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1 Introduction

In this paper, we consider the Dirichlet problem for the conformally in-

variant model problem of critical Sobolev growth:

−∆u = λun+2
n−2

in Ω

u = φ on ∂Ω
u ≥ 0

(1.1)

Problem (1.1) is formally the Euler-Lagrange equations for the variational

problem ∫

Ω
|∇u|2 → min(1.2)
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for u in the admissible class

A =
{
u ∈ H1(Ω):u− h ∈ H1

0 (Ω),
∫

Ω
u

2n

n− 2
= γ

}

where h is the harmonic extension of φ ≥ 0.

It is well known that for φ ≡ 0, the existence of nontrivial solutions is

often a very subtle question. For example, if Ω is starshaped there is no

solution of (1.1) while if Ω has “nontrivial topology” then there do exist

solutions [B].

The purpose of this paper is to show that for positive C1+β data φ, Prob-

lem (1.2) is well posed for any C2 domain Ω. More precisely, we have the

following

Theorem 1.1 Let φ ∈ C1+β(∂Ω) ≥ 0 be positive somewhere, ∂Ω ∈ C2.

Assume that γ >
∫
Ω h

2n
n−2

where h is the harmonic extension of φ. Then

there is a positive minimizer u ∈ C2(Ω)∩C1+β(Ω) of Problem (1.2) satisfying

(1.1) for a positive constant λ > 0.

More precise estimates on the multiplier λ are given in Theorem 2.1.

More generally, we can consider the variational problem

∫

Ω
|∇u|2 → min(1.3)

for u in the admissible class

A =
{
u ∈ H1(Ω):u− h ∈ H1

0 (Ω),
∫

Ω
G(u) = γ

}

with (formal) Euler-Lagrange equations

−∆u = λg(u) in Ω
u = φ on ∂Ω

(1.4)

Then we have the following
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Theorem 1.2 Let φ ∈ C1+β(∂Ω) ≥ 0 be positive somewhere, ∂Ω ∈ C2 and

γ >
∫
ΩG(h) where h is the harmonic extension of φ.

Assume that the nonlinearity g(t) is a locally Lipschitz function satisfying

(i) g(t) is non-decreasing, g(0) = 0

(ii) t−
n+ 2

n− 2
g(t) is non-increasing(1.5)

(iii) g(t) ≥ κt, for t ≥ t0 > 0, where κ > λ1(Ω)

Then there is a positive minimizer u ∈ C2(Ω)∩C1+β(Ω) of Problem (1.4)

satisfying (1.4) for a positive constant λ > 0. Here λ1(Ω) is the first Dirichlet

eigenvalue of −∆ in Ω.

Some estimates for λ are given in Proposition 5.1.

We should remark that the existence of minimal or “small norm” solutions

of (1.1) is completely standard and the main point of our work is the non-

existence of the blow-up of minimizing sequences for the variational problem

(1.2). This fact is based on strong apriori estimates that we derive in Sec-

tions 3 and 4. Here, the positivity and smoothness of φ is essential. These

estimates rely on the “asymptotic symmetry” method that we developed in

our paper [C-G-S]. For the convenience of the reader we have outlined the

main steps in this method in Section 4.

One consequence of these strong estimates is the existence of a con-

tinuum S of solutions (u, λ) of (1.1) containing (h, 0) which is unbounded

(but {(u, λ) ∈ S:λ ≥ ε} is bounded) and such that λ decreases to zero as

γ =
∫
Ω u

2n/n−2 →∞.

An outline of the paper is as follows. Section 2 contains preliminary exis-

tence and multiplier estimates for the subcritical approximations to problem

(1.2). In Section 3, we prove a preliminary apriori supnorm estimate for so-

lutions of (1.4). These estimates allow us to use the method of [C-G-S] to

prove uniform C1+β estimates. This is carried out in Section 4. Finally, in

Section 5 we prove Theorem 1.1 and then go to prove Theorem 1.2.
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2 Multiplier Estimates for the

Approximating Problems

In this section we will consider subcritical approximations to the varia-

tional problem (1.2) and estimate the multipliers associated to solutions.

