiuxj

|Du|2
)uxixj in n × (0,∞)(1.1)

u = g on n × {t = 0}.(1.2)

Equation (1.1) says that each level set of u evolves according to its mean

curvature, at least in regions when u is smooth and |Du| 6= 0. Given then Γ0

as above, we select a smooth function g: n → for which

Γ0 = {x ∈
n | g(t) = 0}.(1.3)

We next write

Γt ≡ {x ∈
n | u(x, t) = 0} (t ≥ 0),(1.4)

and call the family of sets {Γt}t≥0 so defined the generalized evolution by

mean curvature starting from Γ0. The rest of [2] is devoted to deducing

from the PDE (1.1), (1.2) various elementary geometric properties of the

flow Γ0 7−→ Γt(t ≥ 0).

In this paper we return again to the idea of studying a nonlinear PDE,

a level set of whose solution evolves via mean curvature. Our idea is first to

assume that Γ0 develops by classical mean curvature motion, at least for times

0 ≤ t ≤ t0, and then to derive the PDE verified by d, the signed distance

function to the surface at each time. This turns out to be a fully nonlinear,
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uniformly parabolic equation: see (1.9) below. Next we construct for short

times a smooth solution of this equation, subject to nonlinear boundary

conditions in an appropriate region, and then finally verify that our solution

is in fact the signed distance function to a family of smooth surfaces evolving

from Γ0 by mean curvature motion.

We proceed now to the heuristic derivation of our PDE. Suppose therefore

we are given the smooth hypersurface Γ0 = ∂U as above, a time t0 > 0,

and a classical evolution {Γt}0≤t≤t0 of surfaces developing from Γ0 by mean

curvature flow. Then for each time t in [0, t0] , Γt is the smooth boundary of

a bounded open set Ut, which is diffeomorphic to U = U0. Define the signed

distance function

d(x, t) ≡

{
dist (x,Γt) (x ∈ n − U t)

−dist (x,Γt) (x ∈ Ut)
(1.5)

for x ∈ n, 0 ≤ t ≤ t0. By assumption Γ ≡
⋃
0≤t≤t0 Γt x{t} is smooth, and

thus d is smooth in

Q+ ≡ {(x, t) | 0 < t < t0, 0 < d(x, t) < δ0}

and in

Q− = {(x, t) | 0 < t < t0, −δ0 < d(x, t) < 0}

for δ0 > 0 small enough. Fix any point (x, t) ∈ Q+. Then provided δ0 > 0 is

sufficiently small, there exists a unique point y ∈ Γt for which d(x, t) = |x−y|.

Let ν = Dd be the smooth unit normal vector field pointing from Γ into Q+.

As {Γt}0≤t≤t0 moves via mean curvature, we have

dt(x, t) = div(ν) (y, t).

On the other hand the (unordered) eigenvalues of the matrix D2d(x, t) are

λi = λi(D
2d(x, t)) = −κi/1− κid(x, t) (1 ≤ i ≤ n− 1)

λn = λn(D
2d(x, t)) = 0,

(1.6)
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{κ1, . . . , κn−1} denoting the principle curvatures of Γt at y, computed with

respect to the normal field ν. Inverting (1.6) we compute

κi =
λi

λid(x, t)− 1
(1 ≤ i ≤ n− 1).

Since

div(ν) = −(κ1 + · · ·+ κn−1),

we deduce finally

dt(x, t) = f(λ1(D
2d(x, t)), · · · , λn(D

2d(x, t)), d(x, t))(1.7)

for

f(λ1, · · · , λn, z) ≡
n∑

i=1

λi

1− λiz
(1.8)

The same formula results if (x, t) ∈ Q−.

Now our PDE (1.7) has the general form

dt = F (D2d, d) ;(1.9)

and, as f is symmetric in the variables λ1, . . . λn, F is smooth ([1]). Since

∂f

∂λi

=
1

(1− λid)2
> 0 (1 ≤ i ≤ n) ,(1.10)

equation (1.9) is uniformly parabolic ([1]).

Our plan is to study directly the PDE (1.7), (1.8). For this suppose now

Γ0 is the smooth connected boundary of a bounded open set U ⊂ n, and let

g(x) ≡

{
dist (x,Γ0) (x ∈ n − U)

–dist (x,Γ0) (x ∈ U)
(1.11)

be the signed distance function. Fix then δ0 > 0 so small that g is smooth

within

V ≡ {x ∈ n | −δ0 < g < δ0}.(1.12)
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and write

Q ≡ V × (0, t0), Γ ≡ ∂V × [0, t0].

