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1 Introduction

A basic problem in differential geometry is the global structure and classifi-

cation of complete properly embedded constant mean curvature surfaces in

three-manifolds of constant sectional curvature. The models for these man-

ifolds are three-dimensional Euclidean space �

3, the three sphere S3, and

hyperbolic three-space �

3.

In 1986, Meeks [16] proved that each annular end of a properly embed-

ded surface Σ of nonzero constant mean curvature in �

3 remains a bounded

distance from a ray, i.e. each annular end of Σ is cylindrically bounded. This

theorem, together with a simple application of the Alexandrov reflection

principle, showed that Σ cannot be homeomorphic to a closed surface with

a single point removed. He also used this cylindrical boundedness theorem

to show that when Σ is topologically a closed surface minus two points, the

entire surface stays a bounded distance from a line.

In the same year, many new examples of complete properly embedded

surfaces in �

3 of finite topology and nonzero constant mean curvature were
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constructed by Kapouleas [10]. The ends of his examples converge expo-

nentially to the constant mean curvature surfaces of revolution known as

Delaunay surfaces.

Korevaar, Kusner and Solomon [11] then developed a theory to deal with

the global structure and asymptotic geometry of complete, properly embed-

ded constant mean curvature surfaces. In particular, they proved that each

annular end of any properly embedded surface Σ in �

3 with nonzero constant

mean curvature converges exponentially to a Delaunay surface. The first step

in their proof was to show that if Σ stays within bounded distance of a line, it

is Delaunay. Together with Meeks’ result, this established that every properly

embedded constant mean curvature surface homeomorphic to a closed surface

minus two points is Delaunay.

Lately there has been renewed interest in the geometry of surfaces in

hyperbolic manifolds. (See for example, [1, 4, 5, 7, 15, 22].) Let �

n+1
c de-

note the complete simply-connected spaceform of constant negative sectional

curvature c. As in Euclidean space, we will call constant mean curvature

surfaces of revolution in �

3
c Delaunay surfaces. We shall prove the following

theorems on the geometry of constant mean curvature surfaces in �

3
c .

Theorem 1.1 Suppose Σ ⊂ �

3
c is a complete properly embedded surface with

constant mean curvature greater than that of a horosphere. Then

1. Σ is not homeomorphic to a closed surface punctured in one point.

2. If Σ is homeomorphic to a closed surface punctured in two points, Σ is

Delaunay. In particular, Σ is topologically a cylinder.

3. If Σ is homeomorphic to a closed surface punctured in three points,

then Σ remains a bounded distance from a geodesic plane of reflective

symmetry. Furthermore, each half of Σ determined by the plane of re-
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flective symmetry is a graph over this plane with respect to the distance

function to the plane.

See § 2.5 for the definition of horosphere and a brief explanation of its role
here. The proof of the above theorem is similar to that of the corresponding

theorem for constant mean curvature surfaces in �

3 whose proof we outlined

earlier. Namely, we first prove that each annular end of Σ is cylindrically

bounded. This boundedness property has several immediate consequences

when Σ has finite topology:

1. Σ has more than one end.

2. When Σ has two ends, it is cylindrically bounded.

3. When Σ has three ends, it stays a bounded distance from a hyperplane.

An application of the Alexandrov reflection argument, due to Hsiang [9],

together with these three properties for Σ proves Theorem 1.1. This proof is

carried out in detail in § 3.
As in the Euclidean case, the annular ends of the surface Σ described in

Theorem 1.1 must converge to Delaunay surfaces. More precisely,

Theorem 1.2 If A ⊂ �

3
c is a properly embedded annulus with constant mean

curvature greater than that of a horosphere, then A converges exponentially

to a fixed Delaunay surface. In particular, each end of a complete properly

embedded surface Σ ⊂ �

3
c, with finite topological type and constant mean

curvature exceeding that of a horosphere, is asymptotically Delaunay. It fol-

lows that Σ is conformally a compact Riemann surface with finitely many

punctures, and that the limit set of Σ ⊂ �

3
c is a finite collection of points in

the sphere at infinity S∞.
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The above theorem results directly from the cylindrical boundedness

property for the annular end A and the following general theorem.

Theorem 1.3 Suppose Σ ⊂ �

n+1
c is a properly embedded noncompact hyper-

surface with constant mean curvature and compact boundary ∂Σ. If Σ stays

within bounded distance of a geodesic ray in �

n+1
c , then it converges expo-

nentially to one end of a Delaunay hypersurface of revolution. In particular,

Σ has one end, which is diffeomorphic to a punctured ball.

The proof of Theorem 1.3 introduces a useful new tool we call the Positive

Flux Lemma (Theorem 5.3). It also depends on some careful applications of

the Alexandrov reflection method. We remark that the Positive Flux Lemma

holds in Euclidean space too, and combined with a more refined Alexandrov

reflection argument may help prove an n-dimensional Euclidean version of

Theorem 1.3.

For simplicity we will prove all of our theorems in �

n+1
−1 = �

n+1.

2 Preliminaries

Here we introduce some background material and notation.

We will use three models of hyperbolic space: the upper halfspace, the

ball, and the Minkowski-space models.

(2.1) Upper halfspace model. Introduce the metric

ds2 =
dx21 + dx22 + · · ·+ dx2n + dy2

y2

on the upper halfspace {(x, y) ∈ �

n+1 | x ∈ �

n, 0 < y ∈ � }. Familiar
calculations show this is a complete metric with constant sectional curvature

−1, hence isometric to �

n+1.
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Horizontal (Euclidean) translations and rotations (i.e., elements of the

Euclidean group) are clearly isometries of this model. There are two other

families of transformations associated with each x0 ∈ �

n: the vertical hyper-

bolic translations

(x, y) 7−→
(
et(x− x0), ety

)
, (t ∈ � ) ,

(i.e., Euclidean homotheties about (x0, 0) with factor e
t), and the hyperbolic

reflections

(x, y) 7−→ (x0, 0) +
t2(x− x0, y)
|x− x0|2 + y2

, (t ∈ � ) ,

which are simply Euclidean inversions of the upper halfspace in the radius t

sphere centered at (x0, 0). (Reflection in a vertical hyperplane should also be

regarded as a hyperbolic reflection, with x0 =∞, t =∞.) As the fixed-point
set of its reflection, any such sphere is immediately seen to be totally geodesic.

Taking intersections, one then deduces: Hemispheres of any dimension and

radius meeting the y ≡ 0 “hyperplane at infinity” orthogonally are totally
geodesic. In particular, circles meeting the y ≡ 0 hyperplane at right angles
and vertical lines are the geodesics of the upper halfspace model.

The hyperbolic translations will prove useful later. The ones described

above associate to each x0 ∈ �

n a one-parameter group of isometries obtained

by translating along the vertical geodesic through (x0, 0) with unit speed.

Since every geodesic can be mapped to a vertical geodesic by some hyperbolic

reflection (reflect in a sphere of appropriately larger radius having a great

circle tangent to the given geodesic at y = 0 in the 2-plane it determines),

one sees: Every constant speed geodesic γ ∈ �

n+1 uniquely determines a one-

parameter group of hyperbolic translations, whose Killing field extends the

velocity vector field of γ.
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(2.2) Ball model. Introduce a complete, rotationally invariant confor-

mal metric

ds2 =
4
(
dx21 + dx22 + · · ·+ dx2n+1

)

(1− r2)2

on the open ball Bn+1 with radius 1 centered at the origin 0 in �

n+1 (here

r2: = x21+x22+· · ·+x2n+1). Completeness of this metric and constant curvature

−1 are again easy to check. Euclidean rotations (i.e., elements of the group
SO(n+1) ) and reflections across hyperplanes through 0 are obvious isome-

tries, and it is straightforward to verify that the following maps from ball to

the upper halfspace and back, (treating both as subsets of (x, y)-space) are

mutually inverse isometries:

(x, y) 7−→ (2x,−|x|2 − y2 + 1)

(1− y)2 + |x|2

and

(x, y) 7−→ (2x, |x|2 + y2 − 1)
(1 + y)2 + |x|2

Since both models are conformally flat, these are conformal maps of �

n+1.

Thus, in the ball model, hyperbolic reflections are again (Euclidean) hyper-

plane reflections and inversions in spheres meeting the (r ≡ 1) sphere at in-
finity S∞ = ∂Bn+1 orthogonally. Any point q outside Bn+1 centers a unique

such reflecting sphere, whose Euclidean radius R, satisfies R2 = |q|2 − 1.
Each radial ray emanating from Bn+1 thus determines a one-parameter fam-

ily of such reflections and these are the families we shall use to implement the

Alexandrov reflection method in hyperbolic space. (Recall in Euclidean space,

this method involves successive reflection across each of a family of parallel

hyperplanes; see 6.5). The above also shows that k-dimensional spherical

caps and disks meeting S∞ orthogonally (k ≤ n + 1) are totally geodesic

in the ball model; Euclidean circular arcs and line segments meeting S∞

orthogonally are hyperbolic geodesics.
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Explicit expressions for hyperbolic translations in the ball model are not

particularly easy (or illuminating) to write down, but their behavior is clear

from the upper halfspace model: given any two points on S∞, there is a

one-parameter group of hyperbolic translations moving with unit speed along

their unique “connecting” geodesic.

(2.3) Minkowski-space model. Here we write �

1,n+1 for �

n+2 with the

Lorentz metric

Q = −dx20 + dx21 + dx22 + · · ·+ dx2n+1 .

The following spacelike hypersurface S ⊂ �

1,n+1 with induced Riemannian

metric then provides the Minkowski space model for �

n+1:

S : = {x = (x0,x) ∈ �

n+2 | x ∈ �

n+1 , 0 < x0 ∈ � , Q(x) = |x|2 − x20 = −1}

In this way, we regard �

n+1 as the “unit sphere” in (n + 2)-dimensional

Minkowski space. By definition, the group O+(1, n+1) preserves this metric,

and acts transitively on S. To see the latter, consider that any (x0,x) ∈ S
can be sent to (1,0) by an element of the group. For the matrices




cosh(t) sinh(t) 0 . . . 0
sinh(t) cosh(t) 0 . . . 0
0 0 1 . . . 0

. . . .

. . . .

. . . .
0 0 0 . . . 1




form a one-parameter subgroup of O+(1, n+ 1), and any (x0,x) ∈ S can be
mapped to (x0, |x|e1) by a “horizontal” rotation (i.e., element of O(n + 1);
we regard the x0-axis as “vertical”). Belonging to S, the latter vector can
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be written (cosh(s) , sinh(s)e1) for some s ∈ � , and we obtain an isometry

mapping it to (1,0) by applying the matrix above with t = −s. In fact, since
the isotropy group of S at (1,0) contains O(n + 1), S must have constant
curvature. Computing at (1,0), one finds it to be −1. Completeness is also
easy to check, as noted below.

