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1 Introduction

A circle C in �

3 is the boundary of two spherical caps of constant mean

curvature H for any positive number H, which is at most the radius of C. It

is natural to ask whether spherical caps are the only possible examples. Some

examples of constant mean curvature immersed tori by Wente [7] indicate

that there are compact genus-one immersed constant mean curvature surfaces

with boundary C that are approximated by compact domains in Wente tori;

however, this has not been proved. Still one has the conjecture:

Conjecture 1 A compact constant mean curvature surface bounded by a

circle is a spherical cap if either of the following conditions hold:

1. The surface has genus 0 and is immersed;

2. The surface is embedded.

If M is a compact embedded constant mean curvature surface in �

3 with

boundary C and M is contained in one of the two halfspaces determined

by the plane containing C, the Alexander reflection method [1] immediately

proves M has the planar reflectional symmetries of C; hence, M is a sur-

face of revolution. Since the only compact constant mean curvature surfaces

of revolution are spherical caps (by Delaunay’s classification [3] of constant

mean curvature surfaces of revolution), Conjecture 1 holds for the subclass of

surfaces that are embedded and contained in a halfspace. It is therefore of in-

terest to obtain natural geometric conditions that force a compact embedded

constant mean curvature surface to be contained in a halfspace.

One result of our paper is to give the following sufficient condition for a

compact constant mean curvature surface to be contained in a halfspace.

Theorem 1 Let C be a convex curve in a plane P and let M be a compact

connected surface with boundary C. Assume M is embedded, of constant

mean curvature, and transverse to P along C. Then M is contained in one

of the halfspaces of �

3 determined by P .
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Theorem 1 can be generalized to the case where the planar curve C is not

necessarily convex.

Theorem 2 Let M,C and P be as in Theorem 1, except that C is not nec-

essarily convex. Let H+ and H− denote the closed halfspaces determined by

P and indexed so that there is a connected component M+ of M ∩H+ with

C ⊂ ∂M+. Let M− = M ∩H−. Let D ⊂ P be the planar disk with ∂D = C.

Then

1. M ∪D is an embedded surface;

2. M+ = M ∩H+;

3. M− is a graph over the compact domain in P bounded by ∂M+ − C;

4. No component of ∂M+ lies completely outside of the convex hull of C.

Acknowledgements. We wish to thank Remi Langevin for helpful sugges-

tions related to the proof of Theorem 1.

2 The proof of Theorem 1.

The proof of Theorem 1 uses the balancing formula [5]:

∫

D
Y · ηD =

1

2H

∫

∂M
Y · ν .

Here Y is a constant vector field in �

3, H is the positive mean curvature of

M , ν is the inward pointing conormal to M along ∂M , D ⊂ P is the planar

disk with boundary C, and ηD is the unit normal vector field to D. The

orientation of ηD is that which orients the cycle M ∪D when M is oriented

by its mean curvature vector.
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Proof of the balancing formula. The flux of Y across the oriented cycle

M ∪D is zero; hence
∫

M
Y · ηM +

∫

D
Y · ηD = 0 ,

where the unit normal ηM of M is oriented by the mean curvature vector of

M .

Let X denote the position vector field of M , so that ∆X = 2HηM . Then

∫

M
Y · ηM =

1

2H

∫

M
Y ·∆X =

1

2H

∫

M
∆(Y ·X)

= −
1

2H

∫

∂M
Y ·

∂X

∂ν
= −

1

2H

∫

∂M
Y · ν ,

since ∂X
∂ν

= ν. 2

We remark that the balancing formula still holds whenM is not transverse

to P along C.

Proof of Theorem 1. Assume the contrary, so that M meets P elsewhere

than C. We can assume M meets P transversally by making a small vertical

translation (we think of P as horizontal).

Let C1, . . . , Cn be the simple closed curves of M in Int(D) (if there are

any). For each j, 1 ≤ j ≤ n, let C+
j (ε) be the planar curve on M , near

Cj, obtained by intersecting M with the horizontal plane P (ε), at height ε.

Similarly, let C−j (ε) be the curve in M ∩ P (−ε) that is near Cj.

