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1 Introduction

In 1956 M. Shiffman [17] proved several beautiful theorems concerning the

geometry of a minimal annulus A whose boundary consists of two closed

convex curves in parallel planes P1, P2. The first theorem stated that the

intersection of A with any plane P , between P1 and P2, is a convex Jordan

curve. In particular it follows that A is embedded. He then used this con-

vexity theorem to prove that every symmetry of the boundary of A extended

to a symmetry of A. In the case that ∂A consists of two circles Shiffman

proved that A was foliated by circles in parallel planes. Earlier B. Riemann

[15] described, in terms of elliptic functions, all minimal annuli in �

3 that

can be expressed as the union of circles in parallel planes (also see [3] for a
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description of these surfaces as well as a computer graphics image of one of

them). Together these results yield a classification of all minimal annuli with

boundary consisting of circles in parallel planes.

We shall call a compact minimal surface M stable if, with respect to any

nontrivial normal variation fixing the boundary, the second derivative of area

is positive. If the second derivative of area is negative for some variation,

then M is called unstable. If M is neither stable nor unstable, we will call it

almost-stable.

Our main theorem, given below, augments Shiffman’s theorems.

Theorem 1.1 If Γ is a pair of smooth convex Jordan curves in distinct

parallel planes, then exactly one of the following holds:

1. Γ is not the boundary of any connected compact minimal surface, with

or without branch points.

2. Γ is the boundary of exactly one minimal annulus and this annulus

is almost-stable. In this case, Γ bounds no other connected compact

branched minimal surfaces.

3. Γ is the boundary of exactly two minimal annuli; one stable and one

unstable. (Perhpas M is the boundary of a connected minimal surface

of positive genus.)

In certain cases it is known that every connected branched minimal sur-

face with boundary Γ described in Theorem 1.1 is actually an annulus. For

example, R. Schoen [16] proved that when Γ is contained in parallel horizon-

tal planes and is invariant under reflection in two vertical planes, then every

branched minimal surface with boundary Γ is actually an annulus. Thus, in

certain cases, Theorem 1.1 shows that Γ is the boundary of 0, 1, or 2 minimal

annuli and no other branched minimal surfaces. In general, Meeks conjec-

tured that every branched minimal surface with boundary consisting of a pair
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of convex Jordan curves in parallel planes is an annulus (see Conjecture 16

in [10]).

The proof of the main theorem is based on an analysis of the Gauss map of

a minimal annulus with boundary Γ and a geometric approach to calculating

the index of a minimal annulus with boundary Γ. In the proof of Theorem 1.1

we rely on the description of the space of smooth embedded minimal annuli

in �

3 as developed in [22] and techniques from global analysis.

Theorem 1.1 has some interesting applications. Perhaps the most impor-

tant application occurs in the proof of uniqueness of a natural free boundary

value problem, which we now describe. Suppose α is a Jordan curve in a

plane P0 and Σ is a compact branched minimal surface such that ∂Σ consists

of α together with a nonempty collection of immersed curves on a parallel

plane P1. If Σ is orthogonal to P1 along ∂Σ ∩ P1, then Σ is called a solution

of the free boundary value problem for α and P1. If, with respect to any

nontrivial normal variation of Σ that vanishes on α, the second derivative

of the area functional is positive, then Σ is called a stable solution to the

free boundary value problem. Similarly, we can define when Σ is unstable or

almost-stable.

Theorem 1.2 Suppose Σ is a solution of the free boundary value problem for

a smooth convex plane curve α and a plane P1 parallel to the plane containing

α. Then:

1. Σ is embedded;

2. There exists a unique stable or almost-stable solution Σ̃ to the free

boundary value problem for α and P1. Furthermore, Σ̃ is an annulus

that is foliated by convex curves in parallel planes.

The proof of part 1 of Theorem 1.2 follows immediately from the results

of Schoen in [16]. Part 2 of Theorem 1.2 is a simple consequence of the

slightly stronger Theorem 3.1 that appears in Section 3 (see Corollary 3.1).
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In Section 3 we also show that if Σ is a connected compact stable minimal

surface with convex boundary curves Γ in parallel horizontal planes and Γ

is invariant under reflection in a vertical plane, then Σ is an annulus. In

particular, a compact connected stable minimal surface with boundary two

circles in parallel planes is unique and is topologically an annulus.

In Section 4 we make some further applications of Theorem 1.1. There,

using Riemann’s classification result, we give a simple proof of Shiffman’s

geometric characterization of minimal annuli having circle boundaries in par-

allel planes. In Section 5 we give an analytic characterization of the space of

smooth minimal annuli whose boundary curves are strictly convex smooth

curves in parallel planes.

In [12] we prove some related theorems for the case of minimal annuli

bounded by a pair of convex planar curves whose union lies on the boundary

of the convex hull of the union.

2 Proof of the main theorem

In this section we shall prove Theorem 1.1, which is stated in the Introduc-

tion. Without loss of generality we may assume that Γ = {γ0, γ1} is a pair

of convex Jordan curves where γ0 ⊂ P0 = {x3 = 0} and γ1 ⊂ P1 = {x3 = 1}.

