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Abstract

Transmission electron microscopy (TEM) data come in the form of two-
dimensional projections of specimens with finite width. For visual interpreta-
tion of such data it is valuable, and for quantitative comparison with models
essential, to have available a method for generating simulated projections from
model structures. We present three computer algorithms that simulate TEM
micrographs, from structures determined by contrast between two materials
separated by complicated dividing surfaces. Three very general forms used to
represent dividing surfaces are treated: traditional coordinate systems, finite
element representations, and tesselations adapted to complex line integration
schemes. Because surface tension drives dividing surfaces to minimize their
area, particular attention is paid to minimal surfaces, surfaces of nonzero con-
stant mean curvature, and to parallel surfaces that may form in specimens
constrained to small dimensions. Besides the model structure itself, the other
inputs are the orientation of the model structure, the location of (parallel) upper
and lower truncating planes representing the finite specimen thickness or the
form of the bounding surface for microdroplet samples, and the direction and
magnitude of a linear deformation representing distortion due to the microtom-
ing process. The values of these registration parameters providing the optimal
fit with digitized TEM data are found by a relaxation method. Remarkable
matches are obtained between micrographs of block copolymer morphologies
and model structures determined by surfaces of constant mean curvature.

1 Introduction

Most of the objects we encounter in daily life are opaque. We see their outer

surfaces only, while their interiors as well as objects occluded by them are invisible to

us. If an analogy were drawn between our eyes and an electron microscope, our vision

is more akin to SEM (scanning electron microscopy) than to TEM (transmission

electron microscopy). It is only natural, then, that we have difficulty deciphering

TEM micrographs, which are two-dimensional projections through (often complex)

three-dimensional objections that are translucent to the electron beam.

To aid in the interpretation of TEM data, computer algorithms have been de-

veloped, and these fall into two general classes. In the first, tilting capabilities of

TEM microscopes are used to obtain projections of the three-dimensional object from

many viewing directions. Since the Fourier transform of each projection corresponds

to a central section of the three-dimensional Fourier transform of the object, direct

Fourier methods can be used to reconstruct the object [1]. Methods for the restora-

tion of the reconstructed objects attempting to account for incomplete information,

in particular the missing cone in reciprocal space due to tilting limitations, include
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the Gerchberg-Papoulis method [2]; [3], and the more recent method known as the

method of projections on to convex sets [4].

In the second class of algorithms, competing model structures are evaluated by

computing projections and comparing the simulations with actual TEM data. The

MULTISLICE program, developed by the Arizona group [5], is an example of such

a program. MULTISLICE computes projections of crystals for high-resolution mi-

croscopy simulation, accounting for microscope optical parameters. MULTISLICE is

intended for atomic-level simulations, so that objects are defined in terms of atoms.

This atomic description is not sufficient, however, in supramolecular structures.

In particular, interest in our group often focuses on microphase segregated structures

with characteristic length scales on the order of 10-100nm. In one case of a star

diblock copolymer with a complicated microdomain morphology [6], a crude model

was concocted using MULTISLICE, by placing spheres in strings to simulate tubular

channels. The authors are not aware of any TEM projection simulation program

designed for such microstructures.

In this paper we present several algorithms specifically designed to handle compli-

cated microstructures, and demonstrate in addition a method for finding the optimal

match to a TEM micrograph using a given three-dimensional model. Rather than

imposing a shape, such as spheres, to the building blocks of the model structures,

we allow a much more general form for the models: dividing surfaces are specified,

which separate regions of different atomic potential. A specimen can be discretized

into volume elements (voxels) which are filled with local atomic potentials as deter-

mined by the locations of the dividing surfaces. Alternatively, a specimen can be

represented by discretizing its dividing surfaces into surface elements. The represen-

tation of structures with dividing surfaces is efficient—to obtain a resolution of δx,

the data storage necessary goes as 1/(δx)2, rather than 1/(δx)3, as for voxel densi-

ties. Because interfacial tensions tend to minimize the areas of dividing surfaces, we

place particular emphasis here on surfaces of constant mean curvature and minimal

surfaces, which minimize area under volume fraction constraints and fixed boundary

conditions, respectively.

