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1 Introduction

In this paper we shall prove two fundamental theorems on the topological uniqueness

of certain surfaces in �

3. The first of these theorems, which will depend on the

second theorem, shows that a properly embedded minimal surface in �

3 with one end

is unknotted. More precisely,

Theorem 1.1 Two properly embedded one-ended minimal surfaces in �

3 of the same

genus are ambiently isotopic1.

Theorem 1.1 was conjectured by Frohman [10] who proved it in the case that the

surfaces are triply-periodic. Earlier Meeks [18] proved the theorem in the case of

finite genus and a recent example of Hoffman, Karcher and Wei [15]. In this case

the only known examples are the plane and the helicoid. However, the collection

of properly embedded minimal surfaces of infinite genus and one end is extremely

rich. One reason for this is that most classical examples of these surfaces are doubly-

periodic (i.e., they are invariant under translation in two independent directions) and

∗This research was supported by the National Science Foundation grant DMS-8701736.
†The research described in this paper was supported by research grant DE-FG02-86ER250125 of

the Applied Mathematical Science subprogram of the Office of Energy Research, U.S. Department

of Energy, and National Science Foundation grant DMS-8900285.
1Two surfaces in �

3
are ambiently isotopic if and only if there exists a one-parameter family of

diffeomorphisms of �

3
taking one surface to the other.
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in this case, a result of Callahan, Hoffman, and Meeks (Corollary 2 in [3]) states that

the surface has one end and infinite genus, when it is not a plane. This result and

Theorem 1.1 have the following corollary.

Corollary 1.1 Any two properly embedded nonplanar minimal surfaces in �

3 that are

invariant under at least two linearly independent translations are ambiently isotopic.

Essential in understanding the uniqueness theorems in this paper is the concept

of a Heegaard surface in a noncompact three-manifold, which generalizes the usual

notion of a Heegaard surface M in a closed three-manifold N 3. Recall that M is

called a Heegaard surface if it separates N 3 into two genus-g handlebodies where g

is the genus of M . (A handlebody of genus g is also frequently referred to in the

literature as a solid g-holed torus, a g-holed doughnut or a pretzel of genus g. Every

closed three-manifold N 3 contains a Heegaard surface, so N 3 can be constructed by

glueing two handlebodies together along their boundary (see [13] for details)).

Heegaard surfaces in N 3, which thereby yield “Heegaard splittings” of N 3 into

handlebodies, play a fundamental role in classification questions in three dimensional

topology. We refer the interested reader to [1, 2, 4, 10, 9, 11, 13, 17, 18, 24, 30] for

some of the theorems on Heegaard surfaces and the application of these theorems to

geometry.

Noncompact three-manifolds such as �

3 fail to have compact Heegaard surfaces.

However, there is a natural notion of Heegaard surface for these manifolds where the

surface is allowed to be noncompact. (See Section 2 for the precise definition.) We

say that a properly embedded surface M is a Heegaard surface in �

3 if the closures

of each of the two components of �

3−M are handlebodies2. We will show that these

handlebodies are each diffeomorphic to the three-manifold constructed as follows.

Attach g trivial one-handles to the closed lower halfspace H in �

3 where g is the

genus of M , possibly infinite. When g = ∞, this attaching of handles on H can be

performed on neighborhoods of the integer points on the x-axis contained in ∂H to

obtain a one-periodic Heegaard surface in �

3 (see Figure 1). Note that this implies

that a Heegaard surface in �

3 has one end.

2A three-manifold with boundary is a handlebody if it is homeomorphic to a closed regular neigh-

borhood of a properly embedded one-dimensional CW-complex in �

3
.
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Our second main theorem is

Theorem 1.2 Heegaard surfaces of the same genus in �

3 are ambiently isotopic.

Equivalently, given two diffeomorphic Heegaard surfaces in �

3, there exists a diffeo-

morphism of �

3 that takes one surface to the other surface.

Theorem 1.2 will be proved at the end of Section 2.

We will prove in Section 3 that a properly embedded one-ended minimal surface in

�

3 is a Heegaard surface. This result, together with Theorem 1.2, will prove Theorem

1.1.

The one-skeletons of different triangulations of �

3 are not in general homeomor-

phic. However, since the boundary surfaces of their regular neighborhoods are Hee-

gaard surfaces of infinite genus, Theorem 1.2 yields

Corollary 1.2 The regular neighborhoods of the one-skeletons of any two triangula-

tions of �

3 are ambiently isotopic.
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2 Topological uniqueness of one-ended Heegaard

surfaces

There is a subtle point related to the proof of Theorem 1.2 that we would like to

point out to the reader. It follows immediately from the work of Frohman in [10]

that a Heegaard surface of infinite genus in �

3 contains an infinite number of disjoint

trivial handles. (See Figure 3 for a picture of a trivial handle.) The main difficulty

in proving Theorem 1.2 is to show that such a collection of disjoint trivial handles

can be chosen to be a proper subset of �

3. This subtle properness problem will be

handled through the technical application of hollow Heegaard splitting to be defined

shortly.

Before proceeding to the proof of Theorem 1.2, we develop some basic notation,

definitions and topological constructions that will be used in our analysis of Heegaard

splittings of �

3.

Let M and N be manifolds with boundary. A continuous map f :M → N is called

proper if

1. For every compact set K ⊂ N , the set f−1(K) is compact, and

2. f(∂M) = f(M) ∩ ∂N .

We require all submanifolds to be topologically locally flat. We use the notation

A to denote the closure of a set A.

