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Introduction

In these notes we will sketch the known necessary conditions for properly em-

bedded surfaces Σ ⊂ �

3 which have non-zero constant mean curvature and finite

topology. Many examples of constant mean curvature immersions and embeddings

have been constructed in recent years through the work of H. Wente [13], N. Kapouleas

[4, 5], H. Karcher [6], U. Pinkall and I. Sterling [12]. Immersions of tori and cylinders

can already have extremely complicated behavior [12, 13], so general immersed con-

stant mean curvature surfaces must be quite varied in structure. If Σ is required to be

properly embedded, it turns out that its structure can be characterized fairly well. Not

only is this structure interesting in its own right, but it could also aid in the analysis

of physical systems involving several materials or phases, such as those described by

the Cahn-Hilliard equation [2, 3], where it is believed that slowly evolving interfaces

may have time-varying, approximately constant mean curvature.

Let Σ have mean curvature vector H with |H| ≡ H > 0, define the “exterior”

normal ν to be −H/H, and call such a Σ an MCH surface. The two regions bounded

by Σ are called the exterior and interior accordingly. We may scale space so that H =

1. The sphere of radius 2, with ν the usual exterior normal, is an MC1 surface, whose

interior is the ball. The one-parameter family of axially symmetric MC1 surfaces are

known as Delaunay surfaces. They are periodic along the axis and are obtained by

integrating a first order O.D.E. for the profile curve (say with initial radius ρ ≤ 2 and

initial derivative zero) which in turn is the first integral of the second order O.D.E.

for constant mean curvature. The embedded Delaunay surfaces interpolate between

a cylinder of radius 1 and a chain of radius 2 spheres.

Below we list the known necessary conditions on finite topology MC1 surfaces Σ
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properly embedded in �

3. (Recall that any surface of finite topology is homeomorphic

to a compact surface of genus g with a finite number e of punctures; a neighborhood of

each puncture is an annular end.) These results have evolved, except for the famous

sphere theorem of A.D. Alexandrov [1], from work by W. Meeks, N. Korevaar, R.

Kusner, and B. Solomon: [7, 8, 9, 11]. After the theorems we indicate key ideas and

techniques, with references for further details.

1 Theorems

Let Σ be an MC1 surface properly embedded in �

3 with genus g and e annular

ends. Then

(i) The only compact Σ is a sphere of radius 2 [1].

(ii) There are no one-ended Σ [11].

(iii) The only two-ended Σ are Delaunay surfaces [9].

(iv) Each end of Σ converges exponentially to a Delaunay surface at infinity.

That is, there is a Delaunay surface in �

3 so that near ∞ the annular

end is a normal graph above this Delaunay surface, with parameterizing

function that goes to zero exponentially as the distance from the origin

approaches infinity [9].

(v) Σ is contained in a regular neighborhood of a piecewise linear graph in �

3.

More explicitly, Σ is localized in space as follows: there exist e solid, half-

infinite cylinders of radius 6, at most 3g−3+e solid finite-length cylinders

of radius 6, and at most (2g+e−2)3 solid cubes of edge-length 20, so that

Σ is contained in their union. The solid, half-infinite cylinders contain the

asymptotically-Delaunay annular ends discussed in (iv). The solid, finite-

length cylinders contain annular subsets of Σ which are Delaunay-like if

the cylinders are sufficiently long [7].

(vi) Any cylindrical ray or segment in (v) is canonical in the following sense:

the (homology class of the) curve which generates the enclosed annulus

has a “balancing line” segment or ray contained in the cylindrical ray or

segment. This balancing line is determined by certain force and torque

invariants associated to the given homology class. [7, 10]
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(vii) Solution space pre-compactness. The area of the intersection of Σ with a

ball of radius R is bounded by a constant C = C(g, e)R2. It is possible to

bound the second fundamental form on Σ in terms of g, e and the virtual

force invariants mentioned in (vi). (So, for example, if g and e are fixed,

the norm of the second fundamental form is bounded above by a lower

bound on the shortest closed geodesic on Σ.) Furthermore, in case Σ

has 3 ends (or more generally, lies in a half-space) the solution space is

a finite dimesional real analytic variety, parametrized by a subset of the

virtual force and torque invariants, and possibly by an additional compact

variety. (We suspect this is true without the half-space assumption, and

that the compact variety is just a finite set of points.) [7]

2 Forces and torques

Because an MC1 surface must be in equilibrium with respect to surface tension

and pressure forces there are natural (cohomology) invariants associated to a given

surface’s curve-homology classes [8, 9, 10]. They are natural quantities with which to

describe Σ, and we believe the space of MC1 surfaces having given topological type is

probably a finite dimensional variety on which appropriate subsets of these invariants

are local coordinates. Such a conjecture is nowhere near proven in general, either in

its existence or uniqueness aspects, but seems plausible based on the constructions of

Kapouleas [4, 5] and our partial results (1vii) [7].

