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1 Introduction

A fundamental problem in the classical theory of minimal surfaces is to describe the

asymptotic geometry of properly embedded minimal surfaces in �

3. In the special case

that the surface has finite total curvature1 its asymptotic behavior is well understood.

For, in this case, the surface is conformally diffeomorphic to a finitely punctured

closed Riemann surface and each end of the surface, one for each puncture point,

is asymptotic to a plane or an end of a catenoid (see [19]). Thus the plane and

the catenoid are the models for describing the asymptotic behavior of these minimal

surfaces. When the properly embedded minimal surface has infinite total curvature,

but still finite topology, the question has been asked whether the surface must be

asymptotic to a helicoid.

A first step towards understanding the asymptotic behavior of a surface is to char-

acterize its topological behavior. For example, doubly and triply-periodic minimal

surfaces in �

3 that are not flat must have infinite genus and one end [2]. In [7] the

authors’ proved that any two properly embedded minimal surfaces in �

3 with the

∗This research was supported by the National Science Foundation grant DMS-8701736.
†The research described in this paper was supported by research grant DE-FG02-86ER250125 of

the Applied Mathematical Science subprogram of the Office of Energy Research, U.S. Department
of Energy, and National Science Foundation grant DMS-8900285.

1A surface has finite total curvature if (
∫
|K|dA < ∞).
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same genus and one end are ambiently isotopic2. Hence, topologically speaking, there

is only one configuration for a one-ended minimal surface at infinity, depending on

whether the surface has finite or infinite genus.

On the other hand, there exist examples of properly embedded minimal surfaces

in �

3 that have an infinite number of ends. The most famous examples of this type

were discovered by Riemann who showed that there exists a one-parameter family of

singly-periodic genus 0 minimal surfaces Rt satisfying:

1. Every horizontal plane intersects Rt in a single component that is a circle or a

straight line;

2. Rt is invariant under reflection in the (x1, x3)-plane;

3. Rt is invariant under translation by vt = (0, t, 1);

4. Far away from the line passing through the origin and in the direction vt, Rt is

asymptotic to the family of parallel horizontal planes at integer heights.

The annular ends of Rt are naturally ordered by their heights above the (x1, x2)-plane

with the top and bottom limit ends having heights +∞ and −∞, respectively (for a

rigorous geometric definition of end see Definition 2.1). Recently other singly-periodic

minimal surfaces with an infinite number of ends have been found that have similar

asymptotic behavior (see [1] or [11] for computer graphics pictures of some of these

new surfaces as well as one of Riemann’s examples).

In this paper we will prove that every properly embedded minimal surface with

more than one end has asymptotic behavior that mimics the behavior of the Riemann

examples. Loosely speaking our main theorem states that, after a rotation of �

3, the

ends of the surface can be ordered by their heights over the (x1, x2)-plane. In order to

make precise the statement of this theorem one needs the concept of a limit tangent

plane, which we rigorously define in Section 2. This definition, as well as the proof

of existence and uniqueness of the limit tangent plane, was first given in [2]. A more

precise statement of the following theorem appears in Theorem 2.1 of Section 2.

Theorem 1.1 (Ordering Theorem) Suppose M is a properly embedded minimal

surface in �

3 with more than one end and whose limit tangent plane is the (x1, x2)-

plane. Then the ends of M are naturally ordered by their “height” over the (x1, x2)-

plane.

2Two properly embedded surfaces in �

3
are ambiently isotopic if one can be deformed to the

other by a one-parameter family of diffeomorphisms of �

3
.
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Meeks and Yau [17] have proven a topological uniqueness result for properly em-

bedded minimal surfaces with more than one end. Their main theorem states that

two proper diffeomorphic minimal surfaces in �

3 of finite topology are ambiently iso-

topic. An important first step in the proof of their theorem is to show that the ends

of a minimal surface of finite topology are topologically parallel and hence ordered, a

result similar to the statement of the Ordering Theorem. In the case of finite topology

the ordering of the ends is obviously a topological ordering. When the surface has

infinite genus, this ordering property is not obvious but we can still prove it holds.

Theorem 1.2 Suppose M1 and M2 satisfy the hypotheses of M in Theorem 1.1 and

F : �

3 → �

3 is a diffeomorphism such that F (M1) =M2. Then F preserves or reverses

the natural ordering of the ends of M1 and M2. In particular, if M satisfies the

hypotheses of Theorem 1.1 and F : �

3 → �

3 is a diffeomorphism such that F (M) =M ,

then F preserves or reverses the ordering of the ends of M .

On the basis of all of these results, one might be tempted to conjecture that two

properly embedded diffeomorphic minimal surfaces in �

3 are isotopic. We strongly be-

lieve this conjecture to be false but a related conjecture to be true (see Conjecture 1.2

below).

The ordering theorem and its proof motivates three conjectures concerning the

topology of properly embedded minimal surfaces with more than one end.

