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1 Introduction

The compact smooth surfaces in �

3 with constant positive Gauss Curvature (K-

surfaces) form a natural class. A K-surface without boundary is itself the boundary of

a convex body, so it must be embedded. The surfaces of interest to us have non-empty

boundary and so are not necessarily embedded. A fundamental question is this: given

a collection γ = {C1 . . . , Cn} of Jordan curves in �

3, what are the K-surfaces with

boundary γ? For example, if γ is a single Jordan curve with no inflection points, does

γ bound a K-surface?

When γ is a single planar Jordan curve, the simplest case, a great deal can be

said. We begin our discussion of this case by recalling several elementary facts. Let

P be a plane and S a smooth surface in �

3. Let γ be a component of S ∩ P that

is not a point. The normal curvature (up to sign) of S ∩ P is the projection of the

curvature vector of S ∩P , considered as a curve in P , onto the normal line of S at P .

This means that an inflection point of γ ⊂ P ∩ S will have an asymptotic direction
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on S. Also, if S is tangent to P at a point p ∈ γ, then S has an asymptotic direction

at p (in the direction of γ).

We conclude that if a closed curve γ in a plane P bounds a K-surface S, then

γ is free of inflection points - i.e., γ is convex - and P meets S transversally. Let

G be the Gauss map of S. Since γ is convex, and S meets P transversally G(γ) is

a closed curve that meets each longitude exactly once and never passes through a

pole. (We can and do assume that P is the (x1, x2) plane.) In particular, G(γ) is an

embedded curve and G is injective in a neighborhood of γ, since G is regular. By the

Gauss-Bonnet formula and the fact that γ is a convex Jordan curve,

0 <
∫

S

KdA =
∫

γ
kgds+ 2π χ(S) < 2π[1 + χ(S)]

The strict inequality follows from the fact that the total curvature of γ in P ⊂ �

3

is 2π and its geodesic curvature must be everywhere less than its curvature, since

S is transversal to P . It follows that χ(S) > −1. Since χ(S) = 1 − 2 genus(S),

we conclude that genus (S) = 0, i.e. S is a disk, and from the estimate above,∫

S

KdA < 4π. This in turn implies that the Gaussian image of S is not the entire

sphere. Since the Gauss map G is open and G is one-to-one on γ = ∂S, we can

conclude that G is a diffeomorphism of S onto one of the components of S2 −G(γ).

In particular, G assumes one polar value exactly once, and the other not at all. From

this we conclude that the height function x3 has exactly one critical point, located in

intS which implies that S lies in one of the halfspaces determined by P . Moreover

S must be embedded. To see this, notice that near γ, the level curves S ∩ {x3 = c}

must be strictly convex Jordan curves. (Without loss of generality, we may assume

that the condition that S ∩ {x3 ≥ 0} and c > 0). The condition that S ⊂ {x3 = c}

is a strictly convex Jordan curve is an open condition. But since G|S is injective

and takes on only one polar value, S ∩ {x3 = c} cannot grow new components and,

as before, {x3 = c} ∩ S is strictly convex. Hence S is fibred by the strictly convex

Jordan curves S ∩ {x3 = c}, 0 ≤ c < x3(G
−1(0, 0,±1)). In particular S is embedded.

If S is an embedded K-surface whose boundary is a plane curve γ, one can apply

the Alexandrov Reflection Principle, using vertical planes, to prove that S inherits

the symmetries of γ. In particular, if γ is a circle, S must be a spherical cap. It

follows immediately in this simple case that if γ is a circle of radius ρ: it bounds no

K-surface with curvature K > 1/ρ2; to find a K-surface with a given boundary, it is

sometimes necessary to make K small. If K < ρ−2, γ bounds a large spherical cap
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that is not a graph over the disk bounded by γ, as well as a smaller one that is a

graph. In general K-surfaces are not unique.