In Section 2, we describe the projection algorithms. Section 2.1 describes an

elementary scheme wherein the specimen is divided into voxels. Section 2.2 describes

a relatively simple “brute force” scheme, in which a very large number of points

are tested to see which material they lie in. The method is illustrated for a triply-

periodic surface represented by finite elements, and for a doubly-periodic surface

with a representation in Cartesian coordinates. In general the method will work
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with any surface division given in terms of a triangulation of the dividing surface,

assumed to be periodic. Section 2.3 describes a more sophisticated scheme, which is

an adaptation of a ray-tracing program. The method is adapted to surfaces that have

been computed by a complex line integration known in the theory of minimal surfaces

as the Weierstrass representation. In Section 3 a relaxation scheme is described which

searches for the optimal fit of the model with digitized TEM data, by adjusting the

parameters specifying the orientation, scaling, truncation and deformation of the

model.

In Section 4 we present results of the algorithms and demonstrate some remarkable

matches between TEM data and simulated projections.

2 Methods

In the methods to be described in this section, we assume that we are given a

digitized electron micrograph, in the form of an N0 × N0 array E of experimental

pixel intensities. Typically this would be obtained by a microdensitometer scan of

an electron micrograph, with one pixel corresponding to a square region of linear

dimension on the order of 50 microns, and with N0 typically 128 or 256. The user

selects a region of interest D within E of size N × N , with N ≤ N0. We wish to

produce an N ×N array T of theoretical pixel intensities by a computer simulation,

based on a structural model determined by a dividing surface S. The accuracy of the

fit between the experimental array E and the theoretical array T can be quantified

by a root-mean-square norm over all pixels in the region of interest; an appropriate

definition of such a norm is described in Section 3.

2.1 Voxel method

2.1.1 Defining the specimen

In this method, the specimen is divided into N 3 voxels, Vi,j,k, 1 ≤ i, j, k ≤ N ,

and each voxel is assigned the local atomic potential of the specimen there. The

assignment may come naturally from a three dimensional finite element solution where

there are no obvious dividing surfaces, or the assignment may be made by scanning

through the voxels based on an appropriate representation of the surfaces found in the

specimen. An example of the scanning technique is illustrated below for a particular

case of concentric shells—a set of parallel surfaces that is particularly well suited

for the voxel method. Next, N 2 projection-rays Ri,j, 1 ≤ i, j ≤ N are sent through

4



the voxels so that the theoretical pixel intensities in the image array T are given

by Ti,j = ΣkVi,j,k, i.e., the sum of the voxel atomic potentials along the projection

direction. If the microscope specimen has been sectioned to a thickness smaller than

that represented by the voxels, two planes M1 and M2 are used to truncate the voxels

selected for projection. If the microscope specimen is tilted with respect to the basis

in which the original voxels are defined, then the voxels are assigned to a new basis,

rotated appropriately by a set of three user-specified Euler angles, before projection.

2.1.2 A case involving Dupin Cyclides

In physical systems that form parallel surfaces, e.g., lamellar surfactant or block-

copolymer phases, the dividing surfaces that form depend on the types of defects

allowed. One family of parallel surfaces is that of Dupin cyclides, whose defects are

confocal ellipse and hyperbola. Dupin cyclides can be represented as in [7]:

r = re +
rh − re
rh − re

(R− ere · rh)

where

re(θ) = [cosθ, (1− e2)1/2 sinθ, 0], 0 ≤ θ ≤ 2π

and

rh(φ) = [e coshφ, 0, (1− e2)1/2 sinhφ], − inf ≤ φ ≤ inf ,

are the elliptical and hyperbolic defects. As the three parameters θ, φ and R are

varied, the position vector r spans the entire specimen. Surfaces of constant R are

parallel to each other and at a distance δR from each other. Therefore, the atomic

position is conveniently specified as ρ(x, y, z) = ρ(r(θ, φ,R)) in the most general case,

but usually as ρ(R(ω)) where ω is a coordinate along R, the distance along the parallel

layers. This yields atomic potentials whose level surfaces are parallel to parallel Dupin

cyclides.

2.2 Projection-ray subdivision method

2.2.1 Defining the projection rays

In this method, projection-rays Ri,j , 1 ≤ i, j ≤ N are sent through the model

structure and subdivided into very small subintervals. The midpoint of each subin-

terval is checked to determine which side of the dividing surface S it is on. These rays

can be thought of as simulating paths taken by electrons, and the projection-plane P

into which the rays are sent represents the photographic film on which the electrons
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record the image. Naturally, the direction ~A = (a1, a2, a3) of the rays Ri,j is normal

to P , and without loss of generality we can take the equation of P to be ~A · ~X = 0,

with |A| = 1. In crystallographic terms, the ai are the Miller indices of the viewing

(or projection) direction.

The finite thickness of the specimen is represented by defining two planes M1

and M2, referred to as the “microtome planes”, which truncate the model structure.

