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1 Introduction

The subject of this paper is embedded minimal annuli bounded by two

straight lines. The only known examples of such surfaces are given by subdo-

mains of the singly periodic Riemann examples, R. There is a 1-parameter

family of these surfaces. A fundamental domain of a Riemann example con-

sists of a minimal annulus bounded by two straight lines, and a copy of that

surface produced by Schwarz reflection about one of the boundary lines. (See

Figure 1. and the analytic description of these surfaces in Section 2.)

We will prove that the examples of Riemann constitute all of the exam-

ples, under certain geometric hypotheses.1

Theorem 1 Suppose L = L1 ∪ L2 is a pair of parallel lines and A is an

embedded minimal annulus whose boundary is L. Assume further that A lies

between two parallel planes with one line in each plane. Then A extends by

Schwarz reflection to a Riemann example R.

In [13], Shiffman proved that a minimal annulus bounded by circles in

parallel planes is fibred by circles in parallel planes. The assumptions of

Theorem 1 can be viewed as a limiting case of Shiffman’s assumptions, but his

proof does not extend. As is well known, the Riemann examples are fibred by

circles. In fact, Riemann constructed these surfaces by explicitly determining

the coordinate functions, in terms of elliptic integrals, of all minimal surfaces

fibred by circles in parallel planes. This was published posthumously [10].

Very soon after the publication date of this paper, Enneper published a work

[2] in which he proved that a minimal surface fibred by pieces of circular arcs

(not necessarily assumed to lie in parallel planes) was in fact a piece of one

of the Riemann examples, or a piece of the catenoid. An excellent summary

is given in [9], where we learned about the work of Enneper.

1Recently Eric Toubiana has been able to strengthen Theorem 1 significantly by show-
ing that the same conclusion holds even if the lines are not assumed to be parallel (“On
the minimal surfaces of Riemann”, preprint Université de Bourgogne, Dijon, France.)
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From the results cited in the above paragraph, it follows, as observed by

Shiffman, that a minimal annulus bounded by circles in parallel planes is a

part of one of the Riemann examples. As an immediate corollary of Theorem

1 we have

Corollary 1.1 Suppose L = L1 ∪ L2 is a pair of parallel lines and A is an

embedded minimal annulus whose boundary is L. Assume further that A lies

between two parallel planes with one line in each plane. Then A is fibred by

round circles in parallel planes.

We wish to mention some recent papers that are related to our work.

Meeks and White have studied minimal annuli bounded by convex curves in

parallel planes [8]. In [4], Jagy studies minimal hypersurfaces that are foliated

by codimension-2 round spheres in Rn. He proves that when n > 3, the only

possibilities are hypersurfaces of rotation: generalized catenoids. Thus the

phenomenon of singly-periodic minimal embedded surfaces fibred by spheres

and planes does not exist in dimensions higher than three. Hoffman and

Meeks [3] provide a geometric approach to the Riemann examples that uses

the results of [12] and [8] to characterize them by determining their Gauss

mapping. Karcher [6] provides a geometric approach to the requisite elliptic

function theory for the Riemann examples and related minimal surfaces.

2 A characterization of the Riemann exam-

ples

The examples of Riemann can be described easily in terms of their Enneper-

Weierstrass Representation. On a rectangular torus, Tλ = C/L, where L

is the lattice generated by {λ, i}, for some real λ ≥ 1, consider the elliptic

function P with a double pole at 0, a double zero at ω3 = (λ + i)/2 and

no other zeros or poles. The Weierstrass P-function P has the property that

P−P(ω3) has exactly the same poles and zeros. This determines the function
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up to a multiplicative complex constant. That is:

P = c(P − P(ω3)) .

It can be easily checked that this elliptic function has the property that

P (ω3/2) = i, precisely when c = 1 and that, when c is real, P is real precisely

on the lines

Re(z) = 0, Re(z) = λ/2, Im(z) = 0 and Im(z) = 1/2 .