Observe further that the matrices above act transitively on the set of all

hyperplanes in �

n+2 containing the subspace x1 = 0. We therefore obtain

involutive isometries of S by conjugating reflection across the hyperplane
x1 = 0, (which induces an obvious isometry) with any of the above matrices.

These involutions are the hyperbolic reflections encountered previously in the

ball and upper halfspace models.

Moreover, conjugating these reflections with horizontal rotations and tak-

ing intersections, we see that the totally geodesic subspaces of S are precisely
the intersections of S with vector subspaces of �

1,n+1; all geodesics of S are
intersections of S with Euclidean planes through (0,0) ∈ �

1,n+1. In particu-

lar, the curve cosh(t)e0+sinh(t)e1 in S is a geodesic, and the one-parameter
group of matrices above translates it along itself with unit speed. This makes

the completeness of S obvious, as well as the following: the one-parameter
hyperbolic translation subgroups on S are all conjugate to the matrix subgroup
of O+(1, n+ 1) displayed above.

Note also that in this model, the sphere at infinity S∞ naturally identifies

with the (projectivized) null-cone {x = (x0,x) ∈ �

1,n+1 | Q(x) = |x|2 − x20 =

0}.

(2.4) Hypersurfaces of constant mean curvature. We define the

mean curvature vector h of a hypersurface Σ ∈ �

n+1 as the trace of the
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second fundamental form A on Σ:

h : = trace(A) =

(
n∑

i=1

∇τiτi

)⊥
.

Here τ1, τ2, . . . , τn is any local orthonormal frame field on Σ, “∇” is the
covariant derivative operator on �

n+1, and “⊥” denotes projection on the
normal bundle of Σ. We say Σ has mean curvature H if each of its points

has a neighborhood with a continuous unit normal vector field ν such that

h = −Hν.

It is well-known that h can also be characterized in variational terms,

according to the first variation formula for area (§ 9 of [20]):
d

dt

∣∣∣∣t=0 |Σ(t) ∩K| = −
∫

Σ
h ·X .

Here “| · |” signifies n-area on Σ , and the integral is taken with respect to
same. Σ(t) is any one-parameter family of hypersurfaces having Σ(0) = Σ ,

with initial velocity vector field X supported in a compact set K disjoint

from ∂Σ. This formula simply says that the vector field h represents the

“gradient” of the n-area functional on hypersurfaces of �

n+1.

(2.5) Some examples. Any hypersurface of �

n+1 on which the isometries

of �

n+1 act transitively must have constant mean curvature: for example,

any sphere centered at 0 in the ball model, and any “horizontal” hyperplane

y = y0 in the upper halfspace model. The latter are known as horospheres;

in the ball model they appear as Euclidean spheres tangent to ∂Bn+1.

In the ball model, a sphere of hyperbolic radius r centered at 0 is quickly

seen to have Euclidean radius tanh(r/2), hence (multiply by the conformal

factor and raise to the nth power), n-area proportional to sinhn(r). The

first variation of area formula above then gives it constant mean curvature

H ≡ n coth(r). In the upper halfspace model, the horospheres are similarly

found to have constant mean curvature H ≡ n.
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The fact that spheres in �

n+1 have mean curvature bounded away from

zero as their radii tend to infinity — the lower bound is exactly n, the

mean curvature of the horospheres — illustrates a key qualitative difference

between the theories of constant mean curvature hypersurfaces of �

n+1,

and of �

n+1, where a sphere of radius r has mean curvature n/r. This dif-

ference shows up again when we consider Delaunay hypersurfaces in �

n+1

(Lemma 6.3). Indeed, cylinders of radius r have mean curvature H ≡
(n − 1) coth(r) + tanh(r) > n, and we will see that cylindrically bounded

Delaunay hypersurfaces in �

n+1 exist only when H > n. This is why the

latter inequality appears as an important hypothesis in all our main results

(e.g., Theorems 1.1 and 1.2). The theory of constant mean curvature hyper-

surfaces withH ≤ n is more like the theory ofminimal (H = 0) hypersurfaces

in Euclidean space than the constant mean curvature theory of [11] and [16]

which guides the present work.

(2.6) Two elliptic equations. In the Minkowski space model, a con-

stant mean curvature hypersurface Σn in �

n+1 may be regarded as a spacelike

codimension-two submanifold of �

1,n+1. Two elliptic PDE’s associated with

this situation will help us get height estimates for constant mean curvature

graphs in Lemma 3.3 and § 5.4. We sketch their derivations here.
Let ν be a unit vector field normal to Σ (and tangent to S). Then the

position vector field X on Σ forms, with ν, an orthonormal pair spanning the

normal bundle to Σ in �

1,n+1. These complete any local orthonormal tangent

frame field τ1, τ2 . . . , τn on Σ to an orthonormal frame for the pullback to Σ

of the �

1,n+1 tangent bundle. It turns out the connection Laplacian on this

bundle induces a simple endomorphism of the normal bundle:

∆ΣX = nX −Hν

(2.7)
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∆Σ ν = −HX + |A|2ν .

Here H and A are respectively the (constant) mean curvature and second

fundamental form of Σ. The Laplacian ∆Σ can be written as

∆Σ : = DiDi −D(Diτi)> ,

where Dv is the standard derivative along v ∈ �

n+2 (Di abbreviates the case

v = τi), and “>” signifies projection onto TΣ.

To obtain equations (2.7), compute at a single point, choosing a “normal

coordinate” frame {τi} so that (Diτj)
> vanishes there for each i, j = 1, . . . , n.

Write

hij : = −ν ·Diτj = τj ·Diν = τi ·Djν

for the components of A, (hence H = Σhii) and observe that DiX = τi.

Using the summation convention one then has

∆ΣX = Diτi = (ν ·Diτi)ν − (X ·Diτi)X = −hiiν + (τi ·DiX)X ,

and the first equation in (2.7) follows immediately. (Geometrically, this equa-

tion establishes that the mean curvature vector ∆ΣX of Σ , as a codimension-

two submanifold of Lorentz space, is the sum of its mean curvature vector as

a hypersurface in S, and that of S itself in �

1,n+1.)

For the second equation, first check that the normal components of Diν

automatically vanish on Σ, so that

DiDiν = Di ((τj ·Diν)τj) = Di(hijτj) .

But recall that the Codazzi equations for hypersurfaces of space forms imply

Dihjk = Djhik for all i, j, k = 1, . . . , n. So,

DiDiν = (Djhii)τj + hijDiτj

= hij ((ν ·Diτj)ν − (X ·Diτj)X)

= −h2ijν + hiiX ,
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which establishes the desired fact.

3 Cylindrical boundedness and topological

obstructions

In this section we generalize Meeks’ cylindrical boundedness theorem [16] to

constant mean curvature surfaces in �

3. Our method of proof, which also

applies in �

3, further simplifies that given in [11]. Throughout this section A

will denote a properly embedded annulus (≈ S1×[0,∞)) in �

3 with boundary

∂A a simple closed curve.

Lemma 3.1 Let γR be a circle of radius R in a geodesic plane in �

3. Let Nε

denote the closed ε-tubular neighborhood of γR for some fixed ε < R. Suppose

Σ is a compact connected oriented surface of positive mean curvature in Nε

with ∂Σ ⊂ ∂Nε. If Σ does not separate Nε, then its mean curvature is

somewhere less than or equal to that of a sphere Sε ⊂ �

3 with radius ε.

Proof. We first show that the map i∗:π1(Σ) → π1(Nε) induced by the in-

clusion map is the trivial map. Since Σ does not separate Nε, there is a loop

α in Nε intersecting Σ transversely in a single point, and homotopic to some

nonzero multiple of γR. Thus, we may assume, after orienting γR, that Σ has

positive intersection number with γR. If i∗:π1(Σ) → π1(Nε) is non-trivial,

there is a simple oriented loop β on Σ homotopic to a nonzero multiple of γR.

The homology class of β in H1(Nε) must therefore have nonzero intersection

number with Σ. However, since the normal bundle to Σ is trivial, we can

push the curve β off Σ to obtain a homotopic curve β̃ that is disjoint from Σ.

Since β̃ is homologous to β, this is a contradiction. Hence i∗:π1(Σ)→ π1(Nε)

is trivial.

Let Π: Ñε → Nε denote the universal Riemannian covering space of N .

Since i∗:π1(Σ) → π1(Nε) is trivial, Σ lifts to a surface Σ̃ ⊂ Ñε. Since
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Ñε is simply connected and ∂Σ̃ ⊂ ∂Ñε, the surface Σ̃ separates Ñε into

two components. If the closure of either component were compact, then Σ

would be the boundary of a compact region of Nε that is the image of this

component under projection by Π. This contradicts our hypothesis that Σ

does not separate Nε and so Σ̃ separates the two ends of Ñε.

Let γ̃R: � → Ñε be a parametization of the proper arc covering γR. For

each t let S(t) denote the sphere of radius ε in Ñε with center γ̃R(t). Let t0 =

min{t | S(t) ∩ Σ̃ 6= ∅}, t1 = max{t | S(t) ∩ Σ̃ 6= ∅} and let pi ∈ S(ti) ∩ Σ̃ for
i = 1, 2, respectively. A simple geometric comparison of principal curvatures

then shows that the mean curvature of Σ̃ at one of the points, p1 or p2, is

less than the mean curvature of the sphere Sε. (In this comparison we use

the fact that if S(t1) is contained in one of the closures of a component of

Ñε − Σ̃, then S(t2) is contained in the closure of the other component.) 2

Lemma 3.2 Let A ⊂ �

3 be a properly embedded annulus with mean curva-

ture function greater than a constant H > 2. Let ε > arctanh( 2
H
), the radius

of a sphere in �

3 with constant mean curvature H. Let P+ and P− be planes

of distance ε from a geodesic plane P in �

3 and let Π+ and Π− denote the

two closed halfspaces determined by these planes that do not contain P . Then

Π+ ∩ A or Π− ∩ A consists entirely of compact components.

Proof. Without loss of generality, assume P− and P+ are transverse to A.

We will argue by contradiction. If Π+ ∩ A and Π− ∩ A each contain non-

compact components, then there are proper arcs α+ ⊂ P+ ∩ Int(A) and
α− ⊂ P− ∩ Int(A) parametized by a half-open interval. Consider α+ and

α− to be proper disjoint arcs on A and choose an embedded path β join-

ing the end point of α+ to the end point of α−. The arc δ = α+ ∪ α− ∪ β

is a proper embedded arc in Int(A) that separates A into two components,

where one component is topologically an annulus that contains ∂A, and the
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other component is simply connected. Let D denote the closure of the simply

connected component of A− δ (see Figure 1).

