
On Multivortices in the Electroweak Theory II:

Existence of Bogomol’nyi solutions in R2

Joel Spruck∗ Yisong Yang†

Abstract

1 Introduction

In Part I of this paper [11], we have proven the existence of Abrikosov like periodic

vortices for the bosonic sector models proposed by Ambjorn and Olesen [4] of the full

Glashow-Salam-Weinberg electroweak theory, where the gauge group is SU(2)×U(1).

These solutions were found from a Bogomol’nyi system of first order equations which

take on a more complicated form than in the classical abelian case due to the anti-

screening of the magnetic field. As a result, this system further reduces to a semilinear

elliptic system of nonstandard type and we showed in Part I that the number of such

vortices is bounded above in terms of the relevant physical parameters (although the

locations may be prescribed arbitrarily).

The goal of the present paper is to study this Bogomol’nyi system for the self-

dual electroweak interactions in the full space �

2. These solutions are necessarily

of infinite energy and thus the method of Part I cannot be directly applied. Our

main strategy then, is to combine the method of weighted Sobolev spaces used by

McOwen [8] in his study of conformal deformation equations, with the crucial change

of variables introduced in Part I to reduce our elliptic system to a lower diagonal

form. As a result, we are able to show (Theorem 3.3) that for any distribution of

vortex locations there is a two parameter family of gauge-distinct solutions.

In order to fix the ideas, we first illustrate this method applied to the simplified

SO(3) theory of Ambjorn and Olesen [6] (see also Yang [12]) in which the W-bosons
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acquire mass through a Higgs mechanism but the Higgs fields are neglected from the

Lagrangian. Here the system of Bogomol’nyi equations can be reduced to a single

semilinear elliptic equation very closely related to the equation of prescribed Gaussian

curvature. Thus in Section 2, we apply McOwen’s method to study the existence of

massive SO(3) vortices. We then go on in Section 3 to study the full electroweak

theory and prove our main results.

2 The Massive SO(3) Gauge Theory

According to the discussion of Yang [12], Ambjorn and Olesen [6] , the reduced

energy density for vortex-line solutions of the massive SO(3) gauge field theory is

given by

E = 1
2
f 212 +|D1W + iD2W |

2 + 2m2
W |W |

2

−2ef12|W |
2 + 2e2|W |4,

(2.1)

where W is a complex scalar field, Aj (j = 1, 2) is a vector field, f12 = ∂1A2 − ∂2A1,

and

DjW = ∂jW − ieAjW .

By virtue of the relation (DjDk−DkDj)W = −iefjkW , the Euler-Lagrange equa-

tions associated with (2.1) may be written as





DjDjW = 2m2
WW − 3ef12W + 4e2|W |2W,

∂jfjk = ie(W †(DkW )−W (DkW )†)
+3eεjk(W

†(DjW ) +W (DjW )†) .
(2.2)

By rewriting the the energy density E as

E = |D1W + iD2W |
2 +

1

2
(f12 − [

m2
W

e
+ 2e|W |2])2 +

m2
W

e
(f12 −

m2
W

2e
)(2.3)

the Bogomol’nyi equations associated to (2.1), (2.2) are

{
D1W + iD2W = 0 ,

f12 − (
m2
W

e
+ 2e|W |2) = 0 .

(2.4)

It can be shown that (2.4) implies (2.2). We are interested in solutions of (2.4) over

the full �

2. What is the energy of such solutions? Using (2.4) in (2.3) we have

E =
m2

W

e
(f12 −

m2
W

2e
) =

1

2

m4
W

e2
+ 2m2

W |W |
2 ≥

m4
W

2e2
.

Therefore the total energy
∫

R2
Edx is necessarily infinite.
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Let z0 be a zero of W . Equation (2.3a) implies that in a neighborhood of z = z0 ,

W (z) = (z − z0)
n0h0(x1, x2) ,

where n0 is an integer and h0 is a smooth nonvanishing function. Thus the zero set

Z(W ) ofW is discrete. If Z(W ) = {z1, . . . , zm} is finite and the multiplicity of z = z`

is n`, then the replacement u = ln |W |2 reduces (2.3) to

∆u = −2m2
W − 4e2eu + 4π

m∑

`=1

n`δ(z − z`) .(2.5)

Define

u0 =
m∑

`=1

ln |z − z`|
2n` −m2

W (x21 + x22) .