We seek to generalize the notions of handlebody and compressionbody (to be

defined) to include noncompact objects. A space B is a handlebody if there exists a

one-dimensional CW -complexX that is properly embedded in �

3 and a closed regular

neighborhood, N(X), that is homeomorphic to B. The genus of the handlebody B

is the genus of ∂B. If B is compact, then, up to homeomorphism, B is classified by

its genus. Let M and N be three-manifolds with boundary. The boundary connect

sum of M and N is the three-manifold M#N obtained by identifying a disk D1 in

the boundary of M with a disk D2 in the boundary of N .

A compressionbody is a space that can be constructed as follows. Let F be a

compact orientable surface with or without boundary. If F has genus zero, we require

that ∂F be nonempty. Let I denote the unit interval [0, 1]. Let B be a handlebody

as above and let D1 be a disk in ∂B. Let D2 be a disk in F × {0}. The space

H = B#(F ×I), where we take the sum along D1 and D2, is a compressionbody. The

surface (∂B −D1) ∪ (∂F × {0} −D2) will be called the distinguished surface of H.

We can more generally define a compressionbody to be the boundary connect sum of
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a handlebody with a finite number of F × I where the surfaces F are compact, and if

some F has genus zero then we require that F have boundary. The restriction that

the surfaces of genus 0 have boundary is to guarantee that compressionbodies have

trivial second homotopy group.

Let X be a topological space. If K is a compact subset of X, then define n(K)

to be the number of connected components of X −K that have noncompact closure.

The number of ends of X, which we denote e(X), is the supremum of n(K) taken

over the compact subsets of X. It is easy to check that �

n has two ends for n = 1

and one end for n > 1. The number of ends of a compressionbody H is equal to

the number of ends of its distinguished surface. The number of ends of a topological

space can be computed as the rank of the 0-dimensional term of a cohomology theory

[27]. Hence there is an inequality relating the number of ends of a space X to the

number of ends of a pair of nice subspaces X1, X2 and their intersection X1 ∩ X2,

such that X = X1 ∪ X2, that comes from a Mayer-Vietoris sequence. Specifically,

e(X) ≥ e(X1) + e(X2)− e(X1 ∩X2).

A simple closed curve κ in a surface F is essential if κ is not the boundary of a

disk embedded in F . A meridian disk D for a handlebody B is a properly embedded

disk so that ∂D is an essential simple closed curve in ∂B. A system of meridian

disks is a disjoint union of disks Di that has been properly embedded in B so that

each disk in the family is a meridian disk. Let B be a handlebody of infinite genus

having one end. A standardizing sequence for B is a system of meridian disks {Di}

for B where the index i ranges over the positive integers, and the disk Di cuts B

into a handlebody of genus i that contains all Dj with j < i and an unbounded

component. (See Figure 2.) Every handlebody B with one end and infinite genus has

a standardizing sequence. From this it follows that up to homeomorphism there is

only one handlebody of infinite genus having one end.
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Figure 2:
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Definition 2.1 Let M be a three-manifold and let F1 and F2 be compact surfaces in

∂M so that ∂M = F1 ∪ F2 and F1 ∩ F2 = ∂F1 = ∂F2. A hollow Heegaard splitting

of (M,F1, F2) is a pair (H1, H2) of compressionbodies H1 and H2 embedded in M so

that:

1. H1 ∪H2 = M ;

2. F = H1 ∩H2 is the distinguished surface of both H1 and H2;

3. F is properly embedded in M ;

4. ∂F = F1 ∩ F2;

5. Fi ⊂ ∂Hi.

We call F the splitting surface associated to the hollow Heegaard splitting. If H ′
1 and

H ′
2 are also hollow handlebodies, then we say that (H1, H2) and (H ′

1, H
′
2) of (M,F1, F2)

are topologically equivalent if there exists a homeomorphism h:M → M so that

h(H1) = H ′
1 and h(H2) = H ′

2.

From our remarks about the ends of topological spaces, it can be seen that if

M is a three-manifold and (H1, H2) is a Heegaard splitting of M , then e(M) ≥

e(H1) + e(H2) − e(H1 ∩ H2) = e(H1 ∩ H2). Specifically, if F is a splitting surface

associated to a Heegaard splitting of �

3, then F has one end.

Let (M,F1, F2) be a three-manifold with a hollow Heegaard splitting (H1, H2),

and let F be the splitting surface associated with the Heegaard splitting. It is a

consequence of Haken’s lemma for hollow Heegaard splittings [2, 4] that if there is
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an incompressible sphere S in M , then there is an incompressible sphere S ′ in M

that intersects F in a single simple closed curve. The proof of this theorem is no

different from the proof in the case where we require that all the manifolds involved

be compact; the compactness of the sphere S is all that is really necessary.

Let B denote the closed three-ball. Up to homeomorphism of B, there is a unique

compact genus-one surface T with one boundary component, properly embedded in

B so that there exist disks D1 and D2 embedded in B with ∂Di = Di ∩ T and

such that D1 ∩ D2 consists of a single point of transverse intersection of ∂D1 and

∂D2 in T . The surface T is the splitting surface associated to the unique (up to

homeomorphism) genus-one Heegaard splitting with boundary of B having a single

boundary component. The surface T is pictured in Figure 3.

Figure 3: The surface T inside the ball B

There is an operation on Heegaard splittings called stabilization. Let F be the

splitting surface associated to a Heegaard splitting of the three-manifold M . Let

B be a ball embedded in M that intersects F in a single disk D. Let F ′ be a

surface obtained from F by removing the disk D and replacing it with a surface T

as above. The surface F ′ is the splitting surface associated with a new Heegaard

splitting (H ′
1, H

′
2) of M . We call the new Heegaard splitting the result of stabilizing

the old Heegaard splitting. This operation is uniquely defined up to homeomorphism.

It is a theorem of Reidemeister and Singer [29] that any two Heegaard splittings of
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a closed three-manifold M become topologically equivalent after each is stabilized a

finite number of times.