We form an embedded surface N by removing fromM the annuli bounded

by the C+
j (ε) ∪ C−j (ε) and attaching the horizontal planar disks D+

j ∪ D−
j ,

bounded by the C+
j (ε) ∪ C−j (ε). Also we attach D to M along C. To en-

sure that N is embedded, one uses different values of ε when several Cj are

concentric; see Figure 1.

Let M̃ be the connected component ofN that contains C. M̃ separates �

3

into two components; let A be the closure of the bounded component. The

nonsmooth points of M̃ are on C and the C±j (ε) and the mean curvature
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Figure 1:

vector of M̃ points into A. Notice that this is possible since M̃ is obtained

by attaching disks to a smooth connected submanifold of M (where the mean

curvature vector is never zero) and the mean curvature vector extends across

these disks (cf. Figure 1). We orient M̃ by the mean curvature vector. Denote

the set P −D by Ext(D) and the interior of D by Int(D). We will see that

M is disjoint from Ext(D) and Int(D), thus proving the theorem.

We first observe that M ∩ Int(D) 6= ∅ and M ∩ Ext(D) = ∅ leads to a

contradiction. Assume now that M ∩Ext(D) = ∅. Let M1 be the connected

component of M ∩ �

3
+ that contains C, where �

3
+ = {(x1, x2, x3) | x3 ≥ 0}.

M1 together with a proper submanifold D1 of D bound an embedded three-

manifold W1 ⊂ �

3
+; see Figure 2.

We apply the balancing formula to M1 ∪D1:
∫

∂M1

Y · ν = 2H
∫

D1

Y · ηD1
,

with Y = e3 = (0, 0, 1). Notice that the conormal ν along ∂M1 points into

M1, hence, ν · e3 > 0 along ∂M1 and
∫

∂M1

Y · ν >

∫

C
Y · ν, when M1 has

other components in Int(D).

The right side of the balancing formula is 2H(area D1) < 2H(area D).

Now apply the balancing formula to M ∪ D:
∫

C
Y · ν = 2H

∫

D
Y · ηD,

again with Y = e3. Since the right side is 2H(area D), this is incompatible
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Figure 2:

with the previous inequalities. Thus we can assume M ∩ Ext(D) 6= ∅.

We will show that M̃ ∩ Ext(D) 6= ∅ leads to a contradiction by using

the Alexandrov reflection principle with vertical planes coming from infinity

towards M̃ .

Recall that M̃ separates �

3 into two connected components (A is the

bounded component) and M̃ is smooth away from C and the disks D+
j and

D−
j contained in it. First we observe that M̃ ∩ Ext(D) has no components

that are null homotopic in Ext(D). To see this, suppose α were such a

component. Let ` be an infinite line segment, starting at a point of D and

intersecting α in at least two points. Consider a family Q(t), t < ∞, of

parallel vertical planes coming from infinity and orthogonal to `. Suppose

the family Q(t) intersects M̃ ∩Ext(D) for the first time at t = t0. Continuing

the movement of Q(t0) by parallel translation towards C, would produce

for some t1 < t0 a point of tangential contact of M̃ with the reflection of

M̃ ∩ (
⋃
t1≤t≤t0 Q(t) ∩ M̃) in Q(t1), before reaching C. This would yield a

plane of symmetry of M̃ with D on one side of the plane; a contradiction.

We remark that the Alexandrov reflection principle applies here because M̃

bounds the compact region A and the first point of contact of the symmetry

with M̃ occurs before D, hence at a smooth point of M̃ . We used the fact

that C is convex here to ensure that a symmetry of α touches α before the
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Figure 3:

plane reaches C.

So we can assume Q(t) touches M̃ ∩ Ext(D) for the first time along a

curve α that is homotopic to C in Ext(D). Let E be the annulus in Ext(D)

bounded by α ∪ C. Observe first that Int(E) contains no components α1

of M̃ ∩ Ext(D) that are homotopic to C in E. This follows by using the

reflection principle with vertical planes Q(t) as above: a symmetry of M̃

would intersect M̃ for a first time before arriving at D; see Figure 3.