In the proof of the Theorem 1.1 we shall apply some techniques of global

analysis that are useful in describing spaces of curves and spaces of minimal

surfaces. Let C be the space of pairs {α0, α1} of smooth simple closed curves

where α0 ⊂ P0 and α1 ⊂ P1. LetM be the space of embedded minimal an-

nuli with boundary curves in C. It follows from the work of White [22] that

the natural projection p:M→ C is a proper smooth Fredholm map of index

0. (See also earlier work in [20]). In the proof of Theorem 1.1 we shall use

these properties of p in conjunction with the Smale Transversality Theorem

[18], which holds in this setting. We begin the proof of the theorem with an

existence result that is a simple consequence of the results in [14].
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Lemma 2.1 Suppose ∆ = {α, β} is a pair of continuous Jordan curves,

α ⊂ P0 and β ⊂ P1. Let Dα and Dβ be the compact planar disks with

∂Dα = α and ∂Dβ = β. Suppose there exists a connected nonplanar compact

branched minimal surface Σ whose boundary is contained in D = Dα ∪Dβ.

Then there exists a unique embedded minimal annulus A with ∂A = ∆ and

such that the following hold:

1. Let B be the compact region of �

3 with boundary A ∪ D. Then every

compact branched minimal surface M with ∂M ⊂ D is contained in B.

2. If M is a nonplanar compact branched minimal surface with ∂M ⊂D

and Int(M) ∩ ∂B 6= ∅, then M = A.

3. A is stable or almost-stable.

Proof. We first show that ∆ is the boundary of some minimal annulus that

is stable or almost-stable. Let M be the image of some connected branched

minimal surface with ∂M ⊂ D. The surface M disconnects the slab with

boundary P0 ∪ P1 into several components, exactly one whose closure W is

noncompact.

Approximate α and β by smooth curves αi ⊂ (P0−Dα) and βi ⊂ (P1−Dβ)

converging to α and β, respectively. Note that α∪αi and β ∪βi are each the

boundary of annuli whose areas go to zero as i goes to infinity. The curves

αi and βi are homotopic in W but are not homotopically trivial in W . The

boundary of W , although not smooth, is a good barrier for solving least-area

problems in W (see Theorem 1 in [14]). Hence the pair of curves αi ∪ βi is

the boundary of a least-area annulus inW , stable or almost-stable in �

3, and

these least-area annuli are embedded by Geometric Dehn’s Lemma in [14].

After choosing a subsequence, these least-area embedded annuli converge

to a least-area (hence, stable or almost-stable) embedded minimal annulus

Ã with boundary α ∪ β (see [13] for this type of compactness argument).

Furthermore, by the maximum principle, either this annulus is equal to M

or M ∩ Ã = ∆.
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Now choose an embedded stable (or almost-stable) minimal annulus A

with the property that the volume of BA is the greatest. The choice of A is

always possible by the compactness of set of embedded stable minimal annuli

with boundary Γ. (See for example [1, 21]). If M is a branched minimal

surface with boundary ∆ and M is not contained in BA, then using M ∪ A

as a barrier we produce from the above procedure a least-area embedded

minimal annulus A′ that lies outside M ∪ A. Hence, BA ⊂ BA′ , which

contradicts the largest volume property for BA. Thus, M ⊂ BA and, by the

maximum principle, Int(M) ∩ A 6= ∅ implies A =M . 2

Remark 2.1 Notice that Lemma 2.1 gives some partial information on re-

sults claimed in Theorem 1.1. Namely, if the convex curves Γ are the bound-

ary of some compact branched minimal surface, then Γ is the boundary of

an embedded minimal annulus that is stable or almost-stable. It remains to

prove that if Γ is smooth and it is the boundary of a stable or almost-stable

minimal annulus A, then exactly one of the following holds:

1. A is almost-stable and Γ bounds no other connected minimal surface.

2. A is stable and Γ bounds exactly one other minimal annulus, which is

unstable.

The next step in the proof of Theorem 1.1, Lemma 2.2, shows that the

interior of a minimal annulus A with continuous convex boundary Γ can be

conformally parametrized by the image of its Gauss maps. In order to obtain

this result it is convenient to define two Gauss maps for a smooth orientable

minimal surface; the first G:M → S2 given by translating the unit normal to

the origin and the second g:M → � ∪ {∞} where g is the map G composed

with stereographic projection. It follows directly from the definition of a

minimal surface that the map g is conformal wherever the derivative of g is

nonzero.
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Lemma 2.2 Let Γ = {γ0, γ1} be a pair of continuous convex curves in the

planes P0, P1, respectively. If A is a minimal annulus with ∂A = Γ, then

g: Int(A)→ � ∪{∞} gives rise to a conformal diffeomorphism between Int(A)

and g(Int(A)).

Proof. We shall prove the lemma by showing that for every ε > 0, the

conformal map g restricted to Aε = x−1
3 [ε, 1 − ε] is one-to-one with nonzero

derivative. For t, 0 < t < 1, consider the plane Pt of height t. By Shiffman’s

first theorem [17], Ct = Pt ∩ A is a uniformly convex curve. Since the curve

Ct is uniformly convex and smooth, Ct can naturally be parametrized by

θ ∈ S1 by considering Ct to be parametrized by its outward planar normal.