Conjecture 1.1 The ordering of ends given in Theorem 1.1 is almost a well-ordering

in the sense that it is equivalent to the ordering on a compact subset S of the interval

[0, 1] with S ∩ (0, 1) discrete. (Also see the statement of Theorem 2.1.)

Definition 1.1 Suppose M is as in Theorem 1.1. A nonlimit end α of M has even

(odd) multiplicity if a one-ended representative (see Definition 2.2) of M has even

(odd) intersection number with every sufficiently large horizontal translation of the

x3-axis.

The next conjecture is motivated by the classifications of Heegaard splittings of a

ball by Frohman [6].

Conjecture 1.2 Suppose M1 and M2 are two properly embedded minimal surfaces

with more than one end. A necessary and sufficient condition for M1 to be isotopic

to M2 is for there to exist a diffeomorphism f :M1 → M2 that preserves or reverses

the ordering of the ends of these surfaces and such that f preserves the even-odd

multiplicity of the nonlimit ends of M1 and M2.
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Conjecture 1.3 Suppose M is a properly embedded minimal surface with more than

one end. An end of M fails to have an end representative (see Definition 2.2) with

quadratic area growth3 if and only if it is a limit end of M and it is the maximal or

minimal element in the induced ordering of ends.

It is important to note that Conjecture 1.1 implies that a properly embedded

minimal surface in �

3 can have at most two limit ends and that the number of ends

of the surface is countable. In particular, the validity of Conjecture 1.1 would show

that the surface obtained by taking � − {0, 1} and removing a closed discrete subset

of points with limit points at 0, 1, and ∞ can not properly minimally embed in �

3.

Conjecture 1.3 is our most descriptive and important conjecture on the asymptotic

behavior of properly embedded minimal surfaces with more than one end. It implies

among other things that any end of such a surface M , which is not a highest or

lowest end, has an end representative that has a unique limit tangent cone that is

an integer multiple of the limit tangent plane of M . When M has two limit ends,

this conjecture implies that the nonlimit ends of M are each asymptotically close

to a horizontal plane. It also follows from this conjecture that if such an M has

finite topology, then it would have finite total curvature. This last consequence of

Conjecture 1.3 is closely related to a theorem of Hoffman-Meeks [10] whose statement,

reinterpreted in terms of ordering theorem, states that an annular end, of a properly

embedded minimal surface with more than one end, that has infinite total curvature

must be a highest or lowest end in the ordering given by the Ordering Theorem.

(In the case of finite topology having finite total curvature is equivalent to having

quadratic area growth.)

The results of this paper were announced in [8].

2 The Ordering Theorem

Intuitively, the ends of a noncompact surface can be thought as the number of different

ways to travel to infinity on the surface. More precisely, an end of surface M is an

equivalence class of proper arcs on the surface that describes one way to travel to

infinity. We now recall the definition of these equivalence classes.

Definition 2.1 Consider two proper arcs α1, α2: [0,∞)→M . Then α1 is equivalent

to α2, written α1 ≈ α2, if there exists an exhaustion M1 ⊂ M2 ⊂ . . . of M by

3A surface M in �

2
has quadratic area growth if there exist constants K1,K2 such that for large

balls B(R) of radius R, K1R
2 ≤ Area(M ∩B(R)) ≤ K2R

2.
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smooth compact subdomains, such that for every i the noncompact components of

α1−Int(Mi) and α2−Int(Mi) are contained in the same component ofM−Int(Mi).

The relation ≈ is an equivalence relation and we denote by α the equivalence class of

α and we call α the end associated to the proper arc α.

With the above definition of end, it is easy to check that a closed surface punctured

in n points has n ends, one corresponding to each removed point. It follows that �

2

has one end and the cylinder has two ends. However, in the general case, the structure

of the ends of a noncompact surface can be much more complicated as occurs, for

instance, in a surface obtained by removing a Cantor set from a closed surface.

In order to work with the ends of a surface, it is useful to make some further

definitions.

Definition 2.2 A smooth proper subdomain Σ of M with ∂Σ compact is said to be

an end-representative for an end α of M if α ∩ Σ is noncompact.

Note that whether or not Σ is an end-representative of α does not depend on the

choice of representative in α.

Definition 2.3 A smooth compact exhaustion M1 ⊂ M2 ⊂ · · · of M is called good

if, for all i, each component of M − Int(Mi) is noncompact and has one boundary

curve. It is called excellent if it is good and for all i, each component of M − Int(Mi)

has either one end or an infinite number of ends.

Lemma 2.1 A noncompact surface M has an excellent exhaustion.

Proof. First choose a smooth exhaustion M1 ⊂ M2 ⊂ · · · of M by connected com-

pact subdomains. By adjoining the compact components of M − Int(Mi) to Mi, we

may assume that every component of M − Int(Mi) is noncompact for every i.