Then

∆u0 = 4π
m∑

`=1

n`δ(z − z`)− 2m2
W

and

u1 = u− u0

satisfies

∆u1 = −4e
2U0e

u1

where

U0 = eu0 = Πm
`−1|z − z`|

2n`e−m
2
W
r2 , r = |z| .(2.6)

We now introduce the functions u2 ∈ C
∞(�

2) so that

u2 = −α ln r , r ≥ 1

where α > 0 is a constant. Let η = u1 − u2. Then (2.5) is reduced to

∆η +Keη = −∆u2 ≡ f(2.7)

where

K = 4e2U0e
u2 .

Because of (2.6), the function K satisfies:

K ≥ 0 , K = 0(e−r) for large r > 0 .(2.8)

It is easily seen that f is of compact support. Also,
∫

R2
fdx =

∫

|x|≤1
fdx = −

∫

|x|≤1
∆u2 dx

= −
∫

|x|=1

∂u2
∂r

ds = 2πα
(2.9)
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As in McOwen [8] we define the functionals

I(η) =
∫

R2

[
1

2
|∇η|2 + fη

]
dx, J(η) =

∫

R2
Keηdx .

In order that these functionals be defined properly, we need to consider a suitable

weighted Sobolev space. Let dµ = hdx, where h is a pointwise C∞ function with

h(r) = r−4 for r = |z| ≥ 1 .

Let H denote the Hilbert space of L2`oc functions for which

‖ η ‖2H=‖ ∇η ‖
2
L2(dx) + ‖ η ‖

2
L2(dµ)<∞ .

Notice that H contains the constants and thus

η 7−→
∫

R2
ηdµ

is a continuous linear functional on H so that

H̃ = {η ∈ H :
∫
ηdµ = 0}

is a closed subspace of H. Therefore we have for each η ∈ H the decomposition:

η = η + η′ , η = constant, η′ ∈ H̃ .(2.10)

The following results may be found in McOwen [8]:

Lemma 2.1. For any 0 < ε < 4π, there is C(ε) > 0 so that

∫

R2
ea|η|dµ ≤ C(ε) exp

[
a2

4(4π − ε)
‖ ∇η ‖2L2(dx)

]

for any a ∈ � .

Lemma 2.2. The Poincaré inequality holds on H̃: there is a constant C > 0 so that

‖ η ‖2L2(dµ)≤ C ‖ ∇η ‖2L2(dx) , η ∈ H̃ .

Lemma 2.3. The injection H̃ −→ L2(dµ) is a compact embedding.

Thus we see that both I(η) and J(η) are well defined on H. Consider now the

optimization problem

min{I(η) | J(η) = 2πα , η ∈ H} .(2.11)
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Lemma 2.4. The problem (2.11) has a solution provided 0 < α < 4.

Proof. For η ∈ H , let us use the decomposition (2.10). If J(η) = 2πα, then

eη
∫

R2
Keη

′

dx = 2πα ,

or

η = ln 2πα− ln
[∫

R2
Keη

′

dx
]
.(2.12)

As a consequence,

I(η) =
∫

R2

1

2
|∇η′|2dx+

∫

R2
(fη + fη′)dx

= 1
2
‖ ∇η′ ‖2L2(dx) +

∫

R2
fη′dx+ 2πα

[
ln 2πα− ln

(∫

R2
Keη

′

dx
)](2.13)

On the other hand using Lemma 2.2 we find

∫

R2
Keη

′

dx =
∫

R2
Kh−1eη

′

hdx ≤ C1

∫

R2
eη

′

dµ

≤ C ′1 exp
(

1
4(4π−ε)

‖ ∇η′ ‖2L2(dx)

)
,

(2.14)

and ∣∣∣∣
∫

R2
fη′dx

∣∣∣∣ =
∣∣∣∣
∫

R2
fh−1/2η′h1/2dx

∣∣∣∣ ≤ ε−1C2 + ε ‖ η′ ‖2L2(dµ) .(2.15)

Substituting (2.14)–(2.15) into (2.13) yields the lower bound :

I(η) ≥
1

2

(
1−

πα

4π − ε
− εC ′

)
‖ ∇η′ ‖2L2(dx) −C

′′(ε)(2.16)

where C ′ is a constant independent of ε, α > 0.