To fix the ideas, let φ ∈ C1+β(∂Ω) ≥ 0, φ 6≡ 0 and consider the variational

problem ∫

Ω
|∇u|2 → min(2.1)

for u in the admissible class

Aγ =
{
u ∈ H1(Ω):u− φ ∈ H1

0 (Ω),
∫
|u|α+1 = γ

}

where 1 < α < n+2
n−2

, and γ >
∫
Ω h

α+1, for h the harmonic extension of φ.

The main result of this section may be stated as follows.

Theorem 2.1 There is a positive solution u ∈ C2(Ω)∩C1+β(Ω̄) to problem

(2.1) satisfying

−∆u = λuα in Ω

u = φ on ∂Ω

where λ > 0 is a positive constant. In terms of θ =: γ −
∫
Ω h

α+1, λ satisfies

the asymptotic estimates

(i) c1θ ≤ λ ≤ c2θ for θ > 0 small

(ii) c3θ
( 1−α
α+1

) ≤ λ ≤ c4θ
( 1−α
α+1

) for θ > 0 large

for absolute constants c1, c2, c3, c4.

Proof. The existence of a classical solution u to problem 2.1 is well-known.

That is, u satisfies

−∆u = λ|u|α−1u in Ω

u = φ on ∂Ω(2.2)
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∫

Ω
|u|α+1 = γ >

∫

Ω
hα+1.

We claim that λ > 0 and so u > h in Ω. For using u − h as a test function

in (2.2), we obtain

∫

Ω
|∇u|2 −

∫

Ω
∇u · ∇h = λ

∫

Ω
(u− h)|u|α−1u = λ(γ −

∫

Ω
h|u|α−1u)(2.3)

By Hölder,

∫

Ω
h|u|α−1u ≤ (

∫

Ω
hα+1)

1

α+1 (
∫

Ω
|u|α+1)

α
α+1 ≤ γ(2.4)

Now observe that ∫

Ω
∇u · ∇h =

∫

Ω
|∇h|2

and so ∫

Ω
|∇u|2 −

∫

Ω
∇u · ∇h =

∫

Ω
|∇(u− h)|2 > 0(2.5)

It follows from (2.3)-(2.5) that λ > 0 and thus u > h by the maximum

principle.

We can obtain a sharper estimate for λ from below as follows. By con-

vexity,

uα+1 − hα+1 ≤ (α + 1)uα(u− h).

Therefore,

∫

Ω
(uα+1−hα+1) ≤ (α+1)

∫

Ω
uα(u−h) ≤ (α+1)(

∫

Ω
uα+1)α/α+1(

∫

Ω
(u−h)α+1)

1

α+1

and so,

γ −
∫

Ω
hα+1 ≤ (α + 1)γ

α
α+1 (

∫

Ω
(u− h)α+1)

1

α+1(2.6)

Using Sobolev’s inequality, (2.6) implies

(γ −
∫

Ω
hα+1)2 ≤ (α+ 1)2γ

2α
α+1 c2

∫

Ω
|∇(u− h)|2

= (α + 1)2γ
2α
α+1 c2λ(γ −

∫

Ω
huα)
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≤ (α+ 1)2γ
2α
α+1 c2λ(γ −

∫

Ω
hα+1)

Therefore,

γ −
∫

Ω
hα+1 ≤ c2(α + 1)2γ

2α
α+1λ

or

λ ≥ (γ −
∫

Ω
hα+1)/c2(α+ 1)2γ

2α
α+1(2.7)

From our earlier discussion,

∫

Ω
|∇(u− h)|2 = λ(γ −

∫

Ω
uαh) ≥

λ

α + 1
(γ −

∫

Ω
hα+1)

or

λ ≤ (α + 1)
∫

Ω
|∇(u− h)|2/(γ −

∫

Ω
hα+1)(2.8)

We can use (2.8) to estimate λ from above by estimating

∫

Ω
|∇(u− h)|2 =

∫

Ω
|∇u|2 −

∫

Ω
|∇h|2.

