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1 Introduction

In this paper we study the conformal structure and the asymptotic behavior of

properly embedded minimal surfaces of finite topology in �

3. One consequence of our

study is that when such a surface has at least two ends, then it has finite conformal

type, i.e., it is conformally diffeomorphic to a compact Riemann surface punctured in

a finite number of points.

Except for the helicoid and a recently found one-ended genus example of Hoffman,

Karcher and Wei [9] of a helicoid with one handle attached, every known example M

of such a properly embedded minimal surface of finite topology satisfies the strong ge-

ometric constraint of having finite total Gaussian curvature C(M) =
∫

M
KdA. When

M has finite total curvature, then it always has finite conformal type. Furthermore,

the coordinate functions of a finite total curvature M can be defined analytically in

terms of a meromorphic one-form and a meromorphic function on the conformal com-

pactification. In many ways the finite total curvature examples are well-understood;
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for example, each end of such a surface is asymptotic to the end of a plane or catenoid

in �

3. In recent years major progress has been made in constructing new examples of

embedded complete minimal surfaces of finite total curvature in �

3 (see [3], [8], [11]).

The constraint that a properly embedded minimal surface M have finite total

curvature leads to important analytical and geometrical results. For example, it has

been shown by Schoen [18] that if such an M has two ends, then M is a catenoid;

it was shown by Lopez-Ros [13] that if M is a planar domain, then M is a plane or

a catenoid; and finally Costa [4] has classified the genus 1 examples with three ends.

These non-existence and classification theorems strongly use the property of finite

total curvature. A natural and fundamental conjecture is:

Conjecture 1.1 Every properly embedded minimal surface of finite topology with at

least two ends has finite total curvature.

An important partial result on the above conjecture was given by Hoffman-Meeks

[10] who proved that a properly embedded minimal surface in �

3 can have at most

two distinct annular ends with infinite total curvature (also see [5] for related results).

Our main theorem gives some detailed information on the behavior of the possible

two ends of M of infinite total curvature.

Theorem 1.1 Suppose M ⊂ �

3 is a properly embedded minimal surface with more

than one end. If A is an annular end of M , then, after a rotation of M , either A

is smoothly asymptotic to a horizontal plane or x3|A is a proper harmonic function

on A. In particular, every such A is conformally diffeomorphic to the punctured disk

D∗ = {z ∈ � | 0 < |z| ≤ 1}.

Corollary 1.1 If M ⊂ �

3 is a properly embedded minimal surface of finite topology

and with at least two ends, then M has finite conformal type.

Corollary 1.2 If M ⊂ �

3 is a properly embedded minimal annulus, then, after a

possible rotation of M , M intersects every horizontal plane in a single simple closed

curve.
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Corollary 1.2 is closely related to the famous Nitsche conjecture that states that

if a complete embedded minimal annulus intersects every horizontal plane in a simple

closed curve, then it is a catenoid. Thus, one sees that whenM is a properly embedded

minimal annulus in �

3, thenM is a catenoid if and only if the Nitsche conjecture holds.

More generally, Theorem 1.1 reduces the general finite total curvature conjecture to

the following:

Conjecture 1.2 (Generalized Nitsche Conjecture): For t ≥ 0, let Pt denote the

horizontal plane of height t over the x1x2-plane. Suppose that A ⊂ �

3 is a minimal

annulus with ∂A ⊂ P0 and that A intersects every Pt in a simple closed curve. Then

A has finite total curvature.

We remark that Rosenberg and Toubiana [16] proved that there exist proper

minimal immersions X: � −{0} → �

3 of infinite total curvature with third coordinate

function X3(z) = ln |z|. Such a surface intersects every horizontal plane in a single

immersed closed curve. Examples such as X show the need for the annulus in the

above conjecture to be embedded.