Since 0 < α < 4, we can fix ε > 0 sufficiently small to make

σ ≡ 1−
πα

4π − ε
− εC ′ > 0 .

Let {ηj} be a minimizing sequence of (2.11). Then (2.16) says that

‖ ∇η′ ‖2L2(dx)≤M , j = 1, 2, . . . .

where M > 0 is a constant.

By virtue of (2.12) and (2.14), it is seen that {ηj} is bounded as well. So we may

assume

η′j → η′ ∈ H̃ weakly ,

ηj → η ∈ � .
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Hence from Lemma 2.3, we may assume that ηj → η = η+η′ ∈ H strongly in L2(dµ).

Therefore,
|
∫
R2 fηj dx−

∫
R2 fη dx| ≤

∫
R2 |f |h−1/2|ηj − η|h1/2dx

≤ C ‖ ηj − η ‖L2(dµ)→ 0 as j →∞ .

and
|
∫
R2 Keηjdx−

∫
R2 Keηdx| ≤

∫
R2 Ke|ηj |+|η||ηj − η|dx

≤ C
∫
R2 Ke|η

′
j |h−3/4h1/4|ηj − η|h1/2dx

≤ C (
∫
R2 Kh−3)

1/4
(∫

R2 e4|η
′
j |dµ

)1/4
(
∫
R2 |ηj − η|2dµ)

1/4

≤ C ′ exp
[

1
4π−1

‖ ∇ηj ‖
2
L2(dx)

]
‖ ηj − η ‖L2(dµ)→ 0 as j →∞ .

Thus I(η) ≤ lim inf
j→∞

I(ηj) and J(η) = lim
j→∞

J(ηj) = 2πα. In other words, η solves

(2.11). 2

Lemma 2.5. The minimizer η of (2.11) obtained in Lemma 2.4 is a solution to (2.7)

Proof. By the Lagrange multiplier rule, ∃λ ∈ � so that
∫

R2
(Dη ·Dφ+ fφ)dx = λ

∫

R2
Keηφ dx, ∀φ ∈ H .(2.17)

Taking the test function φ ≡ 1 in (2.17), we get

2πα = λJ(η) = 2παλ .

Hence λ = 1, and η is a weak solution of (2.7). Then elliptic regularity theory implies

that η is a C∞ solution of (2.7).

Of course, different values of α corresponds to different solutions of (2.7). Do these

different solutions give rise to different (gauge-distinct) solutions of the Bogomol’nyi

system (2.4)? To answer this, let us recall that

u− u0 + u1 = u0 + u2 + η

and

K = 4e2U0e
u2 = 4e2eu0eu2 .

Hence

2πα =
∫

R2
Keηdx =

∫

R2
4e2eu0+u2+ηdx

= 4e2
∫

R2
eudx = 4e2

∫

R2
|W |2dx .

(2.18)

But (2.18) is invariant under gauge transformations (W 7→ Weiω) and thus different

α gives rise to gauge-distinct solutions of the Bogomol’nyi system (2.4). We have

thus shown
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Theorem 2.6. Let z1, . . . , zm ∈ � = �

2 and n1, . . . , nm ∈ � +. Then, for any

0 < α < 4, the Bogomol’nyi equations (2.4) have a solution (W (α), A(α)) satisfying
∫

�

2
|W (α)|dx =

πα

2e2
,

Z(W (α)) = {z1, . . . , zm}, and the multiplicity of the zero z = z` of W (α) is n` (` =

1, . . . ,m). In other words, for any distribution of zero locations z1, . . . zm ∈ �

2,

(2.4) have a continuous family of gauge-distinct solutions labeled by the parameter

0 < α < 4 which realize these zeros.

2

We now turn to the full electroweak theory.

