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1 Introduction

In 1956 Shiffman [14] proved that every minimally immersed annulus in �

3

bounded by convex curves in parallel planes is embedded. He proved this

theorem by showing that the minimal annulus was foliated by convex curves

in parallel planes. We are able to prove a related embeddedness theorem for

extremal convex planar curves. Recall that a subset of �

3 is extremal if it is

contained on the boundary of its convex hull. We will call a pair of convex

curves extremal if their union is extremal.

Theorem 1.1 Suppose Γ is an extremal pair of disjoint smooth convex pla-

nar curves in �

3. If f :A → �

3 is a branched minimally immersed annulus
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with boundary Γ, then f is an embedding.

We shall call a compact minimal surface M stable if, with respect to any

nontrivial normal variation fixing the boundary, the second derivative of area

is positive. If the second derivative of area is negative for some variation,

then M is called unstable. If M is neither stable nor unstable, we will call it

almost-stable.

The main theorem of Meeks-White in [10] gives a precise description of

the collection of minimal annuli bounded by a pair of convex curves in parallel

planes, in terms of the index of the Jacobi operator (stability operator) of

the minimal annulus. The next theorem gives a complete generalization of

this theorem to the case of an extremal pair of convex planar curves.

Theorem 1.2 If Γ is an extremal pair of smooth disjoint convex curves in

distinct planes, then exactly one of the following holds:

1. Γ is not the boundary of any connected compact minimal surface, with

or without branch points.

2. Γ is the boundary of exactly one minimal annulus and this annulus

is almost-stable. In this case, Γ bounds no other connected branched

minimal surfaces.

3. Γ is the boundary of exactly two minimal annuli, one stable and one

unstable.

In Statement 3. of Theorem 1.2, we do not know (even for boundary

curves in parallel planes) whether it is possible for Γ to bound other minimal

surfaces of higher genus; we believe that such higher genus examples do not

exist. The extremal hypothesis in the above theorem is necessary, since we

will construct an example of two unlinked convex planar curves that are the

boundary of at least two stable minimal annuli (see Section 4).

2



The next theorem demonstrates the existence of an immersed minimal

annulus A with extremal disjoint planar boundary curves and such that A is

not embedded. This example is constructed in Section 5.

Theorem 1.3 For every ε > 0 there exists a smooth stable minimally im-

mersed annulus fε:A→ �

3 such that:

1. fε|∂A is one-to-one and the image boundary curves are a pair of Jordan

curves in parallel planes;

2. fε is not one-to-one;

3. the total curvature of each component of fε(∂A) is less than 4π + ε;

4. fε(A) is invariant under reflection in the middle plane that separates

the components of fε(∂A) and in a plane orthogonal to the middle plane.

In light of Theorems 1.1 and 1.3 it is natural to ask:

Question 1.1 Suppose Γ is a pair of simple closed curves on parallel planes,

each component of which has total curvature less than 4π. Is every minimally

immersed annulus with boundary Γ embedded?

It follows easily from Theorem 1.3 and the maximum principle that the

space S̃ of smooth immersed minimal annuli with embedded pairwise disjoint

extremal planar boundary curves is not a path connected space. However,

in Section 6 we are able to prove:

Theorem 1.4 If S ⊂ S̃ is the subspace of embedded minimal annuli, then S

is path connected.

The above theorem is a simple consequence of the more general result,

Theorem 6.1, that the spaceM of embedded minimal annuli whose boundary

curves are contained in distinct horizontal planes is a contractible space.

The results in this paper were announced in [9].
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2 The proof of Theorem 1.1

We begin by fixing some notation. In this section we will consider branched

minimal immersions f :A → �

3 of an annulus A such that f(∂A) = Γ =

{γ1, γ2} is an extremal pair of disjoint convex curves in distinct non-parallel

planes. Without loss of generality we may assume that γ1 ⊂ H = {(x1, x2, 0) |
x1 ≥ 0} and γ2 ⊂ H(θ) where H(θ) is obtained by rotating H around the

x2-axis by an angle θ, 0 < θ < π, and H(θ) is a nonnegative graph over its

projection on the (x1, x2)-plane. Let W (θ) be the convex wedge with bound-

ary H ∪H(θ) and we will consider f :A→ �

3 to have W (θ) as its range; i.e.,

f :A→ W (θ).

Definition 2.1 A branched minimal immersion f :A → W (θ) is called ex-

tremal if f(∂A) = Γ = {γ1, γ2} consists of two smooth disjoint simple closed

curves with f(γ1) ⊂ H and f(γ2) ⊂ H(θ).

Our first result is

Lemma 2.1 If f :A → W (θ) is an extremal branched minimal immersion,

then f is an immersion. Furthermore f(A) intersects H(η) transversally in

a single immersed closed curve for 0 ≤ η ≤ θ.

Proof. Since ∂W (θ) is convex, f |∂A is an immersion and hence f is an im-

mersion near ∂A (see Theorem 2 in [12]). Since f(Int(A)) ⊂ Int(W (θ)) by

the convex hull property, we may assume, after possibly replacing A by its

image in a slightly smaller subwedge of W (θ), that A is disjoint from the line

H ∩H(θ). If p ∈ A is a branch point, then p ∈ H(τ) for some τ ∈ (0, θ). In

this case ∆ = f−1(H(τ) is a compact singular one-dimensional analytic sub-

set of Int(A). But such a subset separates A into at least three components,

one whose boundary is disjoint from ∂A. Since the boundary of this compo-

nent under composition with f is contained in the plane H(τ), the maximum

principle implies the component is contained in H(τ), a contradiction. This
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contradiction proves the first statement in the lemma. The second statement

in the lemma follows from a similar argument. 2

Lemma 2.2 Suppose f :A→ W (θ) is an extremal minimal immersion of A.