Hence the mean curvature vector along α ∪ C points into E; in particu-

lar, along C, it points towards Ext(D). But this contradicts the balancing

formula: ∫

C
Y · ν = 2H

∫

D
Y · ηD ,

where Y = e3, so Y · ν > 0 along C. Since ~H points towards Ext(D) along

C, ηD = −e3; so the right side is −2H(area D). 2

The proof of Theorem 1 generalizes immediately to constant mean cur-

vature hypersurfaces in �

n+1 to give:

Theorem 3 Let C be a convex (n−1)-sphere in a hyperplane P ⊂ �

n+1 and

let M be a compact submanifold with boundary C. Assume M is embedded of

constant mean curvature, and transverse to P along C. Then M is contained

in one of the halfspaces of �

3 determined by P .
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We make one further conjecture directly related to Theorem 1.

Conjecture 2 A compact, embedded, constant mean curvature surface in

�

3
+ bounded by a convex planar curve in the x1x2-plane must have genus

zero. (This conjecture is even unknown for soap bubbles bounding a convex

planar curve.)

3 The proof of Theorem 2.

We now prove Theorem 2. The main idea of the proof is to construct an

abstract flat three-manifold that isometrically submerses into �

3 and then to

apply Alexandrov reflection in this abstract manifold.

Let M,M+,M−, C,D and P be as defined in the statement of Theorem 2.

Assume for convenience that P is the (x1, x2)-plane, H
+ is the upper half-

space in �

3 and H− is the lower halfspace. Let C1, . . . , Cn be the simple

closed curves in M ∩ Int(D) (if there are any). As in the proof of Theo-

rem 1 define the related curves C+
1 (ε), C

−
1 (ε), . . . , C

+
n (ε), C

−
n (ε) bounded by

the planar disks D+
1 , D

−
1 , . . . , D

+
n , D

−
n . Similarly, define the embedded sur-

face N by removing from M the annuli bounded by the C+
j (ε) ∪ C−j (ε) and

attaching the disks D+
j ∪ D−

j . Also we attach D to M along C. As in the

proof of Theorem 1, to ensure that N is embedded, one uses different values

of ε when several of the Cj are concentric. We may choose these values of

ε sufficiently small so that the image of the orthogonal projection of ∪∂D+
j

onto P is an embedded 1-manifold, as is the projection of ∪∂D−
j .

Note that there is a natural partial ordering of the disks D+
1 , . . . , D

+
n as

well as forD−
1 , . . . , D

−
n . Namely, we say thatD+

i ≥ D+
j if the third coordinate

of D+
i is greater than the third coordinate of D+

i and if Ci ⊂ P lies inside

Cj ⊂ P . Of course D+
i ≥ D+

j geometrically just means that D+
i lies over D+

j .

Similarly we can partially order the disks D−
1 , . . . , D

−
n and it makes sense to

make the statement that D−
i lies over D−

j .

Let M̃ denote the component of N that contains D. M̃ separates �

3 into
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two components; let A be the closure of the bounded component. Note that

we orient M̃ by its mean curvature vector and this vector points into A.

Assertion 1 M̃ ∩ (∪D−
i ) = ∅.

Assume for the moment that Assertion 1 holds and we will show how the

theorem follows. First note that M̃∩(∪D+
i ) = ∅ by applying the flux formula

to the cycle M̃ . (See Figure 2 and the part of the proof of Theorem 1 where

it is shown that M̃ ∩ Ext(D) = ∅ implies M̃ ∩ Int(D) = ∅.) This proves

M̃ = M ∪ D and therefore part 1 of Theorem 2 is proved. It follows that

A is nonsmooth only along C. Also note by the flux formula applied to M̃

and Y = e3, the mean curvature vector of M̃ along C points into the region

above D. Therefore A lies above D.

The usual application of the Alexandrov reflection principle, applied using

horizontal planes with negative third coordinate, shows that M− = M̃ ∩H−

is a graph over its projection onto P . This proves part 3 holds.

We now prove the part of M above P is connected; this will establish

part 2 of Theorem 2. Suppose, on the contrary, that the part of M above P

is not connected. Let Σ be the union of all components of M above P except

the component M+ that contains C. Σ together with a planar domain in P

bounds a compact region R in H+. We claim that M+ is disjoint from R.