Another way to produce an elliptic function with these properties is to solve

the conformal mapping problem:

0 −→∞
λ+i
2
−→ 0

λ+i
4
−→ i

Im(P ) ≥ 0

Figure 2

and then extend by Schwarz reflection. The Riemann examples are then

given by the Weierstrass Data on Tλ − {0,
λ+i
2
}:

g = P, η = idz/P , (2.1)

producing via the Weierstrass Representation the multivalued immersion

X(z), whose components are:

x1(z) = Re
∫ z

ω1

(1− g2)η = Re
∫ z

ω1

i (P−1 − P ) dz
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x2(z) = Re
∫ z

ω1

i (1 + g2)η = −Re
∫ z

ω1

(P + P−1) dz (2.2)

x3(z) = Re
∫ z

ω1

2gη = Re
∫ z

ω1

2 idz = −2 Im(z)

Here the choice of ω1 = λ
2
as the base point for integration is for convenience.

Remark 2.1 Since (2.1) defines a minimal surface with a single period cor-

responding to the closed curve on Tλ given by µ(t) = λ
4
+ ti, 0 ≤ t ≤ 1, as

will be shown in Proposition 2.1, it follows that on γ(t) = i
4
+ tλ, 0 ≤ t ≤ 1,

A
def
= Re

∫

γ
Pdz = −Re

∫

γ
P−1dz .

It follows that if c is any nonzero real number, the data g = cP, η = dz
cP

on

Tλ has not only a period corresponding to µ, but also

Re
∫

γ
i(1 + g2)η = −Re

∫

γ
(c−1P−1 + cP )dz = (c−1 − c)A .

However, we may evaluate A by integrating P along γ̂ = i
2
+ tλ, 0 ≤ t ≤ 1,

where Pdz is real and never changes sign. Hence A 6= 0, and this period is

zero if and only if c = 1. We will have use of this observation later when we

prove the uniqueness of the Riemann examples.

The following Proposition establishes the properties of the Riemann ex-

amples. They are all previously known.

Proposition 2.1 The Weierstrass data (2.1) and the multivalued immersion

(2.2) defines a minimal surface R that has the following

a) Geometric Properties:

1. R is complete and singly periodic, invariant under a

translation T ;

2. R is fibred by circles in horizontal planes x3 = c 6=

2m, m ∈ Z. These correspond to the closed curves on

Tλ given by Im(z) = constant 6= 0, 1/2;
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3. R ∩ {x3 = 2m}, m ∈ Z, are straight lines, parallel to

the x2 axis. These correspond to the lines on Tλ given

by Im(z) = 0, 1/2;

4. R is embedded;

5. R has an infinite number of flat ends, asymptotic to

planes at height x3 = 2m, m ∈ Z;

6. R is invariant under reflection in the x1, x3-plane. The

intersection of this plane withR consists of planar geodesics

and they correspond to the lines on Tλ given by Re{z} =

0, λ/2;

7. R is invariant under rotation about horizontal lines

that are parallel to the lines R ∩ {x3 = λm}, lie at

heights x3 = (m+ 1/2)λ, and meet the surface orthog-

onally;

b) Uniqueness Properties:

8. Any minimal surface that is fibred by circular arcs, not

necessarily assumed to be in parallel planes or assumed

to be closed, is a subset of either the catenoid or some

R;

9. Any minimal annulus bounded by circles in parallel planes

is either a subset of the catenoid or of some R.

We give proofs of 1–7 that are self-contained and simpler than those in

the literature. Statement 8. is a lengthy computation carried out by Enneper

in [2] and outlined in the modern text [9]. Statement 9. follows from State-

ment 8. and Shiffman’s Theorem: If a minimal annulus is bounded by circles

in parallel planes, it is fibred by circles [13].
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Proof. From (2.2), it is clear that X has a period corresponding to the

closed curve µ = λ
4
+ ti 0 ≤ t ≤ 1. This period has x3 component equal to

−2. We will call this period vector T ; T = (α, β,−2).