2 Proof of the Main Theorem

In [12] Hoffman and Meeks proved that two disjoint properly immersed minimal

surfaces in �

3 must be parallel planes. A key step in proving this theorem is to prove

the special case where one of the minimal surfaces is a plane; in other words, a key

step is to show that if a properly immersed minimal surface is contained in a halfspace,

then the surface is a plane. This special result is called the Halfspace Theorem. The

technique of proof of the Halfspace Theorem of using catenoid barriers will be used

to prove the following lemma.

For the remainder of this section we use the following notation:

H+ = {(x1, x2, x3) ∈ �

3 | x3 ≥ 0},
Pt = {x3 = t},
P = {x3 = 0} .

Lemma 2.1 Suppose Σ ⊂ H+ is a properly immersed minimal surface with nonempty,

possibly noncompact, bounday ∂Σ. If x3(∂Σ) ≥ δ, then x3(Σ) ≥ δ.
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Proof. Suppose that x3(Σ) ≥ δ fails, i.e., that ε = inf{x3(p) | p ∈ Σ} < δ. After

translating Σ down by ε we may assume that ε = 0. Consider the unit disk D ⊂ P .

Since D is compact, D is a positive distance d from Σ. Hence, after a small upward

translation of D by a distance of min (
1

2
,
d

2
) we obtain a new disk D̃. For t ≥ 1, let

S(t) denote the circle of radius t in P centered at the origin in P . For each t, S(t)∪∂D̃

bounds a stable catenoid C(t). (See Figure 1.) These catenoids vary continuously

with t and C(1) is disjoint from Σ. Since the sets D̃∪C(t) converge continuously (on

compact subsets of �

3) to the plane at height min (
1

2
,
d

2
) and Σ is a closed subset of

�

3, there exists a smallest t0 such that C(t0)∩Σ 6= ∅. Since ∂C(t0)∩Σ = ∅, C(t0) and

Σ intersect at an interior point and so the maximum principle gives a contradiction.

This contradiction proves the lemma. 2

Figure 1

Lemma 2.2 If M ⊂ �

3 is a properly embedded minimal surface with more than one

end, then there exists an end of a catenoid or an end of a plane in one of the closed

complements of M in �

3.

Proof. This result is well-known and essentially appears in several papers (see for

example, [1], [7]). For completeness, we will sketch the proof of the lemma.
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If M has finite total curvature, then the proof of the lemma is clear. Assume

now M has infinite total curvature. Since M has more than one end and infinite

total curvature, it is easy to prove that there exists a simple closed curve α in M

that separatesM into two noncompact components; one of which contains a compact

unstable domain and the other component has infinite total curvature, which implies

it also is unstable [6]. Separation properties imply that there is a closed complement

N of M in �

3 such that α does not bound with � 2-coefficients in N .

Let ∆ be one of the closed complements of α in M and choose a smooth compact

exhaustion α ⊂ ∆1 ⊂ ∆2 ⊂ . . . of ∆. Since ∂N has nonnegative mean curvature, ∂N

is an appropriate barrier for solving Plateau type problems in N . Let ∆̃i denote the

least-area � 2-current in N with ∂∆̃i = ∂∆i. Standard regularity results [19] imply

that ∆̃i is smooth and that a subsequence of the ∆̃i converges to a properly embedded

area-minimizing surface Σ in N with ∂Σ = α = Σ∩(M = ∂N). Separation properties

imply Σ separates N and hence Σ is orientable. Since Σ is stable and orientable, a

theorem of Fischer-Colbrie [6] implies Σ has finite total curvature. Since α does not

bound a compact cycle in N , the surface Σ is noncompact.

Consider an annular end representative A of Σ with ∂A∩M = ∅. The maximum

principle at infinity [14] implies that dist(A,M) > 0. Since A has finite total curva-

ture, it is asymptotic to an end of a catenoid or a plane. Since A is a positive distance

from M , we can pick an end E representative of this plane or catenoid to also be a

positive distance from M and hence E is contained in a closed complement of M in

�

3. This completes our sketch of the proof of Lemma 2.2. 2

Lemma 2.3 Suppose A is the image of a proper minimal embedding of S1 × [0,∞)

into �

3 such that A is disjoint from P and A has infinite total curvature. Then the

third coordinate function of A is a proper harmonic function on A.