Let Γ be a 1-cycle on Σ, let K be a 2-chain in �

3, with ∂K= Γ. Pick normal ν to

K, so that the orientations (K, ν) and (Γ, η, νΣ) are right-handed, and conormal η to

Γ on Σ. Fix a Killing vector field Y generating isometries of �

3. Then the expression

∫
Γ
η · Y −

∫
K
ν · Y

depends only on the homology class of Γ on Σ. Equivalently, whenever Γ bounds

a chain on Σ, this expression is zero. The homology invariance follows from two

applications of the divergence theorem to the equation ∆xi = −νi: once from Γ to

the chain on Σ which it bounds, and once from this chain to K, assuming their sum

bounds a chain of �

3. (See [8, 9].)

Letting Y generate translations (Y = (1, 0, 0), (0, 1, 0), (0, 0, 1)), and rotations

(Y = (0,−x3, x2), (x3, 0,−x1), (−x2, x1, 0)), and viewing the corresponding homology

invariants as a pair of 3-vectors we obtain the “force” and “torque” associated to the
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homology class of Γ:

w(Γ) =
∫
Γ
η −

∫
K
ν and r(Γ) =

∫
Γ
η × x−

∫
K

ν × x .

These expressions represent the virtual force and torque which arise by cutting a

piece of surface along Γ, with a “cap” K. The curve and cap contributions to the

vectors correspond to surface tension and pressure, respectively. Saying w and r are

homology invariants is, physically speaking, to say that if a collection of caps and

corresponding compact pieces of Σ bound a region of �

3, then all surface tension

along the cuts and pressure through the caps must balance.

If the force w[Γ] is non-zero, then it follows that there is a natural “balancing”

line in �

3 associated to [Γ], namely the set of origin choices for which the torque r[Γ]

is parallel to w[Γ] (equivalently, origins for which |r[Γ]| is minimized). Since w and r

transform exactly as linear and angular momentum for a moving body, the balancing

line conclusion is analogous to the fact that an object of non-zero linear momentum

traveling through �

3 has a canonical “world” line associated with it, namely the line

along which the center of mass travels.

For a Delaunay surface (with homology generated by a loop around the axis of

rotation) the balancing line is simply the axis itself. In general one would like to

characterize the sense in which a balancing line and homology class representatives

are close to each other, in analogy with the fact that the center of mass of an object lies

within its convex hull. In fact, a result of this type does hold for “planar” homology

classes (it follows from (5) below), and allows for the naturalness conclusion (1vi).

3 Cylindrical boundedness of subannuli

Subannuli of an MC1 surface Σ tend to be contained in cylindrical regions. This

fact makes crucial use of the two-dimensional topolgical properties of an annulus, and

is the reason our theorems are for Σ2 ⊂ �

3 rather than for Σn ⊂ �

n+1. In this context

[11] Meeks developed techniques to show that:

(3.1) A properly embedded MC1 annulus ( ≈ S1 × [0,∞) with one end) is con-

tained in the union of a large solid ball and a half-infinite solid cylinder

of radius 3.

Key n-dimensional lemmas for (3.1) are:

(3.2) A compact MC1 graph S above a plane π, with ∂S ⊂ π, has height at

most n above the plane (e.g. a hemisphere of radius n).
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(3.3) A compact MC1 surface S with ∂S ⊂ π lies within distance 2n of π (e.g.

a sphere of radius 2n touching π at a pole).

Using these ideas one can also show:

(3.4) Let S be an embedded MC1 annulus with ∂S = Γ1 ∪ Γ2, where the Γi

lie in parallel planes πi. (Assume the πi are horizontal, with π1 “above”

π2.) Then S lies in the slab from 4 units above π1 to 4 units below π2.

Furthermore, in the region from 10 units below π1 to 10 units above π2,

S is contained in a solid cylinder of radius 6.

Immediate consequences of (3.1) and (3.3) are that no one-ended Σ can exist (1ii),

and that any Σ with 2 ends is contained in a solid cylinder [11].

4 Estimates in cylinders

Once an MC1 surface Σ or annulus is localized to a cylindrical region it becomes

possible to make further useful a priori estimates. For example, if Σ is MC1, properly

embedded, and contained in a cylinder, then one can extend Alexandrov’s reflection

techniques to show that Σ is symmetric about an axis parallel to the cylinder, so in

particular from (3) we conclude (1iii) that any two-ended Σ is Delaunay.