Otherwise M+ is contained in a connected component R1 of R. Then take a

path Γ in R1 joining a highest point of ∂R1 to a highest point of M+ (this is

easy since M+ is connected). Γ meets M̃ only at its end points. At the end

point on ∂R1, the mean curvature points down (and into A), hence Γ ⊂ A.

But at the end point of Γ on M+ the mean curvature vector is also pointing

into A. Since it’s also pointing down there, this is impossible. This proves

M+ is disjoint from R.

Note that every path in Int(R) is contained completely inside A or com-

pletely outside A. The reason for this is that such a path is disjoint from M

since M ∩H+ = M+ ∪ Σ. However every component of R intersects Int(A)

near a highest point of the component. Hence, R ⊂ A.
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Now the Alexandrov reflection principle, using horizontal planes above

P , shows Σ is a graph over a domain in P . It is possible to apply Alexandrov

reflection in this case because M+, and hence D, is disjoint from R. We

know that M− is also a graph over a domain in P . Let x ∈ M− ∩ Σ. Σ is

not vertical at x since P would be a plane of symmetry of M if this were

so. (Σ is a graph so Alexandrov reflection would show that P is a plane of

symmetry of M if Σ were vertical at x.) It follows that M−∪Σ is a graph of a

function over a smooth domain in P with zero boundary values and on some

component domain the function changes sign. Hence on this component the

function has both local maxima and local minima and the sign of the mean

curvature of the graph at these points must be opposite. Thus M− ∩ Σ = ∅

and Σ = ∅ as desired. This completes the proof of parts 1, 2 and 3. The proof

of part 4 now proceeds as in the proof of Theorem 1; one does Alexandrov

reflection using vertical planes. It remains to prove Assertion 1.

Proof of Assertion 1. Suppose M̃ ∩ (∪D−
i ) 6= ∅. After reindexing we may

assume that M̃ ∩ (
⋃n
i=1 D

−
i ) =

⋃k
i=1 D

−
i . Let M1, . . . ,Mp denote the compo-

nents of N , other than M̃ , that have at least one of the disks D+
1 , . . . , D

+
k in

their boundary. Each Mi separates �

3 into two components; let Ai denote

the closure of the bounded component. Note that the mean curvature of Mi

points into Ai. We will orient all planar disks in ∂A or in ∂Ai by the inward

pointing normal.

Choose an i ≤ k. We know that D−
i ⊂ ∂A. Let j be such that D+

i ⊂ ∂Aj.

Since the mean curvature vector of the annulus on M joining ∂D−
i to ∂D+

i

is continuous, D−
i is oppositely oriented from D+

i . Let Qi denote the solid

cylinder bounded by D−
i ∪D+

i together with the annulus on M bounded by

∂D+
i ∪ ∂D−

i .

Form a space X as follows. First take the disjoint union of A,A1, . . . , Ak.

For each i, i ≤ k, such that the outward orientation of Qi agrees with the

orientation of D−
i ∪D+

i , we attach Qi to the disjoint union of A,A1, . . . , Ak.

Note that the space X is a flat compact three-manifold that submerses iso-
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Figure 4:

metrically into �

3.

Suppose for the moment that there exists a disk D−
t1 in ∂X such that D−

t1

is also in ∂A, i.e., 1 ≤ t1 ≤ k. In particular D−
t1 is oriented by e3. Notice

that there exists a disk D−
j ⊂ ∂A that lies directly above D−

t1 . (A lies above

D and A lies above D−
t1 .)

Claim 1 Suppose E+
1 is the component in {A,A1, . . . , Ap} such that D+

j ⊂

∂E+
1 . Then there does not exist a disk of E+

1 that lies between D+
j and D+

t1

and furthermore D+
t1 ⊂ ∂E+

1 .

Claim 1 will allow us to modify X as follows. By Claim 1, for every disk

D−
t1 in ∂X such that D−

t1 is also in ∂A, the component E+
1 in {A,A1, . . . , As}

such that D+
j ⊂ ∂E+

1 has the property that D+
t1 ⊂ ∂E+

1 and there no disks

of E+
1 between D+

j and D+
t1 . We next modify X by lifting the cylinder Qt1

into X and then form X −Qt1 . After removing all such solid cylinders in X,

we obtain a new manifold X̃ with the property that every disk D−
s ⊂ ∂X

satisfies D−
s ∩ ∂A = ∅.