Proof. The annular end theorem in [10] shows that if the third coordinate function

of a minimal annulus is bounded, then the annulus has finite total curvature. Thus

the annulus A must have unbounded third coordinate function.

Suppose that the lemma fails. We will derive a contradiction by using the annulus

A as a barrier to construct a closed simply connected minimal graph G over a domain
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in P with nonempty boundary and such that G is a bounded graph of bounded

gradient. Furthermore, outside of some compact set, the boundary values of G are

contained in a plane P̃ parallel to P but G is not asymptotic to its projection onto P̃ .

Since G is simply connected, the boundary components of G are each noncompact.

By Theorem 3.1, such a G must be asymptotic to its projection onto P̃ , which will

give the required contradiction. We now proceed to our construction of G.

We first want to extend the annulus A so that it has its boundary on the plane

P . (The extended annulus will not be minimal.) Let B+(R) = {x ∈ H+ |‖x‖≤ R}

for some fixed R that is large enough so that ∂A ⊂ B+(R) and so that ∂B+(R)

is transverse to A. The maximum principle implies that Q = A ∩ (�

3 − B+(R))

is a connected planar domain with one end. Let D be a pairwise disjoint collec-

tion of disks in B+(R) with ∂D = ∂Q and such that D ∪ Q is a smooth embedded

surface. Inside B+(R) we can join some point in the interior of a disk of D to a

point on P by an arc α that intersects D ∪ Q only at its end point. Removing

disk neighborhoods of the points α ∩ (D ∪ Q) and replacing these disks by the an-

nular boundary of a tubular neighborhood of α, one obtains a smooth annulus Â

with Â ∩ P = ∂Â. See Figure 2. Note that Â will not be minimal on the com-

pact subdomain Â − Int(A). Let x3 denote the third coordinate function of Â.

Figure 2

Since the lemma fails, we can define the finite number L = sup{t | x−13 [0, t] is

compact}. We will show that the set x−13 [0, L] is noncompact. If not, then the
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closed subset x−13 (L) is compact. Remove a small compact neighborhood of x
−1
3 (L)

from x−13 ([L,∞)) to obtain a surface Σ with compact boundary and x3(∂Σ) ≥ L+ ε

for some ε > 0. However since x−13 [L,L + ε/2] is noncompact, there exist points in

x−13 [L,L+ε/2] that are in Σ. Hence, x3(Σ) 6≥ L+ε/2, in contradiction to Lemma 2.1.

This proves that x−13 ([0, L]) is noncompact. It follows that x
−1
3 (L) is noncompact, a

fact we will later use.

Note that the L defined above is positive. Now choose a regular value δ of x3|A

such that δ is much larger than L and much larger than the height of ∂(Â − A).

Assume that δ is chosen large enough so that the component of A(δ) = x−13 ([0, δ]) ⊂ Â

that contains ∂Â also contains the compact set Â ∩ B+(R). This choice of δ forces

any other component of A(δ) to be contained in A, an impossibility by Lemma 2.1.

Therefore, A(δ) is connected. Note that the choice of δ is now fixed for the remainder

of the proof.

We now show that every component of ∂A(δ) except ∂Â is noncompact. If not,

then there exists a compact component φ of ∂A(δ) at height δ. This φ separates Â

into a noncompact domain and a compact domain F . By the maximum principle

F ⊂ A(δ) and since A(δ) is connected F = A(δ). But A(δ) is noncompact which is a

contradiction and proves that ∂Â is the only compact component of ∂A(δ).

Choose an embedded arc in A(δ) joining ∂Â to one of the other boundary compo-

nents of ∂A(δ) and remove a small open regular neighborhood of the arc from A(δ)

to obtain a simply connected subdomain ∆ of A(δ). See Figure 3.

