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Abstract

In ([19, 20]), Tryggvason and Aref use a boundary integral method and the vortex-in-cell

method to evolve the interface between two fluids in a Hele-Shaw cell. The method gives

excellent results for intermediate values of the nondimensional surface tension parameter. The

results are different from the predicted results of McLean and Saffman for small surface tension.

For large surface tension, there are some numerical problems. In this paper, we implement the

method of Tryggvason and Aref but use the point vortex method instead of the vortex-in-cell

method. A parametric spline is used to represent the interface. The finger widths obtained

agree well with those predicted by McLean and Saffman. We conclude that the method of

Tryggvason and Aref can provide excellent results but that the vortex-in-cell method may not

be the method of choice for extreme values of the surface tension parameter.

In a second method, we represent the interface with a Fourier representation. In addition,

an alternative way of discretizing the boundary integral is used. Our results are compared

to the linearized theory and the results of McLean and Saffman and are shown to be highly

accurate.

Abstract

In ([19, 20]), Tryggvason and Aref use a boundary integral method and the vortex-in-cell

method to evolve the interface between two fluids in a Hele-Shaw cell. This method gives

results different from the predicted results of McLean and Saffman for small surface tension.

For large surface tension, there are some numerical problems. In this paper, we implement the

method of Tryggvason and Aref but use the point vortex method instead of the vortex-in-cell

method. A parametric spline is used to represent the interface in order to calculate arclength,

tangents and curvature accurately. The finger widths obtained agree well with those predicted

by McLean and Saffman. It is found that the method becomes unstable when too many vortices

are used. We conclude that the method of Tryggvason and Aref can provide excellent results

but that the vortex-in-cell method may not be the method of choice for extreme values of the
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surface tension parameter.

1 Introduction

In this paper, the point vortex method is used to evolve the interface between two fluids of different

viscosities in a Hele-Shaw cell (two closely placed parallel plates). These fluids are immiscible in

the sense that there is a finite surface tension which stabilizes small-scale disturbances at the

interface. The equations describing the flow of a fluid in a Hele-Shaw cell are the equation of

motion

~u = −
b2

12µ
∇p (1)

and the equation of continuity

∇ · ~u = 0 (2)

where µ is the fluid viscosity, b is the spacing between the plates in the Hele-Shaw cell. The plates

are taken as horizontal, the positive y-axis is in the direction of the flow, the x-axis is parallel to

the plates and the z-axis is perpendicular to the plates. The velocity vector ~u has two components

u and v which are functions of t (time), x and y. These velocities result from taking an average

of the three-dimensional velocity field. The pressure p is an averaged pressure and the symbol ∇

represents the vector of partial derivatives. Derivations of the above equations are found in Lamb

[12] and Bear [2].

For fluids of different viscosities, we have a set of equations to be solved on each side of the

interface. These equations are connected by the following two conditions.

1. The normal component of the velocity is continuous at each point of the interface.

2. There is a prescribed jump in the pressure at each point (x0, y0) on the interface given by

σ

R(x0, y0)
(3)
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where σ is the surface tension parameter whose value depends on the two fluids involved and

R(x0, y0) is the radius of curvature at the point (x0, y0) on the interface. We suppose that a fluid

1 is injected in the Hele-Shaw cell expelling some fluid 2 and that the parameters in fluids 1 and

2 are subscripted 1 and 2 respectively. In [19], it is shown that the solution to the above problem

depends on a dimensionless surface tension parameter B given by

B =
σk

2AWL2µ̄
(4)

where k is b2/12, (0,W ) denotes the velocity of the fluid ahead or behind the interface, µ̄ is the

average of the viscosities in the two fluids, L is the dimension of the cell in the x direction and A

is defined by

A =
µ2 − µ1

µ2 + µ1

. (5)

In a Hele-Shaw cell, for horizontal flow, an interface becomes unstable when a less viscous fluid

displaces a more viscous fluid. Saffman and Taylor [16] performed a linearized stability analysis

and for zero surface tension, found an analytic solution for the shape of single fingers. McLean

and Saffman [13] found an analytic shape for the fingers for nonzero values of the surface tension

parameter. Chuoke et al [8] performed experiments in a Hele-Shaw cell and packed bed models.