µ´
¶³

A

∂A

-
i

α−
β

D
α+

P+

P

P−

Π+

Π−

qβ p D

¡
¡¡

¡
¡
¡
¡¡

¡
¡¡

α+

α−

Figure 1.

Choose a ball B centered at some point p ∈ P and of radius sufficiently

large so that the arc β is contained in the interior of B. Since δ intersects P

in a compact set contained in the disk B ∩ P , we can choose a circle γR ⊂
P centered at p, whose radius R equals the sum of the radius of B and the

positive number ε . Clearly γR has linking number 1 with the proper arc δ.

Without loss of generality, assume now that γR intersects the simply

connected surface D transversely, and that the boundary of the ε-tubular

neighborhood Nε of γR is also transverse to D. Since γR has linking number

1 with δ, γR has odd intersection with D. So one component Σ of D∩Nε has

odd intersection with γR and Σ does not separate Nε. But then, Lemma 3.1

implies Σ has some point with mean curvature less than or equal to the mean

curvature of a sphere of radius ε, namely, H . This contradiction completes

our proof. 2

The following estimate is true for constant mean curvature hypersurfaces

of �

n+1, and is sharp on geodesic spheres.
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Lemma 3.3 Let Σ ⊂ �

n+1 be an embedded compact hypersurface with con-

stant mean curvature H > n, and boundary ∂Σ contained in a totally geodesic

hyperplane P . Then for any x ∈ Σ, dist(x, P ) ≤ K(H) ≡ 2 arctanh( n
H
).

Proof. Since Σ is compact we can choose a point p ∈ Σ of maximal distance
d from the hyperplane P . Let γ be the unit speed geodesic with γ(0) ∈ P

and γ(d) = p. Note that γ is orthogonal to P at γ(0). Let Y be the Killing

field that generates the unit speed family of hyperbolic translations ht along

γ with h0 the identity (see Section 2.1). Let Rt: �

n+1 → �

n+1 be hyperbolic

reflection in the geodesic hyperplane Pt = ht(P ).

Let Σt =
⋃

t′≥t(Pt′ ∩Σ). The Alexandrov reflection principle implies that
for t ≥ d

2
, Rt(Σt) ∩ Σ = ∂Σt, and that this intersection is transverse. It

follows that the surface S = h− d
2

(Σ d
2

) is a graph with respect to the Killing

coordinate t over a domain Ω ⊂ P .

We claim that S is also a graph over Ω with respect to the distance

function s from P . In fact, it suffices to show that S is a graph with respect

to the Killing coordinate associated to any unit speed geodesic γ that meets

Ω ⊂ P orthogonally, since along γ the Killing coordinate t coincides with

s, and in general, t ≤ s. But this latter claim follows from the Alexandrov

reflection argument used previously.

It remains to show the distance function s from P satisfies s ≤ arctanh( n
H
)

on the graph S. To do this, we model �

n+1 by the unit sphere S in Minkowski
space �

1, n+1 (see discussion in Section 2.3).

We may assume P is the geodesic hyperplane {x1 ≡ 0}. In these coor-
dinates, the distance from P is simply s = arcsinh(x1). By the above, S

is a graph with respect to x1, and x1 = 0 on the boundary. Also, the first

component of the unit normal ν on a graph satisfies ν1 ≥ 0, and in general
ν1 ≤

√
1 + x21 =

√
1 + sinh2 s = cosh s.
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Now by the Cauchy-Schwartz inequality we have n|A|2 ≥ H2, and so by

equations 2.7,

∆(Hx1 − nν1) = (n|A|2 −H2)ν1 ≥ 0.

The maximum principle then implies

Hx1 − nν1 ≤ (Hx1 − nν1)
∣∣∣
∂S
≤ 0 ;

that is

sinh s = x1 ≤
n

H
ν1 ≤

n

H
cosh s ,

which immediately gives the required estimate. 2

Corollary 3.4 Suppose Σ ⊂ �

n+1 is an embedded compact hypersurface of

constant mean curvature H > n. Then the distance from Σ to the convex

hull H(∂Σ) of the boundary of Σ is less than K(H) ≡ 2 arctanh( n
H
).

Proof. Suppose p ∈ (Σ−H(∂Σ)) and d = dist(p,H(∂Σ)). Let q ∈ ∂(H(∂Σ))
be a closest point to p, let γ be the geodesic line segment joining p and q,

and denote by Pq the geodesic plane orthogonal to γ at q. Let Π denote

the halfspace with boundary Pq and that contains the p. Then Π ∩ Σ is a
compact hypersurface with boundary contained in Pq. Since dist(p, Pq) = d,

Lemma 3.3 shows that d ≤ K(H). 2

Remark 3.5 The corresponding result holds in Euclidean space, replacing

the constant K(H) by 2n/H. (This generalizes a result of Serrin [19].)

We now prove the main result of this section.

Theorem 3.6 (Cylindrical Boundedness) Suppose A is a properly em-

bedded annulus in �

3 of constant mean curvature H > 2. Then for any point

p ∈ ∂A there exists a unique geodesic ray γp through p such that A stays a

bounded distance C from γp. The number C depends only on the diameter of

∂A and on H.
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Proof. Choose a point p ∈ ∂A and a divergent sequence {p1, . . . , pn, . . .} ⊂
A. Let γi denote the unit speed geodesic joining p to pi. Since the unit

sphere in the tangent space to �

3 at p is compact and the geodesics γi are

determined by their initial velocities, a subsequence of {γi} converges to a
unit speed geodesic ray γ. We now show A stays a bounded distance from γ

and that this distance can be estimated from above by a constant depending

only on its mean curvature H and the diameter of ∂A. Clearly any geodesic

γ satisfying these hypotheses is unique.

Let C(γ, d) denote the d-tubular neighborhood of γ where d is the diame-

ter of ∂A. For this choice of d, we have ∂A ⊂ C(γ, d). Suppose P is a totally

geodesic plane tangent to C(γ, d). Then P intersects ∂C(γ, d) at a unique

point. Let P+ and P− be the planes of constant distance ε from P where ε >

arctanh( 2
H
). Let Π+ and Π− be halfspaces defined as in the similar situation

described in Lemma 3.2. Assume that P+, P− are indexed so that ( �

3−Π+)
contains γ.

#
"
r

r

r
p p

r
- γ

Figure 2a:

#
"

P
P+

P−

Π−

Π+ qP

P+
Π+

- γ

Figure 2b:

We first claim Π+∩A consists entirely of compact components. For, if to

the contrary Π+ ∩ A contains a noncompact component, Lemma 3.2 makes

every component of Π− ∩ A compact. Since ∂(Π− ∩ A) ⊂ ∂Π− = P−, and

P− is convex toward P (the interior convex hull of P− is equal to �

3 − Π−),
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Corollary 3.1 shows Π− ∩A is within distance K(H) of P−. So the limit set

of A is contained in the limit set S+ of Π+. (Here, we view the limit set of

a subset of �

3 as a subset of S∞ in the ball model.) On the other hand, the

sequence {pi} ⊂ A has the limit point p∞ of γ in its limit set. But γ and

P diverge in �

3 and hence p∞ is not contained in S+. This contradiction

proves every component of Π+ ⊂ A is compact.

Let q ∈ A be a point in the complement of C(γ, d) and let α be the

geodesic from q to γ with length dist(q, γ). For this q we pick a particular

geodesic plane P to apply the above estimates. Specifically, choose P to be

the geodesic plane that is tangent to C(γ, d) at α ∩ ∂C(γ, d). Since P+ is

convex toward P , Corollary 3.1 again implies dist(q, P ) ≤ K(H). Therefore,

dist(q, γ) ≤ dist(q, P+) + dist(P+, P ) + dist(P, γ) ≤ K(H) + ε+ d ,

and this estimate proves the theorem. 2

We can now prove Theorem 1.1 as stated in the Introduction, assuming

without loss of generality that the ambient curvature c equals −1.
Proof of Theorem 1.1. Suppose Σ ⊂ �

3 is homeomorphic to a closed

surface punctured in one point. By Theorem 3.1, the annular end of Σ stays

a bounded distance C from some geodesic ray γ with γ(0) ∈ Σ. Hence the
entire surface stays a bounded distance from γ.

Let P be a geodesic plane orthogonal to γ at γ(d) where d is greater

than the constant K(H) of Lemma 3.3. Let Π be the halfspace determined

by P and containing the point γ(0). Then Π ∩ Σ is a compact surface with
boundary in P , and dist(γ(0), P ) > K(H) contradicting Lemma 3.3. This

proves part 1 of the theorem.

For the remainder of the proof we recall a theorem of Hsiang [9], which

is proved using the Alexandrov reflection principle (cf. also § 5).
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Hsiang’s Theorem [9]. Suppose that Σ ⊂ �

n+1 is a complete properly

embedded hypersurface of constant mean curvature that is a bounded distance

from a geodesic hyperplane. Then Σ is invariant under geodesic reflection

in the hyperplane. If Σ is a bounded distance from a geodesic, then Σ is a

Delaunay hypersurface of revolution.

Suppose now that Σ is homeomorphic to a closed surface with two points

removed. Theorem 3.1 says the annular ends A1 and A2 of Σ stay a bounded

distance from geodesic rays γ1 and γ2, respectively. Given two geodesic rays

in �

3 there is a unique geodesic γ to which γ1 and γ2 converge at infinity. It

follows that Σ stays a bounded distance from γ. Hsiang’s theorem implies

that Σ is a surface of revolution, which proves part 2 of the theorem.

Finally, assume Σ is homeomorphic to a closed surface with three points

removed. Let A1, A2, A3 be the annular ends of Σ and let γ1, γ2, γ3 be the

geodesic rays given in Theorem 3.1 such that Ai is a bounded distance from

γi for i = 1, 2, 3. Note that the limit points at infinity of these geodesic rays

must be distinct. Otherwise, the rays stay a bounded distance from some

fixed geodesic, and Hsiang’s Theorem would make Σ a surface of revolution

with only two ends. So there exists a unique geodesic plane P in �

3 to which

the geodesic rays γ1, γ2, γ3 are asymptotic, and Σ stays a bounded distance

from P . Hsiang’s Theorem now makes Σ invariant under reflection in the

plane P . Furthermore, the argument in the proof of Lemma 3.3 shows, if s

is the distance function from P , then the halves of Σ above and below P are

graphs over P relative to s. This completes the proof of Theorem 1.1. 2

4 Conservation laws and momenta

Using the first variation formula and the symmetry group O+(1, n + 1) of

hyperbolic space, we derive conservation laws for a constant mean curvature
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hypersurface Σ ⊂ �

n+1. These laws permit, for example, the assignment to

each end of Σ a momentum in the Lie algebra o(1, n+1), and force the sum

of these momenta (over all ends) to vanish. We also interpret these momenta

geometrically, showing, for instance, how they assign geodesic “worldlines”

to certain cycles on Σ (cf. [14] for a discussion of the Euclidean case).