Figure 3: Note ∆ is slightly shaded
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Later on we will use ∆ to construct simply connected minimal graphs and use Â

as a barrier. Let Ω denote the exterior annulus in P bounded by ∂Â. Now Â− A is

not a minimal submanifold of �

3. However, we can take a compact ball B containing

Â−A and modify the flat metric in the interior of B so that Ω∪ Â is a good barrier

for solving the Plateau problem. In other words, the smooth points of Ω ∪ Â will be

mean convex as the boundary of the subdomain N of H+ bounded by Ω ∪ Â and N

will have convex angles along ∂Â. If Â were minimal, this change of metric would

not be necessary. The point is that some minimal surfaces constructed in this new

metric will provide minimal graphs for the flat metric outside a suitably chosen region

containing B, and these graphs will eventually suffice to give our needed contradiction.

With these motivating remarks in mind, we return to the construction of the minimal

graphs.

Let C(t) denote the solid cylinder of radius t around the x3-axis. Now choose an

increasing sequence of numbers t1 < t2 < . . . diverging to infinity such that ∂C(ti) is

transverse to Â. Also assume that t1 is chosen large enough so that the ball B ⊂ C(t1)

and the part of ∂∆ strictly below height δ is contained in C(t1) (see Figure 4).

Figure 4: Note that D(ti) lies below ∆(ti)

Let ∆(ti) denote the component of ∆ ∩ C(ti) that contains ∂Â ∩∆. We want to

show that ∆(ti) is a disk. Since ∆(ti) is a planar domain, it suffices to show ∂∆(ti)

is connected. If ∂∆(ti) is not connected, then there exists a boundary curve σ such

that σ is completely contained in ∂C(ti). Since ∆ is simply connected, σ bounds a
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disk F in ∆ that goes out of C(ti) near σ. But this is impossible since, by the convex

hull property, the disk F is contained in C(ti). Thus, we see that ∆(ti) is a disk.

Since ∂N has nonnegative mean curvature and ∂∆(ti) bounds a disk in N , the

geometric Dehn’s lemma [15] implies that ∂∆(ti) is the boundary of an embedded

least-area disk D(ti) in N with ∂D(ti) = ∂∆(ti). (Recall that N is the exterior

component of Â in H+.) Recall that ∆ actually depended on the choice of a large

δ. By the curvature estimates of Schoen [17] for stable minimal surfaces, there ex-

ists a universal constant c such that for all points p ∈ D(ti) of distance d(p) from

∂D(ti), the Gaussian curvature satisfies the inequality |K(p)| ≤
c

d2(p)
. Since D(ti)

is minimal, this estimate gives good upper bounds on the second fundamental form

on that portion of D(ti) uniformly far from ∂D(ti). More precisely, consider a point

p ∈ ∂C(t) ∩D(ti). When δ À L, t1 ¿ t ¿ ti and x3(p) ≤ L + 1, then p is far from

∂D(ti) and hence the second fundamental form is arbitrarily small at p. Notice that

these estimates imply that the tangent plane at such a p is close to the horizontal.

Otherwise, since D(ti) is geometrically almost a plane in a large geodesic disk E

around p in D(ti), points on this tangent plane relatively close to p, and hence also

on E, would lie below P , which is false.

Now assume δ and tk are sufficiently large, so that for tk ≤ t ¿ ti, and p ∈

∂C(t)∩D(ti) with x3(p) ≤ L+ 1, the tangent plane at p makes an angle of less than

π/4 radians with the horizontal. We will say such a pair (δ, tk) is admissible.

Assertion 2.1 Let (δ, tk) be admissible. Then for t > tk and ti sufficiently large,

each component of D(ti)∩ (C(t)−C(tk))∩ {x3 ≤ L+1} = Wi(t) is a minimal graph

for t ≤ ti/2.