They also performed a linearized stability analysis.

Several numerical methods have been presented for the evolution of the interface in a Hele-

Shaw cell. These include the methods of Tryggvason and Aref in [19, 20], Degregoria and Schwartz

in [9, 10], Meiburg and Homsy in [14] and Whitaker [21]. The numerical results of Tryggvason and

Aref seem to agree well with the predictions of the linearized theory. Their results also agree, in

general, with the McLean and Saffman fingers. However, their method predicts a much narrower

finger for small values of the surface tension parameter B. The numerical method also gives

fingers slightly wider than the McLean and Saffman fingers for very large values of the surface
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tension parameter but it is believed that the finger may have not evolved fully. The method uses

a boundary integral formulation along with Christensen’s vortex-in-cell method [7].

In this paper, we implement the boundary integral formulation given by Tryggvason and Aref

but we use the point vortex method instead of the vortex-in-cell method. A parametric cubic

spline is used to represent the interface. The point vortex method is known to be unstable when

vortices lie too close to each other. It is shown here that it can be used to high accuracy for the

Hele-Shaw equations with a modest number of vortices. The results of McLean and Saffman are

compared with those produced by the vortex-in-cell method and the point vortex method. The

remainder of this paper is organized as follows. In section 2, the method of Tryggavason and

Aref is described along with the vortex-in-cell method. In section 3, it is described how the point

vortex method is implemented, and in section 4 numerical results are presented.

2 Method of Tryggvason and Aref

In this method, the interface is represented by a vortex sheet. A vortex sheet in two dimensions

is a curve along which vorticity, ω, is concentrated as a delta function. The vorticity is related to

the velocity field by

ω = ~∇ · ~u. (6)

Using equation (1), we see that ω = 0 on both sides of the interface. The sheet is characterized

by a strength, γ, at each point of the interface which has the dimensions vorticity per unit area.

Suppose that the fluids in the Hele-Shaw cell meet at an interface with unit tangent vector ~τ . It

can be shown then that the vortex sheet strength is exactly the jump in the tangential component

of the velocity, i.e.,

γ = ~u1 · ~τ − ~u2 · ~τ . (7)
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Equation (2) implies that there exists a stream function,ψ, such that

∂ψ

∂x
= −v, (8)

and

∂ψ

∂y
= u. (9)

Equations (6), (8) and (9) are then combined to give

4ψ = −ω. (10)

The Green’s function associated with equation (10) can be used to formally write down the velocity

field associated with ψ, for an arbitrary ω. For a singular vorticity concentrated along a curve,

the velocity field for the sheet can be written in terms of γ, i.e.,

~U(s, t) =
1

2π

∫

K(~x(s, t)− ~x(ŝ, t))γ(ŝ, t)dŝ, (11)

see Birkhoff([3]). The integral is taken over the sheet. ~x = (x, y) denotes a point on the interface

being parametrized by time t and arclength s, and

K(x) =
1

2π

1

|~x|2
(−y, x). (12)

Equation (11) could be used as an evolution equation for the interface assuming that γ(s, t) is

known. This is the idea behind the point vortex method.

We now give the an integral equation for the appropriate γ for the Hele-Shaw equations. An

equation for γ is derived by taking the dot product of (1) with ~τ in fluid 1 and fluid 2, subtracting

one from the other. After solving for γ one obtains the equation

γ =
∆µ

µ̄

[

1

2
( ~u1 + ~u2)

]

· ~τ +
b2

12µ̄
∇(∆p) · ~τ , (13)
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where ∆p = p2 − p1, ∆µ = µ2 − µ1 and µ̄ = 1
2
(~µ1 + ~µ2). It can be shown that the velocity at the

sheet, given by (11), is the average of the limiting values of the velocities approaching from each

side, i.e.,

~U =
1

2
(~u1 + ~u2). (14)

This fact is used and surface tension (3) is introduced in order to write (13) in the form

γ(s, t) =
∆µ

µ̄
~U · ~τ +

∆µ

µ̄
~W · ~τ +

σb2

12µ̄

∂

∂s

1

R(s, t)
, (15)

where ~W is the velocity far ahead and far behind the interface. Equation (15) is an integral

equation for the strength of the vortex sheet since ~U is a function of γ. The interface is discretized

into a set of point vortices located at arclengths si with coordinates (x(si, t), y(si, t)) denoted