Because goniometer-equipped electron microscopes have the capacity to tilt the speci-

men, the unit normal ~N = (n1, n2, n3) to these microtome planes (taken to be parallel

here, although this can easily be generalized) can be different from (a1, a2, a3). The

distance d = |m1 −m2| between these planes M1:N · ~X = m1 and M2:N · ~X = m2

should coincide with the known specimen thickness, which is set in the actual micro-

toming process.

The projection-ray Ri,j is parametrized by the variable s:

Ri,j(s) = s ~A+ r0
i,j , r0

i,j = (x0
1, x

0
2, x

0
3) ∈ P .

The truncation of the model structure by M1 and M2 means that on Ri,j , we need

only check those points (X,Y, Z) satisfying m1 < N · Ri,j(s) < m2, or equivalently,

s1 < s < s2 where:

sk =
mk −N ·Ri,j(s)

A ·N , k = 1, 2 .

The points r are chosen so that a square grid is formed on the projection plane P

with mesh size δ. This can be done by choosing

ri,j = δ
(

(i+ i0)~b
′

1 + (j + j0)~b
′

2

)

,

where b′1 and b
′

2 form an orthonormal basis of P . The constants i0 and j0 are adjustable

parameters in the fit of E with T ; incrementing i0 by 1, for example, would shift the

simulated image T one pixel to the left.

In order to fit a model to data it is also necessary to rotate the simulated image

to obtain registry. A rotation through the angle φ is easily accomplished by defining

a new set of basis vectors {b1, b2}:

[b1, b2] =

[

cosφ, sinφ
− sinφ, cosφ

]

[b′1, b
′

2]

Then the final form of the expression for the ri,j becomes:

ri,j = (i+ i0 − i1) b1 + (j + j0 − j1) b2 ,
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where i1 and j1 are the indices of the lower left pixel in the selected region of interest

in D; that is, the region of interest has the pixel range

(i1, i1 +N − 1)× (j1, j1 +N − 1) .

This simplifies the process of choosing the adjustable parameters i0 and j0, in cases

where the user may wish to select various regions of interest in E. The point is that

as i1 and j1 are changed in order to window a different portion of E, registry can be

maintained without changing i0 and j0.

In order to maintain registry throughout changes in the size (N × N) of the

windowed region in E, we define the mesh size δ in terms of N0 rather than N . We

have found that the most intuitive way to quantify the scaling of the simulated image

is in terms of the number ne of unit cell lengths per edge, in the full N0 ×N0 image.

We thus make the definition δ = ne/N0. The quantity ne is in expressed terms of the

unit of length in the model structure, which in the first case treated in this section

will be the lattice parameter of a cubic lattice.

The remaining registry parameters involve the deformation that is intended to rep-

resent deformation of the sample due to specimen elongation during the microtoming

process. The perfect, undeformed model structure will be subjected to a dilation

or compression along a single direction. In general it would take two parameters to

describe this direction, but we assume here that this direction lies in the microtome

plane; that is, there is no distortion normal to the microtome plane. This comes

from physical considerations, namely that the distortion should be expected to be

in the direction of the motion of the knife. Thus we will define a new coordinate

system C with the (x1, x2)-plane parallel to the microtome planes, and the x1-axis in

the direction of the deformation. This deformation will be described by multiplying

the x1-coordinate by 1 + α, where α, which we will call the strength of the defor-

mation, can be positive, corresponding to elongation, or negative, corresponding to

compression.

We begin by defining basis vectors of a reference coordinate system C ′, by choos-

ing an oriented basis of N⊥, say V ′

1 , V
′

2 , and letting V3 = N . The direction of the

deformation is defined by the angle η, between this deformation and V ′

1 . The desired

coordinate system C has basis vectors given by:

[V1 | V2] =

[

cos θ sin θ
− sin θ cos θ

]

[V ′

1 | V ′

2 ]

In this coordinate system, the deformation is expressed by the simple replacement

x→ (1 + α)x.
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One can compute that, in the C ′: {V ′

1 , V
′

2 , V
′

3} coordinate system, this deformation

can be represented by the matrix:

(

1 + α cos2 η α sin η cos η
α sin η cos η 1 + α sin2 η

)

.

The coordinate system C ′ is independent of the angle η.

It remains to give the conversion from X coordinates to the coordinates X ′ in the

system C ′. The x3 coordinate is determined by the condition that the vector X−x′3V3

be orthogonal to v′3, i.e., that x
′

3V3 be in the same N = v′3 plane as X.