In § 2 we construct a smooth solution v to the PDE





vt = F (D2v, v) in Q
|Dv|2 = 1 on Γ
v = g on V × {t = 0}

(1.13)

for some small time t0 > 0, our argument being in effect a special case of the

Inverse Function Theorem. We then verify in § 3 that

|Dv|2 = 1 in Q .(1.14)

Setting

Γt ≡ {x ∈ V | v(x, t) = 0} (0 ≤ t ≤ t0) ,

we deduce from (1.13) and (1.14) that {Γt}0≤t≤t0 is a smooth evolution by

mean curvature and v = d is the corresponding signed distance function.

Section 4 utilizes the PDE (1.7), (1.8) to prove an “instantaneous tear-

ing apart” assertion for close-by evolving surfaces. Some consequences are

discussed in [2, § 8].

As noted, R. Hamilton in [4, § 5] has previously established the short-

time existence of the classical mean curvature evolution by studying the

degenerate parabolic system describing the parametrized surface. As this

system is degenerately parabolic ([4, p. 261]) , Hamilton is forced to employ

fairly complicated techniques related to the Moser-Nash Implicit Function

Theorem. See also Gage-Hamilton [3, § 2]. Our methods are simpler.
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2 Solving the Nonlinear PDE

Our goal in this section is to construct a smooth solution of the PDE

(1.13) for δ0 > 0 and t0 > 0 small enough. Let us first of all select δ0 so small

that

Mδ0 ≤
1

4
(2.1)

for

M ≡ max
V
|D2g|.(2.2)

Set

G ≡ {R ∈ Sn×n, z ∈ | |z| < δ0, |R| < 2M}.

Then since (2.1) implies

|λi(R)z| ≤ |R||z| ≤
1

2
(1 ≤ i ≤ n)

if (R, z) ∈ G,
F (R, z) = f(λ1(R), · · · , λn(R), z)

=
∑n

i=1
λi(R)

1−λi(R)z

(2.3)

is defined and smooth on G. Arbitrarily extend F off G to be smooth on all

of Sn×n × , with |F |, |DF |, |D2F | bounded.

We now check that our PDE is uniformly parabolic near g.

Lemma 2.1 Then exists a constant θ > 0 so that

∂F

∂rij
(R, z)ξiξi ≥ θ|ξ|2 (ξ ∈ n)(2.4)

in V for each (R, z) ∈ G.

Proof. Fix ξ ∈ n and choose then t > 0 so small that (R + t ξ ⊗ ξ, z) ∈ G.

Using Courant’s minimax characterization we deduce that the eigenvalues

can be ordered so that

λk(R + t ξ ⊗ ξ) ≥ λk(R) (k = 1, · · ·n).
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Consequently

F (R + t ξ ⊗ ξ, z)− F (R, z)

= f(· · · , λk(R + t ξ ⊗ ξ), · · · , z)− f(· · · , λk(R) · · · , z)

=
n∑

i=1

∫ 1

0

∂f

∂λk

(· · · , sλk(R + t ξ ⊗ ξ) + (1− s)λk(R), · · · , z)ds [λk(R + t ξ ⊗ ξ)− λk(R)]

≥ θ trace (R + t ξ ⊗ ξ −R)

for some θ > 0 by (1.10). Dividing by t > 0 and sending t → 0+, we arrive

at inequality (2.4). 2

We will seek our solution v of the PDE (1.13) in the form

v = g + th+ w,(2.5)

where

h ≡ F (D2g, g) .(2.6)

Then plugging into (1.13) we compute

wt − aij wxixj + cw = A(D2w,w, x, t) in Q

for

aij ≡
∂F

∂rij
(D2g, g), c ≡

−∂F

∂z
(D2g, g)(2.7)

and

A(R, z, x, t) ≡ F (D2g + tD2h+R, g + th+ z)

−F (D2g, g)− ∂F
∂rij

(D2g, g) rij −
∂F
∂z

(D2g, g)z.
(2.8)

We next insert (2.5) into the nonlinear boundary condition from the PDE

(1.13). Recalling that |Dg|2 = 1 and Dg is normal to ∂V we discover

∂w

∂ν
= a (Dw, x, t) on Γ ,
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when ν is the outer unit normal vector field along V and

a (p, x, t) ≡





−1
2
|tDh+ p|2 − t ∂h

∂ν
on {d = δ0}

1
2
|tDh+ p|2 − t ∂h

∂ν
on {d = −δ0}.