Orient A by the outward pointing normal to the bounded component of

�

3 − (P1 ∪ P2 ∪ A). With this orientation of A, g has the property that

arg(g(Ct(θ)) = θ where arg(z) is the argument of the complex number z.

Hence the derivative of g on Int(A) is never zero. Since g: Int(A)→ � ∪{∞}

is holomorphic and the derivative of g is never zero, g is a local conformal

diffeomorphism.

Suppose that g(Ct1(θ1)) = g(Ct2(θ2)). Then by the above formula θ1 = θ2.

If t1 6= t2, then let Q be the plane that is tangent to both Ct1 and Ct2 at

θ1. Let VQ be the vector, parallel to Q, obtained by orthogonal projection

of (0, 0, 1) onto Q. Clearly the dot products of VQ with the normals to A at

the two points in Q∩ (Ct1(θ1)∪Ct2(θ2)) are of opposite signs. It follows that

t1 = t2 and hence g is one-to-one. 2

We will use Lemma 2.2 in our analysis of the index of a minimal annulus

A with boundary Γ. To do this we will use a theorem of Schwarz that states

that an eigenfunction (with zero boundary values) of the stability (or Jacobi)

operator S of a compact orientable minimal surfaceM can be identified with

an eigenfunction of the Laplacian ∆+2 on S2 for G(Int(M)) when G is one-

to-one on Int(M) (see [2] for a generalized version of Schwarz’s theorem).

The second eigenvalue of ∆ + 2 on S2 is 0. Thus the second eigenvalue of

∆+ 2 on any proper subdomain of S2 is positive (see corollary 1, page 18 of
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[5]), so (equivalently) the second eigenvalue of the stability operator on S is

positive. These remarks together with Lemma 2.2 prove

Lemma 2.3 A minimal annulus whose boundary consists of two continuous

convex Jordan curves in parallel planes has index 0 or 1. Furthermore, if the

annulus has index 1, then it does not have a Jacobi vector field.

Remark 2.2 If a compact orientable minimal surface has index + nullity

≥ 2, then the zero set of the second eigenfunction of S separates the surface

into two components, each of which is unstable or almost-stable. Each of

these components must have total curvature at least 2π [2]. By the Gauss-

Bonnet formula any minimal annulus bounded by convex planar curves has

total curvature less than 4π. Thus, such an annulus satisfies the conclusions

of Lemma 2.3, even if the planes are not parallel.

Lemma 2.4 Suppose Γ satisfies the hypotheses of Theorem 1.1. If Γ is

the boundary of a stable or almost-stable minimal annulus A, then every

minimal annulus A′ with ∂A′ = Γ that is contained outside of the ball BA

with boundary Dα ∪Dβ ∪ A, must be stable.

Proof. To see this first note that if A′ lies outside A, then the Hopf bound-

ary maximum principle implies that the boundary curve of G(A′) must be

contained in the interior of the annulus G(A). Hence, G(A
′

) ⊂ Int(G(A)).

For compact domains E1, E2 with E1
⊂
6= Int(E2) ⊂ S2, the first nonzero eigen-

value of ∆+2 on E1 is strictly larger than the first eigenvalue on E2. Hence,

the first eigenvalue of the stability operator of A′ is greater than 0, which

proves A′ is stable. 2

Proposition 2.1 Let W be the slab with boundary P0 ∪P1. Suppose M is a

smooth embedded stable compact minimal surface with two smooth boundary

curves Γ = {α, β}, not necessarily convex, contained in the boundary planes

of W and such that M is not the annulus defined in Lemma 2.1. Let C be
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the closure of bounded component of W −M and let R be the closure of the

unbounded component. Then there exist embedded minimal surfaces MC ⊂ C

and MR ⊂ R, diffeomorphic to M , with ∂MC = ∂MR = ∂M , such that MC

and MR are not stable.

Proof. First assume that Γ ⊂ P0 ∪ P1 is a regular value of the related

projection p:Mg → C where C is the space of smooth pairs of curves in

P0 ∪ P1 and Mg is the space of genus-g embedded minimal surfaces with

boundary in C and where g is the genus of M . Consider a path α: [0, 2]→ C

satisfying the following properties:

1. α is transverse to p;

2. α(1) = Γ;

3. α(0) consists of a two large concentric circles that enclose Γ;

4. α[0, 2] is a union of pairwise disjoint, simple closed curves in P0 ∪ P1.

5. α(2) is a pair of circles “inside” Γ that are so small that they do not

bound a connected minimal surface.

6. The variational vector field associated to α is nowhere zero.
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By the results in [1, 22], we know that ∆ = p−1(α[0, 2]) is a smooth com-

pact one-manifold. By property 5, the boundary of ∆ is contained entirely

in p−1(α(0)). By a theorem of Schoen [16], p−1(α(0)) consists of two points,

one corresponding to a stable catenoid S and the other U corresponding to

an unstable catenoid. Let I be the component of p−1(α[1, 2]) that contains

M in its boundary. (See Figure 1a and 1b for the case M has genus 0;

Figure 1, with the interval component of p−1(α[0, 2]) with boundary S ∪ U

removed, provides a representative picture of the case when M has positive

genus.) Note that the other end point of I corresponds to a minimal surface

MC with ∂MC = Γ. Since M is transverse to P0 ∪ P1 along Γ and also the

variational vector field V for the family M(t), t ∈ I, is nowhere zero along

∂M , the normal projection V ⊥ restricted to M is a Jacobi vector field for M

that is never zero along ∂M . Since M is stable, this Jacobi vector field is in

fact never zero on M . This implies that the M(t) in I, close to M , lie in C.