3 The Full SU (2)× U (1) Electroweak Theory

We have seen in Section 3 of Part I that the Bogomol’nyi equations for the bosonic

sector of the SU(2)× U(1) gauge invariant electroweak theory take the form




D1W + iD2W = 0
P12 = g

2 sin θ
φ20 + 2g sin θ|W |2 ,

Z12 = g
2 ln θ

(φ2 − φ20) + 2g ln θ|W |2 ,
Zj = −2 ln θ

g
εjk∂k lnφ ,

(3.1)

where W is a complex field, φ is a real field, P12 = ∂1P2 − ∂2P1 (P is the gauge

photon vector field), Z12 = ∂1Z2 − ∂Z1 (Z is the massive Z meson vector field),

DjW = ∂jW − ig ( Pj sin θ+Zj ln θ)W . Recall that, in the theory on a periodic cell,
∫

Ω
P12 =

2πN

e
and

∫

Ω
Z12 = 0 .

We now consider the model on the full R2.

The energy density of the electroweak theory (in the unitary gauge) is:

E = |D1W + iD2W |
2 + 1

2
P 212 +

1
2
Z212

−2g(Z12 ln θ + P12 sin θ)|W |
2 + 2g2|W |4

+(∂jφ)
2 + 1

4 ln2 θ
g2φ2Z2j + g2φ2|W |2 + λ(φ20 − φ2)2 .

(3.2)

Let (φ,W, P, Z) be a solution to (3.1). Then

E ≥ 1
2
P 212 +

1
2
Z212 − 2g(Z12 ln θ + P12 sin θ)|W |

2

+2g2|W |4 + g2φ2|W |2 + λ(φ20 − φ2)2

= 1
2
( g2

4 sin2 θ
φ40 + 2g2φ20|W |

2 + 4g2 sin2 θ|W |4)

+1
2
( g2

4 ln2 θ
(φ2 − φ20)

2 + 4g2 ln2 θ|W |4 + 2g2(φ2 − φ20)|W |
2)

−2g( g
2
(φ2 − φ20) + 2g ln2 θ|W |2 + g

2
φ20 + 2g sin2 θ|W |2)|W |2

+ 2g2|W |4 + g2φ2|W |2 + λ(φ20 − φ2)2

≥ g2

δ sin2 θ
φ40
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which means that the total energy
∫

R2
Edx must be infinite again.

Define as before the new variables

u = ln |W |2 , w = lnφ2 .

Then equations (3.1) are transformed into the system

{
∆u = −g2ew − eg2eu + 4π

∑m
`=1 n`δ(z − z`) ,

∆w = g2

2 ln2 θ
(ew − φ20) + 2g2eu .

(3.3)

Let {
u0 =

∑m
`=1 ln |z − z`|

2n` ,

w0 = −
g2φ2

0

4 ln2 θ
(x21 + x22) ;

{
u1 = u− u0 ,
w1 = w − w0 .

Then u1, w1 satisfy {
∆u1 = −g

2ew0+w1 − 4g2eu0+u1

∆w1 =
g2

2 ln2 θ
ew0+w1 + 2g2eu0+u1

(3.4)

The term eu0+u1 is a bad term while ew0+w1 is a good term, because ew0 decays

exponentially fast.

As in the periodic case, we introduce the change of variables as follows:
{
u2 = u1 + 2w1 ,
w2 = u1 .

Then equations (3.4) becomes

{
∆w2 = −g

2ew0e
1
2
(u2−w2) − 4g2eu0+w2 ,

∆u2 = g2 tan2 θew0e
1
2
(u2−w2)

(3.5)

As in §2, we make suitable translations:
{
u2 = u3 + ξ ,
w2 = w3 + ζ ,

where u3, w3 are smooth functions so that




u3 = α ln r ,
r ≥ 1

w3 = −β ln r ,

with α, β > 0. Hence ∆u3,∆w3 have compact supports and equations (3.5) become

{
∆ζ = −g2ew0e

1
2
(u3−w3)e

1
2
(ξ−ζ) − 4g2eu0+w3eζ + g ,

∆ξ = g2 tan2 θew0e
1
2
(u3−w3)e

1
2
(ξ−ζ) + f ,

(3.6)
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where

f ≡ −∆u3 g ≡ −∆w3 .