We would now like to discuss some topological uniqueness results of Waldhausen;

these results are all consequences of his proof of the topological uniqueness of Hee-

gaard splittings of the three-sphere [30]. Let M be a compact three-manifold with

boundary that is the result of removing open balls from S3. Let F1 and F2 be sur-

faces in ∂M , so that F1 ∪ F2 = ∂M , F1 ∩ F2 = ∂F1 = ∂F2, and the intersection of

Fi with any boundary component of M consists of a single disk. Any planar sur-

face P that is properly embedded in M so that ∂P = ∂F1 is the splitting surface

associated with a Heegaard splitting with boundary of (M,F1, F2). Furthermore, a

simple argument shows that any two such splittings are topologically equivalent. It

is a consequence of Waldhausen’s theorem that any other Heegaard splitting with

boundary of (M,F1, F2) is topologically equivalent to the result of stabilizing P the

correct number of times. Specifically, Heegaard splittings of (M,F1, F2) are classified

by their genus.

Assume that M has one end. Let (H1, H2) be a Heegaard splitting of M with

splitting surface F . We say that (H1, H2) is infinitely reducible if there exists a proper

family of disjoint balls {Bi}
∞
i=1 in M so that each Bi intersects F in a copy of the

surface T from Figure 3. We call the balls Bi reducing balls. The appellation comes

from the fact that if we replace the surfaces Bi ∩F with disks the resulting surface is

still a Heegaard surface. If a Heegaard splitting is infinitely reducible then we have a

great deal of latitude in arranging its intersection with compact submanifolds of M .

Proposition 2.1 Suppose M has one end. Let (H1, H2) and (H ′
1, H

′
2) be infinitely

reducible Heegaard splittings of (M,F1, F2) with splitting surfaces F and F ′ respec-

tively. Suppose that K is a compact codimension 0 submanifold of its boundary.

Suppose that G1, G2 is a partition of the boundary of K so that F ∩K and F ′ ∩ K

are splitting surfaces for (K,G1, G2). Note that F ∩ ∂K = F ′ ∩ ∂K = ∂G1. Then

there are surfaces Φ and Φ′ isotopic to F and F ′ with Φ ∩K = Φ′ ∩K the splitting

surface of a Heegaard splitting of (K,G1, G2).

Proof. The proof is achieved by a process we call “stealing handles from infinity”.

If we can show that we can isotopy F to a surface Φ so that Φ ∩ ∂K = F ∩ ∂K

and Φ ∩K is the result of stabilizing F ∩K an arbitrary number of times, then the

Reidemeister-Singer theorem will imply the desired result.

Since K is compact there exist infinitely many reducing balls for (H1, H2) that are

disjoint from K. Let B be such. Since a ball is a regular neighborhood of any point
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in its interior we may isotope B so that it is a small ball centered at a point p in F .

Let q be a point in F∩
◦

K. Since F is path connected there is an arc in F joining p

and q. Effect an isotopy supported in a small regular neighborhood of this arc that

drags the contents of B to a small ball in
◦

K centered at q. Call the resulting surface

Φ. It is clear that we can effect this isotopy so that Φ ∩K is the result of stabilizing

F ∩ K once, with Φ ∩ ∂K = F ∩ ∂K. Furthermore we can repeat this process an

arbitrary number of times. 2

Given a Heegaard splitting of a noncompact manifold we can find an exhaustion

of the manifold by compact submanifolds so that the intersection of the Heegaard

splitting with the compact “pieces” is a Heegaard spliting.

Proposition 2.2 Let (H1, H2) be a Heegaard splitting of (M,F1, F2) with splitting

surface F . There exists an exhaustion of M by compact submanifolds Ki, K0 =

∅, Ki ⊆
◦

Ki+1 so that for all i, (H1 ∩ (Ki−
◦

Ki−1), H2 ∩ (Ki−
◦

Ki−1)) is a Heegaard

splitting of Ki−
◦

Ki−1 (with the obvious partition of ∂(Ki−
◦

Ki−1)).

Proof. Since H1 is compression body with preferred surface F we can find an ex-

haustion Li of H1 by compact submanifolds so that for all i Li−
◦

Li−1 is a compression

body with preferred surface F ∩(Li−
◦

Li−1). Similarly we can find an exhaustion Ji of

H2 so that the Ji−
◦

J i−1 are compression bodies with preferred surface F ∩(Ji−
◦

J i−1).

Let Ki be the union of Ji and Li along with collars of Ji−Li in H1 and Li−Ji in H2,

chosen to intersect Ji ∪ Li nicely. The exhaustion Ki will have the desired property.

2

We call an exhaustion as above adapted to (H1, H2).

Proposition 2.3 If (H1, H2) and (H ′
1, H

′
2) are infinitely reducible Heegaard splittings

of (M,F1, F2) with splitting surfaces F and F ′ then there exists an exhaustion {Li}

of M so that after isotopies fixing ∂M, {Li} is adapted to both (H1, H2) and (H ′
1, H

′
2)

and the intersections of F and F ′ with the frontier of each Li coincide.

Proof. Suppose that {Ki} and {K ′
1} are exhaustions of M that are adapted to

(H1, H2) and (H ′
1, H

′
2). By inductively selecting subsequences and renumbering we

may assume that for all i,

Ki−1 ⊆
◦

K
′

i−1⊆ K ′
i−1 ⊆

◦

Ki .

Choose the exhaustion Li so that

Ki−1 ⊆
◦

Li⊆ Li ⊆ Ki
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and

K ′
i−1 ⊆

◦

Li⊆ Li ⊆ K ′
i .

For instance the frontier of Li could be a pushoff of the frontier ofKi intoKi. Partition

the boundary of Li into (Gi(i), G2(i)) so that it coincides with F1, F2 on the overlap.