For example, let η ≥ 0 be a fixed nontrivial C10(Ω̄) function and set v = h+εη.

Then there is a unique ε > 0 so that
∫
Ω v

α+1 = γ. This choice of ε makes

vεAγ and so

∫

Ω
|∇u|2 ≤

∫

Ω
|∇v|2 =

∫

Ω
|∇h|2 + ε2

∫

Ω
|∇η|2(2.9)

Again by convexity, we can estimate ε by

γ =
∫

Ω
(h+ εη)α+1 ≥

∫

Ω
hα+1 + (α+ 1)ε

∫

Ω
hαη

so that

ε ≤ C(γ −
∫

Ω
hα+1)(2.10)

The combination (2.9) (2.10) gives

∫

Ω
|∇(u− h)|2 ≤ C(γ −

∫

Ω
hα+1)2(2.11)
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Inserting (2.11) into (2.8) gives the upper bound

λ ≤ C(γ −
∫

Ω
hα+1)(2.12)

The estimates (2.7) and (2.12) give the required asymptotics for λ as stated

in part i) of Theorem 2.1.

To get the correct asymptotics for λ as γ →∞, we let v be a minimizer

to the problem

∫
|∇v|2 → min = µ, vεH1

0 (Ω),
∫

Ω
|v|α+1 = 1

and set u = (1 − ε)γ
1

α+1 v + h. As before, ε is chosen so that
∫
Ω u

α+1 = γ.

Then ∫

Ω
|∇u|2 = (1− ε)2γ

2

α+1µ+
∫

Ω
|∇h|2

so from (2.8),

λ ≤ (α + 1)(1− ε)2γ
2

α+1/(γ −
∫

Ω
hα+1) ≤ Cγ−(

α−1

α+1
)(2.13)

for γ large. The estimate (2.13) together with (2.7) completes the proof of

the estimates stated in part ii) of Theorem 2.1. 2
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3 Apriori Estimates near the Boundary

In this section, we will derive the following apriori sup norm estimate

near the boundary.

Theorem 3.1 Suppose Ω is a domain with ∂Ω ∈ C2 and φ ∈ C1+β(∂Ω) ≥

0, ∂φ 6≡ 0. Let u ∈ C2(Ω) ∩ C1+β(Ω̄) be a solution to the problem

−∆u = g(u) in Ω
u = φ on ∂Ω

(3.1)

where g(t) is a locally Lipschitz function satisfying

(i) g(t) is non-decreasing, g(0) = 0

(ii) t−(
n+2

n−2
) g(t) is non-increasing(3.2)

(iii) g(t) ≥ Kt, for t ≥ t0 > 0, where K > λ1(Ω).

Then u(x) ≤ C in a neighborhood of ∂Ω, 0 < d(x) < d0 (d(x) = distance (x, ∂Ω))

where C, do depend only upon φ,Ω and (K − λ1(Ω))
−1.

We first estimate u in L1loc(Ω) in a standard way [F-L-N].

Lemma 3.2 Let u satisfy (3.1), (3.2). Then
∫
Ω uv1 ≤ C, where v1 ≥ 0 is

the first Dirichlet eigenfunction of Ω.

Proof. Let h be the harmonic extension of φ and let v1 ≥ 0 be the first

(normalized) Dirichlet eigenfunction of Ω. Then
∫

Ω
v1∆(h− u)− (h− u)∆v1 = 0, and so

∫

Ω
v1g(u) + λ1(h− u)v1 = 0

Using 3.2 (iii), this gives

∫

Ω
v1u ≤

λ1
K − λ1

∫

{u<t0}
v1u ≤

λ1t0
K − λ1

|Ω|
l
2 = C.
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Our aim is to use the method of moving planes and inversion to show

that the Kelvin transform of u is monotone. For boundary date φ ≡ 0, this

was done in [?] for n = 2 and in [?] for n > 2.