Proof of Claim 1. Suppose that there is a diskD+
t2 ⊂ ∂E+

1 that lies between

D+
j and D+

t1 . We choose D+
t2 to be the lowest such disk, i.e., there are no

disks of ∂E+
1 between D+

j and D+
t2 . Then D+

t2 is oriented by −e3. Now the
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disk D−
t2 is between D−

t1 and D−
j . D−

t2 is not in ∂A (since D−
j is the disk of

∂A directly above D−
t1) and D−

t2 ⊂ A, therefore the connected component of

N containing D−
t2 is contained in A. Let E−2 be the compact region bounded

by this connected component; E−2 ⊂ A. Since D+
t2 is oriented by −e3, D

−
t2 is

oriented by e3. Hence there is a disk D−
t3 of ∂E−2 directly above D−

t2 . Clearly

D+
t3 lies between D+

t2 and D+
j . Since D

+
t3 6⊂ ∂E+

1 and D+
t3 ⊂ E+

1 , the connected

component of N that contains D+
t3 is contained in E+

1 . Therefore the compact

region of �

3 bounded by this component is contained in E+
1 . We label this

region E+
3 . Since D

+
t3 is oriented by e3, there exists a disk D+

t4 of ∂E
+
3 directly

above D+
t3 . The connected component of N that contains D−

t4 is contained

in E−2 so the compact region E−4 , that it bounds, is also contained in E−2 .

Clearly this process yields an infinite sequence of compact regions E−2 , E
−
4 ,

etc., which is impossible. This proves that there is no disk of ∂E+
1 between

D+
t1 and D+

j .

Next we prove D+
t1 ⊂ ∂E+

1 . If not, then the connected component of

N that contains D+
t1 is contained in E+

1 , since D+
t1 ⊂ E+

1 . Let E+
2 be the

compact region bounded by this connected component. We know D+
t1 is

oriented by −e3 so there is a disk D+
t2 of ∂E+

2 directly below D+
t1 and above

D+
j . Now D−

t2 is between D−
t1 and D−

j and D−
t2 is not in ∂A. Hence the

connected component of N that contains D−
t2 is contained in A. Let E−3

be the compact region bounded by this connected component. Clearly this

process (just as in the last paragraph) yields an infinite sequence of compact

regions E−3 , E
−
5 , . . ., which is impossible. This proves Claim 1. 2

Now consider the disks of ∂X̃ in H+. We claim there are no disks of

∂X̃ that are directly above the D+
i that came from the D−

i of ∂A oriented

by −e3. One proves this exactly as the proof of Claim 1: just turn �

3 over

(x3 → −x3) and call such a disk of ∂X̃ (if it existed) D−
t1 . Then proceed

exactly as in the proof of Claim 1.

Now consider the surface M̃− = M̃∩H−. Let A−t = {p ∈ A | x3(p) ≤ −t}

for any −t ≤ 0. Let Pt = P +(0, 0, t) and let Rt: �

3 → �

3 be reflection in Pt.
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Consider A−t ⊂ X̃ and the largest value −t0 such that the induced reflection

R̃t:A−t → X̃ is defined. Since there are no disks in ∂X̃ directly above the

D+
i that came from the D−

i of ∂A oriented by −e3, the Alexandrov reflection

principle shows that t0 = 0 and M̃− is a graph over its projection ∆ onto

P . (It is helpful to think of M̃− as having its boundary on P by letting

ε go to zero.) Notice that ∆ ⊂ X̃ and ∆ ∩ C = ∅. On the other hand,

a component of ∆ that has a boundary curve in D must also have another

boundary curve in P−D and so such a component must contain the curve C.

Since ∆ ∩ C = ∅, we conclude that ∆ ∩D = ∅. This establishes Assertion 1

and completes the proof of Theorem 2. 2

Remark 1 Brito and Sá Earp [2] recently gave a somewhat simpler proof

of Theorem 2, again using the balancing formula and a reflection principle

related to the Alexandrov reflection principle.
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