There exist Heegaard splittings of Li−
◦

Ki−1 and Ki−
◦

Li so that the partition of

the boundary restricted to the boundary of Li coincides with (G1(i), G2(i)) and the

partition of the boundary restricted to the boundary ofKi coincides with the partition

of the boundary of Ki induced by (H1, H2). Together these Heegaard splittings form

a Heegaard splitting of Ki−
◦

Ki−1 intersecting the boundary of Li in ∂G1(i). We can

stabilize F∩Ki−
◦

Ki−1 so that it is isotopic relative to its boundary to a surface having

∂G1(i) as its intersection with the boundary of Li. By stealing handles from infinity

we can isotope F so that this is true. Still working with (G1(i), G2(i)) we can do

the same with F ′, that is after an isotopy F ′ intersects the boundary of L′ in ∂G1(i).

Furthermore we can do this so that F ∩ (Ki−
◦

Li), F ∩ (Li−
◦

Ki−1), F
′ ∩ (K ′

i−
◦

Li)

and F ′ ∩ (Li −K ′
i−1) are all splitting surfaces. This means that F ∩ (Li−

◦

Li−1) and

F ′ ∩ (Li−
◦

Li−1) are splitting surfaces and F ∩ ∂Li = F ′ ∩ ∂Li. Proceed inductively

making sure that after someN , depending on i if n ≥ N then the surface’s intersection

with Li is the same before and after the isotopies. This will imply that the process

converges. 2

Theorem 2.1 Let (H1, H2) and (H ′
1, H

′
2) be infinitely reducible Heegaard splittings

of (M,F1, F2) with splitting surfaces F and F ′. Then F and F ′ are isotopic.

Proof. First apply Proposition 2.3 to find an exhaustion {Li} and isotopies of F and

F ′ so that {Li} is adapted to the isotoped Heegaard splittings. Then use Proposi-

tion 2.1 inductively on Li−
◦

Li to isotope F so that it coincides with F ′. We can use

the fact that all the handles we are stealing from infinity can be taken from the only

end representative to make sure that after some stage in the construction we are not

disturbing Lj ∩ F . Hence the process converges. 2

It is clear that Theorem 1.2 from the introduction follows from Theorem 2.1.

3 Topological uniqueness of one-ended complete

minimal surfaces

In this section we will be studying the geometry and topology of the closure of the

components of the complement of properly embedded surfaces in �

3. These manifolds

with boundary are almost-complete in the following sense.
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Definition 3.1 A Riemannian n-manifold with boundary is called almost-complete

if it is complete as a metric space with respect to the natural distance function induced

from the infimum the lengths of curves joining pairs of points in the manifold.

We will study the topology of a properly embedded minimal surface M in �

3

by showing that the closure of each component of �

3 −M is a standard one-ended

handlebody whenever M has one end. When M has finite topology, this was proved

by Meeks [18]; the case of interest here will be when M has one end and infinite

genus.

Recall that a noncompact surface Σ in a Riemannian manifold N has least area

if for any smooth compact subdomain ∆ ⊂ Σ, ∆ is a surface of least area in N with

boundary ∂∆.

Lemma 3.1 Suppose N is a connected, orientable, almost-complete Riemannian three-

manifold with more than one boundary component. If ∂N has nonnegative mean

curvature with respect to the outward pointing normal, then N contains a properly

embedded, orientable, least-area minimal surface.

Proof. Suppose ∂1 and ∂2 are two components of ∂M . Choose an arc δ in N that

joins a point p ∈ ∂1 with a point of ∂2. Let Σ̃1 ⊂ Σ̃2 ⊂ . . . be a smooth compact

exhaustion of ∂1 with p ∈ Σ̃1. Theorem 1 in [23] (together with the general regularity

theory of area-minimizing currents in [12] and [28]) shows that ∂Σ̃i is the boundary

of a least-area surface Σi in N such that Σi is homologous rel(∂N) to Σ̃i with � 2-

coefficients. Note that Σi is orientable since Σi ∪ Σ̃i is a boundary in N .

Since the surface Σi is area-minimizing in the interior of N , for any ball B ⊂

Int(N), a simple replacement argument using portions of ∂B shows that Area(B ∩

Σi) ≤
1

2
Area(∂B). Similarly, if B is a smooth ball of geodesic radius ε centered at a

point in ∂N , then Area(B ∩ Σi) ≤ Area(∂B). These estimates show that the family

{Σi} has uniform local area bounds. These area bounds are sufficient for applying

the standard compactness and regularity theorems [28] of geometric measure theory

which state that a subsequence Σij of these surfaces converges smoothly on compact

subsets of N to a properly embedded least-area surface ∆. (The property that a limit

of area-minimizing surfaces is itself area-minimizing is well known and is proved in a

similar context in the last paragraph of the proof of Theorem 3.1 in [24].) Note that

each of the surfaces Σi has odd intersection number with the arc δ and so ∆∩ δ 6= ∅,

which implies ∆ is nonempty. This completes the proof of the lemma. 2
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Theorem 3.1 Suppose N is a connected, orientable, almost-complete, flat three-

manifold. If ∂N has nonnegative mean curvature with respect to the outward pointing

normal, then either ∂N is connected or N is isometric to the Riemannian product

Σ× [0, T ] for some T > 0 and for some complete totally geodesic surface Σ in N .

Proof. Suppose N has at least two boundary components. For the moment, also

assume that N is simply connected. We shall prove the N is isometric to �

2 × [0, T ]

for some T > 0.