(2.9)

Combining everything above, we hereafter seek a smooth function w satisfy-

ing




wt − aij wxixj + cw = A(D2w,w, x, t) in Q
∂w
∂ν

= a (Dw, x, t) on Γ
w = 0 on V × {t = 0}.

(2.10)

We intend to solve (2.10) by finding a fixed point of the mapping T defined

by inserting a given function into the nonlinear terms A, a and solving the

resulting linear PDE. We will work in certain standard parabolic-type Hölder

spaces. Fix 0 < α < 1.

We define several norms, following Ladyzenskaja, Solonnikov, Ural’ceva

[5, p.7-8]. Set

|u|(0) ≡ sup{|u(x, t)| | (x, t) ∈ Q}

|u|(1) ≡ |u|(0) + |Du|(0)

|u|(2) ≡ |u|(1) + |D2u|(0) + |ut|
(0)

〈u〉(β)x ≡ sup
{
|u(x,t)−u(y,t)|

|x−y|β
| (x, t), (y, t) ∈ Q, x 6= y}

〈u〉
(β)
t ≡ sup

{
|u(x,t)−u(x,s)|

|t−s|β
| (x, t), (x, s) ∈ Q, t 6= s} ,

for 0 < β < 1. Then

‖u‖
C
α,α

2 ¯(Q)
≡ |u|(0) + 〈u〉(α)x + 〈u〉

(α
2
)

t

‖u‖
C

1+α,
1+α

2 ¯(Q)
≡ |u|(1) + 〈Du〉(α)x + 〈u〉

( 1+α
2

)
t + 〈Du〉

(α
2
)

t

‖u‖
C

2+α,
2+α

2 ¯(Q)
≡ |u|(2) + 〈Du〉

( 1+α
2

)
t + 〈D2u〉(α)x + 〈ut〉

(α)
x + 〈D2u〉

(α
2
)

t + 〈ut〉
(α

2
)

t .
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Note

‖Du‖
C

1+α,
1+α

2 ¯(Q)
, ‖D2u‖

C
α,α

2 ¯(Q)
, ‖ut‖Cα,α

2 ¯(Q)
≤ ‖u‖

C
2+α,

2+α
2 ¯(Q)

.

Finally define

‖u‖
C

1+α,
1+α

2 (Σ)
≡ inf

{
‖v‖

C
1+α,

1+α
2 ¯(Q)

| v = u on Σ
}
.

We consider now the linear, uniformly parabolic PDE




wt − aij wxixj + cw = B in Q
∂w
∂ν

= b on Σ
w = 0 on V × {t = 0}.

(2.11)

Suppose as well

b = 0 on ∂V × {t = 0} .(2.12)

Lemma 2.2 Assume B ∈ Cα,α
2

¯(Q), b ∈ C1+α, 1+α
2 (Γ), and the zeroth order

compatibility condition (2.12) holds. Then there exists a unique solution

w ∈ C2+α, 2+α
2

¯(Q) of (2.11), with the estimate

‖w‖
C

2+α,
2+α

2 ¯(Q)
≤ C (‖B‖

C
α,α

2 ¯(Q)
+ ‖b‖

C
1+α,

1+α
2 (Γ)

) .(2.13)

The constant C does not depend on t0.

Proof. Except for the last assertion, this is Theorem IV.5.3 in Ladyzenskaja,

Solonnikov, Ural’ceva [5, p. 320–321]. To obtain the statement that the

constant C remains bounded even for small 0 < t0 < 1 , we define

Q̃ = V × (0, 1), Γ̃ = ∂V × (0, 1) ,

B̃(x, t) =

{
B(x, t) if 0 ≤ t ≤ t0
B(x, t0) if t0 ≤ t ≤ 1,

b̃(x, t) =

{
b(x, t) if 0 ≤ t ≤ t0
b(x, t0) if t0 ≤ t ≤ 1.
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Then

‖B̃‖
C
α,α

2 ˜(Q)
= ‖B‖

C
α,α

2 (Q)

‖b̃‖
C

1+α,
1+α

2 (Γ̃)
= ‖b‖

C
1+α,

1+α
2 (Γ)

.

Let w̃ ∈ C2+α, 2+α
2

˜(Q) solve the PDE (2.11) with Q̃, Γ̃, B̃, b̃ replacingQ,Γ, B, b.