If for each integer i every component of M − Int(Mi) has connected boundary,

then the exhaustion is good. If not, let Mk denote the first domain such that some

component C of M − Int(Mk) has more than one boundary component. In this case

choose an embedded arc δ in C with end points on distinct boundary curves of C.

Let N(δ) be a small regular neighborhood of δ, chosen so that M ′

k = Mk ∪ N(δ) is

smooth. Since M1 ⊂ M2 ⊂ · · · exhausts M , there is an integer I such that M ′

k is

contained in the interior of MI .

Consider the new exhaustion M1 ⊂ · · · ⊂ Mk−1 ⊂ M ′

k ⊂ MI ⊂ MI+1 ⊂ · · · but

reindex to obtain M ′

1 ⊂ M ′

2 ⊂ · · · where M
′

i = Mi for i < k and M ′

i = MI+i−k for
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i > k. The new exhaustion agrees with the previous exhaustion for the first k − 1

terms. It is better in the kth term in that the difference between number of boundary

components in M − Int(Mk) and the number of components of ∂(M − Int(M ′

k)) is

one less than the original exhaustion. This replacement argument can be continued

ad infinitum to obtain a good exhaustion of M .

If M1 ⊂ M2 ⊂ · · · is a good exhaustion and M − Int(Mi) has a component

with a finite number of ends greater than one, then, by a variation of the previous

argument, we can enlarge Mi by adding on a compact subdomain so that for the new

M ′

i , M −M ′

i has fewer components with a finite number n of ends, n > 1. Continued

replacements of this type will result in an excellent exhaustion. 2

Suppose Σ ⊂ �

3 is a properly embedded noncompact minimal surface of finite

curvature and ∂Σ compact. In this case Σ has a finite number of ends of planar

and catenoid type [19]. Since Σ is embedded, the normal lines to the ends of Σ are

asymptotically parallel to the same line at infinity. The plane passing through the

origin and perpendicular to this line is called the limit tangent plane of Σ. One can

extend this concept to an arbitrary properly embedded minimal surface M without

boundary and more than one end. When M has more than one end, it is shown in

[2] that there exist properly embedded, noncompact, finite total curvature minimal

surfaces contained in the closure of one of the components of �

3−M and which have

compact boundary contained in M . Furthermore, the limit tangent planes of these

surfaces coincide (Theorem 5 in [2]). One defines the limit tangent plane of M to be

the limit tangent plane of any of these finite total minimal surfaces contained in the

closure of a complement of M .

The Ordering Theorem, Theorem 1.1 in the introduction, is an interpretation of

the following ordering theorem.

Theorem 2.1 Suppose M is a properly embedded minimal surface in �

3 with more

than one end and whose limit tangent plane is the (x1, x2)-plane. Then there is natural

geometric ordering of the ends of M that is equivalent to the ordering of a compact

subset of [0, 1].

Proof. We first give a brief outline of the proof of Theorem 2.1. By Lemma 2.1,

we can choose an excellent exhaustion M1 ⊂ M2 ⊂ · · · of M . We assume M1 is

chosen large enough so that M − M1 is not connected. Given this exhaustion we

will construct a properly embedded minimal surface M in �

3, each component of

which has compact boundary and finite total curvature. Then with respect to this

exhaustion and M, we will assign to every end α of M a “height” in the interval
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[0, 1]; in this way the ordering on [0, 1] induces an ordering of the ends of M . Finally,

we shall show that this ordering of the ends of M is independent of the excellent

exhaustion,M, and other choices made along the way.

We begin the proof of the theorem by establishing some further notation. For each

i we wish to define a subcollection C(i) of boundary components of ∂Mi. Namely,

α ∈ C(i) if α is a component of ∂Mi and α is not homologous inM to a component of

∂Mj for j < i. Given an α ∈ C(i) we let ∆(α) denote the component of M − Int(Mi)

with boundary curve α. Let C =
⋃
iC(i). Let N

+ and N− denote the closures of the

the two components of �

3 −M . Since a stable orientable minimal surface in �

3 is a

plane [3, 5], M is unstable. We will assume that M1 is chosen large enough so that

M1 is an unstable minimal surface.

Assertion 2.1 C is the boundary of a complete stable orientable properly embedded

minimal surface M+ (resp.M−) in N+ (resp.N−) such that each component Y of

M+ (resp.M−) satisfies:

1. ∂Y is a single component in C;

2. Either Y = ∆(∂Y ) or Y ∩M = ∂Y ;

3. If Y = ∆(∂Y ), then Y is asymptotic to an end-representative of a catenoid or

a plane in �

3;

4. If Y ∩M = ∂Y and Y is noncompact, then Y is a complete minimal surface

of finite total curvature with each end asymptotic to an end-representative of a

catenoid or a plane and this end-representative is contained in the interior of

N+.