Given a hypersurface Σ ⊂ �

n+1 with constant mean curvature H, con-

sider an (n−1)-cycle Γ ⊂ Σ and any “cap” n-chain K ⊂ �

n+1 with boundary

∂K = Γ. Let η and ν denote the “outer” unit conormal and normal for Γ and

K, respectively. In other words, if νΣ is the outer normal to Σ (oriented op-

positely to the mean curvature vector), then the orientations (Σ , νΣ), (K , ν)

and (Γ , η , νΣ) all agree with the righthanded orientation on �

n+1.

Each Lie algebra element Y ∈ o(1, n+1) generates a one-parameter sub-

group exp(tY ) in O+(1, n+ 1). The velocity of the corresponding isometric

flow on �

n+1 is a Killing vector field Y. This process inverts, yielding an

isomorphism between o(1, n+ 1) and the Lie algebra of Killing vector fields

on �

n+1.

Theorem 4.1 (Conservation Laws) On any hypersurface Σ ⊂ �

n+1 with

constant mean curvature H, there is a natural cohomology momentum class

with coefficients in the dual Lie algebra,

µ ∈ Hn−1(Σ)⊗ o(1, n+ 1)∗

defined by the area −H· volume flux induced by Y through (Γ, K):

〈µ([Γ]), Y 〉 =
∫

Γ
η ·Y −H

∫

K
ν ·Y .

Furthermore, as Σ is translated in �

n+1 by the action of g ∈ O+(1, n + 1),

the momentum class transforms via the co-Adjoint representation

g∗µ = Ad∗(g) · µ .
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Proof. To prove µ is well-defined inHn−1(Σ)⊗o(1, n+1)∗, it suffices to show,
for fixed Y, that the flux integral depends solely upon the homology class

[Γ] ∈ Hn−1(Σ). Since the flux integral is linear in its domains of integration,

we only need to show it vanishes when (Γ, K) is null homologous, i.e. when

there exists a relative (n, n+ 1)-chain (S, U) ⊂ (Σ, �

n+1) such that

Γ = ∂S and K = ∂U − S.

In this case the area−H · volume flux induced by Y can be rewritten

〈µ([Γ]), Y 〉 =
∫

∂S
η ·Y −H

∫

K
ν ·Y

=
∫

∂S
η ·Y + H

∫

S
νΣ ·Y − H

(∫

S
νΣ ·Y +

∫

K
ν ·Y

)

But, combining the first variation formulas (cf. [20]) as in [11] for area

δY|S| =
∫

S
div Y =

∫

∂S
η ·Y +H

∫

S
νΣ ·Y

and for volume

δY|U | =
∫

U
DIV Y =

∫

S
νΣ ·Y +

∫

K
ν ·Y ,

we have

〈µ([Γ]), Y 〉 =
∫

S
div Y −H

∫

U
DIV Y

= δY(|S| −H|U |)

as the pair (S, U) is deformed along Y; but the latter vanishes, since Y is

assumed to be a Killing vector field, preserving area and volume.
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The transformation property follows from a change of variables in the

flux integral

〈µ(g#[Γ]),Ad(g) · Y 〉 =
∫

g(Γ)
g∗η · g∗Y −H

∫

g(K)
g∗ν · g∗Y

=
∫

Γ
η ·Y −H

∫

K
ν ·Y

= 〈µ([Γ]), Y 〉

using the fact that the Lie algebra element Ad(g) · Y extends to the Killing
vector field g∗Y on �

n+1, which is the push-forward of Y by the derivative

of g. 2

As a direct consequence, we observe that the ends of a constant mean

curvature hypersurface Σ ⊂ �

n+1 must “balance”.

Corollary 4.2 On a complete, properly embedded hypersurface Σ ⊂ �

n+1

with constant mean curvature and finitely many ends, any end E has a well-

defined momentum µE ∈ o(1, n + 1)∗, and the sum of the momenta corre-

sponding to the ends is zero.

Proof. Define µE = µ([Γ]), where Γ is an appropriately oriented cycle sep-

arating E from the “compact part” of Σ. To prove the second statement,

consider cycles Γi of this type, where i indexes the ends of Σ. Defining

µi = µ([Γi]), we now simply observe that

µ1 + · · ·+ µk = µ
(∑

[Γi]
)
= 0

since the latter sum bounds a compact domain in Σ. 2

It is customary to identify the Lie algebra o(1, n+ 1) and its dual

o(1, n+1)∗ with the Lie algebra ∧2 �

1, n+1 of antisymmetric (with respect to

the Lorentz form Q = −dx20 + dx21 + · · ·+ dx2n+1) linear maps on �

1, n+1

o(1, n+ 1)∗ ∼= o(1, n+ 1) ∼= ∧2 �

1,n+1 ∼= {A ∈Mn+2( � ) | AtQ+QA = 0}.
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The dual pairing is then given by the Killing form 〈A,Z〉 = 1
2
Trace(AZ).

With these identifications, a little computation shows

µ([Γ]) =
∫

Γ
η ∧X −H

∫

K
ν ∧X

where X is the position vector on �

1, n+1, and η and ν are regarded as vec-

tors in �

1, n+1 via the “Minkowski-space model” embedding �

n+1 ⊂ �

1,n+1

discussed in § 2.3. Furthermore, the co-Adjoint action can be identified with
the usual action of

O+(1, n+ 1) ∼= {U ∈Mn+2(� ) | U tBUB = I}

on o(1, n + 1) by conjugation. Thus the geometric invariants of µ([Γ]) are

simply its conjugacy invariants, namely its (generalized) eigenspaces and

eigenvalues.

Before we work these out explicitly (we do so later for constant mean

curvature surfaces in �

3 ), recall the decomposition of O+(1, n + 1) and its

Lie algebra o(1, n+ 1) into elliptic, parabolic, and hyperbolic elements.

Proposition 4.3 Consider a nonzero element µ ∈ o(1, n + 1) . We say µ

is elliptic (E), parabolic (P), or hyperbolic (H), respectively, if one of the
following four correspondingly lettered equivalent conditions holds:

1. exp(µ) , viewed as a conformal automorphism of Bn+1, has:

E (1) : a fixed point on the interior,

P (1) : a unique fixed point on the boundary sphere S∞,

H(1) : two fixed points on S∞.

2. µ , extended to a vector field on Bn+1, has:

E (2) : a zero on the interior,
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P (2) : a unique zero on S∞,

H(2) : two zeros (a source and a sink) on S∞.

3. µ, viewed as an antisymmetric endomorphism of �

1,n+1, has:

E (3) : a ray of eigenvectors in the interior {v | Q(v) < 0} of the null

cone,

P (3) : one ray of eigenvectors on the null cone {v | Q(v) = 0},

H(3) : two linearly independent rays of null eigenvectors (with real

eigenvalues +m 6= 0).

4. µ, as an (n+ 2)× (n+ 2) matrix has the property that:

E (4) : each column (µ∗j) (j ≥ 1) satisfies (µ0j)2 <
∑n+1

i=1 (µij)
2,

P (4) : neither E (4) nor H(4),

H(4) : there is a column (µ∗j) (j ≥ 1) such that (µ0j)
2 >

∑n+1
i=1 (µij)

2 .

Proof. The equivalence of (1) and (2) is clear since a zero of µ is a fixed point

of exp(µ); (1) gives the usual notion of ellipticity, etc. for group elements.

Items (1) and (2) are equivalent to (3) by the usual identification of Bn+1 =

S∞ ∪ Bn+1 with the projectivization of the future cone {v | Q(v) ≤ 0}.
These are then equivalent to (4) by the following type of argument (we do

case H(4)).
Without loss of generality suppose

(µ0,n+1)
2 >

n+1∑

i=1

(µi,n+1)
2 .

Now consider the hyperplane (en+1)
⊥ ⊂ �

1,n+1 , which defines a totally

geodesic �

n ⊂ �

n+1 . Using the relationship between the Minkowski space
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and ball models (§ 2.2), one readily finds this inequality equivalent to the
fact that the vector field

n+1∑

i,j=0

µijxjei

has a source and a sink on S∞ (one on each side of (en+1)
⊥) corresponding

to the +m null eigenvectors of µ.

We leave the other cases to the reader. 2

Remark 4.4 If µ ∈ o(1, n + 1) is hyperbolic, it defines a unique (oriented)

geodesic L ⊂ �

n+1 joining the source and sink mentioned above. L is the

intersection of the oriented +m eigenvector plane with the Lorentzian unit

sphere S ⊂ �

1,n+1 (see § 2.3). In fact, µ can be put into canonical form:




0 m 0 . . . 0 0
m 0 0
0 0 s1
. −s1 0 .
. 0 s2 .
. −s2 0 .

.
0 . 0

0 s[n/2]
0 0 0 . . . 0 −s[n/2] 0




with respect to an “orthonormal” basis {u0, u1, . . . , un+1} for �

1,n+1, i.e.,

Q(u0, u0) = −1, Q(ui, ui) = 1 (i > 0), Q(uα, uβ) = 0 , (α 6= β).

We call L the worldline, m the mass, and the invariants s1, s2, . . . , s[n/2]

the spins of µ.

To justify this remark, note that from H(3) of Proposition 4.3 we have
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


m 0 0
0 −m 0
0 0 R




where R ∈ o(n) is some antisymmetric n × n matrix. The existence of

{u2, u3, . . . , un} putting R into a diagonal matrix of 2 × 2 antisymmetric
blocks

[
0 si
−si 0

]

is then standard linear algebra. Now choose null eigenvectors v+ and v−

corresponding to +m such that the remaining vectors u0 , u1 defined by

u0 + u1 = v+ and u0 − u1 = v− are orthonormal.

Remark 4.5 In the case n = 2 (corresponding to Σ ⊂ �

3), we have simply

µ ∼=




0 m 0 0
m 0 0 0
0 0 0 s
0 0 −s 0


 ,

which can be viewed as the initial velocity of a screw-motion along the geodesic

axis L with translation and rotation “speeds” m and s respectively.

To be completely explicit with regard to this last remark, if

µ =




0 w1 w2 w3
w1 0 r3 −r2
w2 −r3 0 r1
w3 r2 −r1 0


 ,

27



is hyperbolic, then

m2 =
1

2

(
B +

√
B2 + 4C

)
,(4.1)

s2 = −1
2

(
B −

√
B2 + 4C

)
,(4.2)

where, regarding w = (w1, w2, w3) and R = (r1, r2, r3) as vectors in �

3 with

the standard dot product, we have

B = w ·w −R ·R = 〈µ, µ〉, C = (w21, w
2
2, w

2
3) · (r21, r22, r23) .