With these coordinate transformations, we can convert any point (X,Y, Z) in the

deformed structure to an equivalent point (x, y, z) in the perfect, undeformed struc-

ture. The coordinates (X,Y, Z) are first converted to the C ′ coordinates (x′1, x
′

2, x
′

3)

as just described. The inverse of the matrix M is then applied to the vector (x′1, x
′

2),

yielding (x+
1 , x

+
2 ). And finally, these C ′ coordinates (x+, y+, z′) are then converted to

the final coordinates (x1, x2, x3) in the undeformed structure via

(x1, x2, x3) = a′1x
+
1 + a′2x

+
2 + a′3x

′

3 .

The point (x1, x2, x3) is then tested to determine which side of the perfect, unde-

formed dividing surface it lies on. This test, for the cases of finite element represen-

tations and traditional coordinate system parametrizations, is illustrated in the next

two subsections. This will provide all the machinery needed to send projection-rays

into the (deformed) structure and test an arbitrary number of points on each ray to

determine which material they lie in. We have found that good results are obtained

by dividing the interval [s1, s2] into 50 subintervals, and testing the midpoint of each

corresponding subinterval in the projection ray.

We have taken the optical density at a given pixel (i, j) to be a linear function

of the fraction Ψ of subintervals of Ri,j lying on one side of the intermaterial di-

viding surface (of given electron scattering power). This is because response curves

of photographic films show that the optical density varies linearly (at least over a

suitable range) with exposure, and although the mass-contrast mechanism by which

our electron micrographs are produced is, strictly speaking, described by Beer’s Law,

the thickness of our specimens is small enough that the linear approximation to this

exponential decay is sufficiently good. The two constants in this linear function are

determined by fixing the mean and variance of T equal to those of E.
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2.2.2 A case involving a finite element representation

We now describe, for a dividing surface with a finite element representation, the

test for determining which side of the dividing surface a given point is on, i.e., which

material it lies in. It has been shown [8] that within the framework of the finite ele-

ment representation, there exists a tremendous amount of freedom in “customizing”

generalized coordinate curves to match boundary conditions and to handle compli-

cated geometries. The specific example we focus on here should illustrate how one can

take advantage of this freedom. In particular, with any traditional coordinate sys-

tem (x1, x2, x3), the computational domain Q for any nonparametric representation

x3 = x3(x1, x2) of the surface would have to be determined along with the surface,

whereas in the finite element representation, Q is the unit square, the most convenient

computational domain possible. The same procedure, with minor modifications, has

also been used [9, 10], for other model structures determined by surfaces of constant-

mean-curvature (“H-surfaces”) that were computed by one of the authors [11], using

a finite element method.

The example, in which reflectional, translational, and rotational symmetries are

all used, is the so-called “double-diamond” structure. This structure has recently

been discovered experimentally in block copolymers [6]. It consists of two infinite, in-

tertwined but distinct labyrinthine networks having diamond-cubic symmetry, which

are filled with one material, e.g., polystyrene, while the matrix between them is filled

with another material, e.g., polyisoprene. This matrix is bisected by an embedded

(non-self-intersecting), triply-periodic minimal surface that was discovered in the 19th

century [12], known as the “Schwarz diamond minimal surface”. (A minimal surface

is by definition a surface with zero mean curvature at every point.) The dividing sur-

face S between the two materials is approximated by a surface of constant, nonzero

mean curvature [9]. S is composed of two disjoint copies of an H-surface with F43m

symmetry, each of which surrounds one of the labyrinthine diamond-networks; this

H-surface is shown in Figure 1. The two copies are congruent via a rotational sym-

metry. Thus, the space group Pn3m of the full structure is of higher symmetry, due

to this additional rotational symmetry.

The fundamental patch S0 of the H-surface has been computed [11] using the fol-

lowing parametrization. As the surface coordinates (u, v) range over the unit square,

and w ranges over the unit interval, the point

r(u, v) =
1

2
(1− u(u+ v)w, 1− u+ (u− v)w, u− 1 + (2− u− v)w) ,

ranges over the body B, which is a tetrahedron known as a “tetragonal disphenoid”
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[13]. This tetrahedron fills space without overlap on application of the reflectional

symmetries of the space group. The surface patch S0 is represented in (u, v, w)-

coordinates as w∗(u, v), where w∗ = w∗(u, v) is the solution of the finite element

problem. A very simple scheme for arriving at such a parametrization for a given

space group has been given [11].

The (u, v) unit square was divided into a 20×20 mesh—400 elements, 441 nodes—

and 441 values w∗ computed. The rotation that produces the copy of S0 is given by:

x→ 1− x, y → y, z → −z .