Let M ⊂ N denote a properly embedded, stable, orientable, minimal surface

whose existence is guaranteed in Lemma 3.1. By the work of do Carmo and Peng

[5] or of Fischer-Colbrie and Schoen [7], we know that M is totally geodesic. Since

N is simply connected, M must be a plane in N . (When N is simply connected, it

isometrically submerses into �

3 and so M must be a plane.) After a translation of

M in N , we may assume that the distance from M to ∂N is zero. By the maximum

principle, either M ⊂ ∂N or else M ∩ ∂N = ∅. Suppose for the moment that

M ∩ ∂N = ∅ and dist(M, ∂N) = 0 and identify M with the plane �

2.

LetDt be the disk of radius t in �

2 centered at the origin. Suppose dist(D1, ∂N) >

ε and choose ε < 1

4
. Let γ denote the circle of height ε over ∂D1. The curves γ ∪∂D1

bound a stable catenoid C1 with C1 ∩ ∂N = ∂D1. (In our discussion of catenoids we

are using the fact that some neighborhood of M in N isometrically embeds in �

3.)

Furthermore it is clear that for t close to 1, γ ∪ ∂Dt is also the boundary of a stable

catenoid Ct and the family Ct varies continuously with t. The maximum principle

shows that the interiors of the one-parameter family of stable catenoids Ct are always

disjoint from ∂N for t ≥ 1 and for as long as Ct is defined in N . It is clear that Ct

is defined for all t ≥ 1 and Ct1 lies above Ct2 when t1 > t2. Since the Ct are stable

catenoids, they converge to a totally geodesic surface C in N with ∂C = γ.

¡
¡
¡
¡
¡
¡
¡¡ γ

E

D1
Dt

Ct

M = �

2

Figure 4:
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Let E be the flat disk with ∂E = γ. Then Ct ∪ E ∪Dt bounds a compact region

R ⊂ N . The regions Rt converge to a slab of width ε that is isometrically embedded

in N and one of its boundary planes is M . These same arguments show that M is

also the boundary of another slab of width ε on its other side. Hence, the distance

from M to ∂N is positive, a contradiction of our earlier assumption that M ∩∂N = ∅

and dist(M,∂N) = 0.

If M ⊂ ∂N , a simple modification of the arguments given above in the case

M ∩ ∂N = ∅ shows that the boundary component M can be continuously translated

away from itself until it touches another boundary component of N at which point it

equals that boundary component. Thus, we see that N is isometric to �

2 × [0, T ] for

some T > 0.

If N is not simply connected, then by the previously considered case, the simply

connected Riemannian cover of N is isometric to �

2 × [0, T ] for some T > 0. Since

the covering transformations are isometries and N has more than one end, N must

be isometric to Σ× [0, T ] where Σ is a flat orientable surface. 2

Remark 3.1 The main idea in the proof of Theorem 3.1 (of using limits of catenoids)

was first used by Hoffman and Meeks in the proof of their Halfspace Theorem that

states that a proper nonplanar minimal surface in �

3 that is contained in a halfspace

is a plane. The Halfspace Theorem and Theorem 3.1 are examples of maximum

principles at infinity for proper minimal surfaces in a flat three-manifolds. (See [20]

for a useful and general version of this type of maximum principle.)

Corollary 3.1 Suppose N is an almost-complete flat three-manifold whose boundary

has nonnegative mean curvature with respect to the outward pointing unit normal. If

the map π1(∂N) → π1(N) is not surjective, then N or a 2-sheeted covering space of

N is a Riemannian product.

Proof. If π1(∂N) → π1(N) is not surjective, then the universal cover Ñ satisfies

the hypotheses of Theorem 3.1 and ∂Ñ is not connected. Hence, Ñ is isometric to

�

2 × [0, T ] for some T > 0. The corollary follows immediately from this fact. 2

Corollary 3.2 Suppose M is a properly embedded minimal surface in �

3 and N is

the closure of a component of �

3−M . Then the interior of N is an open handlebody

and the induced map π1(M)→ π1(N) is surjective.

Proof. It follows from Theorem 3 in [18] that Int(N) is an open handlebody. The

second statement follows immediately from Corollary 3.1. 2

13



Remark 3.2 Corollary 3.2 was independently proved by Joel Hass (personal com-

munication).

When a properly embedded minimal surface M ⊂ �

3 has one end, we can prove

even more concerning the topology of the closed complements of M .

Theorem 3.2 Suppose M is a properly embedded one-ended minimal surface in �

3

and N is the closure of one of the components of �

3 −M . Then N is a one-ended

handlebody. In particular, M is a Heegaard surface in �

3.

The next theorem, which is stated in the Introduction, is a simple consequence of

the above theorem and Theorem 1.2.

Theorem 1.1 Two properly embedded one-ended minimal surfaces in �

3 of the same

genus are ambiently isotopic.

Proof of Theorem 3.2. Let M ⊂ �

3 be a properly embedded minimal surface with

one end. If M has finite genus, then it was proved in [18] that M is a Heegaard

surface. Assume now that M has infinite genus. We shall show that the closure N

of a component of �

3 −M must be a handlebody. This will imply M is a Heegaard

surface in �

3 and Theorem 3.2 will then follow from Theorem 1.2.

Since Int(N) is an open handlebody by Corollary 3.2, to prove N is a handlebody

it suffices to prove that there exists a proper standardizing sequence D = {D1, D2, . . .}

in N satisfying,

1. For all k, ∂Dk = Dk ∩N represents a homotopically nontrivial curve in N ;

2. Dk separates N into a compact component Nk and a noncompact component

where
⋃

i≤k Di ⊂ Nk;

3.
⋃

k Nk = N .

The first step in the proof is to construct an infinite sequence of auxiliary minimal

surfaces {Σ1,Σ2, . . .} that satisfy some of the properties required for the disks in D.