By integrating |∇xi|2+xi∆xi (and summing on i) over a cylindrically bounded Σ,

using surface and �

3 divergence theorems (much as in the force and torque derivation

(2)), one can derive a priori area estimates: The area of such a Σ grows linearly in

the length of the cylinder. In [9] this estimate was dependent on the magnitude of the

force of the “planar” homology class on Σ obtained by intersecting the part of it inside

the cylinder with a plane perpendicular to the cylinder (and using caps K which are

intersections of the plane with the interior of Σ (inside the cylinder). In fact, one can

derive the area estimates independently of this force and work backwards to conclude

a priori estimates on the magnitude of the force.

Using the area estimates, the Gauss-Bonnet theorem, a blow-up argument, and

the homology invariance of the force vector, one can derive the fact that the second

fundamental form on an annular end is bounded. The area estimate and second

fundamental form bound imply that “slide-back” sequences of an annular end must

converge to a cylindrically bounded Σ, i.e. to a Delaunay surface, and with fixed force

and torque, i.e. unique up to translation along its axis. With a Jacobi field analysis

(depending on symmetry improvement at infinity), one can ultimately conclude (iv)

[9].
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5 Bubbles

We return to the question of which homology classes on Σ have balancing lines,

i.e. non-zero forces. It turns out that this is true for any non-zero “planar” class: [Γ]

is “interior (exterior) planar” if Γ is the boundary of a bounded component of the

intersection of a plane π with the interior (exterior) of Σ (and K is this intersection

cap). Because of orientation reasons (the Γ and K contributions point to the same

side of π), the force is automatically non-zero for exterior planar classes.

For interior classes (such as one encounters in cylindrically bounded annuli), the

result is proven by blowing a graphical MC1 bubble inside Σ, spanning Γ. Ones uses

an elliptic P.D.E. method of continuity to go from the zero mean curvature cap K,

through a family of graphs with mean curvature t ≤ 1. Σ and its reflection through

π provide barriers. By comparing the force of Γ on the MC1 graph (which is zero

since Γ bounds the graph) to that of Γ on Σ, one sees that the K terms are the same

and that a strict inequality holds on the dot product of the Γ terms with the normal

to π, since the graph lies inside Σ and its reflection. (If the strict inequality fails the

strong maximum principle implies that the MC1 graph is actually a subset of Σ or

its reflection, in which case Γ is trivial on Σ). Hence the force of [Γ] on Σ is non-zero,

and actually points into a given half-space bounded by π [8]. This is an interesting

physical property of embedded Σ, which fails for immersions.

Besides letting one prove the nearness of cylindrically bounded annuli to their bal-

ancing lines (1vi), the bubble-blowing argument and its non-zero virtual force conse-

quence, when proven in the hyperbolic space case, enabled us to show the asymptotic

symmetry results for MCH properly embedded annuli (of mean curvature H > 2),

directly from Alexandrov reflection arguments [8], thereby avoiding the Jacobi field

analysis.

6 Surface Morse theory and global estimates

Given Σ of genus g with e ≥ 3 ends, pick three mutually orthogonal directions for

which the height functions on Σ are Morse functions. Because 2-dimensional surfaces

Σ are built out of p = |χ| = 2g − 2 + e pairs of “pants”, each height function has

exactly p “essential” critical points where the homotopy class of the level sets on

Σ changes. In between the corresponding critical heights, Σ is made out of annular

pieces. Applying (3.4) to the first height function, outside at most p slabs of thickness

20 it follows that Σ decomposes into cylindrically bounded annuli. Applying the same

reasoning in succession to the other two height directions, it is possible to conclude
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the localization results (1v).

The a priori area estimates (1vi) follow from the monotonicity formula (see [9] for

an easy proof for MC1 embeddings), and the fact that localization (1v) and annular

area estimates (5) allow one to bound |Σ∩Br| for r of intermediate size. The second

fundamental form bound may now be proven using the same type of blow up argument

as in [9] for the annular case (5).

7 Compactness for families

In case our surfaces Σ lie in a half-space (which is guaranteed when e = 3 [9, 11]),

we obtain a fixed set of generators for the first homology which are represented by

planar cycles. A uniform second fundamental form bound depending only upon the

virtual forces follows as above. If we allow “almost embedded” surfaces (i.e. immersed

surfaces which extend to immersions of their interiors), then we conclude the variety

of such MC1 surfaces Σ (with fixed force and torque invariants) is compact. We

must again use a “slide-back” argument [9] to rule out possible “noncompactness

propagating down the ends of the surface”. The dimension of the solution space of

MC1 surfaces Σ is then bounded by that of this compact variety plus a constant times

the rank (2g + e) of the first homology of Σ.
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