We let the reader work out the analogous formulae when n > 2.

Remark 4.6 On the most important examples, the Delaunay surfaces of

revolution, where [Γ] is represented by a cross-section, one finds that the

spins all vanish, the world line L is the axis of revolution, and the mass m

is computed by the area−H · volume flux generated by a unit speed dilation
along the axis (cf. 6.3).

Finally, we determine which (n − 1)-cycles Γ ⊂ Σ ⊂ �

n+1 give rise to

hyperbolic momenta µ([Γ]) . (It seems natural to state the following result

here, although the heart of its proof is really Theorem 5.3. For the definitions

of “planar”, “interior” and “exterior” homology classes, the reader should

refer to § 5.1.)

Theorem 4.7 (Geometric Positive Flux Lemma) Let [Γ] be a planar

homology class on a complete constant mean curvature Σ ⊂ �

n+1. Then

µ ([Γ]) is either hyperbolic or zero. In the former case, µ assigns [Γ] a geodesic

worldline L and a nonzero mass m (positive if [Γ] is an interior class, neg-

ative if [Γ] is an exterior class). If µ([Γ]) = 0, then [Γ] is an interior class,

and bounds a subdomain of Σ that is a graph over the corresponding plane

domain.
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Proof. We will use the “scalar” Positive Flux Lemma (5.3) to establish the

inequality H(4) from Proposition 4.2:

(µ0j)
2 >

n+1∑

i=1

(µij)
2 , (some j ≥ 1) .

Actually, for purposes of proof, we may assume j = n+1 by relabelling. Thus,

let Π = (en+1)
⊥ ∩ S in the Minkowski space model and rotate coordinates

in Π so that µi,n+1 = 0 for each i > 2 . We must show

(µ0,n+1)
2 > (µ1,n+1)

2 .

Consider the following two parabolic elements of o(1, n+ 1)

P+ =




0 0 · · · 0 1
0 . . +1
. . . 0
0 . . 0
1 +1 · · · 0 0




.

These extend to Killing vector fields P± on �

n+1 which are perpendicular

to Π and satisy P± · νΠ > 0. Thus, the pairings

〈µ , P+〉 = µ0,n+1 + µ1,n+1

〈µ , P−〉 = µ0,n+1 − µ1,n+1

are both positive from Theorem 5.3 . So their product (µ0,n+1)
2 − (µ1,n+1)2

is positive, as needed for H(4). 2

5 Positive flux lemma

Here we prove our “Positive Flux Lemma” (Theorem 5.3) for a properly

embedded constant mean curvature surface Σ with compact boundary ∂Σ.
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Roughly, it says that “planar” homology classes (defined in § 5.1) which are
far enough from ∂Σ must either be trivial, or have non-zero area−H ·volume

flux relative to certain Killing vector fields. We first establish the analogous

fact in Euclidean space. We do so because the Euclidean case is interesting

on its own, and because it displays the main ideas of the hyperbolic case

without as many technical details.

In § 6, we will apply the Positive Flux Lemma to cylindrically bounded
Σ to deduce rotational symmetry “at infinity.” We hope this lemma will

also prove useful in studying the “compact part” of constant mean curvature

surfaces. As already observed (see Theorem 4.7, and [14] for the Euclidean

case), the fact that a homology class has non-zero mass gives it a well-defined

“worldline” which for a Delaunay end is just the axis of revolution. It should

be true more generally that constant mean curvature surfaces stay close to

their worldlines. For instance, one might hope to prove (at least for the case

n = 2) that every properly embedded constant mean curvature surface stays

near some “balanced diagram” like the examples in �

3 constructed by N.

Kapouleas [10].

(5.1) Configuration. We assume Σ comprises part of the boundary of

some open set, into which the mean curvature vector of Σ points. Specifically,

we assume that there exists an open, connected domain Ω with ∂Ω = Σ∪Σ′

and ∂Σ = Σ ∩ Σ′, where Σ′ is a smooth “cap”. (We assume nothing about
the geometry of Σ′.)

The homology class [Γ] of Σ is called planar if the cycle Γ is a compact,

transverse intersection between part of Σ and some (totally geodesic) hyper-

plane Π, and Γ is the (possibly disconnected) boundary of a component K

of either Ω ∩ Π or of ( �

n+1 − Ω) ∩ Π. In the first case, or more generally
whenever Γ is trivial in Ω, we will call [Γ] an interior homology class, and in
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the second case (or whenever Γ is trivial in ( �

n+1−Ω)) we call [Γ] an exterior
class. (Note that the Mayer-Vietoris exact sequence implies that interior and

exterior classes span the homology of Σ ∪ Σ′, but there is no guarantee that
planar classes do so.)

(5.2) Orientations. We retain the convention that on Σ the normal νΣ is

the exterior normal to Ω, and require that on a planar cap K, the conormal

η along Γ has positive inner product with the plane normal ν. The flux

formulas (Theorem 4.1) for interior and exterior homology classes then differ

by a sign in the cycle term:

〈µ([Γ]), Y 〉 =
∫

Γ
η ·Y −H

∫

K
ν ·Y [Γ] interior planar

〈µ([Γ]), Y 〉 = −
∫

Γ
η ·Y −H

∫

K
ν ·Y [Γ] exterior planar .

Our main objective for the remainder of this section is now to prove:

Theorem 5.3 (Positive Flux Lemma) Let [Γ] be a planar homology class.

LetY be an Killing vector field perpendicular to Π , withY·νΠ strictly positive
on Π. If [Γ] is an exterior planar homology class, then the flux 〈µ([Γ]),Y〉
is strictly negative, and thus Γ is nontrivial on Σ.

If [Γ] is an interior planar homology class, and if dist(K,Σ′) is sufficiently

large (depending on H and the diameter of Γ), then either Γ is trivial on Σ or

the flux 〈µ([Γ]),Y〉 is strictly positive. In the trivial case, Γ actually bounds
a subset of Σ that is a graph (with respect to distance) above K.

In particular, only the planar homology classes near ∂Σ and the trivial

class can have momentum zero. If ∂Σ is empty, every non-trivial planar

class has hyperbolic momentum and nonzero mass (cf. Theorem 4.7).

Proof. For exterior planar classes, the definition of flux immediately yields

the result, since η ·Y and ν ·Y are non-negative and positive, respectively,

on Γ and K.
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The main content of our theorem therefore concerns interior planar classes.

Our plan is to “blow a bubble” KH inside Ω with mean curvature H which

is bounded by Γ, and then to compare the flux through Γ relative to Σ with

the flux relative to KH (which must be zero since Γ bounds KH).

Specifically, we will construct a one-parameter family of graphs Kλ over

K with constant mean curvature λ ∈ [0, H] and with ∂Kλ = Γ. Let R

denote geodesic reflection across Π. Since the Kλ form a continuous family

of constant mean curvature surfaces, the strong maximum principle implies

that:

1. For λ < H, the graph Kλ intersects Σ and its reflected image Σ̃ = R(Σ)

transversely along Γ and Kλ ∩ (Σ ∪ Σ̃) = Γ.

2. Either KH ⊂ Σ ∪ Σ̃, or KH ∩ (Σ ∪ Σ̃) = Γ and KH is transverse to Σ

and Σ̃ along Γ.

In case 2 above when KH ⊂ Σ̃, the reflected image R(KH) is contained

in Σ. Hence when KH ⊂ Σ∪ Σ̃, Γ is the boundary of a compact graph in Σ.
On the other hand, if Γ does not bound a graph in Σ, the angle of Σ with

the plane Π along Γ exceeds the angle of KH (see Figure 3). Since Y ⊥ Π,
this means ηKH

·Y < ηΣ ·Y along Γ. (Here subscripts distinguish between

the conormals to Σ and KH .) Hence

〈µ([Γ]), Y 〉 =
∫

Γ
ηΣ ·Y − H

∫

KH

ν ·Y(5.1)

>
∫

Γ
ηKH
·Y −H

∫

KH

ν ·Y = 〈µKH
([Γ]), Y 〉 = 0.

The inequality here is precisely what we sought; it remains to construct

the graphs Kλ to complete the proof of the Positive Flux Lemma.
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KH

Σ̃

Σ

Π

Figure 3.

We first carry out the construction in Euclidean space. In this setting,

Y generates a translation perpendicular to the plane Π. We may assume Π

is the {x1 = 0} plane and that its normal νΠ = −e1 = Y. The family of

graphs over K will be Kλ = {x1 = uλ(x2, . . . , xn+1)}, were the non-negative
function uλ solves the nonparametric constant mean curvature λ equation:





div
(

Duλ(y)√
1+|Duλ(y)|2

)
= −λ y ∈ K

uλ(y) = 0 y ∈ ∂K = Γ .

(5.2)

for 0 ≤ λ ≤ H.

Note that u0 ≡ 0, so that K0 = K. It follows from the implicit function

theorem for elliptic PDE’s that we can solve (5.2) for small λ > 0. The

following sequence of estimates will enable us to continue this solution-family

all the way through λ = H.

(5.4) Height estimates. Choose an origin in Π so that Γ lies in the ball
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of radius R = diam(Γ). Consider the spherical graph x1 =
√
R2 − |y|2, with

non-parametric mean curvature −n/R, and non-negative boundary values
on Γ. For λ ≤ n/R, it provides a barrier above the graph Kλ of uλ. That is,

uλ(y) ≤ R, 0 ≤ λ ≤ n/R.(5.3)

Recall the estimate

λx1 ≤ nν1 ,(5.4)

which holds for a graph x1 = u(y) having mean curvature λ and upper normal

ν. (This estimate is proven in [11] by the same method used in § 2.6 above for
the analogous hyperbolic estimate: ∆(λx1−nν1) = (−λ2+n|A|2)ν1 ≥ 0 holds
for Euclidean graphs as well.) Applying (5.4) to estimate x1, we conclude

that

uλ(y) ≤ n/λ ≤ R, n/R ≤ λ ≤ H .(5.5)

(5.5) Gradient estimates and barriers at the boundary. Note that

the uλ(y) increase monotonically in λ: if λ1 < λ2 then uλ1
(y) ≤ uλ2

(y), with

strict (interior) inequality, since the maximum principle applies to equation

(5.2). Estimate (5.4) combines with this monotonicity in λ to bound ν1(y)

below by a positive number depending on y in (the interior of) K, but not

on λ. The gradient |Duλ(y)| is therefore bounded uniformly in λ on compact

subsets of K, as long as the graphs Kλ exist.