First choose a compact exhaustion Σ̃1 ⊂ Σ̃2 ⊂ · · · of M = ∂N where ∂Σ̃i is a simple

closed curve. Since ∂N has nonnegative mean curvature and ∂Σ̃ bounds in N , ∂Σ̃i

is the boundary of a compact least-area surface Σi in N homologous rel(∂N) to Σ̃i

with � 2-coefficients (see Theorem 1 in [23] and also [28]). Note Σi is orientable since

Σi ∪ Σ̃i bounds.

14



We next show that the Σi can be chosen so that
⋃

i Σi is a properly embedded

submanifold of �

3. If the sequence Σi is not eventually disjoint from every compact

subset of �

3, then, after choosing a subsequence, there exist points pi ∈ Σi with

pi → p for some point p ∈ N . Since Σi is a � 2-area-minimizing surface, a subsequence

Σij of these surfaces converge smoothly on compact subsets of N to a properly embed-

ded least-area surface ∆ (see the proof of Lemma 3.1 for this convergence argument).

Note that ∆ is nonempty since p ∈ ∆. But ∆ is a complete stable orientable minimal

surface in �

3 and hence every component of ∆ is a plane ([5] or [7]). The Halfspace

Theorem in [16] states that a properly immersed minimal surface in �

3 that is con-

tained in halfspace is a plane but M is not a plane. This contradiction shows that the

sequence Σi eventually leaves every compact subset of �

3. It follows, by choosing a

subsequence, that we can also choose {Σi} so that these surfaces are pairwise disjoint.

This completes the construction of the family {Σi}.

Let Ri denote the noncompact region of N bounded by Σi ∪ (M − Σ̃i). Note that

Ri+1 ⊂ Ri. We will construct the required sequence of disks D by showing that for

each i, there exists a disk Di ⊂ Ri with ∂Di = (Di ∩ ∂Ri) ⊂ M and such that ∂Di

is homologous in M − Σ̃i to the curve ∂Σi. It is straightforward to check that such

a collection of disks contains a reindexed subcollection with the required Properties

1–3 for the collection D. We first prove the existence of the disk D1.

The two curves ∂Σ1 ∪ ∂Σi bound a subdomain Mi of M . If either ∂Σ1 or ∂Σi

is homotopically trivial in R1, then Dehn’s Lemma [13] shows that this curve is the

boundary of an embedded disk D1 in R1. Hence, we may assume that ∂Σ1 and ∂Σi

are both homotopically nontrivial in R1. The loop theorem [13] implies that there

exists a pairwise disjoint collection of disks in R1 with boundary curves in Mi such

that after performing a surgery of Mi along these disks the resulting surgered surface

M̂i is incompressible in R1. (Recall that performing a surgery of M along a disk E

with ∂E ⊂ M means that for some product neighborhood, P (E) ⊂ R1, we replace

P (E)∩M by the two disks ∂P (E)− (P (E)∩M)). Let M ′
i denote the component of

M̂i that contains ∂Σ1. Suppose for the moment that ∂Σi 6⊂ ∂M ′
i for some i. In this

case let D1 be the boundary connected sum of the disks M ′
i ∩ Int(N) along pairwise

disjoint arcs in M ′
i ∩Mi. Note that D1 is homologous rel(∂R1− Int(Σ1)) in R1 to Σ1.

Hence, we may assume that the incompressible surface M ′
i has boundary ∂Σ1 ∪ ∂Σi.

Replace the incompressible surface M ′
i by an embedded minimal surface M̃i of

least area in R1 in the isotopy (or homotopy class) of M ′
i (see [8] or [21]). We

will prove in Assertion 3.1 that a subsequence M̃ij of the M̃i converges smoothly

on compact subsets of �

3 to a smooth, connected, noncompact, properly embedded,
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stable, orientable, minimal surface Σ ⊂ R1 with ∂Σ = ∂Σ1. Assume for the moment

that Assertion 3.1 holds and Σ is given.

We first check that Σ is incompressible. Let α be a simple closed curve in Σ that

bounds a disk D in R1. Since M̃ij converges smoothly to Σ on compact subsets of

R1, for j large we can lift α to a nearby αj ⊂ M̃ij and αj is homotopically trivial

in R1. Since M̃ij is incompressible, αj is the boundary of a minimal disk Dj ⊂ M̃ij

contained in the convex hull of αj. Note however that a subsequence of the least-area

minimal disks {Dj} converges to a least-area disk D′ ⊂ Σ with α = ∂D′ (see [22] for

this type of compactness argument). This proves Σ is incompressible.

It follows from [6] (or Theorem 2.1 in [24]) that Σ has finite total curvature (since

Σ is complete, orientable, stable and ∂Σ is compact) and hence, Σ has finite topology.

Since Σ has finite genus and ∂R1 has infinite genus we conclude that Σ 6⊂ ∂R1. The

maximum principle implies Σ∩∂R1 = ∂Σ. Since Σ has finite total curvature, its ends

are asymptotic to planes and catenoids (see [26]). Let B(r) denote the ball of radius

r centered at the origin. For large values of r, the sphere ∂B(r) intersects Σ almost

orthogonally in a finite collection of curves that are geometrically close to a fixed great

circle. In particular, for some fixed large value of r, Σ separates �

3−B(r) into a finite

number of components, exactly one of which contains the end of M ∩ ( �

3 − B(r)).

Since M has one end, M ∩ (�

3 −B(r)) has exactly one noncompact component, and

therefore the convex hull property implies that M ∩ (�

3−B(r)) is connected. Hence,

every component δ of Σ∩ ∂B(r) bounds a disk in ∂B(r) that is disjoint from M and

therefore this disk is contained in R1. But δ is homotopically nontrivial on Σ and Σ

is incompressible in R1. This contradiction proves the existence of D1.