By the maximum principle, the entire family of surfaces corresponding to I
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must also be contained in C, since their boundary curves are. In particular

MC ⊂ C. Since the sum of the indices of MC and M is odd by the work of

White [22], the index of MC must be odd, which means MC is unstable. (In

Figure 1, each time ∆ turns the index changes by 1.)

Let J denote the component of p−1(α[0, 1]) that contains M and let MR

denote the surface corresponding to the other end point of J . If the boundary

of MR is Γ, then the argument in the previously considered case shows that

MR is unstable and MR ⊂ R. Thus we may assume that ∂MR = α(0) and

consists of two large round concentric circles. A theorem of Schoen [16] states

thatMR is a catenoid and since the index along ∆ changes by 1 at each turn of

∆ in Figure 1, MR has even index and hence is stable (the unstable catenoid

has index 1). If M 6= A, then observe that M(t)∩A 6= ∅ for M(t) in J close

toM . However, using A as a barrier, the Geometric Dehn Lemma in [13, 14]

shows that α(0) = ∂MR is the boundary of an embedded least-area annulus

outside of A. By uniqueness of the stable catenoid, we conclude that MR

is disjoint from A. Since the boundary of the surfaces in the interior of the

family J lie outside of A and MR lies outside of A, the maximum principle

implies that M(t) must be disjoint from A for M(t) 6= M . This contradicts

our earlier observation that if M 6= A, then M(t) 6= A for M(t) in J close

to M . This contradiction implies M = A. This completes the proof of the

proposition when Γ is a regular value of p:Mg → C.

Suppose now that Γ is not a regular value of p. It is still the case that

M is a regular point of p since it is stable. Since M is a regular point of p,

there exists a small neighborhood W of M inMg, such that p:W → p(W )

is a diffeomorphism. By the Smale-Sard Theorem [18], we can approximate

M by a sequence Mi ∈ W of stable minimal surfaces with ∂Mi ∈ C that

converge smoothly to M as i → ∞ and such that Γi = ∂Mi is a regular

value of p for all integers i. If M 6= A, then Γi will bound, by our previous

arguments, two unstable minimal surfaces MC(i) and MR(i). By well-known

compactness theorems [1], there are subsequences of these surfaces that con-

verge to surfaces MC and MR that are unstable or almost-stable. Clearly
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MC ⊂ C and MR ⊂ R, which completes the proof of the proposition. 2

Remark 2.3 The proof of Proposition 2.1 and Figure 1 show that when Γ

is a regular value for p:Mg → C and M has genus g, g > 0, and satisfies the

hypotheses of Proposition 2.1, then Γ is the boundary of at least 4 embedded

minimal surfaces of genus g.

Corollary 2.1 Let Γ be as in Theorem 1.1. If Γ is the boundary of a stable

minimal annulus, then this annulus is the annulus A given in Lemma 2.1.

Proof. Suppose A′ is a stable minimal annulus with boundary Γ and that

A′ 6= A. By Proposition 2.1, Γ is the boundary of a minimal annulus AR

that is outside A′ and that is unstable or is almost-stable. This is impossible

by Lemma 2.4. 2

Lemma 2.5 Theorem 1.1 is true if Γ is a regular value for p:M→ C.

Proof. Assume that Γ is a regular value for the projection p:M → C. In

this case White [22] proved that the number of odd index minimal annuli in

p−1(Γ) equals the number of even index annuli. (This is clear from Figure 1.

Since for convex planar curves Γ, there is exactly one pair of minimal disks

spanning Γ, this result also follows from Morse theory [19].) By Lemma 2.3,

the even index annuli are all stable. By Corollary 2.1, Γ is the boundary

of only one stable minimal annulus and this annulus is A. Hence Γ is the

boundary of one stable minimal annulus and one unstable minimal annulus.

2

Lemma 2.6 Let Dα and Dβ be smooth parallel convex planar disks with

∂Dα = α, ∂Dβ = β and let Γ = {α, β}. Suppose there exists a compact

connected branched nonplanar minimal surface Σ with ∂Σ ⊂ Int(Dα ∪Dβ).

Then every minimal annulus with boundary Γ that is disjoint from Σ is stable.
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Proof. Suppose A is a minimal annulus with ∂A = Γ and A ∩ Σ = ∅.

Consider the convex curves Γ(ε) of distance ε from Γ inside D1 ∪D2 where

ε is chosen sufficiently small so that Γ(ε) lies outside ∂Σ and every point of

Γ(ε) has a unique closest point on Γ. Using Σ∪A as a barrier, one produces,

as in Lemma 2.1, a least-area minimal annulus A(ε) with ∂A(ε) = Γ(ε) and

A(ε) is contained in the region between A and Σ.