If the components of f(∂A) are strictly convex, then the Gauss map g:A→ S2

is one-to-one. If f(∂A) is convex, then g: Int(A)→ S2 is one-to-one.

Proof. We will identify S2 with � ∪ {∞} under stereographic projection.

Let S be a slab in �

3 with boundary planes parallel to the (x1, x2)-plane. In

the case h:E → S is a minimal immersion of an annulus E and h(∂E) are

convex curves in the boundary planes ∂S, it was proved in [10] that the Gauss

map g: Int(E) → � ∪ {∞} is one-to-one and g:E → S2 is one-to-one when

h(∂E) is strictly convex. We wish to generalize this result to the following.

Assertion 2.1 Suppose E in S is an immersed annulus of nonpositive Gaus-

sian curvature with smooth embedded boundary curves in ∂S and such that

the Gauss map g:E → � ∪ {∞} is a branched covering map. If ∂E is a

pair of strictly convex curves, then g is one-to-one. If ∂E is a pair of convex

curves, then g| Int(E) is one-to-one.

Proof. The Annulus Lemma in [8] shows that every plane P between the

boundary planes of S intersects E transversely in a single immersed curve.

In particular g:E → � ∪ {∞} avoids the values 0,∞. First consider the

case when ∂E = ∂1 ∪ ∂2 is a pair of strictly convex curves. In this case

∂1, as well as ∂2, can be naturally parametrized by θ ∈ S1 by considering

∂1 to be parametrized by its outward pointing unit normal vector in ∂S.

With this orientation of E, g has the property that arg(g(∂1(θ))) = θ and so

g restricted to each boundary component of ∂E yields an embedded curve

in � − {0} that has nonzero winding number. Since g| Int(E) is an open

mapping, elementary convering space theory implies g is one-to-one. If ∂E is

a pair of convex curves, then a simple perturbation argument of the strictly

convex case proves g| Int(E) is one-to-one. 2
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Suppose for the moment that f :A → W (θ) does not intersect the line

H∩H(θ) and that the curves in f(∂A) are uniformly convex. Let Pt, 0 ≤ t <

1, be a continuous path of projective transformation taking W (θ) to convex

wedges in �

3 and such that the Pt converge to a projective transformation

P1 that takes W (θ) − (H ∩H(θ)) to a slab S. Here P0 is the identity map.

Since P1 ◦ f :A → S satisfies the hypotheses of the annulus in the previous

paragraph, the Gauss map g1 of P1 ◦ f is one-to-one on Int(A) and one-to-

one on A. Let gt be the Gauss map of Pt ◦ f . Since gt| Int(A) is an open

mapping and g1|∂A is a one-to-one immersion, it is clear that there cannot

be a largest t such that gt is not one-to-one. Thus g0 is one-to-one.

If f(∂A) ∩H ∩H(θ) 6= ∅ or the curves in f(∂A) are not uniformly con-

vex, a perturbation argument shows the similar statements hold for f . This

completes the proof of the lemma. 2

Corollary 2.1 An extremal minimal immersion f :A → W (θ) with convex

boundary curves has index 0 or 1. Furthermore, if the annulus has index 1,

then it does not have a Jacobi vectorfield.

Proof. By Lemma 2.2 the Gauss map g: Int(A)→ S2 is one-to-one. A well-

known theorem of Schwarz states that an eigenfunction (with zero boundary

values) of the stability (or Jacobi) operator J of a compact orientable minimal

surfaceM can be identified with an eigenfunction of ∆+2 on S2 for g(IntM),

when g is one-to-one on Int(M) (see [2] for a generalized version of Schwarz’s

theorem). Since the number of linearly independent eigenfunctions of ∆ + 2

with eigenvalue less than or equal to zero is at most 1 on a proper subdomain

of S2, J can have at most one eigenfunction with eigenvalue less than or equal

to zero. 2

Remark 2.1 Actually Corollary 2.1 holds for minimal annuli bounded by

convex planar curves not necessarily extremal. See Remark 2.2 in [10].
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Proposition 2.1 Let Γt be a one-parameter family of convex curves in H ∪
H(θ) such that

1. Γ0 bounds an almost-stable extremal minimal annulus A;

2. The initial velocity vectorfield of Γt at t = 0 is a outward pointing

normal vectorfield that is not identically zero.

Then there is an ε > 0 such that for t ∈ (−ε, 0), Γt bounds no minimal

annulus near A and for t ∈ (0, ε), Γt bounds exactly two annuli, one stable

and one unstable, near A. Furthermore, given an almost-stable extremal

annulus A with convex boundary, then there exists such a one-parameter

family Γt.

Proof. Let ν be the unit normal vectorfield on A that is outward pointing

along ∂A. By Corollary 2.1, A has nullity 1 and index 0, so it has a Jacobi

field u(x)ν(x) with u|∂A = 0 and u > 0 on Int(A). For x ∈ ∂A, let

v(x) = (∇T (x)u(x))ν(x) ,

where T (x) is a unit vector perpendicular to ∂A pointing into A. By the

boundary maximum principle, v(x) is a strictly positive multiple of ν(x) for

all x ∈ ∂A.

Now let w be the initial velocity vectorfield for Γt at t = 0. Note that

w(x) · v(x) ≥ 0 everywhere and not identically 0. Thus
∫

∂A
w(x) · v(x) > 0 .

This is precisely the transversality condition in [16] that guarantees that

U = {minimal Ã | ∂Ã = Γt for some t near 0} is a smooth curve.