Observe next that for λ ≤ H, our original surface Σ∩ {x1 ≥ 0} , and the
“positive” half of its reflection Σ̃ through {x1 = 0}, namely Σ̃ ∩ {x1 ≥ 0},
are barriers “above” the graphs of uλ, provided that Σ

′ is more than R units

away from K. (This is why Theorem 5.3 requires the distance between Σ′

and K to be sufficiently large: we can thereby guarantee that any first point

of tangential contact between ∂Ω (or the reflection ∂Ω̃) and uλ occurs on Σ
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(or the reflection Σ̃). The maximum principle then controls contact between

Σ (and Σ̃) and the graph Kλ of uλ.)

At the boundary of K, since Σ ∩ {x1 ≥ 0} and Σ̃ ∩ {x1 ≥ 0} are
barriers, we immediately get gradient estimates for the uλ, independent of λ,

wherever the conormal η of Σ is not perpendicular to Π along Γ. Of course, η

may indeed be perpendicular to Π at many points. The following curvature

estimates cover this contingency.

(5.6) Curvature estimates. One could apply geometric measure theory

arguments to produce curvature estimates independently of gradient esti-

mates: constant mean curvature graphs minimize (parametric) elliptic varia-

tional problems, hence have Holder continuous normals with norm depending

only on the smoothness of ∂K = Γ [3]. Such an estimate implies that one

has functions parameterizing uniformly-sized neighborhoods U(p) of points

p ∈ Kλ as Lipschitz graphs above the tangent planes to Kλ at p. Elliptic

regularity theory then bounds the curvatures.

However, a certain amount of machinery is required to obtain Holder

continuity of the normal, so we use direct PDE techniques below to find tilted

planes near Γ, above which the Kλ are (locally) uniform Lipschitz graphs.

(These techniques relate to methods used in [13]; more technical versions of

“tilting” apply to a variety of Dirichlet and contact angle problems [12].)

We then combine the resulting curvature estimates near Γ with the interior

estimates of § 5.5 to derive global curvature (and higher derivative) estimates
independent of λ and |Du|.
To begin, let n be the exterior normal vector field in a tubular neighbor-

hood of Γ ⊂ Π. By a mild abuse of notation, we also use n for the normal
vector field (0,n) near the cylinder � × Γ lying “above” Γ, and then extend
n smoothly (again without changing notation) to the entire cylinder � ×K.
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Now consider the functional

F = θekx1 − ν · n−Mν1(5.6)

on Kλ. It suffices to show that we can find positive constants θ, k and M so

that F ≤ 0 on Kλ. For, in a neighborhood of p ∈ Kλ, F ≤ 0 can be rewritten
as

ν · (Me1 + n(p)) ≥ θekx1 + ν · (n(p)− n) ,

and one has a uniformly Lipschitz graph above a plane perpendicular to

Me1+n(p) as long as the quantity on the right is uniformly positive. Elliptic

regularity theory for solutions to uniformly elliptic equations having locally

smooth boundary data (i.e., the projections of Γ onto such planes when p is

near � × Γ) then produces uniform estimates on the curvature (and all its
derivatives) on Kλ.

To find θ, k,M , recall first (paragraph after equation (5.2)), that for λ

near 0, say 0 ≤ λ ≤ λ0, the implicit function theorem gives us solutions uλ

with uniformly bounded gradient. For this range of λ, and for given θ, k, we

can therefore ensure F ≤ 0 by making M large enough. It then suffices to

find θ, k,M for the range λ ≥ λ0.

For this purpose, we again use the strong maximum principle, which

implies uλ0
has strictly positive normal derivative, i.e., ν · n > θ along Γ

for some positive number θ. Since the uλ increase monotonically in λ, this

normal derivative estimate continues to hold for all λ ≥ λ0. Using this θ in

our definition of F we see that F < 0 on ∂Kλ = Γ, for all λ ≥ λ0.

Now, if for a given k, we already have F ≤ 0 with M = 0, we are done.

If not, increase M from 0 until F ≤ 0 on Kλ and there exists an interior

point p ∈ Kλ where F = 0. (This is possible because F < 0 on Γ and ν1 > 0

on the interior of Kλ.) Then at p, ∇F = 0 and ∆F ≤ 0, where ∇ and ∆
are the surface gradient and Laplacian, respectively.) Using the identities
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∆x1 = −λν1, ∆ν = −|A|2ν, we compute ∆F (p) explicitly, and obtain an

estimate at p:

θekx1(−kλν1 + k2|∇x1|2)

+ |A|2(ν · n+Mν1)− C|A| − C ≤ 0,
(5.7)

The error terms −C|A| −C here come from cross derivatives of ∆(ν ·n).
The constants C depend on the domain K, but not on λ. Since F (p) = 0 we

can substitute ν · n+Mν1 = θekx1 into equation (5.7), obtaining

θekx1(kλν1 + k2|∇x1|2 + |A|2)− C|A| − C ≤ 0.(5.8)

But |∇x1|2 = 1 − (ν1)2 > 1
2
if (ν1)

2 < 1
2
, the latter holding for any M ≥

M0(θ, k) because x1 is bounded from above (equation (5.4)), and F (p) = 0

implies

ν1 =
θekx1 − ν · n

M
.(5.9)

For M ≥M0 equation (5.7) therefore implies at p:

θekx1

(
k2

2
+ |A|2 − Ck − C|A| − C

)
≤ 0.(5.10)

But the arithmetic-geometric mean inequality contradicts this for k suffi-

ciently large. Take one such as our value of k. It follows that our value ofM ,

gotten by increasing from zero until the inequality F ≤ 0 is first obtained,
must satisfy M ≤ M0(θ, k). This gives the uniform curvature (and higher

regularity) estimates we seek in the Euclidean case: we have shown that

F ≤ 0 on Kλ for certain values of θ, k, and M =M0(θ, k).
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(5.7) Final step. Using the estimates from § 5.4, § 5.5, § 5.6 we deduce
that the set of λ ≤ H, for which uσ exists for all σ ≤ λ, is closed. For

the limit of uσ as σ → λ from below must exist, and must be a smooth

graph by our apriori estimates. We now claim that this closed interval must

actually be [0, H]. If not, denote it by [0, λ] for λ < H. Then |Duλ| must be
infinite at some boundary point p ∈ Γ; otherwise the equation (5.2) for uλ

is uniformly elliptic and we may again use the implicit function theorem to

obtain solutions with larger mean curvature. Since Kλ lies “beneath” both

Σ∩{x1 ≥ 0} and the reflection Σ̃∩{x1 ≥ 0}, it follows that at p the conormal
η to Σ is perpendicular to Π, hence Kλ and Σ ∩ {x1 ≥ 0} make one-sided
tangential contact there. This is a contradiction: it violates the maximum

principle for λ < H. Hence the path of graphs includes all values λ ∈ [0, H].

The same basic strategy proves the theorem in hyperbolic space. We indi-

cate the necessary technical modifications below. We work in the Minkowski

space model (§ 2.3). Assume Π = {x1 = 0}∩ �

n+1, and that along Π, νΠ and

the Killing vector field Y are positive (function) multiples of the projection

of −e1 onto �

n+1 (i.e. of −(e1 − (e1 · x)x), where x = (x0,x) can be viewed

as both position and normal vector to �

n+1 ⊂ �

1,n+1).

Definition 5.8 Let γ(y) denote the unit speed geodesic in �

n+1 perpendic-

ular to Π, passing through y ∈ Π, with tangent vector at y pointing in the
positive x1-direction. Let γ(y, s) be its parametrization, where s is the ar-

clength, γ(y, 0) = y. A surface S is a graph (with respect to distance)

above Π if there exists a function v defined on a subset K of Π such that

S = {γ(y, v(y)) | y ∈ K}.

Now we will construct a one-parameter family of graphs Kλ of functions

uλ ≥ 0 above K ⊂ Π having mean curvature λ ∈ [0, H], with K0 = K, as in
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the Euclidean case. Recall from Section 3 that the geodesic distance s from Π

relates to x1 by sinh s = x1. Consider the functions (xλ)1 ≡ vλ ≡ sinhuλ. If

estimates corresponding to those in § 5.4, § 5.5, and § 5.6 can be established
for the vλ, then the equivalent estimates will hold for the “hyperbolic” uλ.

The equation corresponding to (5.2) is





∆vλ = nvλ − λ(νλ)1 y ∈ K

vλ(y) = 0 y ∈ ∂K = Γ .
(5.11)

This equation restates the identity ∆x1 = nx1 − λν1 from § 2.3, so the
Laplacian in (5.11) is that associated to the pull-back of the metric on Kλ

onto K ⊂ Π. It is uniformly elliptic for y ∈ K as long as u and |Du|
(equivalently v and |Dv|) are uniformly bounded above. By considering the
(upper) normal ν to Kλ one also finds this equivalent to the existence of a

uniform upper bound on u and lower bound ν ·Y ≥ δ > 0. But for bounded

u, Y is a uniform multiple of the projection of e1 onto �

n+1, so we may

replace ν ·Y ≥ δ > 0 by ν1 = ν · e1 ≥ δ > 0 to guarantee uniformity.

As long as (5.11) remains uniformly elliptic, i.e., as long as one has a solu-

tion uλ for which uλ− and |Duλ| are bounded, the implicit function theorem
guarantees an interval of solutions about uλ. In particular, solutions exist in

a neighborhood of u0 ≡ 0.

(5.9) Height estimates. As in Euclidean space, make a choice of Π so

that the origin (0, 0, . . . , 0, 1) of �

n+1 is in K, and so that a geodesic ball of

radius R = diam(Γ) about (0, 0, . . . , 0, 1) contains Γ ∪K.

Consider the equidistant hemisphere obtained by intersecting the plane

{x0 = C} with �

n+1. As C → ∞ this hemisphere has mean curvature

approaching n. Choose C = C(R) so large that the plane intersects Π outside
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Γ. The resulting hemisphere has mean curvature H0 > n hence provides a

barrier above for Kλ when 0 ≤ λ ≤ H0. But for H0 ≤ λ ≤ H, one can use

Lemma 3.3 (a consequence of λx1 ≤ nν1) to derive uniform estimates above

for x1 = vλ.

(5.10) Gradient estimates and barriers at the boundary. The

monotonicity (strict in the interiorK) of vλ with respect to λ follows from the

maximum principle, just as in the Euclidean case. The estimate λx1 ≤ nν1

and the monotonicity in λ yield interior gradient estimates. Again, the orig-

inal surface Σ ∩ {x1 ≥ 0} and the reflection Σ̃ ∩ {x1 ≥ 0} of Σ through
{x1 = 0} are barriers “above” the Kλ, provided that Σ

′ is sufficiently far

from Π, depending on the height estimates of § 5.9.