(xi, yi) where i = 1, . . . , N . Equation (11) is replaced by a numerical integration formula and

substituted into a discretized version of (15). γ is then solved for at each point vortex through

iteration. The point vortices are then advected using a modified version of the vortex-in-cell

method. The vortex-in-cell method is a method proposed by Christensen [7] to find the velocity

field resulting from some arbitrary distribution of vorticity. A grid is superposed over the (singular)

vorticity distribution. Using an interpolation method presented by Meng and Thompson ([15]),

the strength is used to approximate the vorticity at the grid points. The stream function and

hence the velocity field is then obtained by solving (10), using a fast Poisson solver. The point

vortices are then advected according to this velocity field. The interface is evolved by applying

this algorithm iteratively. The interface is assumed periodic in the x-direction.

As the vortex sheet evolves it stretches unevenly which could lead to a large segment of the

interface represented by only a few point vortices. This is addressed through a redistribution

of the vortices after each time step. In this redistribution, the interface is assumed to be a

curve consisting of piecewise linear segments connecting the point vortices. New points are then
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redistributed evenly onto this curve.

3 The Point Vortex Method

Equation (11) can be written in the complex form

dz(s, t)

dt
=

i

2π

∫ ∞

−∞

γ(ŝ, t)

x(s, t)− x(ŝ, t)− i(y(s, t)− y(ŝ, t))
dŝ (16)

where z = x+ iy where i =
√

(− 1). As in the formulation of Tryggvason and Aref, let us assume

that the interface is periodic in the x-direction. Without loss of generallity, let us assume that

this period is 1. It can then be written as

dz(s, t)

dt
= −

1

2π

∞
∑

j=−∞

∫ S

0

γ(ŝ, t)

x(s, t)− x(ŝ, t)− i(y(s, t)− y(ŝ, t))− j
dŝ (17)

where S is the total arclength taken over one period of x. We interchange the integral and

summation, evaluate the complex sum using the well known formula

πcoth(πz) =
∞
∑

j=−∞

1

z − ij
(18)

to obtain

dz(s, t)

dt
= −

1

2

∫ S

0

γ(ŝ, t)coth(π(∆y + i∆x))dŝ (19)

where ∆x = x(s, t)− x(ŝ, t) and ∆y = y(s, t)− y(ŝ, t). After separating real and imaginary parts

we have

dx(s, t)

dt
= −

1

2

∫ S

0

sinh(2π∆y)

cosh(2π∆x)− cos(2π∆x)
γ(ŝ, t)dŝ (20)

and

dy(s, t)

dt
=

1

2

∫ S

0

sin(2π∆y)

cosh(2π∆x)− cos(2π∆x)
γ(ŝ, t)dŝ (21)

For 0 ≤ s ≤ S, our interface (x(s, t), y(s, t)) is discretized into a finite number of points,

(x(si, t), y(si, t), denoted (xi, yi) for i = 1, . . . , N . We assume a uniform s-mesh with spacing
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∆s. Equations (20) and (21) then become

dxi
dt

= −
S

2N

N
∑

j=1,j 6=i

sinh(2π(yi − yj))

cosh(2π(xi − xj))− cos(2π(xi − xj))
γj∆s (22)

and

dyi
dt

=
S

2N

N
∑

j=1,j 6=i

sin(2π(yi − yj))

cosh(2π(xi − xj))− cos(2π(xi − xj))
γj∆s. (23)

The above discretization is the trapezoidal rule applied to the 2N ordinary differential equations

(20) and (21). In the above, we use a uniform mesh only for convenience. Equations (22) and

(23) are solved using the fourth order Runge-Kutta method. γi represents the strength of the

vortex sheet at point (xi, yi) and is approximated using Tryggvason and Aref’s boundary integral

method at each time step as described in the previous section. Because of (22) and (23), it would

appear that the method for approximating the arclength between vortices would be important. In

addition, one needs approximations for the tangent vector and the curvature at each vortex in the

discretization of (15). We choose here to represent the interface by a parametric cubic spline to

obtain approximations in an accurate way for the arclength, the tangent vector and the curvature.

The points along the interface are redistributed equally with respect to arclength at each time

step.