The above discussion addresses the problem of uniqueness and the properties of

K-surfaces bounded by a plane curve γ. The existence problem has been solved by

Caffarelli, Nirenberg and Spruck [1] for somewhat more general boundaries in the

nonparametric setting. They proved that if γ is smooth and projects injectively

onto the boundary of a smooth strictly convex planar domain Ω, then γ bounds a

K-surface that is a graph over Ω, for K sufficiently small. This K-graph is unique

up to reflection in the plane of Ω. We conjecture that given a strictly convex plane

curve γ and K sufficiently small, γ bounds exactly two distinct K surfaces, up to

multiplicity. (A K-surface S with boundary γ has multiplicity 2 if any sufficiently

small perturbation of γ bounds either 2 or 0 K-surfaces near S. A K-surface S has

multiplicity 1 if any sufficiently small perturbation of γ bounds a single K-surface

near S.) In fact the theorem holds in all dimensions and for more general equations

of Monge-Ampere type.

Another basic question concerns K-surfaces whose boundary γ consists of the

union of two closed convex curves C1 and C2 contained in parallel planes P1 and P2,

respectively. As in the case of a single planar convex curve, it is not difficult to derive

some basic properties of solutions. Let S be such a K-surface. As before, S must

meet each plane Pi transversally, and therefore S lies locally on one side of each Pi.

The intersection of S with planes sufficiently close to and parallel to the planes Pi

must intersect S transversally in a single convex curve. The Gauss mapping G of S is

open and it is easy to argue that G is a diffeomorphism of S onto an annular region

of S2 that contains the equator. This implies that S is an embedded annulus, fibred

by convex curves in the slab between P1 and P2. Again, Alexandrov Reflection using

planes othogonal to the Pi shows that S inherits the symmetries of γ = {C1, C2}.

The existence problem is much more delicate and we will not settle it completely.

In this paper we will treat the case when the K-surface bounding γ can be represented

as a graph.

Theorem 1.1. Let Ω be an annulus in �

2 bounded by two strictly smooth convex

curves Γ1, Γ2. Suppose φ = {φ1, φ2} are smooth functions on Γ1,Γ2 and that there

exists a smooth function F on Ω, that agrees with φi on Γi and is strictly convex, i.e.,

the graph of F has positive Gauss curvature. Then there exists a K-surface that is
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a graph over Ω with the given boundary values φ. Moreover, K may be chosen to be

any positve constant less than the minimum value of the Gauss curvature of the graph

of F .

A simple case in which we can always construct the strictly convex function F

needed in Theorem 1.1 is the following.

Corollary 1.2. Let C1 and C2 be two closed strictly convex curves contained in par-

allel planes. Assume that C1 and C2 orthogonally project onto convex curves Γ1, Γ2,

respectively, where Γ = {Γ1,Γ2} is the boundary of an annulus Ω contained in a plane

P , which strictly separates the given curves. Then there is a smooth K-surface that

is a graph over Ω with boundary γ = {C1, C2}.

Note that in this case the boundary data φ of Theorem 1.1 consists of linear

functions and the construction of F is fairly straightforward.

We will in fact derive Theorem 1.1 as a corollary of a general theorem about

Monge-Ampere equations, in the spirit of [1], in annular domains Ω with strictly

convex boundaries.

We seek a strictly convex solution of

det(uij) = ψ(x,∇u) in Ω,(1.1)

u = φ ∈ C∞ on Γ = ∂Ω,(1.2)

where ψ1/n(x, p) is a positive C∞ function for x ∈ Ω̄, p ∈ Rn, which is convex in p.

Here Ω is an annulus in Rn with strictly convex smooth boundaries Γ = {Γ1,Γ2}.

We assume there exists a strictly convex subsolution u ∈ C∞(Ω̄), which equals φ

on Γ and satisfies

det(uij) ≥ ψ(x,∇u) + δ0 in Ω(1.3)

Theorem 1.3. Under condition (1.3), there exists a strictly convex solution u ∈

C∞(Ω̄) of (1.1),(1.2) with u ≥ u. This solution is unique.