This second copy also lies within B and is orthogonal to its faces.

An arbitrary point (x, y, z) in space can be reduced to an equivalent point inside

B, that is, satisfying the conditions 0 ≤ z ≤ y ≤ x ≤ 1, x + y ≤ 1. The first step is

to use the greatest integer function to truncate the integer parts of x, y, and z. Then

the minimum and maximum functions are used to permute the three coordinates so

that z ≤ y ≤ x (the planes x = y and y = z are symmetry planes). If the condition

x + y ≤ 1 is satisfied, we are done. Otherwise we reflect across the plane x + y = 1,

using

x→ 1− y, y → y, z → z ,

and the coordinates are permuted again. This is continued until all the conditions

are satisfied. Let the coordinates of the final point be (x0, y0, z0).

This point is converted to (u, v, w)-coordinates, using

w = 1− x0 + z0, v = (1− x0 − y0)/(1− x0 + z0), u = (x0 − y0)/(x0 − z0) .

This triplet (u, v, w) is then tested to determine if w > w∗(u, v). The solution w∗(u, v)

is interpolated from the values of w∗ at the nodal positions using the finite element

basis functions, in the standard way. If indeed w > w∗, then the original point (x, y, z)

lies in one of the diamond labyrinths (e.g. in polystyrene).

If w < w∗, then another test must be performed to determine if (x, y, z) lies

in the other diamond labyrinth. This is straightforward, because the rotation that

interchanges the two labyrinths is given by:

u→ v, v → u, w → 1− w .

These new (u, v, w)-coordinates are tested as above to determine if w > w∗(u, v).
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2.2.3 A case involving a standard coordinate representation

In this subsection we describe the test in one case of a dividing surface with

a representation in a standard coordinate system, in fact a Monge representation

z = z(x, y). The dividing surface (shown in Figure 2) is a minimal surface known as

“Scherk’s First Surface”, after H. F. Scherk who discovered it in 1835 [14, 15]. This

doubly-periodic minimal (zero mean curvature) surface can be qualitatively described

as a family of evenly spaced parallel halfplanes above the (x1, x2)-plane that are

smoothly joined to another family of halfplanes below the (x1, x2) plane, the families

meeting at an acute angle γ, 0 < γ ≤ π
2
. The surface that is most familiar is the one

with γ = π
2
. In general, a surface in this family is given in implicit form as

F (x1, x2, x3) =

ex3 cos(x1/α + x2/β) cos(x1/α + x2/β) = 0 , α2 + β2 = 1 ,

where α = arccos γ. The surface consists of a collection of graphs over a checkerboard

of regions in the (x1, x2)-plane with vertical line boundaries at the vertices of the

checkerboard.

To test whether a given point (x1, x2, x3) is on the “A” side or the “B” side, we

may simply check the sign of F . In practice, we do this as follows. First, define new

x and y coordinates x′ and y′ in a coordinate system that follows the two asymptotic

directions:

x′ = x/ cos γ − y/ sin γ ,

y′ = x/ cos γ + y/ sin γ .

We determine that the point is on the “A” side if either:

a) cos x′ > 0 and cos y′ < 0 ; or

b) cos x′ > 0 and cos y′ > 0 and ez < cos x′/ cos y′ ; or

c) cos x′ < 0 and cos y′ < 0 and ez > cos x′/ cos y′ .

Otherwise the point is on the “B” side.

2.3 Ray-tracing method

2.3.1 Overview

This method works as in the previous section by first intersecting the projection

ray Rij with the two truncating planes M1 and M2 to obtain points b1 and b2 defining
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a line segment B, corresponding to the path of R through the specimen. B is then

subdivided into a series of adjoining line segments Ck by intersecting it with the

dividing surface S. Each component of C is on one side or the other of the dividing

surface. The lengths of the segments on each of the two sides are summed and these

two sums are used to compute a ratio giving the pixel intensity of the ray.

2.3.2 Surface Representation

The dividing surface S is represented as a data structure consisting of a mesh of

triangular facets, which can be generated by any of a number of programs, including

Mesh, Solsurf, and VPL applications [16]. Typically a triangulation of a fundamental

piece of the surface is generated by Mesh then built up into a larger piece by a VPL

application. The use of a piecewise approximation of the surface means that this

algorithm imposes no constraints on the analytic properties of the surface.