(In more detail, transversality means ([16], Theorem 3.3 (2,3)) that w does

not extend to a Jacobi field on A. But if we extend w to be a vectorfield on

A, then by Green’s formula ([16], 1.4(2)),

∫

A
Jw · u =

∫

A
w · Ju+

∫

∂A

(
w · ∂u

∂n
− ∂w

∂n
· u
)
=
∫

∂A
w · v > 0 ,
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where J is the Jacobi operator. Thus Jw 6= 0.)

Let {fs:A → W (θ) | −δ < s < δ} be a smooth parametrization of U

with f0(A) = A. Now ∂
∂s

∣∣∣
s=0

fs = Z(x) is a Jacobi vectorfield on A. Let

z(x) = Z(x) · ν(x). Since fs is a smooth parametrization of U, z(x) is not

identically zero. Note that since the {Γt} are nested, z|∂A does not change

sign. Since no proper subdomain of A has zero as a smallest eigenvalue of

J , z does not change sign. The same eigenvalue argument shows that for all

t, tz(x) + u(x) does not change sign in A, which implies

z(x) = c u(x).

Without loss of generality we may assume that c = 1.

Let

ϕs(x) = x+ sZ(x) .

Let G[fs] and G[ϕs] denote the Gauss maps of fs and ϕs, respectively. Note

that for a fixed x ∈ ∂A, d
ds
G[ϕs](x) is a tangent vector to S

2 at G[f0(x)] that

points into G[f0(A)]. Then the same is true of d
ds
G[fs(x)], since

d
ds
|s=0fs =

d
ds
|s=0 ϕs. Thus for small positive s,

G[fs](A)
⊂
6=G[f0](A)

⊂
6=G[f−s](A) .

In particular, the first eigenvalue of ∆+2 for the domain G[fs](A) is positive

and the first eigenvalue of G[f−s](A) is negative. Since by Lemma 2.2 and

Schwarz’s theorem we can identify the stability operator of fs(A) with ∆+2

on G[fs](A) ⊂ S2, fs(A) is stable and f−s(A) is unstable.

Note that since the {Γt} are nested,
(
∂

∂s
fs

)
·G[fs](2.1)

does not change sign on ∂A. Hence for s > 0, the stability of Fs(A) implies

that (2.1) does not change sign. The maximum principle then implies that

(2.1) is strictly positive on the interior of A. Thus, the surfaces {fs(A) | s >
0} locally foliate a one-sided neighborhood of A.
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Since ∂
∂s

∣∣∣
s=0

fs · ν = u > 0, these surface lie on the outside of A. Since

the index of fs(A) changes by 1 at s = 0, the projection of the curve {fs(A) |
−δ < s < δ} to {Γt | −ε < t < ε} folds at s = 0 according to section 5.3 of

[16]. Hence the fs(∂A) and f−s(∂A) lie on the same side of ∂A, namely the

outside. This proves the first statement of the proposition.

(If it is not clear that the arguments in the preceding two paragraphs hold

for immersions, one can reduce to the case of embedded annuli as follows.

Since f0:A → W (θ) is an immersion, choose a δ > 0 and a submersion

Π:A× [−δ, δ]→ W (θ) so that Π(∂A× [−δ, δ]) ⊂ ∂W (θ) and f0 = Π◦ i where
i(a) = (a, 0). Consider A × [−δ, δ] to be a flat three-manifold in the metric

pulled back by Π. Note that for small s, fs lifts to an isometric minimal

embedding f̃s:A → A × [−δ, δ]. By applying this lifting technique, we may

reduce the proof to the case where f0 is an embedding.)

We now justify the last assertion in the statement of the proposition.

Deform ∂A along an outward pointing vectorfield that vanishes except on a

uniformly convex arc of ∂A that is disjoint from the line H ∩H(θ). Such a

deformation Γt works. 2

Proof of Theorem 1.1. Let M denote the space of minimally immersed

annuli whose boundary curves are contained in planes and let p:M→ C be

the natural projection where C is the associated space of boundary curves.

Note that an extremal f :A → W (θ) with convex boundary curves can be

thought of as having its image in M. Since such an annulus is unbranched

(Lemma 2.1) and has total curvature less than 4π in absolute value, the

compactness theorems of Anderson [1] or White [15] imply that if I is a

compact collection of pairs of convex curves in C that are the boundary

curves of extremal minimal immersions, then p−1(I) is compact.

Suppose that there exists an f :A → W (θ) that is an extremal minimal

immersion with convex boundary curves and f is not one-to-one. We assert:

we can choose f so that f(∂A) ∩ H ∩ H(θ) = ∅, f(∂A) are strictly convex

curves, and f(∂A) = {γ1, γ2} is a regular value of p:M→ C.
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By Proposition 2.1 we can perturb f to a nonembedded example f1:A→
W (θ) where F1(∂A) is a regular value of p:M → C. Since f1 is a regular

point of p, it can be moved slightly to another nonembedded minimal annulus,

f2:A→ W (θ), such that f2(∂A) ∩H ∩H(θ) = ∅, f2(∂A) are strictly convex

curves and f2(∂A) is a regular value of p. Replacing f with f2, we have

proved our assertion. Assume now that f satisfies the assertion.

Let α: [0, 1] → C be a path that is in general position with respect to p

and such that

1. α(0) = f(∂A);

2. {α(t)∩H} is a foliation of an annulus E on H by strictly convex curves

and with inner curve α(0) ∩H;

3. {α(t) ∩ H(θ)} is a foliation of an annulus E(θ) on H(θ) by strictly

convex curves and with inner curve α(0) ∩H(θ);

4. α(t) = (∂E ∪ ∂E(θ))− α(0) is a pair of round circles that is invariant

under reflection in the halfplane H(θ/2).