Proof of Assertion 2.1. We first show that for each integer i, C(i) is the boundary

of a stable orientable properly embedded minimal surface M+(i) in N+ such that

each component Y ∈ M+(i) satisfies Properties 1–4 of the assertion. It will follow

by our inductive construction of M+(i) that M+(i) ∩M+(j) = ∅, if i 6= j. After

constructing the surfaces M+(i), we let M+ =
⋃
iM

+(i) and prove that M+ is

proper; this will complete the proof of Assertion 2.1. For notational convenience, we

letM+(i) =
⋃i
j=1 M(j).

The proof of the existence of M+(i) will be by induction on i. Therefore, suppose

M+(i − 1) exists (M+(0) = ∅) and we shall construct M+(i). Arbitrarily choose an

α ∈ C(i) and let N+(α) denote the closure of the component of N+ −M+(i − 1)

that contains α. Note that ∂N+(α) is piecewise smooth with interior angles less than
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π and with the smooth portions having zero mean curvature. Since ∂(N+(α)) has

nonnegative mean curvature, it is an appropriate barrier for solving Plateau type

problems in N+(α). See Theorem 1 in [16] for a discussion of the barrier property.

Choose an excellent exhaustion ∆1 ⊂ ∆2 ⊂ . . . of ∆(α). Replace ∆1 by a least-

area surface ∆̃i ⊂ N+(α) with ∂∆̃i = ∆i. A subsequence of these least-area surfaces

converges to a properly embedded stable minimal surface Y ⊂ N+(α) with ∂Y = α.

(See Lemma 3.1 in [7] or Proposition 3.1 in [17] for details on this convergence of a

subsequence of the ∆̃i to Y .) Since either Y ∪∆(α) or Y ∪ (M −∆(α)) is a properly

embedded surface that separates �

3, Y is orientable. Since Y is stable and orientable,

a theorem of Fischer-Colbrie [4] implies that Y has finite total curvature. Hence, each

end of Y is asymptotic to a plane or a catenoid in �

3.

We first consider the case when Y ∩ M = ∂Y and Y is noncompact. After

removing a small open neighborhood of ∂Y from Y we obtain a new surface Y ′ with

∂Y ′ compact and Y ′ ∩M = ∅. Hence, by the maximum principle at infinity in [14],

the distance between Y ′ andM is positive. (The maximum principle at infinity states

the distance between two properly embedded disjoint minimal surfaces with compact

boundary is positive.) Hence, the planes or catenoids that are asymptotic to the ends

of Y must have end-representatives that are contained in the interior of N+, which

proves that Y satisfies Property 4.

Suppose now that Y ∩M 6= ∂Y . In this case the maximum principle implies that

Y ⊂ ∂N+(α). Since ∂N+(α) − ∆(α) is either not smooth or contains M1 which is

unstable, Y = ∆(α). Since the exhaustion of M is excellent and ∆(α) has a finite

number of ends (since Y has finite total curvature), Y has exactly one end, which

completes the proof that Properties 1–4 hold for Y .

If C(i) = {α}, then let M+(i) = {Y }. Otherwise, let Y1 = Y and choose an

α2 ∈ C(i)−{α}. Then using the barrierM+(i− 1)∪ Y1, instead ofM
+(i− 1) as we

just did for α, we produce a new surface Y2 with ∂Y2 = α2, satisfying Properties 1–4

and such that Y2 is disjoint fromM
+(i− 1) ∪ Y1. It is clear that this process can be

continued to produce a collection M+(i) = {Y1, Y2, . . . , Yn} of surfaces satisfying the

required properties. By induction, we can construct M+(i) for all i.

It remains only to prove thatM+ is a properly embedded minimal surface. Since

M(i) is properly embedded for each i, we need only check that M+ is proper. If

M+ were not proper, then there would exist a sequence of points p(ij) ∈ M+(ij)

for some sequence ij, j → ∞, such that p(ij) → p for some p ∈ N+. Since the

∂M+(ij) diverge to infinity, the distance from p(ij) to ∂M
+(ij) goes to infinity as

j → ∞. By the curvature estimates of Schoen [18], there exists a c > 0, such that
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the Gaussian curvature of a point q ∈ Int(M+) is bounded from below by −c/d2

where d is the intrinsic distance of q to ∂M+. Hence, there exist disk neighborhoods

D(ij) of p(ij) in M
+(ij) that are giving better and better approximations to larger

and larger flat disks in �

3 as j → ∞. It follows that a subsequence of the D(ij)

converges to a flat plane in N+ passing through the point p. The existence of such a

plane would imply M is contained in a halfspace of �

3. By the Halfspace Theorem

[12] a properly immersed minimal surface in a halfspace is a plane but M is not a

plane. This contradiction completes the proof of the assertion. 2

Definition 2.4 M =M+ ∪M− andM(i) =M+(i) ∪M−(i).

Since the exhaustionM1 ⊂M2 · · · ofM is excellent, then either C(i) is nonempty

for every i or C(i) = ∅ for i > 1. Of course, the first case occurs when M has an

infinite number of ends and the second case when M has a finite number of ends.