The intersections of the line segments Bij with the surface are found by comput-

ing the intersections of the lines with individual triangular facets. Without using

any method to constrain the search for such intersections, the number of potential

intersections that would have to be considered to compute an image would be equal

to the number of facets in the model times the number of pixels in the image. Thus

the cost of computing detailed images of accurate models could become prohibitive.

2.3.3 Space Partitioning Tree

To address the problem, this algorithm employs a data structure to partition

space. By selectively accessing facets through this data structure, the number of

facets that need to be considered as intersection candidates with a given line segment

is drastically reduced. The data structure consists of a sparse binary tree of nodes,

where each node occupies a rectangular volume. Nodes are classified as terminal and

nonterminal. Non-terminal nodes have two descendents each, whereas terminal nodes

have no descendents. A non-terminal node’s descendents are are formed by bisecting

its volume by a plane perpendicular to the X, Y, or Z axis. Each terminal node

contains a list of references (pointers) to each facet having any part within the node’s

volume.

The execution of the algorithm consists of two phases: the construction of the

tree of nodes given a set of facets, and the tree-constrained search for intersections of

line segments with facets.
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2.3.4 Tree Construction

The tree is built incrementally: An initially empty tree expands adaptively as new

facet references are inserted in terminal nodes of the tree. The algorithm iterates over

the list of facets, traversing the tree for each facet to determine what terminal nodes

must have references to it. The tree is initialized as a single empty terminal node (the

root node), and is allowed to grow as facet references are added. The tree is traversed

from the root node for each facet. Traversal is accomplished by a routine that is called

recursively on a per-node basis. It is called once at the root node for each facet. It

tests whether the volume occupied by a node overlaps any portion of the facet. A

node that does not overlap the facet is not considered further, and any descendents

are ignored. A non-terminal node that overlaps the facet causes the routine to be

called for the node’s two descendents with the same facet. A terminal node that

overlaps the facet adds a reference to the facet to its facet list. Since a facet may pass

through the volumes of several terminal nodes, it may have several references. (See

Figure 3.) A parameter sets the maximum number of facet references a terminal node

may contain, and when this number is exceeded the node automatically bifurcates into

a non-terminal node with two terminal descendents. Then the facet list of the defunct

terminal node is processed to obtain the facet lists of the new terminal nodes. In this

way the tree grows adaptively, acquiring greater depth and detail only in regions

where the facets are dense.

2.3.5 Intersection Search

The set of all the facets intersecting the line segment B is found by searching the

tree for all terminal nodes through whose volumes the line segment the passes. As in

the case of facet insertion, searching is accomplished by a routine called recursively

on a per-node basis, starting at the root node. It tests whether the volume occupied

by a node overlaps a portion of B. A node that does not overlap B is not considered

further, and any descendents are ignored. A non-terminal node that overlaps B

causes the routine to be called for the node’s two descendents. (See Figure 4.) A

terminal node that overlaps the B may contain references to facets which intersect B.

Each facet on its facet list is compared to the segment, and facets which intersect B

within the volume of the referencing node are recorded on the list g. The restriction

that the intersection lie within the node’s volume is necessary to prevent redundantly

recording intersections of facets referenced by more than one node.
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2.3.6 Efficiency

The algorithm above provides an efficient method accessing the facets of a three-

dimensional object with specified locii. The advantages of this method are especially

apparent for highly complex objects, consisting of tens of thousands of facets. The

space efficiency arises from the fact that the tree grows deep and resolves finely only

those regions occupied by facets, spanning empty regions with relatively few nodes.

Increasing the fineness of the mesh of facets approximating a surface, for example, will

cause a less than proportional increase in the size of the tree. The time efficiency arises

from the fact that a search for the terminal nodes occupying a small locus rapidly

eliminates from consideration large portions of the tree, its speed being primarily

dependent on the depth of the tree.

2.3.7 Intersection Processing

The list of intersections g is used to subdivide line segment B and to construct

the series of linesegments Ck. The data associated with an intersection consists of

its 3-dimensional spatial coordinates and its parity. The latter is determined from

the parity of the facet, given that the facets are all created with a consistent parity

(ie: a facet viewed from one side of the surface will have clockwise-ordered vertices,

whereas one viewed from the other side will have counter-clockwise-ordered vertices.)

The intersections in g are parameterized according to their position along B and

sorted. Given that the mesh of facets approximating the dividing surface is properly

generated, the sorted intersections will alternate in pairity. These intersections are

used to cut B into the series of adjoining linesegments Ck. (See Figure 5.) If there

is at least one intersection, the modes of the two or more components of C can be

determined from the parity of the intersection(s). The modes of the components of C

will, or course, alternate. If there is no intersection, the following method is used to

determine the mode of the single component of C. A ray Q is constructed having its

origin at b1 and random direction. Any intersections between it and S are computed

and recorded, and all but the closest intersection are discarded. If an intersection is

found, its parity is used to determine the mode of b1 and hence of C. If none is found,

the process is repeated until an intersection occurs.