The existence of an α satisfying properties 1–4 is clear. Theorem 2 in [13]

implies that any compact minimal surface with boundary α(1) must be em-

bedded, and invariant under reflection in H(θ/2). So we must also have:

5. Every minimal annulus in p−1(α(1)) is embedded.

Since α is in general position with respect to p, W = p−1(α[0, 1]) is a

smooth compact one-dimensional submanifold of M. The maximum princi-

ple implies that every component of T consists entirely of embedded or of

nonembedded examples. Consider the component T (f) of T that contains f

in its boundary. Since the other boundary point f̃ of T (f) corresponds to

a nonembedded minimal annulus, the boundary of f̃ is also α(0). Thus by

viewing T (f) as a multivalued function over α[0, 1], we see that T (f) has an

odd number of folds.
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In the interval T (f) consider the closest point f ′ to f where T (f) folds a

first time. Suppose p(f ′) = α(t0). Since α(t) is an outward variation of α(t0)

near t0, Proposition 2.1 implies that T (f) cannot fold over at α(t0). This

contradiction proves that f must be embedded. 2

3 The proof of Theorem 1.2

Lemma 3.1 Suppose ∆ = {α, β} is a pair of smooth pairwise-disjoint simple

closed curves with α ⊂ H and β ⊂ H(θ). Let Dα and Dβ be the compact pla-

nar disks with ∂Dα = α and ∂Dβ = β. Suppose that there exists a connected

branched minimal surface Σ whose boundary is contained in D = Dα ∪Dβ.

Under these hypotheses there exists a unique embedded minimal annulus A
with ∂A = ∆ and such that the following statements hold:

1. Let B be the compact region of �

3 with boundary A ∪ D. Then every

compact branched minimal surface M with ∂M ⊂ D is contained in B.

2. IfM is a compact branched minimal surface with ∂M ⊂ D and Int(M)∩
∂B 6= ∅, then M = A.

3. A is stable or almost-stable.

Proof. A slight variation of this lemma appears as Lemma 2.1 in [10] so we

will only briefly sketch its proof here and refer the reader to our other paper

for further details.

First note that α and β are homotopic in the complement of Σ in W (θ).

By the Geometric Dehn Lemma [11] [12], α and β bound a least-area em-

bedded annulus in the closure of the unbounded component of W (θ) − Σ.

Since the set of embedded minimal annuli with boundary α ∪ β is compact,

there exists a minimal annulus A such that the volume of the ball B with

boundary A∪D is largest. If there exists a compact minimal surfaceM with

∂M ⊂ D and M is not contained in B, then using M ∪ A as a barrier one
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obtains a least-area embedded minimal annulus A with ∂A = ∆ and A lies

outside M ∪ A. In this case the ball bounded by A ∪ D has volume greater

than B, a contradiction.

Part 2 follows from the maximum principle. Part 3 follows since A must

have least-area outside itself, otherwise using A as a barrier one could con-

struct a smaller area surface in W (θ) − B. This completes the proof of

the lemma up to proving uniqueness of A. Uniqueness of A follows from

statements 1 and 2 in the lemma. 2

Proof of Theorem 1.2. Suppose f :A → W (θ) is an extremal minimal

immersion with convex boundary. By Theorem 1.1 f is one-to-one and we

will identify A with its image in W (θ).

Assertion 3.1 Suppose A is the unique minimal annulus with boundary ∂A.

Then A is almost-stable and A is the unique compact branched minimal sur-

face with boundary ∂A.

Proof of Assertion 3.1. If ∂A is a regular value of p:M → C, then ∂A

bounds an even number of minimal annuli; in fact, the number of odd index

minimal annuli with boundary ∂A equals the number of minimal annuli of

even index (see Theorem 2.1 in [17]). Hence A must have a nonzero Jacobi

vectorfield. But, by Lemma 3.1, A = A and so A is almost-stable.

Suppose ∂A is the boundary of some other compact connected branched

minimal surfaceM . By Lemma 3.1M is contained in the ball B with bound-

ary A∪D. For small ε > 0 let A(ε) denote the subannulus of A obtained by

intersecting A with the wedge with boundary halfplanes H(ε) and H(θ− ε).

Note that A(ε) is stable. The proof of Theorem 1.2 in [4] generalizes to

our situation to show that for ε > 0, ∂A(ε) is also the boundary of an

unstable or almost-stable minimal annulus Ã(ε) such that Ã(ε) ∩M 6= ∅.
However, by uniqueness of A, the Ã(ε) converge smoothly to A as ε → 0.

Since M is inside A and M is never tangent to A along ∂A (by the bound-

ary maximum principle), the smooth convergence of Ã(ε) to A implies that
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there is a small compact neighborhood N(∂M) ⊂ M of ∂M such that for

ε close to zero, Ã(ε) ∩ N(∂M) = ∅. It follows that there exists a sequence

ε(i) → 0 and a sequence of points pi ∈ Ã(ε(i)) ∩ (M − N(∂M)) such that

pi → p ∈ A ∩ (M −N(∂M). Since A ∩M = ∂A, p must be contained in

H or H(θ). But p ∈ M −N(∂M), which is disjoint from H ∪ H(θ). This

contradiction proves the assertion. 2

Suppose ∂A is not a regular value of p:M→ C and A is not the unique

minimal annulus with boundary ∂A. Note that A = A, defined in Lemma 3.1,

or else A 6= A and in either case it follows that there is a minimal annulus

Ã with Ã ∩ A = ∂A. Without loss of generality we may assume that A is

almost-stable. We now show that Ã is a regular value for p, which just means

by Corollary 2.1 that Ã is not almost-stable. Let B be the piecewise-smooth

ball in �

3 bounded by A together with the two planar disks bounded by ∂A;

similarily define the ball B̃ for Ã. Assume that A and Ã are oriented by

the outward pointing normal to B and B̃, respectively. Let gA, gÃ denote

the corresponding Gauss maps. First consider the case when B ⊂ B̃. Since

gA| Int(A) and gÃ| Int(Ã) are diffeomorphisms with their respective images in

S2 (Lemma 2.2) and Ã lies outside of A along ∂A = ∂Ã, a simple pointwise

geometric comparison of gA|∂A and g
Ã
|∂A yields g

Ã
(Int(Ã))⊂6=gA(Int(A)).