The conformal metric on Tλ induced by the immersion (2.2) has length

element

|η|(1 + |g|2) = (|P |+ |P−1|)|dz| . (2.3)

Because of the way that P is constructed in Figure 2, it is evident that

reflection in the line Re{z} = 0, (equivalently Re(z) ≡ λ
2
) or in the line

Im z = 0 (equivalently Im z = i/2) induces an isometry of the induced

metric. Since these four lines are fixed in Tλ by one of these reflections,

they are geodesics. The second fundamental form of the immersion (2.2) is

given by Re{fg′ dz2} = Re{i(P ′/P ) dz2}. Along all four lines in question, P

and (dz)2 will be real, while P ′ is necessarily real along the horizontal pair

and purely imaginary along the vertical pair. This means that {fg ′ dz2} is

imaginary along the lines Im{z} = 0, 1
2
and real along Re{z} = 0, λ

2
. Thus,

this second pair of lines is mapped by X to planar geodesic lines of curvature,

while the first pair is mapped into straight lines. (See [6] or [5] for details

of this sort of argument.) This proves 3. As a consequence of this, R is

invariant under rotation about these lines and reflections through the planes

of these geodesics. It is clear from the formula for the third component of

X, that the horizontal line Im{z} = c is mapped into the horizontal plane

x3 = −2c (mod 2). In fact these curves are circles; in particular, they are

closed. We will show this is Lemma 2.1 below. For now we assume it to be

true; this gives statement 2. This means there are no periods, except perhaps

at the punctures 0 and 1
2
(λ + i). But through each puncture passes a line

of rotational symmetry and an orthogonal plane of reflectional symmetry.

Since the period of X must be orthogonal to both the plane and the line,

it has no period at a puncture. Hence T is the only period and R is singly

periodic. We note that the period vector T must reflect into itself through

{x2 = 0}. That is T = (α, 0,−2). From (2.3) it is clear that R is complete
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since |P |+ |P |−1 has a double pole at either puncture; the length of any curve

diverging to 0 or λ+i
2

must be infinite. This completes the proof of 1.

Note that from 2. and 3., we know that the intersection of R with any

horizontal plane is an embedded curve. In particular, R is embedded. This

proves 4.

We now look at an end corresponding to 0 or 1
2
(λ + i). It is embedded,

contains a line, and the Gauss map has order 2 there. Moreover it is period-

free. This forces it to be planar. Since the Gauss map is vertical at the end

and the end contains a horizontal line at height x3 = 2m, we have proved

statement 5.

Because of the fact that the planar curves

X(γc(t)), γc(t) = ci+ t, 0 ≤ t ≤ 1 ,

are closed circles, the planes which contain the images of µ̃(t) = λ
2
+ ti and

µ̂(t) = ti must coincide. Since g = P is real on µ this plane of symmetry

of R is vertical and parallel to the plane {x2 = 0}. Since we have chosen

to integrate from ω1 = µ(0), this vertical plane of symmetry is exactly the

coordinate plane {x2 = 0}. This proves 6.

To prove 7., we observe that if

Q(z) = P (I(z)) ,

where I is inversion at the point 1
4
(λ+ i),

Q(0) = 0

Q(w3) =∞

Q

(
(λ+ i)

4

)
= i

Checking that Q solves the same mapping problem as −1
P

on the rectangle

with vertices 0, w1, w3, w2 shows that Q = − 1
P
. Therefore (|P |+ |P |−1) ◦ I =

|P |+ |P |−1. Since |I∗dz| = |dz|, it follows from (2.3) that I is an isometry in
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the induced metric on Tλ. In fact I is induced by a symmetry of �

3 consisting

of rotation by π about a horizontal line orthogonal to the (x1, x3)-plane and

bisecting the line segment between X(w2) and X(w1). This horizontal line

meets R orthogonally at the points X(λ+i
4
) and X(λ

4
+ 3

4
i). To see this,

simply observe that because I∗dz = −dz, and since

Φ =



φ1

φ2

φ3


 =



−i(P − P−1) dz
−i(P + P−1) dz

i2dz


 , (2.4)

it follows that

I∗Φ =



−φ1

+φ2

−φ3


 .