3 Matching experimental data

A measure of the discrepancy between the images T and D can be defined by the

root-mean-square (rms) difference in the pixel intensities, normalized by dividing by
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the rms difference expected for a random T with the same mean and variance as D.

If the standard deviation of the pixel intensities in D is σ, then this expected rms

difference is simply
√
2σ. We have found that a value of ε ≤ 0.3 for this normalized

error ε corresponds to an excellent fit.

Having available a well-defined measure of the fit of T to D, we are in a position

to carry out a relaxation method in order to determine the optimal registration pa-

rameters. Because the number of registration parameters is 14, the search over the

14-dimensional parameter space can easily lead to metastable minima. Therefore we

have used the method of simulated annealing to facilitate the finding of the absolute

minimum, although with a finite running time there is still no guarantee that the

absolute minimum will be found.

In the method of simulated annealing, small random perturbations are made in

the registration parameters, and at each change the increment δ in the normalized

error ε is evaluated. If δ < 0, then the change is retained; if δ > 0, then the change

is accepted with a Boltzmann-like probability e−µδ. The constant µ plays the role

of an inverse temperature. We have obtained good results by setting µ equal to a

small value in the initial stages of the fitting procedure, so that approximately half of

the changes are accepted, and then incrementing µ so that in the final “fine tuning”

stages only 5− 10% o the changes are accepted. In the case discussed in the results,

the increment in the registration parameters was randomly distributed between about

−0.02 and 0.02, although certain of the parameters such as the parameter ne were

perturbed by larger amounts. Only one parameter was changed at each step, and

the value of µ was on the order of 103 − 5 × 103. On the order of 104 steps were

taken at each stage, after which the value of µ was increased, and three or four such

stages produced very satisfactory results. The initial estimates for the registration

parameters, to start the fitting procedure, were obtained by trial-and-error.

In many electron microscopes it is possible to both rotate the sample in the plane

P normal to the electron beam, and tilt it about a fixed axis F in P . If we choose

a coordinate system in which the x3-axis is parallel to the direction of the beam and

the x1-axis is in the direction of F before rotation, the relation between (ρ, τ) and

the Miller indices (h, k, `) is simply that (1ρ, τ) are the polar coordinates of (h, k, `);

h = sin(τ) sin(ρ)

k = sin(τ) cos(ρ)

` = cos(τ) .

This transformation can be used in simulating a tilt series, which can provide evi-
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dence for a structural determination. In the simulation of a tilt series, the tilt angle

determined by the relaxation method would be compared with the known tilt angle

in the experiment.

4 Results

Microdroplet specimens can be produced by forming an aerosol of a diblock copoly-

mer and volatile solvent. If a diblock copolymer which normally exhibits flat, parallel,

equidistant surfaces (“lamellae”) in the bulk state is employed, the microdroplet struc-

ture consists of a set of concentric spherical shells, of alternating composition with

the lower surface tension polymer component (polyisoprene) in the outermost shell

(see Figure 6a). Figure 6b illustrates a simulated image from such a simple specimen

made with the voxel method. The voxel method was also used to produce the simu-

lated image from a more complex set of parallel surfaces: Dupin cyclides (Figure 7).

The images clearly show that the voxel method, though numerically intensive, yields

revealing, characteristic images for specimens whose internal atomic potentials vary

in prescribed manner.

In Figure 8a we show TEM data that have been digitized using a microden-

sitometer displayed on a computer screen and photographed. The image is of a

star diblock copolymer which has been determined to microphase-segregate into the

double-diamond microstructure discussed above [6]. In Figure 8b, the data of Fig-

ure 8a have been restored using a newly-developed maximum entropy algorithm [9]

which maximizes the entropy of the power spectrum of the image, and thus restores

and symmetrizes the data in a manner free from user-bias. Figure 8c, then, shows

the best-fit theoretical projection T from the double-diamond model defined by the

dividing surface of constant mean curvature described above. The match is strik-

ing, and the registration between D and T is made clear by Figure 8d, which is the

left-half of Figure 8c juxtaposed with the right-half of Figure 8b.