Since the first eigenvalue of the Jacobi operator of A is zero, Schwarz’s the-

orem (see the proof of Corollary 2.1) implies that the first eigenvalue of the

Jacobi operator of Ã is positive. Under the hypothesis B̃ ⊂ B, the previ-

ous argument shows gA(Int(A))
⊂
6=gÃ(Int(Ã)) and so, in this case, the first

eigenvalue of the Jacobi operator of Ã is negative. Thus whether B ⊂ B̃ or

B̃ ⊂ B, Ã is not almost-stable; hence Ã is a regular of p.

By Proposition 2.1 we can move ∂A outward to a regular value Γ̂ of p so

that A splits into a pair of close minimal annuli A1, A2. Since Ã is a regular

point of p, we can also assume that Ã moves to a close annulus A3. Hence, if

Theorem 1.2 were to fail for Γ not a regular value of p, then it fails for some

Γ a regular value of p.
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Assertion 3.1 and the discussion in the previous two paragraphs show that

we need only prove the theorem in the special case where ∂A is a regular value

of p. In this case ∂A is the boundary of an even number of minimal annuli,

half of which are stable and half of which are unstable. It remains to prove

that ∂A is the boundary of exactly two minimal annuli, or equivalently stated,

∂A is the boundary of exactly one stable minimal annulus. Suppose ∂A is

the boundary of at least two stable minimal annuli A1, A2. By Lemma 3.1,

we may choose A1 to be A and so we may assume that Int(A1)∩Int(A2) = ∅
and A2 lies inside A1.

Since A1 andA2 are minimal, the compact regionR with boundary A1∪A2
is a solid torus. Note that R∩H(θ/2) is the unique minimal annulus in R with

the given boundary. It follows from this observation that the parity of the

number of odd index minimal annuli in R with boundary ∂A1 is different from

the parity of the number of even index minimal annuli in R with boundary

∂A1 (for a proof see Lemma 3 in [5]). In particular ∂A1 is the boundary of

an unstable minimal annulus A3 in R. However, since A3 lies outside A2, the

Gaussian image g(Int(A3))
⊂
6= g(Int(A2)). This proper inclusion contradicts

the fact that the first eigenvalue of ∆ + 2 of g(Int(A3)) is smaller than the

first eigenvalue of ∆ + 2 for g(Int(A2)). This contradiction completes the

proof of Theorem 1.2. 2

The following theorem is a simple consequence of Theorem 1.2.

Theorem 3.1 Suppose Γ is an extremal pair of smooth disjoint convex pla-

nar curves. Suppose A is a minimal annulus in �

3 with ∂A = Γ. Then every

symmetry of Γ extends to a symmetry of A.

Proof. Let S: �

3 → �

3 be a symmetry of Γ. Then S(A) is another minimal

annulus with boundary Γ and S(A) has the same index as A. Theorem 1.2

implies there is at most one minimal annulus with boundary Γ of a fixed

index and so S(A) = A. 2
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4 Minimal annuli bounded by a nonextremal

pair of convex planar curves

In this section we will demonstrate by the construction of examples that

Theorem 1.2 can not be generalized to the case of convex planar curves

whose union is not extremal, even in the case of circles.

Consider the circle α in the (x1, x2)-plane of radius two and centered

at the origin. For θ between 0 and π let β(θ) be the circle of radius one

centered at the origin in the (x1, x2)-plane that has been rotated clockwise

around the positive x2-axis by the angle θ. Let α+ denote the portion of

α with nonnegative x1-coordinate and let α− = α− α+. Let β+(θ) be the

portion of β(θ) with postive x3-coordinate and β−(θ) be β(θ)− β+(θ). Let

δ = {(0, t, 0) | 1 ≤ |t| ≤ 2}, γ1(θ) = δ∪α+∪β+(θ) and γ2(θ) = δ∪α−∪β+(θ).
Since γ1(θ) and γ2(θ) are each extremal, they bound, by the Geometric

Dehn Lemma [11], least-area disksD1(θ), D2(θ), respectively. Let D̃1(θ), D̃2(θ)

denote the disks obtained by rotating D1(θ), D2(θ) by π radians around the

x2-axis. Then A1(θ) = D1(θ) ∪ D̃1(θ) and A2(θ) = D2(θ) ∪ D̃2(θ) are dis-

tinct minimal annuli with boundary α ∪ β(θ). Note that A1(π/2) can be

obtained from A2(π/2) by reflection in the (x1, x2)-plane. Hence A1(π/2)

and A2(π/2) have the same index, which shows that Theorem 1.2 can not

hold for α∪β(π/2). Actually A1(π/2) and A2(π/2) are stable and we believe

A1(θ) and A2(θ) are stable for each θ, 0 < θ < π.

One can, in a similar manner, construct two stable embedded minimal

annuli with boundary two linked circles in orthogonal planes since orthogonal

reflection in these planes fails to leave any minimal annulus bounding the

circles invariant.
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5 Nonembedded minimal annuli bounded by

Jordan curves in parallel planes

A frequently asked question in the classical theory of minimal surfaces is: Is

every minimal annulus with boundary consisting of a pair of Jordan curves

in parallel planes embedded? We will show that the answer to this question is

no by constructing a family of counter-examples. This constriction will also

prove Theorem 1.3. The discussion of our new examples will be facilitated

by the following definition.