We shall prove Theorem 2.1 in the case that C(i) 6= ∅ for all i; the proof of the case

C(i) = ∅ for i > 1 uses a similar and simpler argument and will be left to the reader.

Assume that C(i) 6= ∅ for all i. First note that if α ∈ C(i), then α cannot bound

compact components Y + ⊂M+ and Y − ⊂M−. The reason for this is that Y +∪Y −

is a compact surface in �

3 that bounds a compact region of �

3 that contains ∆(α) or

M − Int(∆(α)), both of which are proper and noncompact, an impossibility.

LetM be the properly embedded surface whose existence is given by Assertion 2.1

and Definition 2.4. Note thatM is minimal and smooth except along C(i). Also note

that a component Y ofM has nonempty boundary only if Y = ∆(∂Y ).

First note that outside of a sufficiently large cylinder of radius R(k) around the

x3-axis,M(k) consists of n(k) graphs over the annulus A(k) ⊂ (x1, x2)-plane which is

the exterior of the disk of radius R(k) centered at the origin. We choose R(k) so that

R(k) is an increasing function in k and R(k)→∞ as k →∞. Complete these graphs

to be pairwise disjoint graphs Gk(1), . . . , Gk(n(k)) over the (x1, x2)-plane. Assume

that these graphs are ordered by their relative heights; in otherwords, if Gk(i) lies

above Gk(j), then i > j. These graphs separate �

3 into a lowest open slab Sk(0) and

the half open slabs Sk(1), . . . , Sk(n(k)) where Sk(j) = {x ∈ �

3 | x lies on or above

Gk(j) but below Gk(j + 1)}. If α is a proper arc in M representing α, then for any

fixed k eventually α is contained in exactly one of the regions Sk(j) and Sk(j) only

depends on α. Define α(k) = j. See Figure 1 for a picture.

Suppose that α 6= β. Fix an integer k sufficiently large so that the associated

end-representatives Mα,Mβ in M − Int(Mk) are disjoint. We will now prove that

α(k) 6= β(k). It is straightforward to show that α(k) 6= β(k) when both M α and
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Figure 1: Note that α(1) = 1, β(1) = 1, α(2) = 2, β(2) = 1

Mβ have finite total curvature, so we may assume, after a possible change of indices,

that Mα has infinite total curvature. Let Y + denote the component of M+ with

∂Y + = ∂Mα and let Y − denote the component ofM− with ∂Y − = ∂Mα. Since Y +

and Y − are each stable and have finite total curvature,Mα has infinite total curvature,

andM−Mα is unstable, then Assertion 2.1 implies thatM∩(Y +∪Y −) = ∂Mα. Since

Y + ∪ Y − is a properly embedded surface in �

3, it separates �

3 into two regions, Rα

and Rβ, whereMα ⊂ Rα andMβ ⊂ Rβ. By Assertion 2.1, we know that Y +∪Y − has

a finite number n of ends. In particular, the intersection of Rα with the complement

of any solid cylinder with axis the x3-axis and of sufficiently large radius, consists

of n + 1 slab type regions (with a solid cylinder removed from each slab) and each

of these regions can contain points of Mα or Mβ but not both surfaces. Choose

representatives α′ ∈ α and β ′ ∈ β such that α′ ⊂ Rα and β′ ⊂ Rβ. It is clear that α′

and β′ eventually are contained in different slab type regions determined by the ends

of Y + ∪ Y − and hence in different slabs determined by M(k). This completes our

proof that α(k) 6= β(k).

With these remarks in mind, we now give a procedure for ordering the end E ofM

relative toM. Let L be a linearly ordered set. A Dedekind cut of L is a subset D ⊆ L

with the property that if p ∈ D and q < p, then q ∈ D. Notice that the set L∗ of

Dedekind cuts at L is a complete and bounded linearly ordered set, under inclusion.
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Note the least element is the empty set and the greatest element is the set L. There

is a map L → L∗ given by sending each x ∈ L to {p | p < x}. Further, if φ :L → S

is an order preserving map from L into a complete bounded linearly ordered set S,

then φ extends to φ :L∗ → S.

We make the ends D ofM into a linearly ordered set, as described above. This

allows us to define a map h : E → D∗ from the ends of M to the set of Dedekind

cuts to D. This map sends an end E of M to the set of all ends of M that are

eventually strictly below E. Notice that since for every α and β there exists a k such

that α(k) 6= β(k), h is injective. Hence we have ordered E .

Since we are ordering the ends of M by their topologically parallel circle inter-

sections with large cylinders, it is easy to find an order preserving map of the ends

ofM into the interval [0, 1]. This map extends to a map of E ∗ into [0, 1], hence we

have ordered the ends of M as a subset of [0, 1].