We claim that g(Int(A)) ⊂6= g(Int(A(ε))); this will prove the strict stability

of A since A(ε) is stable or almost-stable. For every p ∈ Γ(ε), let p̂ ∈ Γ

denote the closest point to p. Translate A(ε) continously in the direction

v = p̂ − p until the translated annulus F = A(ε) + v is obtained. By the

maximum principle, F lies inside A. In particular at p̂, F lies on the inside

of A. By the Hopf boundary maximum principle there is a positive angle

between the conormals of F and A at p̂. It follows that the norm of gA(p̂)

is never equal to norm of gF (p̂). Since the boundary curves of A and F are

tangent at p̂, arg(gA(p̂)) = arg(gF (p̂)). Since the Gauss map of A and F

are one-to-one when Γ is strictly convex, the comparison of norms implies

g(∂A) ⊆ g(A(ε)) and g(∂A) 6= g(∂A(ε)). A moments reflection in the weakly

convex case also shows g(Int(A)) ⊂6= g(Int(A(ε))). As we observed earlier, this

completes the proof of the lemma. 2

Corollary 2.2 Suppose Γ is as in Theorem 1.1. If the minimal annulus A

given in Lemma 2.1 is almost-stable, then A is the unique minimal annulus

with boundary Γ.

Proof. Suppose A is almost-stable. If A is another minimal annulus with

boundary Γ, then A is inside A and so g(A) ⊂6= g(A). It follows the first

eigenvalue of the stability operator of A is negative and hence A is unstable.

Note that A is a regular point of p:M → C, since A has no Jacobi vector

fields by Lemma 2.3. Since A is a regular point for p:M→ C, one can deform

Γ slightly to a pair of convex curves Γ(ε) inside the convex planar disks with

boundary Γ, so as to obtain a minimal annulus A(ε) with ∂A(ε) = Γ(ε). By
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Lemma 2.1, A lies outside A(ε) and by Lemma 2.6, we conclude that A is

stable. This contradiction proves the corollary. 2

Proof of Theorem 1.1. We now complete the proof of Theorem 1.1. By

Lemma 2.5 we may assume that Γ is not a regular value of p:M→ C. By the

statement and proof of Lemma 2.2, Γ must be the boundary of an almost-

stable minimal annulus A. It remains to prove that A is the unique compact

branched minimal surface with boundary Γ.

We first prove Γ is the boundary of a unique minimal annulus. If A = A,

then uniqueness follows from Corollary 2.2. Hence, we may assume that

A 6= A. By Lemma 2.4, A is stable. Move Γ to the pair of convex curves

Γ(ε) of distance ε inside the convex planar disks with boundary Γ. Since A

is stable, for ε sufficiently small, Γ(ε) is the boundary of a stable outermost

minimal annulus A(ε) and part of A(ε) lies outside A (since A lies outside

of A). Recall that A is foliated by convex curves in parallel planes. Since

∂A(ε) lies inside A, we can choose planes K0 and K1, parallel and close

to the planes P0 and P1 containing Γ, such that (K0 ∪ K1) ∩ A bounds an

annulus A′ ⊂ A with A ∩A(ε) ⊂ A′ and ∂A′ ∩A(ε) = ∅. Since A is almost-

stable and A′ ⊂6= A, A
′ is stable. If ∆ denotes the slab between K0 and K1,

then ∆ ∩ A(ε) is a minimal surface whose boundary is contained in the two

planar disks with boundary curves ∂A′. Hence, by Lemma 2.1, there is a

annulus A′ associated to A′ with ∂A′ = ∂A′ and A′ lies outside of ∆∩A(ε).

Hence, A′ 6= A′. Since A′ lies outside A′, it is stable. But ∂A′ cannot be the

boundary of two stable minimal annuli by Corollary 2.1. This contradiction

proves that Γ is the boundary of a unique minimal annulus that is A and A

is almost-stable.

Suppose now thatM is a compact branched minimal surface with bound-

ary Γ andM is not an annulus. Let A(t) denote the subannulus of A between

the planes at heights 1
2
− t and 1

2
+ t for t ∈ (0, 1

2
). Since A is almost-stable,

the proper subannuli A(t) are stable. Let Â(t) denote the unstable minimal

annulus with ∂Â(t) = ∂A(t) whose existence is given by part 3 of Theo-
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rem 1.1. Since the minimal annulus A is unique, the Â(t) converge smoothly

to A as t → 1
2
. Since M is inside A (by Lemma 2.1) and M is never

tangent to A along ∂A (by the boundary maximum principle), the smooth

convergence of Â(t) to A implies that there is a small compact neighborhood

N(∂M) ⊂ M of ∂M such that for t close to 1
2
, Â(t) ∩N(∂M) = ∅. On the

other hand, since Â(t) is unstable and ∂Â(t) lies outside of M , Lemma 2.6

implies Â(t) ∩M 6= ∅. It follows that there exists a sequence ti →
1
2
and a

sequence of points pi ∈ Â(ti) ∩ (M − N(∂M)) such that pi → p ∈ A ∩M .