Replacing Σ1 with Σi and repeating the above argument proves the existence of a

disk Di ⊂ Ri that is homologous to Σi in Ri rel(∂Ri− Int(Σi)). It is straightforward

to prove that the disks {Di} have the required properties, which completes the proof

of the existence of the family D. Thus, to complete the proof of Theorem 3.2, it

remains only to prove the next assertion.

Assertion 3.1 A subsequence M̃ij of the surfaces M̃i converges smoothly on com-

pact subsets of �

3 to a smooth, connected, noncompact, properly embedded, stable,

orientable, minimal surface Σ ⊂ R1 with ∂Σ = γ = ∂Σ1.

Proof of Assertion 3.1. Suppose a subsequence M̃ij converges smoothly to a prop-

erly embedded minimal surface Σ with boundary γ. Then each component of Σ is

a properly embedded stable minimal surface. If Σ is not connected, then there is a

component ∆ of Σ that is a properly embedded surface in �

3 and has empty bound-

ary. Since ∆ separates �

3, it is orientable. If ∆ is unstable, then it contains a smooth
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compact subdomain ∆̃ that is unstable. Since there are subdomains ∆̃(ij) ⊂ M̃ij

that converge smoothly to ∆̃, the lowest eigenvalue of the Jacobi operators on ∆̃(ij)

converge to the lowest eigenvalue of the Jacobi operator on ∆̃, which is negative. This

implies ∆̃(ij) is unstable for j large, which contradicts the stability of M̃ij . Therefore

∆ is stable. But a complete stable orientable surface ∆ is a plane [5, 7] and so M

lies in a halfspace. By the Halfspace Theorem [16], M must be a plane, which gives

a contradiction. This contradiction proves Σ is connected and, as we showed for ∆

above, Σ is stable. Since the boundary sphere of any ball B(r) containing γ in its

interior must intersect M̃ij for all j sufficiently large, Σ must intersect ∂B(r). This

implies that Σ is noncompact. If Σ ∩ ∂R1 6= γ, then the maximum principle implies

Σ ⊂ ∂R1 and must equal ∂R1 −M1 since Σ is noncompact. Hence Σ∪Σ1 is a properly

embedded piecewise smooth surface in �

3 and so Σ is orientable.

Thus, it suffices to prove that some subsequence M̃ij converges smoothly on com-

pact subsets of �

3 to a properly embedded minimal surface. To prove this it is

sufficient to prove that on compact balls B in �

3, the surfaces M̃i ∩ B satisfy uni-

form curvature and area bounds. Let β(i) denote the other boundary curve ∂M̃i − γ.

Replace the surfaces M̃ij by smooth subdomains Nij , where Nij is obtained from

M̃ij by removing a smooth open subdomain of points in M̃ij of intrinsic distance

approximately 1 from β(i). Our first step in proving the existence of a convergent

subsequence is to derive uniform curvature estimates for the family {Nij} in all of �

3.

Recall that Schoen [25] proved that there is a universal constant c such that the

Gaussian curvature K on M̃i satisfies

|K(p)| ≤
c

(d(p))2
,

where d(p) is the intrinsic distance of p to ∂M̃i. Thus to derive our uniform curvature

estimates it remains to prove that the Gaussian curvature of the surfaces {Ni} is

uniformly bounded on some intrinsic ε-neighborhood of γ, ε chosen independent of i.

Consider a small ε-neighborhood F (ε) of γ in R1. There exists a small ε0 such

that for all positive δ < ε0, A(δ) = ∂F (δ) − ∂R1 is an incompressible annulus in R1

with nowhere zero mean curvature vectorfield pointing into F (δ) and the area of this

annulus is at most 2πδL where L is the length of γ. (A(δ) is incompressible since γ

is homotopically nontrivial in R1.) Fix such a number ε0.

We want to prove that there is a choice of δ < ε0 such that for all i, the component

of Ni ∩ F (δ) containing γ is an annulus. As a first step, we show that we can choose

δ < ε0 so that every least-area disk D ⊂ R1 with ∂D ⊂ A(δ) must be contained

in F (δ). First suppose D ⊂ F (ε0). Then D ⊂ F (δ) by the maximum principle
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(applied to the family of surfaces A(t), δ ≤ t ≤ ε0). Suppose now that D contains

points outside of A(ε0). Then it contains some point of distance ε0 − δ from ∂D and

hence, by the monotonicity formula, D has area at least π(ε0 − δ)2. Since A(δ) is

incompressible in R1, ∂D bounds a disk in A(δ) of area less than 2πδL. Therefore, if

δ is chosen to satisfy (ε0 − δ)2 > 2δL, then D does not have least area. This proves

that D ⊂ F (ε0), after choosing δ so that (ε0 − δ)2 > 2δL, and hence D ⊂ F (δ).

Since M̃i is transverse to A(t) for almost all small t, we can choose δ so that A(δ)

is also transverse to all the M̃i. Let ∆(i) be the component of M̃i ∩ F (δ) containing

γ. Elementary three-manifold topology shows ∆(i) is an annulus if and only if it is

incompressible in F (δ), since π1(F (δ)) = � . Suppose ∆(i) is not incompressible in

F (δ). Then there exists a homotopically nontrivial simple closed curve α(i) in ∆(i)

that bounds a disk in F (δ). Since M̃i is incompressible and ∆(i) ⊂ M̃i, there exists

a disk D(i) ⊂ M̃i with boundary α(i). By our choice of δ, D(i) ⊂ F (δ). This implies

D(i) ⊂ ∆(i), which is impossible since ∆(i) is the component of M̃i∩F (δ) containing

γ. This contradiction proves there exists a δ such that ∆(i) is an annulus.