We now show that h(E) is a compact subset of [0, 1] by showing that every sub-

sequence of h(E) has a convergence subsequence in h(E). If not, then there exists an

increasing or decreasing sequence ej in h(E) converging to point L in D
∗. We need

to produce a proper arc α in M such that h(α) = L. Given an Mi in the exhaustion

of M , one of the components R(i) of M − Int(Mi) must be an end representative

for an infinite subsequence ej(i) of {ej}. We can of course choose R(i + 1) ⊂ R(i).

Choose an arc in Mi+1 − Int(Mi) with boundary points in ∂R(i) ∪ ∂R(i + 1) such

that the union of these arcs is a proper arc α. It is clear from the definition of h that

h(α) = L.

It remains to prove that the ordering of the ends of M induced by the height

function h is independent of the choice ofM. SupposeM1 andM2 are two properly

embedded minimal surfaces, associated to two excellent exhaustions of M and that

satisfy the conclusions of Assertion 2.1. Let h1 and h2 be the associated height

functions to the interval [0, 1]. We will show that h1(α) < h1(β) implies h2(α) <

h2(β). Suppose to the contrary that for some pair of ends α, β, that h1(α) < h1(β)

and h2(β) ≤ h2(α). Notice in this case that h2(β) is strictly less than h2(α) since h2

is one-to-one.

If α has an end-representative with finite total curvature, then, by the definition of

excellent exhaustion, for large values of k, the end-representative of α inM−Int(Mk)

is asymptotic to a plane or catenoid with horizontal limit tangent plane. In this case

it is straightforward to prove that any other end β of M lies “above” or “below” the

catenoid end of α and hence if h1(α) < h1(β), then h2(α) < h2(β). Assume now that

every end-representative of α and of β has infinite total curvature.
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By part 4 of Assertion 2.1, there exist catenoid or planar-type ends E1 ⊂M1 and

E2 ⊂ M2 and E1 ∪ E2 ⊂ Int(N+) ∪ Int(N−) such that α lies “above” E1, β lies

“below” E1, α lies “below” E2 and β lies “above” E2; the E1 and E2 are chosen to

be graphs over the (x1, x2)-plane. The ends E1 ofM1 and E2 ofM2 are asymptotic

to the ends C1, C2, respectively, of catenoids or planes and the boundary of Ei is

disjoint from M . By the weak maximum principle at infinity [14], dist(E1, M) and

dist(E2, M) are both positive, so we can make the substitution of C1, C2 for E1, E2 in

our discussions of the relative ordering of α and β with respect to h1 and h2. Assume

that ∂C1 and ∂C2 are round circles that are boundary curves of planar disks D1, D2,

respectively. Let Ci = Ci ∪Di.

If we can choose C1 and C2 to be disjoint, then, after replacing then by subends,

we can assume, that C1 and C2 are disjoint. But if C1 and C2 are disjoint, then

C1∪C2 separates �

3 into three “parallel” slabs, which clearly contradicts our ordering

assumptions on α and β.

If C1 and C2 have different logarithmic growths as graphs over their projections

onto the (x1, x2)-plane P , then C1 ∩ C2 is compact. Thus, by choosing subends, we

may assume that C1 and C2 are disjoint. By the discussion in the previous paragraph,

we may therefore assume that the logarithmic growths of C1 and C2 are the same.

When C1 and C2 have zero logarithmic growth, then they are contained in the

same horizontal plane, an obvious impossibility because of the different orderings of

α and β by h1 and h2. Thus, without loss of generality, we may assume, after a rigid

motion ofM and a replacement of C1 and C2 by subends, that ∂C1∪∂C2 is contained

in P and C1 and C2 are non-negative graphs over P of the same positive logarithmic

growth.

A simple analysis of catenoids, using their analytic definition, shows that whenever

K1 and K2 are nonnegative catenoidal graphs over P with round circle boundary

curves in P , then either K1 ∩ K2 is compact or else K2 is obtained from K1 by

reflection in a vertical plane. By our previous discussion, we know that C1 ∩ C2 is

noncompact, and so we conclude that C2 is obtained from C1 by reflection in a vertical

plane. See Figure 2 for a picture of the two possible cases.

Let H denote the upper halfspace and note that C1 ∪ C2 separates H into four

regions Rα,Rβ,RT ,RB. Here RT is the “Top” region above C1 ∪ C2, RB is the

“Bottom” region below C1 ∪C2, Rα is the region containing an end-representative of

α of M and Rβ is the region containing an end-representative of β of M . Notice that

reflection in the plane Q interchanges the regions Rα and Rβ and Q is disjoint from

the Int(Rα) and Int(Rβ). It follows that Rα or Rβ is contained in a quarter-space of
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Figure 2: Noncompact intersection on right

�

3 determined by P ∪Q. Hence M contains an end-representative of α (or of β) that

is contained in a quarter-space. But Theorem 3 in [12] states that the convex hull of

a properly immersed noncompact nonplanar minimal surface with compact boundary

in �

3 must contain a slab in its convex hull. This contradiction completes this proof

of the theorem. 2

3 The Proof of Theorem 1.2

In this section we prove Theorem 1.2 that implies that the natural geometric ordering

of the ends of a properly embedded minimal surface is a topological ordering. We

break the key steps of the proof of this theorem into four lemmas.