Since A ∩M = ∂A, p must be contained in P0 or P1. However, the maxi-

mum principle applied to the third coordinate function ofM−N(∂M) shows

that X3(pi) stays a bounded distance from 0 and 1 and hence X3(p) 6= 0, 1.

This contradiction shows M cannot exist, which completes the proof of The-

orem 1.1. 2

Conjecture 2.1 Theorem 1.1 holds for continuous convex Γ.

Remark 2.4 In [12] we continue our study of minimal annuli with boundary

curves that are planar but not necessarily convex or in parallel planes. We

generalize Shiffman’s first theorem by showing if Γ is a pair of smooth convex

extremal planar curves whose union is an extremal set, then every minimal

annulus with boundary Γ is embedded. With this result in hand we then prove

Theorem 1.1 in the case where Γ is a pair of extremal convex planar curves,

not necessarily in parallel planes.

Motivated by these results we go on to prove that the spaceM of embedded

minimal annuli with boundary curves in parallel planes is a path connected

space (in fact, we prove M is contractible). In contrast to this result we

prove that the space M̃ of immersed minimal annuli with the same boundary

curves is not path connected (by showing M̃ contains a nonembedded exam-

ple). Similar connectedness theorems hold for the space of minimal annuli

with extremal boundary.
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3 Uniqueness of the free and partially-free

boundary value problems

Theorem 3.1 Let α be a smooth convex plane curve in �

3, P0 be a plane

parallel to the plane containing α, and R: �

3 → �

3 be the reflection in the

plane P0. If Σ is a connected stable or almost-stable compact minimal surface

with boundary α ∪R(α), then Σ is an embedded annulus.

Proof. We will assume that Σ is not an annulus and prove that it is unstable.

We may assume that P0 is the (x, y)-plane. By Theorem 2 of [16], there is a

nonnegative function u defined on the closure Ω of an open subset Ω of �

2

such that

Σ = {(x, y,±u(x, y)) | (x, y) ∈ Ω} .

Since Σ is connected, Ω must be the region inside a convex curve C (the

projection of α on P0) and outside several disjoint curves C1, C2, . . . , Ck.

Note that k ≥ 1 since Σ is connected. Indeed, k > 1 since Σ is not an

annulus.

Note that u|C ≡ h where h is the height of α above P0. Also, u|Ci ≡ 0

and |∇u||Ci =∞. Since Σ has mean curvature 0 along Ci, Ci is a plane line

of curvature and the top half of Σ is a graph, then each Ci must be uniformly

convex.

We claim that there must be at least one point in the interior of Σ+ (the

portion of Σ above P0) at which the curvature vanishes. To see this, consider

the Gauss map from Σ+ to the upper hemisphere H of the unit sphere.

Suppose for the moment that α is uniformly convex. By an argument in the

proof of Lemma 2.2, the Gauss map takes C diffeomorphically to a simple

closed curve ν(C). The Gauss map takes each Ci homeomorphically to the

equator. It follows that the Gauss map has degree k on the region R between

ν(C) and the equator and has degree k±1 on the region H−R. In particular,

the Gauss map covers the region H−R at least once. If there were no zeroes

of curvature in Σ+, then the covering would be unbranched and so Σ+ would
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contain a connected component diffeomorphic to a disk. But Σ is connected,

so that is impossible. If α is not uniformly convex, then ν(C) need not be

a simple closed curve. However, in this case S2 − ν(C) still consists of two

disks, which is all we really needed to prove the existence of an interior point

of zero curvature.

Let q ∈ Int(Ω) be such that the curvature of Σ at (q, u(q)) vanishes. Let

v0 be a unit vector parallel to P0 and perpendicular to ∇u(q). (In other

words, v0 is parallel to P0 and to the tangent plane to Σ at (q, u(q)).)

Let Z ⊂ Ω be the zero set of φ: (x, y) 7→ ν(((x, y), u((x, y))) · v0, where

ν(p) is the unit normal to Σ at p. Then Z = π(ν−1(Γ)) where Γ is a great

circle in ∂B and π is orthogonal projection onto P0. Since ν is a conformal

map with branch points, ν−1(Γ) consists of smooth embedded arcs together

with isolated points in Ω where an even number of such arcs meet at their

end points. In particular, at least four such arcs begin at the point (q, u(q))

(because it is a branch point of the Gauss map). Since Z is homeomorphic

to ν−1(Γ), it has the same structure. Note that Z meets each Ci and also C

exactly twice because those curves are convex.

Now form a topological space Ω̂ from Ω by identifying each Ci to a point.

Then Ω̂ is topologically a disk. Now the set Ẑ in Ω̂ is a graph in which

each vertex (except for the two on C = ∂Ω̂) has an even number of edges.

Furthermore, the vertex q has at least four edges. It follows that Ω̂ − Ẑ

contains at least one connected component Ŵ that does not touch C = ∂Ω̂.