Definition 5.1 For a fixed ε > 0, a smooth simple closed curve in the

(x1, x2)-plane is called an ε-bone-shaped curve if it satisfies the following:

1. γ is invariant under reflection in the x1-axis and the x2-axis;

2. γ − (x1-axis) consists of two components γ+, γ−, each of which is a

graph over their projection onto the x1-axis and these graphs each have

two inflexion points;

3. The maximum curvature of γ is less than ε;

4. The total curvature of γ is less than 2π + ε;

5. The graph γ+ is the graph of the constant function ε for |x1| ≤ 1/ε and

obtains a height of at least 10 somewhere outside this interval.

Proof of Theorem 1.4. For any ε > 0, the existence of an ε-bone-shaped

curve is clear. Choose an ε < 1
100

and let γ be an ε/2-bone-shaped curve.

Let α = γ + (0, 0, 1) and β = γ − (0, 0, 1) be vertical translates of γ to the

horizontal planes P (1) and P (−1) of heights ±1, respectively. Let Dα, Dβ

denote the corresponding planar disks with boundary curves α, β. Since

α ∪ β bounds some minimal annulus for ε/2 < 1
100

, it is the boundary of an

“outermost” minimal annulus A such that the compact ball B with boundary

16
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r x1

x2

Figure 1: An ε-bone-shaped curve.

A ∪ Dα ∪ Dβ contains all compact minimal surfaces in �

3 whose boundary

curve are contained in Dα ∪Dβ. (See Lemma 3.1 for the existence of A.)
By using catenoid barriers it is easy to check that the part of A that lies

outside the infinite vertical cylinder over γ must stay a distance less than
1
10

from this cylinder. It follows that the compact stable catenoid with axis

parallel to the x3-axis and with circle boundaries of radius one and with

x2-coordinates ± 1
4
must intersect B in an annular component T .

Since ε < 1
100

, there exists compact stable catenoids C1, C2 and C3 satis-

fying

1. ∂Ci are circles of radius two and ∂Ci ⊂ Int(Dα ∪Dβ);

2. C1 has x1-coordinate less than−1/ε and is symmetric about the (x1, x3)-

plane;

3. C2 has x1-coordinate greater than 1/ε and has positive x2-coordinate;

4. C3 is the image under reflection in the (x1, x3)-plane of C2.

Note that since A is outermost, Ci ⊂ B and Ci ∩ ∂B = ∂Ci.

We are now ready to describe the new example. First we define its bound-

ary curves. Consider a curve as in Figure 2 having total curvature at most

17



4π + ε. Note that this curve partially coincides with the ε/2-bone-shaped

curve γ and is invariant under reflection in the x1-axis. Let δ and σ denote

the vertical translates of this curve to Dα and Dβ and let Γ = {δ, σ}. We

wish to construct a stable non-embedded minimal annulus A with ∂A = Γ

such that A is invariant under reflection in the (x1, x2) and (x1, x3)-planes.

-

6

r x1¹¸
º· ¹¸

º·

¹¸
º·

x2

∂C1

∂C2

∂C3

Figure 2: The projection of δ ∪ σ, ∂C1, ∂C2, ∂C3 on the (x1, x2)-plane

LetW denote the closure of the component of B−(C2∪C3) that contains
A. The fundamental group π1(W ) is generated by one each of the boundary

curves of C2 and C3. Consider the representation π1(W ) → � 2 obtained by

sending each of these generators to the generator of � 2. Let p: W̃ → W

denote the 2-sheeted cover of W corresponding to this representation. Let Y

denote the subdomain of W with negative x1-coordinates. Since Y is a ball

topologically, p−1(Y ) consists of two ball components Y1, Y2. Let δ̃ denote

the lift of δ to W̃ such that the arc p(δ̃ ∩ Y1) lies outside the arc p(δ̃ ∩ Y2) in
Y (i.e. the minimum value of the x1-coordinate of p(δ̃ ∩ Y1) is less than the

minimum value on p(δ̃ ∩ Y2)). Similarily choose the lift σ̃ of σ.

Let T̃ denote the lift of T to W̃ such that T̃ ∩ Y1 6= ∅ and let C̃1 denote

the lift of C1 to W̃ and such that C̃1 ⊂ Y2. Let Ŵ denote the closure of the

component of W̃ − (T̃ ∪ C̃1) that contains δ̃ ∪ σ̃. Since ∂Ŵ is a good barrier

for solving least-area problems (i.e. ∂Ŵ has nonnegative mean curvature

18



and interior angles less than π) and since δ̃ is homotopic to σ̃ in Ŵ but not

homotopically trivial, the Geometric Dehn Lemma [11] [12] states that δ̃ ∪ σ̃
is the boundary of an embedded least-area incompressible annulus Ã in Ŵ .

Since Ã is incompressible and Y1 is simply connected, Ã ∩ Y2 consists of
two disks whose projections into W are disjoint from T . Similarly Ã ∩ Y1

consists of a strip with part of its boundary in δ̃ and part in σ̃. It follows

from this description of Ã that the projection A = p(Ã) is not embedded.

It remains only to prove that A is invariant under reflection R1 in the

(x1, x2)-plane and reflection R2 in the (x1, x3)-plane. Note that R1 and R2

lift to reflectional symmetries R̃1, R̃2 of W̃ , whose fixed point sets intersect Ã

in nonempty subsets. Since Ã is incompressible, the version of the Geometric

Dehn’s Lemma for planar domains in [11] shows that the least-area annulus

R̃i(Ã) must equal the least-area annulus Ã. This invariance property of Ã

implies A is invariant under R1 and R2. 2

6 The topology of the space of embedded min-

imal annuli

The main theorem of this section is the following:

Theorem 6.1 The space M of compact embedded minimal annuli whose

boundary curves are contained in distinct horizontal planes is contractible.