Proof. We know that ti can be chosen sufficiently large so that for each p ∈ Wi(t)

the tangent plane of D(ti) at p makes an angle of at most π/4 with P . Hence, for each

s ∈ [tk, t],Wi(t) is transverse to ∂C(s) and the slope of the intersection curves Γ(s) on

∂C(s) are less than π/4. The endpoints of these intersection curves on ∂C(s) are all

at height L+1; hence each such connected curve is a graph over the horizontal circle

(this uses the fact that these curves are embedded). Suppose β1(s) and β2(s) are

two components of Γ(s), graphs over circular arcs γ1(s) and γ2(s) with γ1(s) ⊂ γ2(s).
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Then as s varies between tk and t, β1(s) and β2(s) must remain in distinct components

of Wi(t) since the endpoints of β1(s) and β2(s) can not join together as s varies. This

proves the assertion that each component of Wi(t) is a graph. 2

Since x−13 (L) ⊂ Â is noncompact and Â− A is compact, there exists a proper

noncompact connected arc on x−13 (L) such that C(tk) intersects this arc in exactly

one point, the endpoint of the arc. Call this arc η.

Now assume that tj is chosen large enough so that ∆∩C(tk) ⊂ ∆(tj) and tj À tk.

(Such a tj exists since ∆ is proper.) Consider the annulus Ã(tj) obtained by adding

the compact strip A(δ) − ∆ to ∆(tj). Let S(tj) denote the intersection of C(tj)

with the slab bounded by the planes P and Pδ. The annulus Ã(tj) separates S(tj)

into two regions and let N(tj) denote the closed complement that is disjoint from

the open disk F ⊂ P bounded by ∂Â. Note that D(tj) ⊂ N(tj) and ∆(tj) ∪ D(tj)

bounds a compact region R(tj) of N(tj) that is disjoint from F . (See Figure 5.)

Figure 5

Consider the endpoint e of η and the projection ep = (x1(e1), x2(e), 0) ∈ P and the

vertical arc β joining ep to e. Separation properties imply that β∩D(tj) is nonempty

(odd if in general position) and has a lowest point which we will call q(j). The point

q(j) is on a component G(tj) of Wj(tj/2).

Since the G(ti) satisfy uniform curvature as well as local area bounds (since they

are graphs with uniformly bounded gradients) a subsequence of the G(ti) converge

to a properly embedded connected graph G. Note that ∂G ⊂ PL+1 ∪ ∂C(tk) and we
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know that this boundary is nonempty and smooth except at the intersection points

with the circle C(tk)∩PL+1. Note that η is disjoint from G (except in the case G ⊂ A

and η ⊂ G). Also, for each point of η the vertical downward segment intersects some

point of G, even if G ⊂ A in which case the points coincide. Since the arc η is

noncompact, G lies below η along η (i.e., the vertical segments going down from η

always intersect G ). Hence, G can not be asymptotic to the plane PL+1.

We now show that G is simply connected. Consider a closed curve γ in G. For

i sufficiently large we can lift γ to a curve γ̃ ⊂ G(ti) ⊂ D(ti). Since D(ti) is simply

connected, γ̃ bounds a disk F (ti) in D(ti) and a subsequence of these disks will

converge to a disk in G bounded by γ. This proves G is simply connected.

Since G is simply connected and noncompact, ∂G is composed of a noncompact

boundary arcs (possibly disconnected) at height L + 1 together with compact arcs

on ∂C(tk). However, outside of any compact subset of �

3, G has points below η and

hence below PL. Furthermore, G has bounded gradient since it is the limit of graphs

with a fixed bound on their gradients. By Theorem 3.1, such a graph G can not have

this asymptotic behavior; instead, it must be asymptotic to the plane at height L+1.

This contradiction proves the lemma. 2

Lemma 2.4 Suppose A is the image of a proper minimal embedding of S1 × [0,∞)

into �

3 and A is disjoint from the end E of some catenoid with vertical limit normal

vector. If A has infinite total curvature, then the third coordinate function of A is a

proper harmonic function on A.