That is I∗ acts on the integrands Φ in (2.4) by rotation about the x2-axis.

Since I fixes λ+i
4
, λ

4
+ 3

4
i, it follows that I is induced by rotation about the

line, parallel to the x2-axis, which passes through X(λ+i
4
) and X(λ

4
+ 3

4
i).

This proves 7. 2

Lemma 2.1 The level curves x3 = c 6= m in the Riemann example are

circles.

Proof. We first derive for the curvature κ of the level lines x3 = constant

on a minimal surface

κ = Im

(
g′

g

)
(|g|+ |g|−1)−1 , (2.5)

where ’ is differentiation with respect to a specially adapted conformal coor-

dinate. Then we conclude κ = constant from the differential equation of the

elliptic function g = P . We choose conformal coordinates z = u+ iv so that

v = x3, up to an additive constant. If g is the stereographic projection of the

Gauss map, we must have 2gη = 2idz. Hence the Weierstrass Representation

is given by

X(z) =
∫ z

z0
Φ(ζ) ,
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where
Φ = (1− g2, i(1 + g2), 2g)η

= (g−1 − g, i(g−1 + g), 2)idz .

In particular, the conformal metric is given by λ = (|g| + |g|−1). The level

curves of x3 are of the form

c(u) = X(u+ iv0) .

We observe that if N(u) is the normal to S at c(u), the projection of N(u)

onto the plane x3 = v0 is a scalar multiple of the vector (Re g, Im g). Adopt-

ing complex notation, we may then write the normal n(u) to the plane curve

c(u) as

n(u) =
g

|g|
,

and the unit tangent vector to this curve as

dc

ds
(u(s)) =

ig

|g|
,

where s denotes arc length on c. We now compute

d2c(u(s))

ds2
= i

(
g

|g|

)′
du

ds
= i

(
g

|g|

)′

λ−1 (2.6)

= i

(
g′

|g|
−

g

|g|3
〈g, g′〉

)
λ−1 ,

where 〈f, h〉 = Re fh is the usual inner product, and λ is, as computed

above, equal to |g|+ |g|−1. Noticing that the second term on the right-hand-

side is a multiple of dc
ds

(or equivalently that 〈g, ig〉 = 0), we may write the

curvature of c in the following form.

κ =
d2c

ds2
· i
dc

ds
=
〈ig′g〉

|g|2
λ−1 = 〈i

g′

g
, 1〉λ−1 .

The last equality follows from the general equality

〈z, ω〉

|ω|2
= 〈

z

ω
, 1〉 ,
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valid for any complex numbers z, ω, ω 6= 0. Thus indeed

κ =

(
Im

g′

g

) (
|g|+ |g|−1

)−1
.

We wish to show that κ is constant on c. We will do this by showing that
dκ
du

= 0. We begin by calculating dλ−1

du
.

dλ−1

du
= −λ−2dλ

du
= −λ2

[
〈g′, g〉

|g|
−
〈g′, g〉

|g|3

]

= −λ−2(|g| − |g|−1)
〈g′, g〉

|g|2

= −λ−2(|g| − |g|−1)〈
g′

g
, 1〉

Thus

dκ

du
= 〈i(

g′

g
)′, 1〉λ−1 − 〈i

g′

g
, 1〉λ−2〈

g′

g
, 1〉 (|g| − |g|−1)

= λ−1

[
+ Im

(
(
g′

g
)′
)
− λ−1(|g| − |g|−1) Re(

g′

g
) Im(

g′

g
)

]
(2.7)

= (|g|+ |g|−1)−1

[
+ Im(

g′

g
)′ −

(
|g|2 − 1

|g|2 + 1

)
1

2
Im

(
(
g′

g
)2
)]

.