As before (see (2.9)), we have
∫

R2
fdx = −2πα ,

∫

R2
gdx = 2πβ .

Let us now impose the constraints:

g2 tan2 θ
∫

R2
ew0e

1
2
(u3−w3)e

1
2
(ξ−ζ)dx = 2πα ,(3.7)

and

g2
∫

R2
ew0e

1
2
(u3−w3)e

1
2
(ξ−ζ)dx+ 4g2

∫

R2
eu0+w3eζdx = 2πβ ,

or

4g2
∫

R2
eu0+w3eζdx = 2π

(
β −

α

tan2 θ

)
.(3.8)

In order to make sense out of (3.8), we require:

β >
α

tan2 θ
.(3.9)

Recall that

eu0+w3 = O(r2N−β) for large r > 0

where N = n1 + · · ·+ n`. Hence, if

β ≥ 2N + 4 ,(3.10)

then

eu0+w3 = O(r−4) for large r > 0 .(3.11)

This property is important in our discussions.

On the other hand, since

ew0 = O

(
e−

g2φ2
0

4 ln2 θ
r2
)
,

we have

ew0e
1
2
(u3−w3) = O(e−r) for large r > 0 .(3.12)

Let us consider the optimization problem as in the periodic case:

min {I(ξ, ζ) | ξ, ζ ∈ H, (ξ, ζ) satisfy the constraints (3.7)–(3.8)} .(3.13)

where

I(ξ, ζ) =
∫

R2
dx
[
1

2
|∇ξ|2 +

1

2
σ|∇ζ|2 + fξ + σgζ

]
.

From (3.11)–(3.12) and Lemma 2.1, it is easily seen that (3.7), (3.8) are well-defined

over H.
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Lemma 3.1. If σ = tan2 θ, then a solution (ξ, ζ) of (3.13) is a solution (3.6).

Proof. For σ > 0, let (ξ, ζ) be a solution of (3.13). Since the Frechet derivative of the

constraint functionals are linearly independent, the Lagrange multipler rule implies

there are constants λ, µ ∈ � so that

∫

R2
(∇ξ · ∇φ+ fφ)dx =

1

2
λg2 tan2 θ

∫

R2
ew0e

1
2
(u3−w3)e

1
2
(ξ−ζ)φdx ,(3.14)

∫

R2
(σ∇ζ · ∇ψ + σgψ)dx = −

1

2
λg2 tan2 θ

∫

R2
ew0e

1
2
(u3−w3)e

1
2
(ξ−ζ)ψdx

+µ4g2
∫

R2
eu0+w3eζψdx , φ, ψ ∈ H .

(3.15)

In (3.14), put φ ≡ 1. We obtain −2πα = 1
2
λ2πα. Hence λ = −2 and (3.6b) is

recovered. Let ψ ≡ 1 in (3.15). We get 2πβσ = 2πα + µ · 2π
(
β − α

tan2 θ

)
. To recover

(3.6a), we need σ = tan2 θ. Hence

µ = (β tan2 θ − α)/(β − α/ tan2 θ) = tan2 θ .

Therefore (3.6a) is recovered as well. This proves the lemma.

Thus we see that it is sufficient to solve the constrained optimization problem

(3.13). As in §2, we make the decomposition

ξ = ξ + ξ′ , ζ = ζ + ζ ′ ,

where ξ′, ζ ′ ∈ H̃. Equation (3.8) says that

eζ
∫

R2
eu0+w3eζ

′

dx =
π

2g2

(
β −

α

tan2 θ

)
,

or

ζ = ln

[
π

2g2
(β −

α

tan2 θ
)

]
− ln

[∫

R2
eu0+w3eζ

′

dx
]
.(3.16)

From (3.7), we get

e
1
2
(ξ−ζ)

∫

R2
ew0e

1
2
(u3−w3)e

1
2
(ξ′−ζ′)dx =

2πα

g2 tan2 θ
,

or

ξ = ζ + 2 ln

(
2πα

g2 tan2 θ

)
− 2 ln

[∫

R2
ew0e

1
2
(u3−w3)e

1
2
(ξ′−ζ′)dx

]
.(3.17)

As a consequence, the objective functional I(ξ, ζ) takes the form

I(ξ, ζ) =
∫

R2

[
1

2
|∇ξ′|2 +

1

2
tan2 θ |∇ζ ′|2

]
dx

+
∫

R2
(fξ′ + tan2 θ gζ ′)− 2πα ξ + 2πβ tan2 θ ζ .