LetW be the corresponding region in Ω, and letW ′ = {(x, y, z) ∈ Σ | (x, y) ∈

W}. Then the function p 7→ v0 · ν(p) vanishes on ∂W
′. Since that function

is a solution of the Jacobi operator, it follows that zero is an eigenvalue of

the Jacobi operator on W ′. But W ′ is a proper subset of Σ, so Σ must be

unstable. 2

Corollary 3.1 Let α be a smooth convex plane curve in �

3 and P0 be a plane

parallel to the plane containing α. If Σ is a minimal surface with boundary C

and nonempty free boundary in P0 and if Σ is stable or almost-stable solution

17



for the free boundary problem, then Σ is an embedded annulus.

Proof. If R is orthogonal reflection in the plane P0, then Σ ∪R(Σ) satisfies

the hypotheses of Theorem 3.1. 2

Theorem 3.2 Let Γ be a pair of smooth convex curves in parallel planes and

let P0 be a plane of reflection symmetry of Γ that intersects each component

of Γ. If Σ is a connected stable or almost-stable compact minimal surface

with boundary Γ, then Σ is an embedded minimal annulus.

Proof. We will assume that Σ is not an annulus and prove it is unstable.

We may assume that P0 is the (x, y)-plane and that each component of Γ is

contained in a plane parallel to the (y, z)-plane. By Theorem 2 of [16], there

is a nonnegative function u defined on the closure Ω of an open set Ω of �

2

such that

Σ = {(x, y, ±u(x, y)) | (x, y) ∈ Ω}.

Since Σ is connected, Ω must be the region inside a curve C and outside

several disjoint convex curves C1, C2, . . . , Ck. The curve C consists of two

parallel line segments corresponding to the projection of Γ onto P0 together

with two concave arcs.

For simplicity we will assume that Γ is uniformly convex. We claim that

there must be at least one point in the interior of Σ+ (the portion above

P0) at which the curvature vanishes. Consider the Gauss map from Σ
+ to

the upper hemisphere H of the unit sphere. Note that G restricted to a

component Ci of ∂Σ
+ gives a parametrization of ∂H and that G|C is one-to-

one and G((C − Γ)) ⊂ ∂H. Let D be the disk in H bounded by G(C) and

let D1 and D2 denote the two disks that are the closures of the components

of H − D. Clearly, ∆ = Σ+ −G−1(D1 ∪D2) is diffeomorphic to Σ
+ and

G|∆:∆→ D is a connected covering space. Hence ∆ is a disk, which implies

that Σ+ is a disk. Since we are assuming Σ is not an annulus, we have arrived
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at a contradiction. This contradiction proves the existence of a branch point

for G and therefore a zero of Gaussian curvature in Int(Σ+).

Let q ∈ Int(Ω) be such that the curvature of Σ at (q, u(q)) vanishes. Let

v0 be a unit vector parallel to the (y, z)-plane and parallel to a vector in

the tangent plane to Σ+ at q. Let Z ⊂ Ω be the zero set of φ: (x, y) 7→

ν(x, y, u(x, y)) · v0, where ν(p) is the unit vector normal to Σ at p. Notice

that φ has exactly two zeros on each boundary component of Ω and on the

component C one of these zeros occurs on each component of C ∩ Γ.

From this point on the proof proceeds, with slight modification, as in the

proof of Theorem 3.1 to show that Σ is unstable if it is not an annulus. This

completes the proof of Theorem 3.2. 2

The above theorem together with Shiffman’s second theorem proves

Corollary 3.2 If Γ is a pair of circles in parallel planes and Σ is a stable

or almost-stable compact minimal surface with boundary Σ, then Σ is an

embedded minimal annulus foliated by circles in parallel planes.

4 A simple proof of Shiffman’s second theo-

rem

Recall that Shiffman’s first theorem states that if Γ is a pair of convex Jordan

curves in parallel planes, then any minimal annulus A with ∂A = Γ is foliated

by convex curves in parallel planes and, except for possibly the boundary

curves, this foliation is by uniformly convex analytic planar curves. The

main geometric argument in the special case Γ is smooth and convex is quite

simple, and for completeness we will give it here.

After a rigid motion and a homothety of �

3, we may standardize the mini-

mal annulus A so that it is parametrized conformally by a map X:A(r)→ �

3

where A(r) = {z ∈ � | 1 ≤ |z| ≤ r} for some unique r > 1 and such that

X(∂A(r)) ⊂ P0 ∪ Pln(r), where Pt = {x3 = t}. Since the third coordinate
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function X3:A(r) → � is harmonic, we may assume that X3(z) = ln |z|,

since it is a harmonic function with the correct boundary values. In this

parametrization, the circle |z| = c in A(r) maps by X to an immersed curve

γc(θ) = X(c ei θ) in Pln(c). (Note that in this parametrization each curve

in X(∂A) is oriented in a clockwise manner and the oriented normal to

X(A) is inward pointing along X(∂A).) Let g:A(r) → � ∪ {∞} denote

the Gauss map of A(r). Since g never obtains the values 0,∞, the angle

arg(g(z)) ∈ S1 = � /(2π · � ) is well-defined. The convexity of the level set

curve γc(θ) corresponds to
∂
∂θ
arg(γ ′c(θ)) ≥ 0 where we consider γ

′
c(θ) ∈ �

∗.