For the Riemann examples R, g = P , as defined in (2.1). This elliptic

function on a rectangle satisfies the differential equation

(P ′)2 = −µP (P − α) (P + β) ,

where αβ = 1 and µ is a real positive constant. In fact +α and −β are the

values of P at the half periods ω1 and ω2 (see Figure 2.1, as well as [6], [5]).

From this it follows that
(
P ′

P

)2

= −µ(P − P−1 − α + β) , (2.8)

and

2

(
P ′

P

) (
P ′

P

)′

= −µ

(
P ′ +

P ′

P 2

)
= −µ

P ′

P

(
P + P−1

)
,
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or (
P ′

P

)′

=
−µ

2

(
P + P−1

)
. (2.9)

Using (2.7), (2.8) and (2.9), we have

dκ

du
= µ(|P |+ |P |−1)−1

[
−
1

2
Im(P + P−1) +

|P |2 − 1

|P |2 + 1

(
1

2
Im(P − P−1)

)]

But notice that in general if ω = u+ iv

Im(ω − ω−1) = v

(
u2 + v2 + 1

u2 + v2

)
,

Im(ω + ω−1) = v

(
u2 + v2 − 1

u2 + v2

)
=
u2 + v2 − 1

u2 + v2 + 1
Im(ω − ω−1)

=
|ω|2 − 1

|ω|2 + 1
Im(ω − ω−1)

Thus dκ
du

= 0 on the Riemann examples. This shows that the planar curves

c are round circles, except when κ ≡ 0 (and the curve c is a line) which

happens precisely when P is real along c. From the behavior of P , this

happens precisely when x3 = 2m, m ∈ � . 2

3 The Proof of Theorem 1

We will use the following result, proved in [1]. See also [7].

Theorem 3.1 Suppose M is a properly embedded minimal surface with an

infinite symmetry group and more than one topological end. Then either M

is the catenoid or:

i) M is invariant under a screw motion T ;

ii) M/T has finite topology if and only if the total curvature of M/T is

2π(χ(M/T )− r) ,

where r is the number of ends of M/T ;
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iii) All the annular ends of M are flat ends. If M/T has finite topology, all

its ends are flat.

Lemma 3.1 Suppose A is an embedded minimal surface that is bounded by a

pair of lines L = L0∪L1 and lies in a slab between parallel planes, P = P0∪P1

with Li ⊂ Pi. Then A extends by Schwarz Reflection to a singly-periodic

embedded minimal surface S, invariant under a screw motion T , where T is

R1 ◦ R0, Ri being rotation by π about Li. If A has genus k, S/T has genus

2k + 1, two flat ends and total curvature −4π(2k + 2). Furthermore, T is

a pure translation if and only if L0 is parallel to L1, and in that case the

translation vector lies in the plane containing L0 ∪ L1 and is orthogonal to

these lines. If T is a translation, the Gauss map of S descends to a well-

defined meromorphic function on S/T .

Proof. The hypothesis that the surface lies between two parallel planes and

is embedded and minimal means that it extends by Schwarz Reflection about

the lines to a complete embedded minimal surface. Let T be the symmetry

of the surface produced by the composition of rotations about the two line

boundaries of A. T must be the composition of a nontrivial translation,

transverse to the planes of the slab containing A, and a (possibly trivial)

rotation. Thus A extends to a singly-periodic surface N that is, modulo T ,

a twice-punctured genus=(2k + 1) surface. Two copies of A having a line

in common form a fundamental domain of N /T . The assumption that A is

embedded in a slab forces the singly-periodic surface to be embedded. By

Theorem 3.1 iii) the two ends of N /T are flat. By Theorem 3.1 ii) N /T has

finite total curvature equal to −4k(2k + 2).