4 Numerical Results

In this section we compare results from using the point vortex method with those obtained by

Tryggvason and Aref using the vortex-in-cell method and the McLean and Saffman solutions. The

results of McLean and Saffman assume that A = 1, therefore all our computations shown here are

for this value of A. Physically this implies that the viscosity of the injected fluid is negligible.

Our interface is initially a cosine wave of small amplitude. This wave is discretized and the

numerical method is applied to evolve this wave which evolves into a long finger. By the linearized
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theory, there is a wavelength λm which grows faster than all other wavelengths. Tryggvason and

Aref plotted their results in terms of λm divided by λi where λi is the wavelength that an initially

flat interface is perturbed by, i.e., the wavelength of the cosine wave. For fixed A, B is related to

this ratio by

λm
λi

= 2π
√

(3B). (24)

In the remainder of this paper, λm

λi
will be denoted by p.

Figure 1: A=1, p=.41, 1.3 and 1.68 respectively.

In figure 1, three fingers are shown for the values p = .41,1.3 and 1.68. The fingers equilibrate

faster for small values of p. This is why the fingers are shorter from left to right. The first finger

to the left represents an extremely small value of p(p = .41). The middle finger represents a

moderate value of p (p = 1.3). The last finger from the left represents an extremely large value

of p. This value of p (p = 1.68) is extremely close to values of p where any initial perturbation

would be linearly stable and would therefore not grow. The fingers develop a more pronounced

neck as p increases. This is observed by other methods also.

Figure 2: McLean and Saffman solutions(solid curve) versus

vortex-in-cell method(+).

In figure 2, we show the predicted finger widths of McLean and Saffman which correspond to

the solid curve. The ”+” in figure 2 represents finger widths obtained by Tryggvason and Aref

using their finest resolution. For intermediate values of p, Tryggvason and Aref’s finger widths

are in excellent agreement with the results of McLean and Saffman, but for small values of p,

the method produces a different finger width. Also for large values of p the fingers are slightly

wider.
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Figure 3: McLean and Saffman solutions(solid curve) versus

results from the point vortex method (x,o).

In figure 3, we compare the results of the point vortex method with the McLean and Saffman

fingers. The symbols ”x” and ”o” in figure 3 correspond to 8 and 16 vortices per most unstable

wavelength(λm) respectively. This number of vortices, per most unstable wavelength, is main-

tained as the interface evolves. The results clearly converge to the McLean and Saffman fingers.

We do not observe a narrower finger for small values of p as Tryggvason and Aref conjecture. The

method also seems to do a much better job for the large values of the surface tension parameter.

The method becomes unstable if the number of vortices per most unstable wavelength exceeds

about 24 and the instability varies depending on p. The method becomes unstable in the sense

that the wave begins to exhibit a chaotic behavior and the integral equation for the strength re-

quires more and more iterations to converge. The maximum number of vortices per most unstable

wavelength can be increased as the wave grows.

The number of vortices used to compute the equilibrated fingers for different values of p

ranged from 178 to 322, using 16 vortices per most unstable wavelength. The 322 corresponds to

the smallest value of p in figure 3 and 178 corresponds to the largest value of the p given in figure

3. The fingers grown from smaller surface tensions initially need more vortices since λm is smaller

but these interfaces settle into equilibrated fingers earlier. The fingers grown from larger surface

tension require less vortices initially and require longer to settle down.

Acknowledgements. I would like to thank Professor Gretar Tryggvason for several helpful

discussions. These computations were done at the GANG lab at the University of Massachusetts

at Amherst.
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Figure 1. Three evolved fingers for the nondimensional surface tension parameter p = .41, 1.3

and 1.68.

Figure 2. Finger widths from the method of Tryggvason and Aref(+) versus predicted widths

from McLean and Saffman(solid line).

Figure 3. Finger widths from the point vortex method(Method I) versus the predicted widths

from McLean and Saffman(solid line). The symbols ”x” and ”o” correspond to 8 and 16 vortices

per unstable wavelength respectively.

Figure 4. Finger widths from the modified point vortex method(Method II) versus the predicted

widths from McLean and Saffman(solid line). The symbols ”x” and ”o” correspond to 4 and 8

vortices per unstable wavelength respectively.
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