Note that arg(γ ′c(θ)) = −
π
2
+ arg(g(c ei θ)). Since ∂

∂θ
arg(L(z)) is a harmonic

function for any nonzero holomorphic function L(z), and ∂
∂θ
arg(g(z)) ≥ 0

on X|∂A(r), we conclude that ∂
∂θ
arg(g(z)) > 0 for z ∈ Int(A(r)) by the

maximum principle. Hence, ∂
∂θ
arg(γ ′c(θ)) > 0 for all c, which proves Shiff-

man’s first theorem in the simplest case of smooth convex boundary. (Note

that in the above discussion we have implicitly used Hildebrandt’s boundary

regularity theorem [7] that implies X:A(r)→ �

3 is smooth along ∂A(r).)

As remarked in the Introduction, Shiffman proved a second theorem (and

the most difficult one) in the case that the boundary of the annulus consists

of circles in parallel planes. In this case he proved that the minimal annulus

is foliated by circles in parallel planes. We shall now give a proof of this

second theorem of Shiffman; this proof will be a simple consequence of Theo-

rem 1.1 and the classification of minimal surfaces foliated by circles as given

by Riemann [15]. Also see [4, 8] for a discussion of Riemann’s classification.

Theorem 4.1 (Shiffman’s Second Theorem) Suppose A is a minimal

annulus whose boundary consists of a circle in the plane P0 and another

circle in the planes P1. Then A is foliated by circles in parallel planes.

Proof. Choose an analytic path α: [0, 1]→ C satisfying:

1. α(1) = ∂A;
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2. {α(t) | t ∈ [0, 1]} induces a foliation of annuli in P0, P1 with α(0)

consisting of two circles whose boundary disks contain ∂A = α(1) and

the circles α(0) are concentric around the x3-axis.

By Lemmas 2.1 and 2.6 and Theorem 1.1, α(t) is the boundary of a

stable or almost-stable minimal annulus A(t) and for t < 1 this minimal

annulus is stable. For t < 1, let U(t) denote the unstable minimal annulus

with boundary α(t). Recall that Riemann’s one-parameter family of periodic

minimal surfaces is foliated by circles and lines in horizontal planes and that

the family converges smoothly on compact subsets of �

3 to a catenoid. Since

A(0) and U(0) are catenoids, Riemann’s classification theorem implies that

bothA(t) and U(t) are foliated by circles for t close to 0. Since α(t) is analytic

in t, A(t) and U(t) must be foliated by circles for all t < 1. Theorem 1.1

implies that A must be the limit of the A(t) or of the U(t) as t → 1 (or of

both if it is almost-stable). Hence, A is foliated by circles in parallel planes,

which proves Shiffman’s Second Theorem. 2

Shiffman’s third theorem states that if the minimal annulus A has bound-

ary consisting of two convex curves in parallel planes, then every rigid motion

of �

3 that leaves ∂A invariant leaves A invariant. When ∂A is smooth, this

symmetry property for A follows immediately from Theorem 1.1 (since there

is at most one stable, one unstable and one almost-stable minimal annulus

with boundary ∂A). If Theorem 1.1 can be shown to hold for the case where

∂A is continuous, Shiffman’s general symmetry theorem can be proved using

this alternative method.

5 Analytic parametrizations of minimal an-

nuli bounding uniformly convex Γ

In this section we will describe analytically the examples that arise in Theo-

rem 1.1 in the case that Γ is uniformly convex. Suppose Ã is such a minimal

annulus. Then Ã is conformally parametrized by A(r) = {z ∈ � | 1 ≤ |z| ≤
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r}. After a rigid motion and a homothety we may assume that f :A(r)→ �

3

is the parametrization, f(1) = ~0, and f3(z) = 2 ln |z|. In particular, the

boundary curves of Ã = f(A(r)) now are contained in the planes P0 and

P2 ln(r). By the proof of Lemma 2.2, g:A(r) → �

∗ = � − {~0} parametrizes

an annular domain F such that each component of ∂F is star shaped about

the origin. From the Weierstrass Representation [9], we have

f(z) = Re
∫ z

1
[(
1

g
− g), (

1

g
+ g)i, 2]

1

z
dz.(5.1)

Consider the Laurant expansions for g and 1/g : g =
∑∞
−∞ anz

n and 1/g =
∑∞
−∞ bnz

n. Since f is well-defined, the complex valued forms appearing in

the integral (5.1) have no real periods. Hence, Im(b0) = Im(a0) and Re(b0) =

−Re(a0). Since these equations are necessary and sufficient for f to be well

defined for a given parametrization g:A(r)→ F , this process can be reversed.

More precisely,

Theorem 5.1 Suppose F ⊂ �

∗ is a smooth annulus whose boundary curves

are star shaped about the origin. Let g:A(r)→ F be a conformal parametriza-

tion of F . Then F is the image of the Gauss map of a minimal annulus with

strictly convex smooth boundary on horizontal planes if and only if the con-

stant term in the Laurant expansion for g is the negative of complex conjugate

of the constant term in 1/g. Suppose F is the image of such a minimal an-

nulus, and it is parametrized by g:A(r)→ F . Then in this parametrization,

the Gauss map can be identified with g and the coordinates of the annulus,

after a rigid motion and a homothety, are given by formula (5.1).
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