If in addition the lines L are assumed to be parallel, the symmetry T ,

which is generated by successive rotations about the two distinct lines in the

quotient, is a pure translation. (This translation will be orthogonal to the

boundary planes of the slab if and only if the lines L both lie in a plane

orthogonal to the slab.) In particular, there is no rotational component to
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T . This implies that the Gauss map of N descends to N /T . Since N /T

has finite total curvature and is complete in �

3/T , the Gauss map of N /T

extends to the compactified surface. 2

Remark 3.1 Since N is embedded, we may assume without loss of gener-

ality that the Gauss map of N is vertical at the two ends. Denote by g the

Gauss map of N /T . Then N may be represented as a multivalued conformal

immersion of N /T by using the Enneper-Weierstrass representation with the

data g, η, where η = dx3/2g. Since the two ends are flat, η must have a dou-

ble pole at each one. But N is constructed in a manner that insures that

there is a single line diverging into each end, which in this normalization

must be horizontal.
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Proof of Theorem 1.

Step 1. By Lemma 3.1, the annulus A extends by Schwarz reflection to

a singly-periodic minimal surface S, invariant under a translation T , and

S/T a torus with two flat ends and total curvature −8π. Also, the Gauss

map of S descends to S/T , and extends to S/T . Thus g, the stereographic

projection of the Gauss map is a degree-two elliptic function on this torus.

By Remark 3.1 g may be assumed to have a pole of order two at one end,

say p1 ∈ L1 and a zero of order two at the other end, say p0 ⊂ L0. Because

the degree of g is two, it has no other zeros or poles. The lines L = L0 ∪ L1

are horizontal and we may assume without loss of generality that they are

parallel to the x1-axis. This forces g to be real on L. Since g is real along L

and has degree equal to two on S/T , it follows that there is a single simple

branch point of g on each of the lines. We will label the branch point of the

Gauss map on Li by bi, i = 0, 1.

Step 2. We will prove that S is a Riemann example by determining its

Weierstrass Representation. In this step we will determine S/T and the

one-form η.

First, we determine the underlying conformal structure of S/T . The

two lines L = L0 ∪ L1 correspond to disjoint closed curves on this torus.

Rotation about one of the lines is an order-two isometry, whose fixed-point

set is L. Consider this isometry as a conformal involution on the torus. Only

rectangular or rhombic tori possess conformal involutions which fix a curve

(namely reflections for the flat metric). However a rhombic torus cannot

have two such curves in the same homotopy class as is the case for L0 and

L1. Hence S/T is a rectangular torus.

Without loss of generality, we may assume that this torus is Tλ, that

is � modulo the lattice determined by {i, λ}, for some real λ, and that

the aforementioned involution is induced by complex conjugation. Hence L

corresponds to the set Im{z} = 0, 1
2
, modulo λ, and we will label Im z = 0

as L0, and Im z = 1
2
as L1. Let z = u1+ iu2 be the complex parameter on � .
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Since the lines L are horizontal and the height function x3 is harmonic on S,

it defines a function on � which is a real multiple of u2 (up to an additive real

constant). Hence dx3 = idz on � , up to a multiplicative real constant, which

by a homothety of �

3 we may assume to be equal to 1. Since dx3 = 2gη,

where η is the one-form in the Weierstrass representation, we have

η =
idz

2g
(3.1)

on S and S/T .

Step 3. It remains to determine the Gauss map g. Recall from Step 2

that we know g is a degree-two elliptic function on the rectangular torus Tλ,

which has a double pole at p0 = 0, a finite branch point on Im z = 0 and a

double zero and a finite branch point on Im z = 1
2
. We now observe that the

branch points of a degree-two elliptic function on a rectangular torus, which

has a double pole, must coincide with the branch points of any other such

function, up to translation.2 Taking the function P defined in Figure 2 as a

model, we may conclude that the branch points of g, namely p0, p1, b0, b1 are

distributed in one of the following two ways:

2Here is a simple proof. Let h be an elliptic function of degree-2 on Tλ. After a
translation in � and composition with a fractional linear transformation on � ∪ {∞} we
may assume that h has a double pole at 0, as does the P -function defined in Figure 2 of
Section 2. Suppose h is not branched at ω3 = λ+i