The estimate (2.13) then is valid for w̃ with Q̃, Γ̃ replacing Q,Γ. But w̃ = w

on Q, by uniqueness for parabolic equations. 2

We will henceforth work in the Banach space

X ≡ {w ∈ C2+α, 2+α
2 ¯(Q) | w = 0 on V × {t = 0}}.

Given ŵ ∈ X, we set

{
B(x, t) ≡ A(D2ŵ, ŵ, x, t)
b(x, t) ≡ a(Dŵ, x, t)

(2.14)

for A, a defined by (2.8), (2.9). Now write

T (ŵ) = w,

when w ∈ X solves the linear PDE (2.11), for B, b as in (2.14). We seek a

fixed point of the mapping

T :X → X.

Give r0 > 0, set

Y ≡ {w ∈ X | ‖w‖
C

2+α,
2+α

2 (Q)
≤ r0} .

Lemma 2.3 If t0, r0 > 0 are sufficiently small, then

T :Y → Y(2.15)
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Proof. 1. Choose any function ŵ ∈ Y , define B, b by (2.14) and let w ∈ X

solve (2.11). We must show the inequality

‖ŵ‖
C

2+α,
2+α

2 ¯(Q)
≤ r0(2.16)

implies

‖w‖
C

2+α,
2+α

2 ¯(Q)
≤ r0,(2.17)

provided r0, t0 > 0 are adjusted sufficiently small.

2. Now (2.8) implies

A(R, z, x, t) = t
∂F

∂rij
(D2g, g)hxixj + t

∂F

∂z
(D2g, g)h

+
∫ 1

0
(1− s)

∂2F

∂rij∂rk`
(D2g + stD2h+ sR, g + sth+ sz)ds

×(thxixj + rij) (thxkx` + rk`)

+ 2
∫ 1

0
(1− s)

∂2F

∂rij∂z
(D2g + stD2h+ sR, g + sth+ sz)ds(2.18)

×(thxixj + rij) (th+ z)

+
∫ 1

0
(1− s)

∂2F

∂z2
(D2g + stD2h+ sR, g + sth+ sz)ds× (th+ z)2 .

Recall also that

‖uv‖
C
α,α

2 ¯(Q)
≤ C‖u‖

C
α,α

2 ¯(Q)
‖v‖

C
α,α

2 ¯(Q)
(2.19)

for all u, v ∈ Cα,α
2

¯(Q), and

‖t‖
C
α,α

2 ¯(Q)
≤ Ct

1−α
2

0 .(2.20)

Then (2.14), (2.18), (2.20) imply

‖B‖
C
α,α

2 ¯(Q)
≤ C(r20 + t

1−α
2

0 ).(2.21)

Similarly formula (2.9) implies

‖b‖
C

1+α,
1+α

2 (Γ)
≤ C(r20 + t

1−α
2

0 )(2.22)
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3. Inserting estimates (2.21), (2.22) into (2.13) we discover

‖w‖
C

2+α,
2+α

2 ¯(Q)
≤ C(r20 + t

1−α
2

0 ) ,(2.23)

the constant C independent of r0 and t0. Let

r0 ≤
1

2C
.

Then (2.23) gives

‖w‖
C

2+α,
2+α

2 ¯(Q)
≤

r0
2

+ C t
1−α

2

0 ≤ r0

if t0 = t0(r0) is small enough. This verifies inequality (2.17). 2

Finally we verify that T :Y → Y is a strict contraction.

Lemma 2.4 If r0, t0 > 0 are small enough,

‖T (ŵ1)− T (ŵ2)‖
C

2+α,
2+α

2 ¯(Q)
≤

1

2
‖ŵ1 − ŵ2‖

C
2+α,

2+α
2 ¯(Q)

(2.24)

for all ŵ1, ŵ2 ∈ Y .

Proof. 1. Choose ŵ1, ŵ2 ∈ Y ; so that

‖ŵ1, ŵ2‖
C

2+α,
2+α

2 ¯(Q)
≤ r0 .