Equations of the Monge-Ampere type have been extensively studied in [1] in

strictly convex domains. The novelty here lies in the fact that Ω is an annulus.

For the application to Theorem 1.1 (in fact the n dimensional version of Theorem

1.1) we take

ψ(x, p) ≡ K(1 + p2)
n+2

2 .
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Then ψ1/n(·, p) is easily seen to be convex in p. Also, with F and K as in Theorem

1.1, we may choose u = F and condition (1.3) is satisfied for small enough δ0.

Remark 1. We note that for arbitrary “convex annuli” Ω and data φ, it is not

always possible to find a K-surface with these boundary values. For example, if φ is

identically zero on both boundaries, then there is no surface with strictly positive (or

strictly negative) curvature with these boundary values. There are other obstructions.

We will now present one of them, based on an observation of C. Bonnatti. Let Ω be a

convex annulus and Γ2 its inner boundary. The boundary data on ∂Ω = Γ = {Γ1,Γ2}

given by φ = {φ1, φ2} defines two curves γi as graphs over Γi, i = 1, 2. Denote by Zi

the vertical cylinder over Γi. We may parametrize Γ2 by the angle θ of its outward

normal vector, measured from a fixed direction, and parametrize Γ1 by letting Γ1(θ)

equal the intersection of Γ1 and the outward pointing normal by Γ2(θ) + t~n(θ), t ≥ 0,

where n(θ) is the unit-vector in the θ-direction.

Let w(θ) be the curvature vector of γ2 at γ2(θ). We observe that since γ2 is a graph

over a strictly convex plane curve Γ2, the component of w(θ) in the direction n(θ) is

always negative. In particular w points into the cylinder Z2. Since F is convex, the

graph of F lies above the tangent plane to graph F at γ2(θ) in the simply connected

convex region Ωθ ⊂ Ω defined by the tangent line to Γ2 at Γ2(θ). Since the graph

of F is positively curved at γ2(θ), w(θ) must point into the the halfspace above the

tangent plane to graph F at γ2(θ). Hence the ray γ2(θ) − tw(θ), t > 0, strikes the

cylinder Z1 at some point (Γ1(y(θ)), h(θ)). This relationship defines h(θ) and forces

the inequality

h(θ) < φ1(y(θ)) ,

valid for all θ, 0 ≤ θ ≤ 2π. Now in case φ′2(θ̂) = 0, i.e., γ ′2(θ̂) is horizontal, w(θ̂) must

lie in the vertical plane containg n(θ̂) , which means that the ray γ2(θ̂)− tw(θ̂) strikes

Z1 at a point above Γ1(θ̂), i.e., y(θ̂) = θ̂. From the above inequality, we have

h(θ̂) < φ1(θ̂) ,(1.4)

valid whenever γ ′2(θ̂) is horizontal. In particular, if φ2 has a local maximum at θ, then

w(θ) must have a nonpositive vertical component, which means that the h(θ) > φ2(θ).

Combining this with (1.4) we have

φ2(θ) < φ1(θ) ,(1.5)
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valid at all local maxima of φ2. In particular

max
Γ2

φ2 = φ2(θ) ≤ max
Γ1

φ1 .(1.6)

Conditions (1.4)–(1.6) constitute obstructions to finding a strictly convex function

on Ω with boundary values φ. Obstructions to the existence of a strictly concave

function follow immediately by applying the previous arguments to−φ = {−φ1,−φ2},

yielding reversed inequalities for (1.4) and (1.5) and

min
Γ2

φ2 = φ2(θ) ≥ min
Γ1

φ1 .(1.7)

Figure 1
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Remark 2. One would like to know necessary and sufficient conditions on γ =