The relaxation method described above was used to determine the registration

parameters in this remarkable fit, and the final value of ε was 0.295. It is interesting

that the value of α was about 0.22, thus indicating that the deformation due to micro-

toming was approximately 22%. Because small-angle X-ray scattering (SAXS) data

on the same block copolymer indicated (Pn3m) cubic symmetry, this deformation

must have occurred during the preparation of the sample for the electron microscope.

It should be mentioned that we have simulated projections of this model structure

from many other viewing directions, and these have compared well experimental TEM
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data. In particular, we have obtained qualitative matches of the (100), (110), and

(211) projections. However, only in the case of the (111) projection just shown have

we used the relaxation method to obtain a quantitative fit with good registry. We have

found this (111) projection to be the best signature of the double-diamond structure.

In Figure 9a we show a projection of the structure described in Section 2.2.3 based

on the Scherk minimal surface with γ = π
2
. The dividing surface in this case separates

the 0s04 stained electron dense regions of polyisoprene from the less dense polystyrene

regions. The view is in the direction of the normal to one of the sets of asymptotical

planes, so that on the upper part of the projection we see solid grey, corresponding to

rays which pass alternately through the black and white domains. In the lower part

we see alternating layers of black and white. Of key interest here is the “archway”

appearance of the periodic saddle surface transition region which corresponds well

with the experimental TEM data shown in Figure 9b.

Finally, Figure 10 is an approximation of the gyroid surface (space group Ia3̄d)

using the truncated Fourier series representation of a zero potential surface. Von

Schnering and Nesper [17] have demonstrated the close relationship between certain

periodic equipotential surfaces and certain triply periodic minimal surfaces. Barnes

et al. [18] have recently shown that the equipotential surface is not a minimal surface

nor is the truncated Fourier series representation of the equipotential surface. How-

ever, the simple trigonometric formulas provide a remarkable resemblance to certain

minimal surfaces and moreover, provide a very efficient analytical means for surface

visualization and subsequent projection simulation. The (100) and (111) projections

of the approximate gyroid surface shown in Figures 10b and 10c were produced using

ProDrop, a software package designed by Janelle Gunther. ProDrop utilizes the voxel

method to represent the 3D density distribution and the ray tracing approach de-

scribed in Section 2.1 to find the various projections. The program is highly portable

and has been optimized to produce 300 by 300 pixel images in 30 seconds on a Cray II

supercomputer. We are currently investigating the possible appearance of gyroid-like

morphologies in certain block copolymer samples.

5 Conclusion

We have presented three methods for computing simulations of TEM projections, and

a method for obtaining complete registration between the simulated and experimental

images. All the methods can handle complicated structures that are determined by

highly-connected dividing surfaces. One method uses an adaptation of a ray-tracing
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algorithm to compute model projections. It divides each projection ray into a series

of segments by intersecting it with the dividing surface, which is represented as a

mesh of triangles. The segments are divided into two classes corresponding to the

two phases in the model, using the pairity of the triangle-ray intersections. The pro-

portion of the lengths of the two classes of segments determines the color of the pixel

corresponding to the ray. An oct-tree subdivision scheme is employed to access the

triangles and determine any ray-triangle intersections in an efficient way. Another

method is relatively simple and can easily be adapted to a wide variety of represen-

tations of the dividing surface. In particular, we have demonstrated projection ray

subdivision method in one case of a finite element representation that illustrates the

versatility in finite element parametrizations which was elaborated by Kistler and

Scriven [8].

The results can be dramatic, even in cases where the complexity of the structure

makes it extremely difficult for the user to predict the appearance of particular pro-

jections. The facility of the method in obtaining a quantitative match is due to two

reasons: 1) arbitrary projections can be simulated quickly, thus permitting convenient

perusal and cataloging of images; and 2) the simulated annealing relaxation scheme

automatically searches for optimal fit parameters. Of course, in many cases visual

(i.e., qualitative) matches will be sufficient, in which cases certain of the registration

parameters such as the viewing direction (and often the microtome planes) will be

important, and others such as the magnification, rotation and shift parameters will

not be important. In such cases the 14-dimensional search space may reduce to a

much smaller space.

The method can easily be adapted to, for example, structures defined by three-

dimensional density distributions, or by dividing surfaces which are the mid-surfaces

of continuous density gradients. If the density can be represented as ρ = ρ(x, y, z) or in

some other three-dimensional (not necessarily orthogonal) coordinate representation,

then this would be explicitly entered in place of the tests described herein. Or, if

the density were given as a function of the distance from the dividing surface, then

smoothly-varying density gradients, such as those in weakly-segregated systems, could

be treated.
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