Set
{

B1(x, t) ≡ A(D2ŵ1, ŵ1, x, t), B2(x, t) ≡ A(D2ŵ2, ŵ2, x, t)
b1(x, t) ≡ a(Dŵ1, x, t), b2(x, t) ≡ a(Dŵ2, x, t) ,

(2.25)

and write

w1 ≡ T (ŵ1), w2 ≡ T (ŵ2)

Thus w1 solves the linear PDE (2.11) with B1, b1 replacing B, b, and w2 solves

(2.11) with B2, b2 replacing B, b. According to Lemma 2.2

‖w1−w2‖
C

2+α,
2+α

2 ¯(Q)
≤ C(‖B1−B2‖Cα,α

2 ¯(Q)
+ ‖b1− b2‖

C
1+α,

1+α
2 (Γ)

) .(2.26)
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2. Recall that

‖Φ(u)− Φ(v)‖
C
α,α

2 ¯(Q)
≤(2.27)

C(‖u‖
C
α,α

2 ¯(Q)
+ ‖v‖

C
α,α

2 ¯(Q)
+ 1)‖u− v‖

C
α,α

2 ¯(Q)

if u, v ∈ Cα,α
2

¯(Q) and Φ is smooth, with DΦ, D2Φ bounded.

Utilizing then formulas (2.18)–(2.20), (2.27) we compute

‖B1 −B2‖Cα,α
2 ¯(Q)

≤ C(r0 + t
1−α

2

0 )‖ŵ1 − ŵ2‖
C

2+α,
2+α

2 ¯(Q)
(2.28)

Similarly

‖b1 − b2‖
C

1+α,
1+α

2 (Γ)
≤ C(r0 + t

1−α
2

0 )‖ŵ1 − ŵ2‖
C

2+α,
2+α

2 ¯(Q)
.(2.29)

Combining (2.26), (2.28), (2.29), we obtain estimate (2.24), provided r0, t0 >

0 are small. 2

We at last apply Banach’s Fixed Point Theorem to establish

Theorem 2.5 If δ0, t0 > 0 are sufficiently small,there exists a unique solu-

tion v ∈ C2+α, 2+α
2

¯(Q) ∩ C∞(Q) of the PDE (1.13).

In particular (D2v, v) ∈ G in Q.
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3 Motion of the Zero Level Set by Mean

Curvature

This section we devote to proving that the sets

Γt ≡ {x ∈ V | v(x, t) = 0} (0 ≤ t ≤ t0)(3.1)

are in fact smooth hypersurfaces evolving by mean curvature.

Theorem 3.1 We have

|Dv|2 = 1 in Q .(3.2)

Proof. 1. Let w ≡ |Dv|2 − 1 ∈ C1 ¯(Q) ∩ C∞(Q). Then

w = 0 on Γ(3.3)

and

w = 0 on V × {t = 0},(3.4)

according to (1.11) and the PDE (1.13).

2. Differentiating (1.13) we compute

vt xk =
∂F

∂rij
(D2v, v) vxixjxk +

∂F

∂z
(D2v, v) vxk

Thus

wt = 2vxkvxkt

= 2 ∂F
∂rij

(D2v, v) vxkvxkxixj + 2∂F
∂z

(D2v, v) |Dv|2

= ∂F
∂rij

(D2v, v)wxixj − 2 ∂F
∂rij

(D2v, v) vxkxivxkxj + 2∂F
∂z

(D2v, v) |Dv|2

(3.5)

Now

F (D2v, v) = f(· · · , λi (D
2v), · · · , v) in Q.
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Thus
∂F
∂z

(D2v, v) = ∂f
∂z
( · · · , λi (D

2v), · · · , v)

=
∑n

i=1
λi (D

2v)2

(1−λi (D2v)v)2

(3.6)

On the other hand (see [1])

∂F
∂rij

(D2v) vxkxivxkxj =
∑n

i=1
∂f
∂λi

(· · · , λi (D
2v), · · · , v)λi (D

2v)2

=
∑n

i=1
λi (D

2v)2

(1−λi (D2v)v)2

= ∂F
∂z

(D2v, v) by (3.6) .

Thus (3.5) transforms to read

wt =
∂F

∂rij
(D2v, v)wxixj + 2

∂F

∂z
(D2v, v)w in Q.(3.7)

In view of Lemma 2.1 this is a uniformly parabolic equation. As (3.3), (3.4)

assert w = 0 on the parabolic boundary of Q, we deduce w = 0 everywhere

within Q. 2

Owing to (3.1) we see that

Γ = {(x, t) ∈ Q | v = 0}

is a smooth hypersurface in n+1∩Q and each slice Γt is a smooth hypersurface

in V .

Theorem 3.2 The surfaces {Γt}0≤t≤t0 comprise a classical motion by mean

curvature starting from Γ0.

Proof. For each fixed t in [0, t0], ν ≡ Dv is a normal unit vector field to Γt

in n. In addition the PDE (1.13) implies

vt = ∆v = div(ν) on Γt.
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However

div(ν) = −(n− 1)H = −(κ1 + · · ·+ κn−1) ,

where κ1, · · ·κn−1 are the principal curvatures of Γt computed with respect

to ν and

H =
1

n− 1
(κ1 + · · ·κn−1)

is the mean curvature.