Let us fix the notation as follows. For a point P ∈ ∂Ω, we will choose a

ball B = BR of fixed radius R externally tangent to ∂Ω at P . For convenience

we will assume that B = BR(0) and that P = Ren. We perform an inversion

in B

y = Ix =
R2x

|x|2
(3.3)

Let κ denote a principal curvature at X ∈ ∂D with respect to the interior

normal ν(X) at X. Then [?, ?], the principal curvature κ̃ of I(∂Ω) at I(X)

(with respect to the interior normal) is given by

κ̃ = κ
|X|2

R2
+

2

R2
X · ν

In particular, we may choose δ0 ∈ (0, 1) so small that if X ∈ ∂Ω ∩Bδ0R(P ),

X · ν ≥ 1
2
, so that I(∂Ω∩Bδ0R(P )) is strictly convex for R sufficiently small,

say κ̃ ≥ 1
2R2 .

For any function ψ in Ω, the Kelvin transform of ψ is defined by

(Kψ)(y) =
Rn−2

|y|n−2
ψ(x) =

Rn−2

|y|n−2
ψ(
R2y

|y|2
), x ∈ Ω(3.4)

and satisfies

−∆(Kψ) =
Rn+2

|y|n+2
∆ψ (

R2y

|y|2
)(3.5)

2

Lemma 3.3 Let h be the harmonic extension of φ in Ω. Then for δ0 and R

small enough, Kh is monotone on I(∂Ω∩Bδ0(P )), i.e. ∇(Kh) · τ > 0 for τ

in a cone of directions near −en.

Proof. Using (3.4), we compute

(∇Kh)i(y) = −
n− 2

|y|n
Rn−2yih(x) +

Rn

|y|n
(δij −

2yiyj
|y|2

)hj(x)

9



This gives

∇(kh) · τ =
Rn−2

|y|n
(−(n− 2)(y · τ)h(x) +O(R2)O(|∇h|)) =(3.6)

Rn−2

|y|n
((n− 2)Rτ · −en +O(δ0R) +O(R2)O(|∇h|))

Since h ∈ C1+β(Ω̄), (3.6) implies that

∇(kh) · τ(y) > 0 if τ · −en > O(δ0) +O(R).

2

Corollary 3.4 Ku is monotone on I(∂Ω) ∩ Bδ0R(P )) for τ in the cone of

directions near −en given in lemma 3.3.

Proof. Since u ≥ h in Ω, u = h on ∂Ω, we have that Ku ≥ Kh in I(Ω) and

Ku = Kh on I(∂Ω). Therefore,

∇(Ku) · τ ≥ ∇(Kh) · τ.

2

We can now prove

Proposition 3.5 Let u satisfy the hypotheses of Theorem 3.1. Then ∇(Ku)·

τ > 0 ∈ KΩ ∩ Bδ0R/4(P ), for y in a cone of directions of aperture angle

α(τ,−en) ≤ δ0/8R, for δ0, R sufficiently small.

Proof. We may assume that K(∂Ω) ∩ Bδ0R(P ) is a graph in any of the

directions τ . For any allowable τ , we denote by yλ the reflection of y in the

plane Tλ = {y · τ = λ}, and set v = Ku. Since K(∂Ω) ∩ Bδ0R(P ) is strictly

convex, there is a unique value λ0, such that the plane Tλ0
is tangent to

K(∂Ω) (at a point near P ) and then for λ > λ0 cuts off an open cap Σλ from

KΩ. For y ∈ Σλ we define vλ(y) = v(yλ).
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By our choice of δ0, R and the cone aperture α, we may increase λ to a first

value λ1 so that the cap Σλ1
contains a

δ2
0

16
neighborhood ofK(∂Ω)∩Bδ0R/4(P )

and also is contained in Bδ0R(P ). This implies that v 6≡ vλ for λ0 < λ < λ1.