(3.18)
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Let us first try to estimate the term

Λ = −2πα ξ + 2πβ tan2 θ ζ .

We have from (3.16)–(3.17), that

Λ = −2πα
[
ζ − 2 ln(

∫

R2
ew0e

1
2
(u3−w3)e

1
2
(ξ′−ζ′)dx)

]
+ 2πβ tan2 θ ζ + C1

= −2π tan2 θ(β − α tan2 θ)ζ + 4πα ln
[∫

R2
ew0e

1
2
(u3−w3)e

1
2
(ξ′−ζ′)dx

]
+ C1 .

(3.19)

Let us find the lower bound for
∫

R2
ew0e

1
2
(u3−w3)e

1
2
(ξ′−ζ′)dx. We have

∫

R2
ew0e

1
2
(u3−w3)e

1
2
(ξ′−ζ′)dx =

∫

R2
h−1ew0e

1
2
(u3−w3)e

1
2
(ξ′−ζ′)dµ

≥ ε0

∫

R2
ew0e

1
2
(u3−w3)e

1
2
(ξ′−ζ′)dµ

≥ ε0C2 exp
[∫

R2

[
w0 +

1

2
(u3 − w3)

]
dµ+

∫

R2

1

2
(ξ′ − ζ ′)dµ

]
.

Here we have used h−1 ≥ ε0, h = O(r−4) for large r > 0, w0 = O(r2), u3, w3 = O(ln r),

so that w0+
1
2
(u3−w3) ∈ L(dµ); then the final inequality above follows from Jensen’s

inequality.

Thus (3.19) implies:

Λ ≥ 2π tan2 θ(β −
α

tan2 θ
)ζ − C3 .(3.20)

We next analyze (3.16). From (3.11) we see that eu0+w3h−1 = O(1). Hence,

∫
R2 eu0+w3eζ

′

dx =
∫
R2 eu0+w3h−1eζ

′

dµ ≤ C4

∫

R2
eζ

′

dµ

≤ C5(ε) exp
[

1
4(4π−ε)

‖ ∇ζ ′ ‖2L2(dx)

]
(using Lemma 2.1) .

(3.21)

Therefore (3.16),(3.21) yields the lower bound

ζ ≥ C6 −
1

4(4π − ε)
‖ ∇ζ ′ ‖2L2(dx) .

Thus, from (3.20), there holds

Λ ≥ −π tan2 θ
(
β −

α

tan2 θ

)
·

1

2(4π − ε)
‖ ∇ζ ′ ‖2L2(dx) −C7 .(3.22)

Also, since f, g have compact supports, we easily obtain using Lemma 2.2, the in-

equalities:




∫

R2
|fξ′|dx ≤ ε−1C8 + ε

∫

R2
|ξ′|2dµ ≤ ε−1C8 + εC ‖ ∇ξ′ ‖2L2(dx) ,∫

R2
|gζ ′|dx ≤ ε−1C9 + εC ‖ ∇ζ ′ ‖2L2(dx) .

(3.23)
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Substituting (3.21)–(3.22) into (3.18) we get

I(ξ, ζ) ≥ 1
2
(1− εC ′) ‖ ∇ξ′ ‖2L2(dx)

+1
2
tan2 θ

(
1− π

4π−ε
(β − α

tan2 θ
)− εC ′′

)
‖ ∇ζ ′ ‖2L2(dx) −C10

≡ δ1 ‖ ∇ξ
′ ‖2L2(dx) +δ2 ‖ ∇ζ

′ ‖2L2(dx) −C10 .