{γ1, . . . , γn} in order that γ be the boundary of a K-surface, or even a positively

curved surface. It is tempting to conjecture that such a condition might be that γ is

extreme, that is γ is contained in the boundary of its convex hull.. However there is

a simple example that shows that this condition is too strong. Begin with two great

circles on the unit sphere that meet orthogonally. Fatten each one a bit to produce

two strips that overlap in two small regions near the intersection points. Next, join

the strips together near one of the points producing a connected surface of positive

curvature which is topologically a torus minus a disk, with a self intersecting region

near the other intersection point. One can now perturb this boundary slightly by

pulling in one of the strips near the intersection, to produce a smooth Jordan curve

γ, which bounds a surface whose curvature is almost exactly equal to 1, but is not

extreme. It is probably the case that this new contour can be chosen to bound a

K-surface.

The remainder of the paper contains the technical proof of Theorem 1.3 and is

organized as follows. Section 2 sets up the continuity method and reduces the proof

of the theorem to the derivation of suitable a priori estimates up to second derivatives

as in [1]. These estimates are obtained in §3. In future work we hope to return to

the existence question for convex closed curves contained in parallel planes.
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2 The continuity method

Let u be a strictly convex, strict subsolution of (1.1),(1.2). That is,

det uij ≥ ψ(x,∇u) + δ0 in Ω
u = φ on ∂Ω .

(2.1)

Since ψ is strictly positive we can find (by the Implicit Function Theorem) a strictly

convex function u0 ∈ C∞(Ω) with u0 = φ on ∂Ω and satisfying

det uij ≥ det u0ij + ε0 .(2.2)

for some 0 < ε0 < δ0. By the maximum principle we also have

u < u0 in Ω

Set for 0 ≤ t ≤ 1

ψt(x,∇u) = tψ(x,∇u) + (1− t) det u0ij .

For each t in 0 ≤ t ≤ 1 we wish to find a strictly convex solution ut in C2+α(Ω) of

det utij = ψt(x,∇ut) in Ω
ut = φ on ∂Ω .

(2.3)

For t = 0 we have u0 as the solution. Note that solutions of (2.3) are unique by the

maximum principle since ψt does not have any u dependence, and is still convex in

p. Using the Implicit Function Theorem and classical Schauder theory one finds that

the set of t for which (2.3) is solvable is open. If one can establish the apriori estimate

|ut|2+α ≤ K

independent of t it follows that the set such t is also closed, and hence is the whole

unit interval. The function u1 is then our desired solution of (1.1),(1.2).

It is now well understood, through the work of Evans, Krylov, Trudinger, Caffarelli-

Nirenberg-Spruck (see [1, 2] for references) how to derive the estimates for |ut|2+α once

we have derived the apriori estimate

|ut|2 ≤ K independent of t .(2.4)

Thus in the following section we shall derive the estimate (2.4) to complete the proof

of Theorem 1.3.
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For later reference, we observe that by our construction

det uij = t det uij + (1− t) det uij

≥ t(ψ(x,∇u) + δ0) + (1− t) (det u0ij + ε0)

by (2.1) and (2.2). Therefore

det uij ≥ ψt(x,∇u) + ε0 in Ω .(2.5)
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3 Apriori estimates for derivatives up to second

order

To establish the estimates (2.4) we shall consider only the case t = 1 since the same

arguments hold for any 0 ≤ t ≤ 1. We shall follow the arguments of [1, § 7] as closely

as possible emphasizing only the new arguments needed to obtain the estimates at

the inner convex boundary Γ2.

Since u is convex, u ≤ maxΓ1
φ. Furthermore, u ≥ u by the maximum principle.