Now fix 0 ≤ t ≤ t0, x ∈ Γt, and evolve the point x according to the

nonautonomous ODE
{

ẋ(s) = −[div(ν)ν] (x(s), s) (s > t)
x(t) = x .

Then

d

ds
v(x(s), s) = −[(Dv · ν) div(ν)] (x(s), s) + vt(x(s), s) = −div(ν) + vt = 0.

Thus

v(x(s), s) = 0 (s > t)

and this implies {Γt}0≤t≤t0 is evolving by mean curvature. 2
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4 Instantaneous Tearing Apart

As a further application of the PDE (1.7)–(1.9) we prove in this section

that two distinct smooth surfaces evoloving by mean curvature must instantly

tear completely apart, even if they initially touched on a large set.

More precisely, suppose as above Γ0 is the smooth connected boundary of

the bounded open set U ⊂ n. Assume also that Γ̂0 is the smooth connected

boundary of a bounded open subset Û ⊂ n and that

Γ̂0 ⊂ U.(4.1)

Thus the surface Γ̂0 lies within the closed region U bounded by Γ0. Suppose

further that

Γ̂0 6= Γ0.(4.2)

Choose next t0 > 0 so small that the classical evolutions {Γt} and {Γ̂t}

starting at Γ0 and Γ̂0, respectively, exist at least for times 0 ≤ t ≤ t0.

Theorem 4.1 We have

Γt ∩ Γ̂t = ∅ for 0 < t ≤ t0.(4.3)

We see therefore that the two evolutions by mean curvature instantly com-

pletely “tear apart”. The point is that the PDE describing evolution by

mean curvature is “uniformly parabolic along the surface” and this admits

infinite propagation speed for disturbances. See [2, §8] for some geometric

consequences.

Proof. 1. Fix δ0 so small that the signed distance function

d(x, t) ≡

{
–dist(x,Γt) if x ∈ Ut

dist(x,Γt) if x ∈ n − Ut

is smooth in

Q ≡ {(x, t) | −δ0 ≤ d(x, t) ≤ δ0, 0 ≤ t ≤ t0}.
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(Here, Ut is the bounded region enveloped by Γt). As above we have

dt = F (D2d, d) in Q.(4.4)

Similarly the signed distance

d̂(x, t) ≡

{
–dist(x, tΓ̂t) if x ∈ Ût

dist(x, Γ̂t) if x ∈ n − Ût

is smooth in Q, provided δ0, t0 > 0 are sufficiently small, and Γ̂0 is close

enough to Γ0. (We denote by Ût the region bounded by Γ̂t). Also

d̂t = F (D2d̂, d̂) in Q.(4.5)

as well.

2. Now since (4.1) holds, we have

Γ̂t ⊆ U t

for each 0 ≤ t ≤ t0. Thus

d̂ ≥ d in Q.

3. Set

w ≡ d̂− d.

Then

w ≥ 0 in Q, w 6= 0 on Q ∩ {t = 0},(4.6)

and from (4.4), (4.5) it follows that

wt = aij wxixj + cw in Q(4.7)

for

aij ≡
∫ 1

0

∂F

∂rij
(tD2d̂+ (1− t)D2d, td̂+ (1− t)d)dt
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and

c ≡
∫ 1

0

∂F

∂z
(tD2d̂+ (1− t)D2d, td̂+ (1− t)d)dt .

According to Lemma 2.1 the coefficients ((aij)) are uniformly positive definite

if δ0, t0 are small enough and Γ̂0 is close enough to Γ0. From (4.6), (4.7) and

the strong maximum principle we deduce that

w > 0 in the interior of Q.(4.8)

Assertion (4.3) follows.

4. In the general case that Γ̂0 verfies (4.1), (4.2), but is not necessarily

everywhere close to Γ0, we interpolate a smooth surface Γ̃0 between Γ0 and

Γ̂0, so that Γ̃0 satisfies (4.1), (4.2) and is close to Γ0. Then, by steps 1–3,

Γ̃t ∩ Γt = ∅

for all small t > 0, {Γ̃t} denoting the classical evolution from Γ̃0. As Γ̃t lies

within the region bounded by Γt and Γ̂t lies in the region bounded by Γ̃t,

assertion (4.3) follows in this case as well. 2
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