(3.24)

where δ1, δ2 are independent of ε, α, β > 0. Impose now the conditions

β −
α

tan2 θ
< 4 .(3.25)

Then, if ε > 0 is sufficiently small, we get δ1, δ2 > 0. In particular, I is bounded from

below on the admissible set

S = {ξ, ζ ∈ H | ξ, ζ satisfy (3.7)–(3.8)} .

Let {(ξj, ζj)} be a minimizing sequence of (3.13). Using (3.24) we see that {(ξ ′j, ζ
′
j)}

is bounded in H̃ (see also Lemma 2.2). From (3.16), (3.21), we see that {ζj} is a

bounded sequence in � as well. Using (3.17), we can show that {ξj} is also a bounded

sequence in � . For simplicity, we assume there are ξ, ζ ∈ H so that

ξ′j
w
→ ξ′, ζ ′j

w
→ ζ ′, ξj → ξ, ζj → ζ .

In other words, ξj → ξ, ζj → ζ weakly in H.

An obvious extension of lemma 2.3 is:

Lemma 3.2. The injection H → L2(dµ) is a compact embedding.

2

Hence, (3.21) says that

∣∣∣∣
∫

R2
eu0+w3eζjdx−

∫

R2
eu0+w3eζdx

∣∣∣∣

≤ C
∫

R2
e|ζj |+|ζ||ζj − ζ|dµ

≤ C ′
(∫

R2
e2(|ζ

′,|+|ζ′|)dµ
) 1

2

‖ ζj − ζ ‖L2(dµ)

≤ C ′′ exp
[

1

4π − ε
(‖ ∇ζ ′j ‖

2
L2(dx) + ‖ ∇ζ ‖

2
L2(dx))

]
‖ ζj − ζ ‖L2(dµ)

→ 0 as j →∞ .

Similarly, we can show that
∫

R2
ew0e

1
2
(u3−w3)e

1
2
(ξj−ζj)dx−

∫

R2
ew0e

1
2
(u3−w3)e

1
2
(ξ−ζ)dx → 0 as j →∞ .
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Therefore (ξ, ζ) satisfies the constraints (3.7)–(3.8). Finally the comparison I(ξ, ζ) ≤

lim inf I(ξj, ζj) is trivial. Hence (ξ, ζ) solves (3.13).

For convenience, let us summarize the conditions imposed on α, β > 0 as follows:

{
α

tan2 θ
< β < α

tan2 θ
+ 4 (see (3.9) and (3.25)) ,

β ≥ 2N + 4 (see (3.10)) .
(3.26)

So we have obtained a two parameter family of solutions to equation (3.6). We can

observe that these solutions give rise to gauge-distinct solutions of the Bogomol’nyi

system (3.1).

In fact, we have

{
u = u0 + u1 = u0 + w2 = u0 + w3 + ζ ,
w = w0 + w1 = w0 +

1
2
(u2 − w2) = w0 +

1
2
(u3 − w3) +

1
2
(ξ − ζ)

(3.27)

Recall that |W |2 = eu, φ2 = ew. Hence (3.27), (3.7)–(3.8) imply the relations:

∫

R2
φ2dx =

2πα

g2 tan2 θ
,(3.28)

∫

R2
|W |2dx =

π

2g2

(
β −

α

tan2 θ

)
.(3.29)

Since the left-hand-side, of (3.28)–(3.29) are gauge-invariant, different values of α, β >

0 give rise to gauge-distinct solutions of (3.1). We can summarize our results as

follows.

Theorem 3.3. Let {z1, . . . , zm} ⊂ �

2 = � , n1, . . . , nm ∈ � + . For any α, β > 0

satisfying (3.26), the Bogomol’nyi equations (3.1) has a solution (W,φ,A, P )(α,β) so

that Z(W ) = {z1, . . . , zm}, the multiplicity of the zero z = z` of W is n`, the integral

averages of φ2 and |W |2 satisfy (3.28)–(3.29). The solution family {(W,φ,A, P )(α,β)}

is a family of gauge-distinct solutions.

In particular, we have nonuniqueness of solutions for each distribution of vortex

locations. There is again no restriction to the number of vortices in �

2.

These infinite energy vortex solutions are “natural” in the sense that (2.3) or (3.1)

do not allow any finite energy solutions .
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