For otherwise, ∇v · τ = 0 on Tλ ∩K(∂Ω), contradicting Corollary 3.4. Using

Corollary 3.4 we see that v(y) < vλ(y) for λ > λ0, λ close to λ0. According

to [?] [?] the inequalities v < vλ,∇v · τ > 0 must continue to hold for

λ0 < λ ≤ λ1, since we have ruled out the possibility v ≡ vλ. 2

Proof of Theorem 3.1. Let Q be any point inK(Ω)∩Bδ0R/8(P ) at distance

cδ20 from k(∂Ω), where c is a small constant independent of δ0, R chosen so

that the cone ΓQ of aperture α and height cδ20 with vertex at Q is contained

in a δ20/16 neighborhood of K(∂Ω) ∩ Bδ0R/4(P ). Let v = Ku. According to

Lemma 3.2 we can estimate ∫

ΓQ
v ≤ C(3.7)

for a constant C uniformly controlled. Then using Proposition 3.5, v ≥ v(Q)

in ΓQ, and so from (3.7) we obtain

v(Q) ≤
c

|ΓQ|
= C1(3.8)

In particular, using Proposition 3.5 once more, we can conclude that

v(y) ≤ C1

for y in a cδ20 neighborhood of K(∂Ω)∩Bδ0R/16. Finally, using the compact-

ness of ∂Ω, and that v = Ku we conclude that ε0 ≤ u(x) ≤ c2 in a uniform

neighborhood 0 < d(x) < d0 of ∂Ω. This completes the proof of Theorem

3.1. 2
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4 Global Estimates via the Asymptotic

Symmetry Method

The apriori near the boundary estimates of the previous section allow us

to apply the “asymptotic symmetry method” that we developed in [C-G-S]

to prove interior Lipschitz estimates. In this section we will outline the main

steps in the proof of the following crucial result.

Theorem 4.1 Suppose Ω is a domain with ∂Ω ∈ C2 and φ ∈ C1+β(∂Ω), φ 6≡

0. Let u ∈ C2(Ω) ∩ C1+β(Ω̄) be a solution to the problem

−∆u = g(u) in Ω u = φ on ∂Ω(4.1)

where g(t) is a locally Lipschitz function satisfying the conditions (3.2). Then

|u(x) − u(z)| ≤ K |x − z| for x, z ∈ Ω where K depends only on φ, Ω and

(K − λ1(Ω))
−1.

Combining Theorems 3.1 and 4.1 and using standard elliptic regularity

theorem, we obtain the following global apriori estimate.

Corollary 4.2 Let Ω, φ, u satisfy the hypothesis of Theorem 4.1. Then

||u||C1+β(Ω) ≤ C, where C depends only on φ, Ω and (K − λ1, (Ω))
−1.

We first observe that from Theorem 3.1, it follows in a standard way that

||u||C1+β(Ω0) ≤ C(4.2)

where Ω0 = {x ∈ Ω: 0 < d(x) < 3
4
do}, and C depends only upon φ, Ω and

(K − λ1(Ω))
−1. Therefore, in proving Theorem 4.1, it suffices to consider

points x, z with d(x), d(z) ≥ do
2
. Since u > h > 0 in Ω, and u is under

control in Ω0, we may always reduce Theorem 4.1 to the case φ ≥ ε0 (i.e.

u ≥ ε0 in Ω).

Fix x0 ∈ Ω such that d(x0) ≥
do
2

and set R = d0

8
. Let B = BR(x0). For

convenience, we assume x0 = 0. We perform an inversion in B, y = Ix and

set v = Ku as in Section 3, formulas (3.3)-(3.5).
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We denote by Γ1, . . .ΓN the connected components of ∂Ω with ΓN the

finite boundary component of Rn−Ω. Let Γ̃i = I(Γi), i = 1, . . . , N . Then v is

well-defined in the unbounded domain Ω̃ = IΩ. Note that Ω̃ = Rn\ ∪Ni=1 Hi

where the Hi are “holes”, that is the Hi are disjoint connected domains

bounded by Γ̃i, and x0 ∈ Γ̃N .