In particular, M is a path connected space.

The idea of the proof is the following. In general, stable minimal surfaces

depend smoothly on their boundaries, so that arbitrary small deformations

of the boundary of a stable minimal surface extend to deformations of the

surface (preserving minimality). Indeed, a one-parameter family of defor-

mations of the boundary extends to a family of deformations of the surface

until the surface ceases to be stable. In our case, we first intersect an initial
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annulus by thinner and thinner slabs until we get a ribbon-like minimal sur-

face. This ribbon-like surface is so stable that we can deform its boundary

curves to circles with the same axis without it becoming unstable. But then

we must have deformed the surface itself to a catenoid. This shows that

any annulus is M can be deformed into a catenoid. Likewise any compact

family of annuli inM can be deformed until they are all the same catenoid.

ThusM is contractible. To make the argument precise we use the following

lemma:

Lemma 6.1 Let Pt be the plane {(x, y, z) ∈ �

3 | z = t}. Let C be a compact

set of C2,α embedded curves in P0 (with uniformly bounded C2,α norms), and

let Λ > 0. There is an ε > 0 such that if

h ∈ (0, ε)

γ ∈ C
γ′ ⊂ Ph, ‖ γ′ ‖2,α≤ Λ, ‖ γ ′ − γ ‖0≤ Λh ,

then no unstable or almost-stable minimal annulus with boundary γ ∪ γ ′ lies
in an ε-neighborhood of γ.

Proof. Let Ur(γ) denote the r-neighborhood of (the image of) γ. Choose

r > 0 such that for each γ ∈ C and h ∈ (0, r), Uh(γ) is a regular tubu-

lar neighborhood with mean convex boundary (i.e., the mean curvature of

∂Uh(γ) is everywhere nonzero and points into Uh(γ)).

Suppose the lemma is false. Then there are sequences hi → 0, γi, and

γ′i as in the statement of the lemma and non-stable minimal annuli Ai ⊂
Ur(γi) with ∂Ai = γi ∪ γ′i. Let ρi be the smallest positive number such that

Ai ⊂ Uρi
(γi). By the mean convexity and the maximum principle, ∂Uρi

(γi)

touches Ai only at boundary points of Ai. In particular, it touches γ ′i. Thus

ρi ≤ hi
√
1 + Λ2, so

Ai ⊂ Uhi

√
1+Λ2(γi)(6.1)
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Also note by the Gauss-Bonnet theorem that the total curvatures of the Ai

are uniformly bounded.

Let pi ∈ Ai be the point where the Gaussian curvature Ki(pi) = KAi
(pi)

is greatest in absolute value. We claim that |Ki(pi)|1/2 = o(1/hi). For if not,

we would have (after passing to a subsequence)

|Ki(pi)|1/2hi ≥ δ

for some δ > 0. Now translate Ai by −pi and dilate by |Ki(pi)|−1/2 to get

a new A′i. Note that the distance between boundary components of A′i is

≥ δ. Also the absolute value of the curvature of A′i is everywhere ≤ 1 and

is equal to 1 at the origin. Thus a subsequence of the A′i will converge to

an embedded minimal surface M of finite total curvature and with curvature

−1 at the origin. (See Section 2 of [15] for details of this kind of argument.)

The surface is simply connected (because the intersection of Ai with any ball

of radius less than r/2 is simply connected). Furthermore, the boundary is

either

1. empty,

2. a straight line L, or

3. two straight lines L1 and L2.

The first case does not occur because the only complete embedded simply

connected minimal surface of finite total curvature is the plane. In case 2.,

M lies in a halfspace (by (6.1)). By construction it actually lies to one side

of a plane containing L. But now reflecting M in L gives a complete simply

connected embedded surface of finite total curvature, which was already ruled

out in case 1. In case 3., M lies in a cylinder around L1 by (6.1) and so L1

and L2 are parallel. Using either catenoidal barriers or the halfspace theorem

[6] one easily shows that M is in fact the strip between L1 and L2. But this

contradicts the fact that M has curvature −1 at the origin. This proves that

|Ki(pi)|1/2 = o(1/hi) .(6.2)
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Now let φi be the first eigenfunction of the Jacobi operator on Ai, nor-

malized to have a maximum value of 1. Let qi ∈ Ai be the point where

the maximum occurs. Of course φi is positive except at the boundary. Now

translate Ai by −qi and dilate by h−1i to get a new annulus A′i. By (6.2),

a subsequence of the A′i converges to the strip between two parallel lines.

By the Harnack inequality, a subsequence of the eigenfunctions converge to

a nonnegative function φ on the strip that is 0 on the boundary and that

attains a maximum value of 1 (at the origin). But φ is a nonnegative eigen-

function with eigenvalue ≤ 0, or, in other words, a subharmonic function,

and therefore cannot have an interior maximum. 2

Proof of Theorem 6.1. Let M denote the space of compact embedded

minimal annuli with boundary curves in horizontal planes. Given A ∈ M,

let z∗(A) and z∗(A) denote the infimum and supremum, respectively, of the

x3-coordinate on A (so that A has boundary in Pz∗(A) ∪ Pz∗(A)).

Let X be a compact set of annuli in M. We will show that X can be

deformed inM to a single annulus. First if,

ft(A) = A∩{x | z∗(A)+ t(z∗(A)− z∗(A)) ≤ x3 ≤ z∗(A)− t(z∗(A)− z∗(A))},
then ft(0 ≤ t ≤ 1/3) deforms X to a family X ′ of annuli with smooth

boundary curves.

Now for A ∈ X ′, let gt(A) be obtained from A by translating by−tz∗(A)e3
and then dilating (about the origin) by (1 − t) + t/(z∗(A) − z∗(A)). Then

gt(0 ≤ t ≤ 1) deforms X ′ to a family X ′′ of annuli with smooth boundary

curves contained in the planes x3 = 0 and x3 = 1.