(5.11) Curvature estimates. Follow the reasoning used in § 5.6, con-
sidering again the function F from equation (5.6) on the surface Kλ. Extend

the normal n as before; first from a tubular neighborhood of Γ to all of K,

then from K to the solid cylinder above it by parallel transport along the

geodesics γ(y). By the arguments after equation (5.11) it again suffices to

find θ, k,M for which F ≤ 0 on Kλ. Find θ as before. For a given k, we letM

vary as before and find an interior point p at which F (p) = 0, knowing that

F ≤ 0 elsewhere. The analog of estimate (5.7) (computing ∆F (p), using the

formulas for ∆x1 and ∆ν in § 2, and noting that ∆F (p) is non-positive) is:

θekx1(k(−λν1 + nx1) + k2|∇x1|2

+ |A|2(ν · n− λx · n+Mν1)− C|A| − C ≤ 0.
(5.12)

But x · n = 0 since x is the normal to �

n+1 at x. Using F (p) = 0 we now

estimate as in equation (5.8):
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θekx1(k2|∇x1|2 + |A|2 − Ck − C|A| − C) ≤ 0.(5.13)

In the present setting we have ∇x1 = e1 − (x1)x − ν1ν, and, because

x · x = −1, we have |∇x1|2 = 1 + (x1)
2 − (ν1)2. Estimate (5.13) lets us

again find an M0 such that M ≥ M0 implies |∇x1|2 ≥ 1
2
. Therefore we

can complete the argument as in § 5.6, and conclude uniform curvature and
higher regularity estimates for the Kλ, as in the Euclidean case. 2

6 Asymptotic symmetry of cylindrically bounded

ends

We now show that any noncompact properly embedded constant mean curva-

ture hypersurface Σ ⊂ �

n+1, which is cylindrically bounded and has compact

boundary ∂Σ, must approach a Delaunay surface exponentially at infinity

(Theorem 6.9). The proof is conceptually simpler than that [11] in the Eu-

clidean case Σ2 ⊂ �

3, and holds in all dimensions. This happens mainly

because Alexandrov reflection is “stronger” in hyperbolic space, since there

are “more” totally geodesic hyperplanes parallel to a given hyperplane.

(6.1) Configuration. Let Σ be a properly embedded noncompact con-

stant mean curvature hypersurface in �

n+1, with compact boundary ∂Σ and

the property that Σ stays in a solid half cylinder C(γ,R), i.e., the geodesic

radius R tubular neighborhood about a geodesic ray γ.

Let Y be the Killing vector field generating unit-speed translation along

γ, and write Y = ∂t, where arclength t varies from 0 to ∞ along γ = γ(t).

For each fixed t, let Dt be the cross-section of C(γ,R) at t, i.e., the totally

geodesic n-disk of radius R perpendicular to γ and containing γ(t). Use ρ to

denote distance from γ i.e., ρ(p) is the distance from p ∈ Dt to γ(t).
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We may assume, after translating along Y and discarding some compact

pieces of Σ, that ∂Σ is contained in D0, and that Σ bounds a possibly dis-

connected domain Ω ⊂ C(γ,R). We allow the possibility that Σ is now a

finite union of disconnected ends, each one bounding a connected domain.

Our analysis will show a posteriori that there is really only one end.

Next, perform an isometry of �

n+1 so that in the upper half-space model

(§ 2.1) γ is the y-axis, {0 < y < 1}. Then C(γ,R) is part of a solid Euclidean

cone vertex at the origin; its intersection with each Euclidean n-sphere cen-

tered at 0 is a totally geodesic hyperbolic disk Dt of hyperbolic radius R.

We then have Y = ∂t = −r∂r, for t = − ln r, and r = Euclidean distance to

0.

Lemma 6.2 Let Σ and Y be as in Configuration 6.1. Then the flux µ =

〈µ([∂Σ]), Y 〉 is positive. (Here we orient the conormal to ∂Σ to be inward on

Σ, i.e. it points toward infinity).

Proof. Note that Γ = ∂(Ω ∩ Dt) is an interior planar cycle homologous to

∂Σ. Hence by Theorem 5.3, for t large, Γ must have positive flux with respect

to Y. This proves ∂Σ has positive flux. 2

Lemma 6.3 For fixed H > n there exists a unique (up to translations gen-

erated by Y = ∂t) embedded axially symmetric Delaunay surface D(m) about
γ with mean curvature H and mass m = 〈µ([D(m) ∩Dt]), Y 〉. The mass is
positive, is maximized for the cylinder of mean curvature H, and approaches

zero as the family evolves into a chain of spheres.

Proof. Fix a Delaunay surface D and express it as a graph in cylindrical
coordinates, {ρ = ρD(t)}. Let Ω be the solid region of �

n+1 “inside” D.
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Taking rotational symmetry into account, the flux through the homology

class [D ∩Dt] generated by Y = ∂t is actually the mass:

m =
∫

D∩Dt

η · ∂t − H
∫

Ω∩Dt

ν · ∂t .(6.1)

We calculate m explicitly now in terms of ρ and ρt, using elementary

hyperbolic geometry. Noting first that geodesic distance ρ is related to polar

angle ϕ (r cosϕ = y) by dρ = secϕdϕ we integrate to get

tanϕ = sinh ρ.(6.2)

Letting ωn be the area of the unit Euclidean n-sphere Sn, we next evaluate

(6.1) with the aid of (6.2):

m = ωn−1(tanϕ)
n−1 secϕ

1√
1 + ϕ2t

− H

n
ωn−1(tanϕ)

n.(6.3)

Thus ρD satisfies a first order ODE whose derivative is the usual second order

ODE for mean curvature. Inspection of this first order equation immediately

reveals that ρD must be periodic in t.

Writing z = tanϕ, we find that when ϕt = 0 , (6.3) becomes

m = ωn−1z
n−1

[√
1 + z2 − H

n
z
]
.(6.4)

The function m(z) in (6.4) is zero at z = 0 (corresponding to a chain of

spheres), positive for small z > 0, and has a second zero at Hz = n(1+z2)1/2.

It is straightforward to check that m(z) has one positive critical point, so m

is monotone increasing until that value and monotone decreasing afterwords.

Thus, except at the maximum, each non-negative value is attained exactly

twice. So each embedded Delaunay surface is then uniquely determined (up
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to translation) by its minimum (or maximum) ρ-value, since ρD solves the

second order initial value problem ρ = ρmin, (or ρ = ρmax), ρt = 0 . But (6.4)

determines these two values of ρ (and the corresponding z-values) uniquely

in terms of the mass m. Since ρmax = ρmin on the cylinder, that surface

maximizes the mass. 2

Lemma 6.4 (Earp-Rosenberg [6]) Given Configuration 6.1, the mean cur-

vature of Σ is at least as big as the mean curvature H1 > n of the cylinder

containing it. Furthermore, there is a sequence {pi} ⊂ Σ with t(pi)→∞ and
with ρ(pi) ≥ ρ0, where ρ0 is the geodesic radius of a cylinder having mean

curvature H.

Proof. (For the reader’s convenience, we sketch the Earp-Rosenberg argu-

ment.) Fix a T so that p ∈ ∂Σ implies t(p) < T . Let the mean curvature

of C(γ,R) be H1. Deform the cylinder along the one-parameter family of

Delaunay surfaces with constant mean curvature H1 that have maximum

“bulge” at t = T . The periods of these Delaunay surfaces are bounded from

above by the diameter of the corresponding sphere, and since the family con-

verges to a chain of spheres, the “necks” pinch to zero radius. The bulge

radius increases, so the bulge region of these surfaces stays “outside” of Σ.

But since Σ extends beyond the maximum period of the Delaunay surfaces,

there must be a Delaunay surface in the family that first makes one-sided

tangential contact with Σ at a point within one period of t = T . Hence the

mean curvature H of Σ is at least that of C(γ,R).

To prove the second part of the lemma, assume the sequence does not

exist. Repeat the above argument, using the cylinder with mean curvature

H and with T large enough so that p ∈ Σ, t(p) ≥ T implies that p is inside

the cylinder. At the first point of one-sided tangential contact the strong

maximum principle would be violated. 2
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(6.5) Alexandrov Reflection. Recall that in the ball model of �

n+1 (Sec-

tion 2.2) the totally geodesic hypersurfaces are Euclidean n-spheres meet-

ing S∞ = ∂Bn+1 at right angles. “Reflection,” corresponding to inversion

through these spheres, is an isometry of �

n+1. Alexandrov reflection applied

to a constant mean curvature hypersurface Σ = ∂Ω is the process of inverting

through a continuous family of these spheres {S(q)}, and studying the pos-
sibility of one-sided interior reflection contact between the part of Σ exterior

to the sphere and its reflection from inside the sphere. The strong maximum

principle implies reflection symmetry if they contact.

(6.6) New Configuration. We adapt Configuration 6.1 to the ball model.

Let (1, 0, . . . , 0) be the vertex v at infinity of our cylinder C(γ,R), which we

may assume is axially symmetric about the x1-axis. Given t as in Con-

figuration 6.1, make a hyperbolic translation along the x1-axis so that Dt

crosses it at the origin. We will use hyperbolic translations and a particular

set of reflection families to study the asymptotic symmetry of Dt ∩ Σ. De-
note the translated (Σ, ∂Σ) by (Σt, ∂Σt). Note that as t → ∞, ∂Σt moves

uniformly towards the point (−1, 0, . . . , 0). In fact, the translation moves
D0 = {x1 = 0}∩C(γ,R) to the Euclidean reflection of Dt through {x1 = 0}.
Hence ∂Σt is within Euclidean distance O(e−t) of (−1, 0, . . . , 0).

Lemma 6.5 (Weak gradient estimate) For every δ > 0 there is a T =

T (δ) and an ε = ε(δ) so that for any p ∈ Σ satisfying t(p) > T and

dist(p, γ) = ρ(p) > δ, we have the estimate ν(p) · ∂ρ > ε. (Here ν(p) is

the exterior normal to Σ at p and ∂ρ is the unit vector field in Dt which is

the derivative of geodesic distance ρ from γ(t).)

Proof. Consider the translations Σt in Configuration 6.6. There are various

possibilities for Alexandrov reflection from “above” (say, after Euclidean ro-

tation about the x1-axis, from the positive x2 direction). The simplest one
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begins with a small Euclidean sphere S(q) orthogonal to S∞, centered at q

on the x2-axis just above (0, 1, 0, . . . , 0), with radius chosen to satisfy the or-

thogonality condition. As q approaches infinity along the x2-axis, the sphere

S(q) approaches the {x2 = 0} plane.
Because ∂Σt → (−1, 0, . . . , 0) as t → ∞, one can approach arbitrarily

close to this limiting plane as t → ∞ without attaining boundary reflection

contact for Σt, nor interior contact, by the strong maximum principle.