The areas of the least-area annuli ∆(i) are bounded by the sum of the areas of A(δ)

and the area of F (δ) ∩ (Σ1 ∪M), since ∂∆(i) is the boundary of an annulus on this

surface. This area bound implies that every subsequence ∆(ij) contains a subsequence

that converges smoothly in F (δ) − (γ ∪ A(δ)). (See the proof of Theorem 2 in [22]

for details on this convergence property). Hildebrandt’s boundary regularity theorem

[14] states that such a least-area limit annulus is smooth along γ. A well-known

consequence of Hildebrandt’s proof of boundary regularity is that when a sequence

{E(i)} of smooth minimal surfaces converges to a smooth minimal surface E and

a component ∂(i) of ∂E(i) converges smoothly to a component ∂ of ∂M , then the

convergence of these surfaces is smooth near ∂. Therefore, every subsequence ∆(ij)

contains a subsequence that converges smoothly in F (δ)−A(δ) and this convergence

is smooth along γ. Since every subsequence of the ∆(i) has a smoothly converging

subsequence, the curvatures of all the ∆(i) are uniformly bounded. This completes

the proof that the curvature of the family {Ni} is uniformly bounded in �

3.

Suppose F is a compact surface in �

3 satisfying

1. F has one boundary component Γ in B(r1) and the rest of its boundary com-

ponents outside of the ball B(r2) where r2 > r1.

2. The curvature of Γ is bounded by a constant C1.

3. The length of Γ is bounded by a constant C2.

4. The Gaussian curvature of F is bounded from below by a constant C3.
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Let E(t) be the area of the subdomain F (t) of F of intrinsic distance t from Γ for

t < (r2 − r1). By comparison formulas with surfaces of constant Gaussian curvature

C3, there exist constants K1, K2 that depend on C1, C2, C3 such that E(t) ≤ K1+Kt
2.

Suppose γ ⊂ B(r1). After discarding some of the surfaces Ni and reordering, we

may assume that the other boundary curves of Ni lie outside B(i). Then the above

area estimate implies that the area E(i, t) of the subdomain of intrinsic distance t

from γ satisfies E(i, t) ≤ K1 +Kt
2 for t < i− r1, where K1, K2 depend on γ and the

earlier obtained uniform curvature estimate for {Ni}.

Suppose now that the areas of the family are not uniformly bounded on some

large ball B. Since E(i, t) ≤ K1 + Kt
2, for t < i − r1, there is a point p ∈ B and a

sequence of points p(ij) ∈ Nij converging to p and such that dist(p(ij), ∂Nij) → ∞

as j →∞, where dist is the intrinsic distance. By Schoen’s curvature estimates [25],

the surfaces Nij are getting flatter and flatter in larger and larger disk regions D(ij)

centered at p(ij) as j → ∞. Hence, a subsequence of the D(ij) converges to a flat

plane P ⊂ R1 passing through p. By the Halfspace Theorem [16], M must be a plane.

This contradiction completes the proof of Assertion 3.1, which in turn completes the

proof of Theorem 3.2. 2
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4 Examples and counterexamples

We first describe three important classical examples of properly embedded minimal

surfaces with one end and infinite genus. The first example is the triply-periodic

minimal surface pictured in Image 1. It is called the Schwarz Primitive surface and

was discovered independently by Schwarz and Riemann. In Images 2 and 3 appear

two well-known examples of Scherk, one that is doubly-periodic and the other that

is one-periodic. Scherk’s doubly-periodic example is asymptotic in �

3, as x3 → +∞,

to the planes Pi = {(t, i, s) | t, s ∈ � } for i ∈ � and asymptotic, as x3 → −∞, to the

planes Qi = {(i, t, s) | t, s ∈ � } for i ∈ � . Scherk’s one-periodic surface is asymptotic,

away from the x2-axis, to the union of two orthogonal planes containing the x2-axis.

Image 1: Schwarz’s Primitive Surface
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Image 2: Scherk’s Doubly Periodic Surface

Image 3: Scherk’s Singly Periodic Surface
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Let k ⊆ S3 be the Artin-Fox curve. Let k′ ⊂ �

3 be the curve obtained by removing

the wild point of the Artin-Fox curve from k and S3. Let F be the boundary of a

regular neighborhood of k′. The closure of the component of the complement of

F that corresponds to the exterior of the regular neighborhood is a fake halfspace.

Choose an infinite family of disks in F that form a proper family. Replace each disk

by an unknotted handle. The resulting surface F ′, pictured below, is not a Heegaard

surface. In this case it is possible to construct a nonproper standardizing sequence of

disks for the wild side of F , where the boundary curves of the disks are proper.

Figure 5:

An open handlebody is a three-manifold without boundary that is homeomorphic

to an open regular neighborhood of some one-complex that is properly embedded in

�

3. In [18] it is proved that if F ⊆ �

3 is a properly embedded surface in �

3 and there

exists p ∈ �

3 such that the distance from p on F induces a Morse function having

only index one and index zero critical points, then the connected components of the

complement of F in �

3 are open handlebodies. This argument can be strengthened

to show that if W is the closure of a component of the complement of F , then W

can be embedded into a handlebody H so that the complement of the image of W

in H is a closed subset of the boundary of H. However, this is not enough to prove

that W is a handlebody. In the following figure we show a one-complex X embedded

in �

3. Let F be the boundary of a regular neighborhood of X. Let W denote the

closure of the component of the complement of F corresponding to the exterior of the

regular neighborhood. Notice that if F was constructed carefully, then the distance

from the point p induces a Morse function on F with exactly two index zero critical
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points and no index two critical points. However, W is not a handlebody. In this

case, πi(F )→ π1(W ) is injective (and surjective).

Figure 6:

23



References

[1] M. Boileau and J. P. Otal. Sur les scindements de Heegaard du tore �

3. 1990.

[2] F. Bonahon and J. P. Otal. Scindements de Heegaard des espaces Lenticulares.
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