For A ∈ X ′′, let γA0 be the component of ∂A in P0. Since the space

of embedded planar curves is contractible, we can deform the family {γA0 |
A ∈ X ′′} to the unit circle. That is, we can find γAt (0 ≤ t ≤ 1) so that γAt
depends smoothly on t and γA0 and so that γA1 is the unit circle for each A.

It is convenient to define γAt to be γA0 for t < 0.

Now deform X ′′ to a new family Y by the homotopy [t, A] 7→ A ∩ {x3 ∈
[0, 1 − t]} for 0 ≤ t ≤ 1 − h (where h ∈ (0, 1) will be determined shortly).
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Then Y has boundary curves in P0 ∪ Ph. Of course the homotopy does not

affect the boundary curves in P0.

Let γA,h
′

be the parametrization of A∩Ph of the form γA,h
′

(s) = γA0 (s)+

he3 + νA,h(s) where e3 = (0, 0, 1) and νA,h(s) is a horizontal vector perpen-

dicular to d
ds
γA0 (s).

Now consider the following family of pairs of curves:

ΓA
t =

{
γA ∪ (γA0 + he3 + (1− t)νA,h) 0 ≤ t ≤ 1
γA(t−1) ∪ (γA(t−1) + he3) 1 ≤ t ≤ 2

.

By the Lemma 6.1, there is an ε > 0 such that Uε(γ
A
(t−1)) is mean convex and

so that for 0 < h < ε, ΓA
t bounds no almost-stable minimal annuli embedded

in Uε. Fix an h ∈ (0, ε) small enough so that A′0 = A0 ∩ {z ≤ h} lies in

Uε(γ0).

By the implicit function theorem (or, more specifically, the smooth de-

pendence theorem (3.1) of [16]), for each A ∈ Y we can lift the path ΓA
t to

a path φ(t, A), 0 ≤ t ≤ bA, in M with φ(0, A) = A and ∂φ(t, A) = ΓA
t , and

such that either

1. φ(t, A) is stable for t < bA and almost-stable for t = bA, or

2. b = 2 and φ(t, A) is stable for every t ∈ [0, 2].

Now for 0 ≤ t ≤ bA, φ(t, A) is contained in Uε(γ(t−1)). (This is because

it is true for t = 0 and therefore by the maximum principle true for every

t ∈ [0, bA].) Thus (by the lemma) case 1. does not occur.

Now Γ2 consists of two circles, so by [10], [14] or [13], it bounds at most one

stable minimal annulus, namely a stable catenoid C. Thus φ is a homotopy

from the inclusion Y →M to the constant map Y → C.

This proves thatM is contractible. 2

Remark 6.1 We now make some remarks related to Theorem 6.1. LetMS

be the subset ofM consisting of stable annuli, andM0,1 be the set of annuli
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in M with boundary curves in P0 ∪ P1. The argument above also shows

that MS is contractible. Moreover, M0,1 and MS ∩M0,1 are deformation

retracts ofM andMS, respectively, so they are also contractible. (As above,

ft(0 ≤ t ≤ 1) is a deformation retraction of M to MS and gt(0 ≤ t ≤ 1)

gives a deformation retraction ofM toM0,1 and ofMS toMS ∩M0,1.)

Remark 6.2 The space of all smooth immersed minimal annuli with bound-

ary in fixed distinct parallel planes breaks up into contractible components

where two minimal annuli lie in the same component if and only if the winding

number of their boundary curves are the same. This last statement follows

directly from a straightforward adaptation of the proof of Theorem 6.1.

Remark 6.3 Consider the space A of embedded minimal annuli A in �

3

with a preferred boundary curve. A can be deformed inside itself to a smooth

very stable thin minimal ribbon and two such ribbon like minimal surfaces

can be deformed to each other if and only if they are ambiently isotopic. A

modification of the proof of Theorem 6.1 shows that each path component

of A has the homotopy type of the space Γ of isotopy classes of the knot

represented by the preferred boundary curve of an A ∈ A. The homotopy

type of Γ can be analyzed by applying the Smale Conjecture [3], which shows

that the path components of A are homotopy equivalent to SO(3). The path

components themselves can be characterized in terms of framed knots.

Proof of Theorem 1.4. Recall the statement of Theorem 1.4 in the Intro-

duction. Since every A ∈ S can be deformed inside itself in S to an example

in M, Theorem 6.1 shows S is path connected, which proves Theorem 1.4.

2

There are several possible other generalizations of Theorem 6.1. The most

obvious one is to show that the corresponding space M̃g of genus-g examples

is path connected (or contractible). This problem is a special case of the

following conjecture.
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Conjecture 6.1 Suppose Σ0 and Σ1 are compact diffeomorphic embedded

minimal surfaces with boundary in two parallel planes P1, P2. Further suppose

that ∂Σ0 is isotopic to ∂Σ1 in P1 ∪P2. If Σ0 has exactly one boundary curve

in P1, then Σ0 is isotopic to Σ1 through embedded minimal surfaces Σt with

∂Σt ⊂ P1 ∪ P2.

Remark 6.4 The above conjecture is motivated by Corollary 1 in [7]. This

corollary states that if Σ0 and Σ1 satisfy the hypotheses of Conjecture 6.1,

then they can be joined by a smooth isotopy Σt, 0 ≤ t ≤ 1, of embedded

surfaces with ∂Σt ⊂ P0 ∪ P1 where the Σt are contained in the slab between

P1 and P2. Conjecture 6.1 fails when Σ0 is allowed to have two boundary

curves on P0 and two boundary curves on P1. See [7] for this example.
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