2 , where P has a double zero. Then
h−h(ω3)

P
has a simple pole at ω3 and no other poles, a contradiction. Hence h must be

branched at ω3. Similar arguments show h is branched at ω1 = λ

2 and ω2 = i

2 , the other
branch points of P , and nowhere else. If one only “knows” elliptic functions from their
Riemann mapping definition then one needs such an argument. The standard Mittag-
Leffler expansions are even with respect to the pole and therefore also give the result
quickly.
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Figure 3

In Case 1, note that g has exactly the same zeros and poles as P , constructed

in Figure 2. Hence g = cP for some nonzero complex constant c. However

both g and P are real on Im z = 0. Hence

g = cP c real . (3.2)

Thus in Case 1, (3.1) and (3.2) give the Weierstrass data for S on the rect-

angular torus Tλ. However, in Remark 2.1, we noted that the Weierstrass

representation will always have nonzero period in the x2-coordinate on a hor-

izontal generator of Tλ unless c = 1. Since this must be a closed curve or a

line parallel to the x1-axis, we conclude that c = 1. Hence

g = P, η =
idz

P
on Tλ (3.3)

are the Weierstrass data in Case 1. This case is exactly the Riemann example

given in (2.1) and (2.2).

Remark 3.2 The fact that S/T is a rectangular torus Tλ on which the

branch points of g are essentially determined can be proved by working more

directly with the minimal surface. Consider the sum of S/T ⊂ �

3/T with

itself in the sense of minimal herissons, according to [11]. At each ~n ∈ S2 we

define H(~n) to be the sum of all q ∈ S/T where G(q) = ~n, G being the Gauss

map. Since S/T has flat ends, it follows from [11] that H is constant on S2.

However, we may arrange things so that X(b0)/T = ~0 ∈ S/T and b0 is the
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only point q ∈ S/T where G(q) = G(b0). Hence H ≡ ~0. Moreover, since

G has degree two, inversion about ~0 in �

3/T (X → −X mod T ) must be a

symmetry of S/T . Hence inversion about ~0 is a symmetry of S. Therefore

inversion about ~0 followed by rotation about L0(= x1-axis) is a symmetry of

S. This symmetry is precisely reflection in the vertical plane {x1 = 0}.

The symmetry lines L and {x1 = 0}∩S/T divide S/T into four rectangles

bounded by geodesics, each one congruent to any other one by a rotation,

reflection or a composition of the two. Therefore, S/T is a rectangular torus.

The symmetries force the finite branch points to be located as in Case 1 or 2

above.

Step 4. It remains to show that Case 2 cannot occur. We will do this by

determining g explicitly, and then showing that the period problem is not

solvable. Recall that in this case g has a double pole at 0 a double zero at
i
2
and branch points at 1

2
and λ+i

2
. (See Figure 3.) Let Q be the elliptic

function defined by first solving the Riemann mapping problem:

i
2
−→ 0

λ
2
+ 3i

4
−→ 1

3i
4
−→ −1

The construction of Q

Figure 4
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and then extending to � by reflection. The mapping Q is an elliptic function

of degree 2, defined on the torus Tλ. It has a double pole at 0 and a double

zero at i
2
. Noting that Q(ω3) is some real number (depending on λ) between

0 and 1, we may write Q(ω3) = cosα, for some α, 0 < α < π
2
. This implies

that Q(λ
2
+ i) = secα.

The zeros, poles and branch values of Q along with

the horizontal generator γ.

Figure 5.

With this information it is straightforward to see that the zeros and poles of

(Q′/Q)2 and Q+ 1
Q
− (cosα+ secα) coincide. Since both functions are real

and positive on the line segment i
2
+ t, it follows that

(
Q′

Q

)2

= c2(Q+
1

Q
− (cosα + secα)) , (3.4)

for some positive c ∈ � .