Note that in Ω̃, v satisfies

−∆v =
Rn+2

|y|n+2
g(
|y|n−2

Rn−2
v(y)) ≡ f(y, v)(4.3)

and because of (4.2),

||v||C1+β(IΩo) ≤ C1, 0 < δ0 ≤ v ≤
1

δ0
in IΩ0(4.4)

where C1, δ0 are under control.

Step 1. Extension Lemma. There exists σ = σ(δ0, C1, f) such that

for any open set A ⊂ ∪Ni=1Hi with |A| < σ, we can extend v to a Lipschitz

function v̄ in Rn satisfying

(i) v̄ ≥ δ0/2 in Rn(4.5)

(ii) −∆v̄ ≥ f(y, v̄) in [Ω̃ ∪ A]0

Our aim is to show that v is asymptotically radial at infinity in the sense

that

v(y) = (inf v)∂B|y|(1 + 0(
1

|y|
) as |y| → ∞(4.6)

Step 2. Reflection Theorem. Assume there exists a setA′ ⊂ {(y′, 0): |y′| <

R}, |A′| < σ
2
and a positive number M > R such that if y = (y′, yn) with

y′ 6∈ A′ and yn ≥M then v(y) ≤ δ0
4
. Let v̄ be the extension of v to Rn given

by the extension lemma (Step 1) corresponding to A = {y = (y ′, yn): |y| <

R, y′ ∈ A′} Then

v̄(y) ≤ v̄(yλ) for yn > λ ≥M(4.7)
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(Here y = (y′, yn) and yλ = (y′, 2λ − yn) is the reflection of y in the plane

yn = λ)

A direction (which for convenience we have taken to be en) for which the

hypothesis of the Reflection Theorem is satisfied is said to be an admissible

direction. The essential meaning of admissibility is that v decays to zero

uniformly, on rays parallel to the reflection direction, except possibly for a

certain exceptional set of rays which hit BR. The set A is the intersection of

the exceptional rays with BR and is required to have small measure.

The next step is to show that for M large enough the set of admissible

directions covers almost all of the unit sphere Σ1. The precise statement is

as follows.

Step 3. Let v ≥ 0 be superharmonic in Rn\BR and satisfy

∫

Rn\BR

vp

|x|β
< c0, for some p ≥ 1, β < n.(4.8)

Then the set of admissible directions for a given M = 2k and σ = 2−εk =

M−ε has measure |Σ1| −c M
−δ for ε = n−β

2
, δ = n−β

4
and c depending only

on c0 and n.

Note that because of Lemma 3.2,
∫
B2R(x0)

u ≤ C and since v = Ku is

given by (3.4), v satisfies (4.8) with p = 1 and β = n− 2 for suitable c0.

The final step asserts that when the Reflection Theorem holds for a suf-

ficiently large set of directions then asymptotic symmetry (4.6) holds.

Step 4. Let v ≥ 0 be superharmonic on Rn−BR with the property that

for some M > 0 and τ ∈ A (the admissible set) ⊂ Σ1,

v(y) ≤ v(yλ) if y · τ ≥ λ > M

Then

v(y) = inf |z|=|y|v(z) (1 + 0(
1

|y|)
) for |y| → ∞(4.9)

where all error estimates are uniformly controlled.
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The detailed proofs of Steps 1-4 are given in [?]. From Step 4, Theorem

4.1 follows easily. For from (4.9) it follows that

u(x) = inf |x|=r u(1 + 0(r)) for |x| = r as r → 0.(4.10)

Formula (4.10) implies, by a simple chaining argument that u is bounded.

For we can connect any x, d(x) ≥ d0

2
to a point x̄, d(x̄) < d0 in a finite

number of steps k (with k under control) so that x1 = x̄, xk = x and

u(xi+1) ≤ c u(xi), i = 1, . . . , k

Thus, u(x) = u(xk) ≤ ck−1 u(x̄) ≤ C by Theorem 3.1.