Thus

|u| ≤ K1 .(3.1)

Again by the convexity of u, |∇u| achieves its maximum on ∂Ω, so it suffices to

estimate |uν | on ∂Ω (ν is the exterior unit normal) since the tangential derivatives of

u are known on ∂Ω. Since u ≥ u in Ω and u = u = φ on ∂Ω, we have

uν ≤ uν .(3.2)

To estimate uν from below, choose any point on ∂Ω. We may suppose it is the origin

with the xn axis pointing in the interior normal direction. Let y ∈ ∂Ω be the unique

point on ∂Ω where the positive xn axis leaves Ω transversally. By (3.2) and the

convexity of u, we have

− uν(0) = un(0) ≤ un(y) ≤ 2|∇u(y)| .(3.3)

Thus (3.2), (3.3) imply

|∇u| ≤ K2 in Ω .

We turn next to second derivative estimates on ∂Ω. Let 0 ∈ ∂Ω be a point with

the xn axis pointing in the interior normal direction. Near 0, ∂Ω is represented by

xn = ρ(x′) = 1/2Bαβxαxβ + 0(|x′|3) .(3.4)

If 0 ∈ Γ1 , {Bαβ} is strictly positive definite while if 0 ∈ Γ2 , {Bαβ} is strictly negative

definite. In either case, since (u− φ) (x′, ρ) = 0 near 0, we obtain

|uαβ(0)| = |un(0)| |Bαβ| ≤ K .(3.5)

As in [1] the plan is to obtain an estimate

|uαn(0)| ≤ K , α < n(3.6)
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for the mixed normal tangential derivatives and also an estimate

∑

α1β<n

uαβ(0)ξαξβ ≥ c0(3.7)

(for any unit vector ξ = (ξ1, . . . , ξn−1)) of the strict convexity of u in the tangential

directions to ∂Ω at the origin. From (3.5), (3.6), (3.7), it is easy to estimate [1, p.377]

|unn(0)| ≤ K

from the equation (1.1).

For 0 ∈ Γ1 the estimates (3.6), (3.7) are obtained precisely as in the proof of

Theorem 7.1 in [1]. That is, the arguments are essentially local and the presence of

Γ2 has no effect.

So suppose 0 ∈ Γ2. To establish (3.7) it suffices by rotating coordinates to show

for a single direction, say x1, that u11 ≥ c0 > 0. We have

(u− u) (x′, ρ(x′)) = 0 on Γ2 near 0 .

Hence,

(u− u)11(0) = −(u− u)nB11 ≥ 0

since B11 < 0 and (u − u)n ≥ 0 (by (3.2)). Therefore, u11(0) ≥ u11(0) ≥ c0, proving

(3.7).

The main step, then, is the estimate for |uαn(0)| with 0 ∈ Γ2. Here we make use

of the convexity of ψ1/n(·, p) in an essential way.

Rewriting our equation in the form

(det uij)
1/n = ψ1/n(x,∇u) ≡ f(x,∇u)

let us apply the operator

T = ∂α +
∑

β<n

Bαβ(xβ∂n − xn∂β) , α < n .(3.8)

Since xβ∂n − xn∂β is the infinitesimal generator of a rotation, we find

LTu = Tf(x,∇u) = Σfpi
(Tu)i + 0(1)(3.9)

where 0(1) represents a term bounded by a constant under control. Here

L =
1

n
fuij∂i∂j ,(3.10)
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where {uij} is the inverse of the Hessian matrix {uij}, is the linearization of the

concave operator

F (D2u) = (det uij)
1/n(3.11)

Set

L = L− fpi
∂i .(3.12)

Then (3.9) implies

|LT (u− φ)| ≤ C(1 + Σuii) .(3.13)

Furthermore,
|T (u− φ)| ≤ C|x′|2 on Γ2 near 0
|T (u− φ)| ≤ C in Ω .

(3.14)

Lemma 3.1.
i) L(u− u) ≥ θ1 > 0 in Ω
ii) (u− u) (x) ≥ θ2 d(x, ∂Ω) in Ω

(u− u)ν ≤ −θ3 on ∂Ω

for uniform constants θ1, θ2, θ3 . Here d(x, ∂Ω) is the distance function to ∂Ω.