Lemma 3.1 Suppose Σ is a properly embedded minimal surface in �

3. Suppose P is

the image of a proper embedding of a plane. Suppose that Γ = P ∩Σ is a simple closed

curve on Σ that separates Σ into two noncompact surfaces. Let N denote the closed

complement of Σ that contains the end of P . Then Γ is the boundary of a properly

embedded annulus in N whose end is the end of a flat plane or a catenoid in Int(N).

Proof. LetB1 ⊂ B2 ⊂ . . . be an exhaustion of �

3 by round balls centered at the origin

such that Γ ⊂ B1 and ∂Bi is transverse to Σ∪P . Let P̃i be the component of P ∩Bi

with Γ ⊂ ∂P̃i. After performing surgery on P̃i in Bi ∩N we obtain an incompressible

planar surface and let Pi denote the component of this surface containing Γ. Replace
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Pi by a least-area minimal surface Di in the isotopy class of Pi relative to ∂Pi in

Bi ∩N .

We claim that the family of surfaces {Di} have bounded area and bounded cur-

vature in any fixed ball Bi. These estimates together with standard regularity and

compactness theorems for minimal surfaces imply that a subsequence {Dij} converges

smoothly on compact regions of �

3 to a properly embedded orientable minimal sur-

face A bounded by Γ (see the proof of Theorem 3.2 of [7]). The required curvature

and area estimates can be found in the proof of Theorem 3.2 of [7]. It is also shown in

the proof of Theorem 3.2 of [7] that the resulting limit A is an incompressible stable

minimal surface in N and the usual loop lifting argument proves that the genus of A

is zero is no greater than the genus of the Di which is zero. Hence, A also has genus

zero.

We now show that A has one end. If A has more than one end, then we can choose

two embedded homotopically nontrivial loops α1, α2 ⊂ A, based on a point p0 ∈ A,

such that

[α1][α2] 6= [α2][α1] where [αi] ∈ π1(A, p0) .

Since the planar surfaces Dij converge smoothly to A, for ij large we may assume that

we can lift α1 ∪ α2 to Dij . Since the Dij are obtained from the annulus P ∩ B1 ∩N

by surgery and an isotopy, we can perform a bounded isotopy of P ∩ N so that

α1 ∪ α2 is contained on P ∩ N , which is an annulus with cyclic fundamental group.

Hence [α1][α2] = [α2][α1] in π1(N). Since π1(A) injects into π1(N) under inclusion,

[α1][α2] 6= [α2][α1] in π1(N), which is a contradiction. This contradiction proves that

A is a stable minimal annulus. The annulus A has finite total curvature by the results

of Fischer-Colbrie [4].

Since A is a finite total curvature, it is asymptotic to an end of a catenoid or a

plane. The strong maximum principle at infinity [14], shows distance of the end of A

to Σ is positive when A is not contained in Σ. In this case, after a small isotopy, one

can move the end of A slightly so that it is equal to the end of the plane or catenoid

to which it is isotopic. If A is contained in Σ, then the usual perturbation arguments

prove that A can be pushed slightly off itself to have the required property. 2

Lemma 3.2 (Haken’s Lemma) Suppose Σ is a properly embedded minimal surface

in �

3 and P is a properly embedded plane such that P ∩ Σ is compact. Furthermore,

suppose that P separates two ends of Σ. Then after a bounded isotopy of P , the new

plane intersects Σ in a single simple closed curve that separates Σ into two noncompact

surfaces.
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Proof. Corollary 3.2 in [7] states that the fundamental group of Σ maps onto the

fundamental group of each closed complement of Σ in �

3. For any properly embedded

surface M in �

3 that satisfies this topological property on fundamental groups and

for any properly embedded plane that intersects M in a compact set, the proof of

Haken’s lemma [9] shows that after an isotopy of P in some compact region of �

3,

the new isotoped plane intersects M transversely in a fewest number of components

and this number is either zero or one. Thus, after a bounded isotopy of P , there is a

new isotoped plane that intersects Σ in a simple closed curve that separates Σ into

two noncompact surfaces (since a bounded isotopy of P can not fail to separate the

previously separated ends of Σ). 2

Lemma 3.3 Suppose Σ satisfies the hypotheses of M in Theorem 1.1. Suppose

α1, α2, α3 correspond to three of the ends of Σ naturally ordered as α1 < α2 < α3.

Then there exist properly embedded planes P1, P2 such that:

1. The ends of P1 and P2 are ends of catenoids or planes, with horizontal limit

tangent planes;

2. P1 lies below P2;

3. Pi ∩ Σ is a simple closed separating curve for i = 1, 2;

4. α1 lies below P1, α2 lies between P1 and P2 and α3 lies above P2.