Now that u is bounded, choosing the center point x0 and radius r to be

x0 =
x+z
2

and r = |x− z|/2, (4.10) gives

|u(x)− u(z)| ≤ C |x− z|

for |x− z| sufficiently small. This completes the proof of Theorem 4.1.

5 The Existence of Smooth Minimizers

In this section we will use the apriori estimates of Section 4 to pass from

approximating minimizers to the limit case.

We proceed directly to the

Proof of Theorem 1.1. Let M = inf
∫
Ω |∇u|

2 for u in the admissible class

A =
{
u− h ∈ H1

0 (Ω):
∫

Ω
|u|

2n

n− 2
= γ >

∫

Ω
h

2n

n− 2

}

Given any εk > 0 there exists η ∈ A such that
∫

Ω
|∇η|2 ≤M + εk

By Lebesgues’ theorem,
∫

Ω
|η|αj+1 →

∫

Ω
|η|

2n

n− 2
= γ >

∫

Ω
h

2n

n− 2
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for any sequence αj ↗
n+2
n−2

. Let us fix such a sequence and assume that for

j large

γj =:
∫

Ω
|η|αj+1 >

∫

Ω
hαj+1

Using the results of Sections 2–4, there exists a positive minimizer ujk ∈

C2(Ω) ∩ C1+β(Ω) in the admissible class Aγj to the subcritical variational

problem (2.1) with α = αj, j large. Moreover (from Corollary 4.2),

‖ujk‖C1+α(Ω) ≤ C(5.1)

where C is a uniform constant. Since ujk is a minimizer,
∫
Ω |∇ujk|

2 ≤
∫
Ω |∇η|

2 ≤M + εk.

Choosing a diagonal subsequence, ujiji converges to a limit minimizer

u ∈ C2(Ω) ∩ C1+β(Ω) satisfying

−∆u = λun+2
n−2

in Ω

u = φ on ∂Ω
u > 0 in Ω

where λ > 0 satisfies the estimates of theorem 2.1. 2

We now consider a more general variational problem

∫
|∇u|2 → min(5.2)

u ∈ Aγ =
{
u ∈ H1(Ω):u− h ∈ H1

0 (Ω),
∫

Ω
G(u) = γ >

∫

Ω
G(h)

}

Here G(t) is the primitive of g(t), with g(t) satisfying the hypotheses of

Theorem 1.2 and extended to g ≡ 0 for t ≤ 0. As before, φ ∈ C1+β(∂Ω) ≥ 0

is positive somewhere and ∂Ω ∈ C2.

We will assume, for the moment, that g(t) satisfies the subcritical growth

condition

g(t) ≤ Atα α ∈
[
1,
n+ 2

n− 2

)
, t > T(5.3)

for some A, T, α.
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We note that given an arbitrary g(t) satisfying the conditions (1.5), we

can construct subcritical approximations gj(t) satisfying the same conditions

by choosing tj > t0 and setting

gj(t) =

{
g(t) t ≤ tj
g(tj)

tj
t t > tj

(5.4)

Preliminary to proving Theorem 1.2, we have the following

Proposition 5.1 Let g(t) satisfy the hypotheses of Theorem 1.2 and the

subcriticality condition (5.4). Then there exists a positive minimizer u ∈

C2(Ω) ∩ C1+β(Ω) of Problem (5.2) satisfying

−∆u = λg(u) in Ω
u = φ on ∂Ω

where 0 < λ < C(γ −
∫
ΩG(h)). If g(t)

t
→∞ as t→∞, λ→ 0 as t→∞.

Proof. The existence of a classical solution to Problem (5.2) is well-known.