Note that Q is also real on the lines Re{z} = 0, λ
2
, and has the same

zeros and poles as g. It follows immediately that the Gauss map g is a real

multiple of Q. That is:

g = AQ, A 6= 0, A ∈ � . (3.5)
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As observed in Remark 3.2, S must have a vertical plane of symmetry that

passes through the finite branch points of g. This implies that the lines

Re z = 0, λ
2
correspond to planar lines of curvature in vertical planes. Since

Q is real on these lines, the vertical plane(s) of symmetry must be parallel to

the (x1, x3)-plane. (Of course, we could have deduced this directly from the

properties of Q. The metric is (A|Q| + A−1|Q|−1)|dz|2, which is invariant

under reflection in the lines Re z = 0, λ
2
. Hence these lines are geodesics.

The second fundamental form is given by 1
2
Re{g′fdz2} = 1

4
Re{iQ′/Qdz2}.

On these lines dz = idv, Q is real and Q′ is imaginary. Hence iQ′

Q
dz2 is

real, which means that this geodesic is a line of curvature in a vertical plane

parallel to the (x1, x3) plane.)

We will now show that along the horizontal curves Im z = constant there

is always a nonzero period, which means that the Weierstrass data (3.1) (3.5)

on Tλ can never produce the required example. Because these curves lie in

horizontal planes and are symmetric with respect to the (x1, x3)-plane, the

only possible period is in the x2-direction. We will choose our generator to

be γ(t) = 3
4
i+ t, 0 ≤ t = λ. The period condition is then

Re
∫

γ
i(1 + g2)fdz = −Re

∫

γ
(g−1 + g) dz = 0 , (3.6)

where γ(t) = 3
4
i + t, 0 ≤ t ≤ λ. Using (3.5) we have that condition (3.6) is

equivalent to

A−1Re
∫

γ

dz

Q
= −ARe

∫

γ
Qdz . (3.7)

But along γ, dz is real and moreover Q is unitary, so Q−1 = Q. Hence (3.6)

is equivalent to

Re
∫

γ
Qdz = 0 . (3.8)

In other words, the parameter A is irrelevant to the closing of the period on

γ with the Weierstrass data (3.1) (3.5) on Tλ; either no example exists in

Case 2, or there is a one-parameter family of examples for each rectangular

torus. We will now show that no example exists. To do this, we will show

that (3.8) is false.
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By construction, Q ◦ γ(t) = Q( 3i
4
+ t) is a one-to-one and onto map from

the closed curve represented by γ onto the equator |z| = 1. Therefore we

may write Q = eiφ, φ = φ(t). Along γ, we have dQ
Q

= idφ and

dz =
dQ

Q′
=

Q

Q′

dQ

Q
=
iQ

Q′
dφ . (3.9)

Also note that along γ,Q + Q−1 = Q + Q = 2 cosφ. Hence the right-hand

side of (3.4) is real and negative. This means that Q′/Q is purely imaginary

on γ; in fact when Q = eiφ,

Q′

Q
= ± i c

√
(cosα + secα)− 2 cosφ . (3.10)

Hence,

Re
∫

γ
Qdz = ±Re

∫ 2π

0
eiφ[c−1(cos α + secα− 2 cos φ)−1/2] dφ (3.11)

= ± c−1
∫ 2π

0

cos φ dφ

((cos α + sec α)− 2 cos φ)1/2
.

The integral in (3.11) is clearly not zero for the following elementary reason.

Note that
∫ 2π

0
cos φ dφ = 0. However, when cos φ is positive the denomina-

tor in the integrand of (3.11) is smaller than cos α+ sec α while it is bigger

than cos α + sec α when cos φ is negative. Hence,

∫ 2π

0

cos φ dφ

(cos α + sec α− 2 cos φ)1/2
> 0 .

Thus condition (3.8) is not satisfied. Since this condition was necessary for

the existence of an example with data given in Case 2, we have shown that

Case 2 is impossible. 2

21



References

[1] M. Callahan, D. Hoffman, and W. H. Meeks III. The structure of singly-

periodic minimal surfaces. Inventiones Math., 99:455–481, 1990.
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