Proof. By the concavity of F (D2u) = (det uij)
1/n,

F (D2u) ≤ F (D2u) + L(u− u) .

Hence,

L(u− u) ≥ F (D2u)− f(x,∇u) .(3.15)

Since u satisfies (2.5)

F (D2u) ≥ (ψ(x,∇u) + ε0)
1/n ≥ f(x,∇u) + cε0 .

Thus (3.15) yields

L(u− u) ≥ f(x,∇u)− f(x,∇u) + cε0 .(3.16)

By assumption, f(·, p) is convex. Therefore

f(x,∇u) ≥ f(x,∇u) + (ui − ui)fpi
(x,∇u) .(3.17)

Combining (3.16), (3.17) gives

L(u− u) ≥ cε0
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proving (i) with θ1 = cε0.

To prove (ii), let h be the harmonic extension of the boundary data φ to Ω. Since

u is strictly convex and satisfies (2.5) we can choose ε1 > 0 so small that

w ≡ (1− ε1)u+ ε1h

is strictly convex and also a subsolution, i.e.,

det wij ≥ ψ(x,∇w) .

Then u ≥ w in Ω, uν ≤ wν on ∂Ω by the maximum principle. In particular,

u− u ≥ ε1(h− u) in Ω
(u− u)ν ≤ ε1(h− u)ν on ∂Ω .

(3.18)

But ∆(h− u) = −∆u ≤ −δ < 0 in Ω for a uniform constant δ > 0, and h− u = 0 on

∂Ω. A standard barrier argument gives

h− u ≥ ε2d(x, ∂Ω) in Ω
(h− u)ν ≤ −ε3 on ∂Ω .

(3.19)

The combination of (3.18), (3.19) completes the proof of part (ii). 2

Consider now the neighborhood Ωδ of 0 given by

Ωδ = {x ∈ Ω | d(x,Γ2) < δ, xn > −δ} .

Define

v = A(u− u) +Bxn + C
|x|2

2

where A,B,C will be chosen so that v is a lower barrier for ±T (u− φ) in Ωδ. Using

Lemma 3.1 part (i), we find

Lv ≥ θ1A+ CΣuii − k(B + δC) in Ω(3.20)

for a uniform constant k > 0. Let us fix C to be the same constant as in (3.13),

(3.14). Then for A large as compared with B (that is, θ1A− k(B + δ) > C), (3.20),

(3.13) gives

Lv ≥ |LT (u− φ)| in Ωδ .(3.21)

We make v ≤ −|T (u− φ)| on ∂Ωδ as follows:
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Case 1. On Γ2, v = Bxn +C/2|x|2 ≤ (−Bθ+C)|x′|2 ≤ −C|x′|2 ≤ −|T (u− φ)| for

B large compared with C.

Case 2. On xn = −δ, v ≤ −Bδ + kCδ ≤ −C ≤ −|T (u− φ)| for B large compared

with C.

Now consider B,C fixed to satisfy all our previous requirements.

Case 3. On d(x, ∂Ω) = δ, v ≤ −Aθ2δ + (B + kC)δ ≤ −C (by Lemma 3.1 part (ii))

for A large enough.

Hence by the maximum principle,

v ≤ ±T (u− φ) in Ωδ

and since both sides vanish at 0,

vn(0) ≤ ± ∂nT (u− φ) (0) .

That is,

|uαn(0)− φαn(0)| ≤ −vn(0) = A(u− u)n(0)−B ≤ K .

This completes the proof of the estimate (3.6) on all of ∂Ω. Consequently,

Σ|uij| ≤ K on ∂Ω .(3.22)

Applying the argument of [1, p397(d)], (3.22) implies

Σ|uij| ≤ K ′ in Ω .

Recalling the remarks of § 2, the proof of Theorem 1.3 is complete.
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