Proof. Since α1 < α2 < α3, the proof of the ordering theorem implies that there

exist pairwise disjoint two properly embedded planes P̃1, P̃2, each of which is a graph

over the xy-plane, with P̃1 below P̃2, the ends of P̃1, P̃2 are ends of catenoids or planes

and P̃i ∩Σ is compact. Furthermore, α1 lies below P̃1, α2 lies between P̃1 and P̃2 and

α3 lies above P̃2. Lemma 3.2 implies that after a bounded isotopy of P̃1, we obtain

a new plane P1, that intersects Σ in a simple closed curve. Since the end of P1 is

disjoint from the end of P̃2, we can replace a compact domain of P̃2 so that the new

P̃2 is disjoint from P1.

Let H be the closed halfspace of �

3 with boundary P1 that contains P̃2. The

surface H ∩ Σ separates H into two closed components and the fundamental group

of this surface maps onto each of these components. Again, application of the proof

of Haken’s lemma shows that after a bounded isotopy of P̃2 in H, we can move P̃2 to

a new plane P2 that intersects Σ ∩H in a simple closed curve. 2
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Lemma 3.4 Suppose M is as in the statement of Theorem 1.1. Suppose P1 and

P2 are two properly embedded, pairwise disjoint, planes in �

3 such that for i =

1, 2, Pi ∩M = Γi is a simple closed nonseparating curve on M . Let E1 be the closed

complementary domain of P1∪P2 that has boundary P1, E2 the domain with ∂E2 = P2

and let R be the closed complementary domain with boundary P1∪P2. Suppose α1, α2

are ends of M with end representatives contained in E1, E2, respectively. Suppose α3

is an end of M with an end representative contained in R. Then in the ordering of

the ends of M , either α1 < α3 < α2 or α1 > α3 > α2.

Proof. We will first replace P1 and P2 by new pairwise disjoint planes P̃1, P̃2 such

that Γi = Pi∩Σ = P̃i∩Σ and such that the ends of P̃1 and P̃2 are equal to the ends of

planes and catenoids. First replace the disks in P1, P2 bounded by Γ1,Γ2 by least area

disks D1, D2 in respective closed complements of Σ in �

3. The proof of Lemma 3.1

shows that we can replace the annuli Ai in Pi bounded by Γi by least-area embedded

annuli Ãi in the closed complements of Σ in �

3. By carrying out this minimization

argument simultaneously for Ã1 and Ã2 we can be sure that Ã1 and Ã2 are disjoint.

(To prove disjointness one applies well known disjointness properties for least-area

compact planar domains as described in [15].) The usual disk replacement argument

shows that (D1 ∪D2) ∩ (Ã1 ∪ Ã2) = Γ1 ∪ Γ2. Define P̂i = Di ∪ Ãi.

Since Ai ∪ Ãi is a properly immersed piecewise smooth surface in a complement

of Σ, it bounds a piecewise smooth domain in the complement that intersects Σ only

along Γ. It follows that an end representative of αj that lies on one side Pi lies on the

same side of P̂i for any i, j. In particular it follows that each of the three complements

of P̂1 ∪ P̂2 contains the end representative of one and only one of the ends α1, α2, α3

and furthermore that α2 has an end representative contained in the complement with

boundary P̂1 ∪ P̂2.

In the proof of the uniqueness portion of geometric ordering in Theorem 1.1 we

demonstrated that if F1 and F2 are catenoid or planar type ends contained in �

3−Σ

and an end β1 lies below F1 ∪ F2, an end β2 lies between F1 and F2, and an end β3

lies above F1∪F2, then β1 < β2 < β3. By choosing F1 to be the higher catenoid-type

end of P̂1 ∪ P̂2 and F2 to be the lower catenoid-type end of P̂1 ∪ P̂2, we conclude from

the discussion in the previous paragraph that α2 must lie between α1 and α3, which

completes the proof of the lemma. 2

Proof of Theorem 1.2. SupposeM1 andM2 satisfy the hypotheses of Theorem 1.1

and F : �

3 → �

3 is a diffeomorphism such that F (M1) =M2 but such that F fails to

preserve or reverse the natural ordering of the ends of M1 and M2. This means that
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there exist three ends α1 < α2 < α3 of M1 such that either F ◦ α1 < F ◦ α3 < F ◦ α2

or F ◦ α3 < F ◦ α1 < F ◦ α2.

By Lemma 3.3 there exist pairwise disjoint planes P1 and P2 such that α1 lies

below P1, α2 lies between P1 and P2, and α3 lies above P3. Since F ◦ α2 lies in the

region between F (P1) and F (P2), Lemma 3.4 implies that either F ◦ α1 < F ◦ α2 <

F ◦ α3 or F ◦ α3 < F ◦ α2 < F ◦ α1, which contradicts our earlier conclusion. This

contradiction completes the proof of Theorem 1.2. 2
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