If one only wants the reflection spheres to reach (0, δ, 0, . . . 0) before first

reflection contact, nearby reflection families are permitted: Consider families

of spheres whose centers are Euclidean distance r from the origin, 1 < r <∞,
and which lie on rays making small angle with the x2-axis. The geometry

of these spheres as r → ∞ implies that for t sufficiently large and angle

sufficiently small (O(δ)), first reflection contact only occurs after the family

passes through (0, δ, 0, . . . , 0). But by the definition of first reflection contact,

the angle between the reflection sphere’s interior normal and the exterior

normal ν to Σt is strictly less than π/2 at any point on the intersection of

such a sphere and Σt. We see that the set of all such reflection families for

a point p = (0, ρ(p), 0, . . . , 0) ∈ Σt with ρ(p) ≥ δ, includes a whole cone of

directions about the positive x2 direction, and this cone has aperture greater

than or equal to O(δ). Hence we conclude that ν(p) · ∂ρ > O(δ), for t

sufficiently large. This proves Lemma 6.5, with ε ≥ O(δ) as δ → 0. 2

Lemma 6.6 (Weak asymptotic axial symmetry) For every δ > 0 there

is a T = T (δ) so that whenever t > T and Dt ∩ Σ contains a point of
distance ρ > δ from γ(t), then Dt ∩ Σ is a radial graph with respect to ρ

over Sn−1(γ(t)), the unit sphere in Dt with center γ(t). Furthermore the

function ρ(θ) parametrizing Dt ∩ Σ above Sn−1(γ(t)) is smooth and satisfies

|ρθ| < Ce−t for some C = C(δ, T ).
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Proof. We study the translates Σt, and reflection from above as in the be-

ginning of Lemma 6.5 (i.e., the admissible reflection spheres are now those

symmetric with respect to the {x1 = 0} plane and centered on a ray perpen-
dicular to the x1-axis). Because ∂Σt is within O(e−t) of (−1, 0, . . . , 0), such
a reflection family of spheres can be followed until the reflecting spheres ap-

proach to distance O(e−t) of the origin, before any reflection contact occurs.

Let δ > 0 be given. Consider t for which the maximum ρ value on Σ∩Dt is

at least δ. Pick any p ∈ Σ∩Dt with ρ(p) = ρ > δ/2. Then after translation,

the corresponding point pt ∈ D0 also satisfies ρ(pt) = ρ. The reflecting

spheres considered above map D0 to itself. Write ε (= O(e−t)) for a distance

to which any such sphere may approach the origin before reflection contact,

and assume t has been chosen so that ε¿ δ.

Now study the images of pt in D0, under all these reflection spheres, until

the reflection sphere of distance ε from the origin is attained. They all lie in

the interior of Ω ∩ Dt, since there has been no reflection contact. Call the

image set Up and note that its boundary ∂Up is the set of reflection images

of p by the final (distance = ε) sphere in each family. We will prove:

Claim 6.7 Up is a teardrop-shaped region, symmetric about the axis Opt.

Furthermore, ∂Up lies within O(ε) of the sphere of radius ρ, the “vertex”

of the teardrop is at pt, and its tangent cone is almost flat, with aperture

half-angle within O(ε) of π/2.

Assuming the claim, Lemma 6.6 follows easily: Apply the claim to the

point p ∈ Σ ∩ Dt that has maximum ρ = ρ(p) > δ. It follows that all of

Σ∩Dt lies within an O(ε) distance of ρ ·Sn−1(γ(t)). From the weak gradient

estimate in Lemma 6.5, we conclude that since ν · ∂ρ is positive (for t large

enough), Σ ∩ Dt is a transverse intersection and is given as the graph of

a smooth function ρ = ρ(θ). Applying the claim to each q ∈ Σ ∩ Dt, the

statement about aperture angle implies that |ρθ| is at most O(e−t).
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So it remains to verify the claim. By a rotation about the x1-axis, we

assume pt = (0, ρ, 0, . . . , 0). Because our reflection spheres are symmetric

about the x1-axis and preserve D0, it suffices to consider the two-dimensional

picture: families of reflection circles in the x2x3-plane. For simplicity write

y = x2, z = x3. Then pt corresponds to (0, ρ) and all reflection families of

circles in the yz-plane continue up to the reflection circle of distance ε from

the origin.

It is possible to show (and geometrically clear, see Figure 4), that if

one replaces the reflecting circles with reflecting lines (perpendicular to the

reflection family ray and tangent to the given circle at the point on the

ray nearest the origin), the corresponding image set Vp of pt is contained

in Up. Hence it suffices to establish the claim for Vp. Let θ be the angle

between the y-axis and the lines in an admissible family able to reach pt. (So

sin−1(ρ) < θ ≤ π/2). The image of pt under this family will be a line segment

extending from pt to the reflection p̃t of pt through the final line in the family.

One can calculate the coordinates of p̃t explicitly using elementary geometry.

Assuming the lines have positive slope we do so:

p̃t =
(
0,

ε

sin θ

)
+
(
ρ− ε

sin θ

)
(sin 2θ, cos 2θ).(6.5)

Taking norms gives

|p̃t|2 = ρ2 + 4ε2 − 4ερ sin θ.(6.6)

Clearly |p̃t| is within O(ε) of ρ, and this establishes part of the claim.
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To estimate the vertex-angle of the teardrop, compute (p̃t)θ from (6.5),

and evaluate at the limiting θ = sin−1(ε/ρ):

(p̃t)θ = (2(ρ−
ε2

ρ
), 2ε

√
1− ε2

ρ2
− ε

ρ2
).(6.7)

Since this tangent vector is within O(ε) of being horizontal, the angle in

question is within O(ε) of π/2. 2

Lemma 6.8 There exist T,C, and ρmin so that {p ∈ Σ | t(p) ≥ T} is the
cylindrical graph of a function ρ(t, θ) with ρ uniformly bounded. Then R >

ρ > ρmin > 0, with uniformly bounded gradient |(ρt, ρθ)| < C, and with

|ρθ| < Ce−t.

Proof. Given δ > 0, choose T, ε so that Lemmas 6.5 and 6.6 hold. Use

Lemma 6.5 to pick p with ρ(p) ≥ ρ0, and |ρθ| ¿ δ for t ≥ t(p) and ρ >

δ. Then as t increases from t(p), the cross-sections Dt ∩ Σ remain nearly
spherical, provided their maximum radius ρ exceeds δ. But as the radius

approaches δ, the flux µ = 〈µ([∂Σ]), ∂t〉 is of order δn−1. If δ is chosen

sufficiently small (depending on the positive value of µ in Lemma 6.2), this

contradicts the homology-invariance of flux. So the radius never approaches
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δ, and ρ is uniformly bounded above and below by positive numbers. The

estimates for |Dρ| now follow from Lemmas 6.5 and 6.6. 2

Theorem 6.9 (Exponential convergence to Delaunay surface) Given

Σ as in Configuration 6.1, there exists an axially-symmetric Delaunay sur-

face D about γ to which Σ converges exponentially 1. That is, for t suffi-

ciently large, Σ is the graph in geodesic cylindrical coordinates of a function

ρ, there is a Delaunay D surface that is the graph of a function ρD, and

|ρ− ρD| < Ce−t as t→∞. (Convergence holds in any Ck norm.)

Proof. From Lemma 6.8 we know that for t sufficiently large, Σ is a graph

in geodesic cylindrical coordinates of a function ρ(t, θ) satisfying R > ρ >

ρmin > 0, |(ρt, ρθ)| < C and |ρθ| < Ce−2t.

Since Σ has constant mean curvature, ρ satisfies a quasilinear elliptic

equation in (t, θ). The equation is H = gijhij =M(ρ), where [gij] and [hij]

are the inverse of the first and second fundamental forms, respectively, in

the (t, θ) coordinates. The uniformity of ρ (0 ≤ ρ0 ≤ ρ ≤ R) and the bound

on Dρ imply that in the (t, θ) coordinate system the pull-back metric [gij]

is uniformly positive, and hence the operator M(ρ) = gijhij is uniformly

elliptic. So ρ is C∞ , with uniform Ck estimates for sufficiently large t.

Now by differentiatingM(ρ) = H in any θ direction, and interchanging

derivatives, we conclude that ρθ also satisfies a uniformly elliptic equation.

Interior elliptic regularity and the estimate |ρθ| < Ce−t then imply that

|D(ρθ)| (and |(Dρ)θ|) are also bounded by C̃e−t for sufficiently large t. That

is, all second derivatives involving at least one θ differentiation are uniformly

bounded by C̃e−t.

1This Delaunay surface D is unique if we require its axis to be the world-line of [∂Σ],
i.e. if D and Σ have the same momenta.

50



Because of this decay in θ derivatives of ρ, we may consider solutions of

M(ρ) = H as perturbations of Delaunay ODE solutions. Define an “approx-

imate bulge” of Σ to be a t value for which the area of the cap Dt ∩ Ω is
maximized. At a bulge ρt cannot be of one sign, and since |ρtθ| is O(e−t),

|ρt(t, θ)| must be O(e−t) as well. It follows from the flux formula, and the

fact that the variation of ρ and |ρθ| are also O(e−t), that ρ must be within

O(e−t) of the maximum ρ value on a Delaunay surface D having momentum
equal to that of ∂Σ. By continuous dependence of parameters for ODE’s, it

now follows that the time interval until the next approximate bulge (assum-

ing D is not the cylinder) differs by O(e−t) from the period of the Delaunay

solution ρ = ρD(t). (Compare the PDE and ODE solutions, where the ODE

has initial values ρ = max(ρD) , ρt = 0.) If D is the cylinder, our estimates
immediately show |ρ − ρ0| is O(e−t). In any case, the total variation of the

difference between PDE and ODE “periods” from t = t0 to t = ∞ is now

seen to be O(e−t0). But then, ρ(t, θ) converges to a translate ρD(t+ T ), and

the total variation of period differences is O(e−t0), which also bounds the

rate at which ρ(t, θ) converges to ρD(t+ T ). Now elliptic regularity, applied

to the difference of the two solutions, yields Ck convergence. 2

Theorem 1.3 in the introduction follows immediately.

Remark 6.10 One may want to consider the asymptotic behavior of a prop-

erly embedded surface Σ ⊂ �

n+1 with constant mean curvature H ≤ Hhorosphere.

In this case the ends of Σ are never cylindrically bounded. In fact, exam-

ples show that the asymptotic boundary behavior is essentially arbitrary when

H < Hhorosphere. However, the case H = Hhorosphere in �

3 is similar to the

case of minimal surfaces in �

3 [5]. Perhaps in this case the asymptotic be-

havior of annular ends can be classified (see [8] for partial results on this

problem in the case of minimal surfaces in �

3).
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