That is, u satisfies

−∆u = λg(u) in Ω
u = φ on ∂Ω

(5.5)

We claim that λ > 0 and so u > h in Ω by the maximum principle. For

using u− h as a test function in (5.5).
∫

Ω
|∇u|2 −

∫

Ω
∇u · ∇h = λ

∫

Ω
(u− h)g(u)(5.6)

Since G is convex, we have

0 < γ −
∫

Ω
G(h) =

∫

Ω
(G(u)−G(h)) ≤

∫

Ω
(u− h)g(u)(5.7)

Observing that
∫
Ω∇u · ∇h =

∫
Ω |∇h|

2, we conclude from (5.6) (5.7) that

λ > 0, as claimed. We also obtain the estimate

0 < λ ≤
(∫

Ω
|∇u|2 −

∫

Ω
|∇h|2

)
/ (γ −

∫

Ω
G(h))(5.8)
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Using (5.8) we can estimate λ from above. For example, let η ≥ 0 be a

fixed nontrivial C10 (Ω) function and set v = h+ εη. There is a unique ε > 0

so that v ∈ Aγ. Then

∫

Ω
|∇u|2 ≤

∫

Ω
|∇v|2 =

∫

Ω
|∇h|2 + ε2

∫

Ω
|∇η|2(5.9)

Again by the convexity of G,

γ =
∫

Ω
G(h+ εη) ≥

∫

Ω
G(h) + ε

∫

Ω
ηg(h)

so that

ε ≤ C(γ −
∫

Ω
G(h))(5.10)

The combination (5.8)–(5.10) gives

0 < λ ≤ C(γ −
∫

Ω
G(h))(5.11)

To get a better upper bound as γ →∞ let v = h+tη for a fixed nontrivial

η ≥ 0 η ∈ C10 (Ω). Choosing t so that v ∈ Aγ, we have

∫

Ω
|∇u|2 ≤

∫

Ω
|∇v|2 =

∫

Ω
|∇h|2 + t2

∫

Ω
|∇η|2

Therefore, from (5.8)

λ ≤ C
t2

γ −
∫
G(h)

(5.12)

By convexity, we can estimate

γ −
∫

Ω
G(h) ≥ t

∫

Ω
ηg(tη)(5.13)

If we assume that g(t)
t
→ ∞ as t → ∞, we can conclude from (5.12),

(5.13) that

λ→ 0 as γ →∞(5.14)

2

We are now in a position to give the
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Proof of Theorem 1.2:. Choose a sequence tj ↗ +∞ with tj > sup∂Ω h.

As in the proof of Theorem 1.1, given any εk > 0, there exists

η ∈ A =
{
u− h ∈ H1

0 (Ω):
∫

Ω
G(u) = γ >

∫

Ω
G(h)

}

such that ∫

Ω
|∇η|2 ≤M + εk

Here, M = infu∈A
∫
|∇u|2. By Lebesgues’ theorem,

∫

Ω
Gj(η)→

∫

Ω
G(η) = γ >

∫

Ω
G(h)

where G
′

j|t| = gj(t) and gj(t) is given by (5.4). Using Proposition 5.1 and

Corollary 4.2, there exists a positive minimizer ujk ∈ C
2(Ω)∩C1+β(Ω) in the

admissible class Aγj , where

γj =:
∫

Ω
Gj(η) >

∫

Ω
Gj(h) =

∫

Ω
G(h).

Since ujk is a minimizer,

∫

Ω
|∇ujk|

2 ≤
∫

Ω
|∇η|2 ≤M + εk

Choosing a diagonal subsequence, ujiji converges to a limit minimizer u ∈

C2(Ω) ∩ C1+β(Ω) satisfying

−∆u = λg(u) in Ω
u = φ on ∂Ω
u > 0

where λ ≥ 0. Since
∫
ΩG(u) = γ >

∫
ΩG(h), 0 < λ < C(γ −

∫
ΩG(h)) by the

arguments of Proposition 5.1. If in addition g(t)
t
→∞ then λ→ 0 as γ →∞.

The proof of Theorem 1.2 is complete. 2
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