Proof. Assume the lemma fails, i.e., x3|A is not proper. After a rigid motion of A

and E and replacement of E by a subend of E, we may assume that E is centered

along the x3-axis, E is a graph over the complement of a disk D ⊂ P , ∂E = ∂D and

E has negative logarithmic growth. Note that E ∪D separates �

3 into two regions,

an upper region and a lower region. After the removal of a compact subannulus of A,

we may assume that A is disjoint from D and hence A ∩ (E ∪D) = ∅. This implies

A either lies above or below E ∪D. If A lies below E ∪D, then the restriction of the

third coordinate function would be a proper function on the region below E ∪D and

hence a proper function on A (since A is a closed subset of this lower region). Thus,
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we may assume that A lies above E ∪D. Since A lies above D ∪E, after an upward

translation of A, we may assume x3(∂A) > 0.

Now for t ∈ [0, 1) consider a smooth family E(t) of catenoidal graphs with ∂E =

∂E(t) such that E(0) = E, E(t) is above E(s) when t > s and they converge to P

as t → 1. First note that E(t) ∩ A 6= ∅ for some t > 0. Otherwise A is disjoint

from the plane P to which the E(t) limit as t→ 1, in which case Lemma 2.3 implies

Lemma 2.4.

Let T0 = sup{t | E(t) ∩ A = ∅}. If E(T0) intersected A, E(T0) intersects A

transversely at an interior point p ∈ E(T0). However, since the E(t) vary smoothly

with t, E(t) would intersect A transversely near p for t near T0, a contradiction of the

definition of T0. Thus, D ∪ E(T0) is disjoint from A. Since x3(∂A) > 0, it is clear

that A ∩ E(t) 6= ∅ for all t > T0. (See Figure 6.)

Figure 6

Assertion 2.2 There exists an s1 > T0 such that E(s1) is transverse to A and the

region R(s1) in the lower halfspace bounded by E(s1) ∪ E(T0) intersects A in some

simply connected component ∆.

Proof of Assertion 2.2. First choose any value s′ > T0 such that E(s
′) intersects

A transversely. Let C be a component of R(s′) ∩ A.

We will now prove that ∂C has at most one compact component ∂ and if ∂ exists

then ∂ is homotopically nontrivial on A. Suppose ∂ is a compact component of ∂C
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such that ∂ is the boundary of a disk F on A which near its boundary lies above A.

Since ∂F is below P , F is also below P by the maximum principle. By translating

F downward one achieves a last point of contact with E(s′), which contradicts the

maximum principle. If ∂C contained two compact curves ∂1, ∂2 then together they

bound a compact annulus on A and a vertical translation of this annulus will again

contradict the maximum principle. This proves our above affirmation concerning the

possible compact component of boundary C. (See Figure 7.)

Figure 7

Since C ⊂ A and A is an annulus, C will be simply connected if the possible

compact component ∂ does not exist. Suppose now that ∂ of ∂C does exist. If

∂C = ∂, then A contains an end representative, namely C, that lies below E(s′)

which implies x3|A is proper, a contradiction to our assumption. Thus ∂C also has

some noncompact boundary component. Choose an arc α in C joining ∂ to some point

in a noncompact boundary component of ∂C. Since α is compact, the E(t) converge

smoothly to E(T0) as t→ T0, and E(T0)∩A = ∅, we can choose a value s1 > T0 such

that α lies above E(s1). But it then follows that there is a proper noncompact arc β

in A, beginning at ∂A, that lies above E(s1). Hence, A ∩R(s1) = (A− β) ∩R(s1).

Let ∆ be a component of R(s1) ∩ A and note that ∆ is contained in the simply

connected region A − β. Thus, to prove ∆ is simply connected, it suffices to prove

that every boundary curve in ∆ is noncompact. If ∂1 were a compact boundary

component of ∆, then ∂1 bounds a disk D1 ⊂ A − β whose boundary lies in E(s1)
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and which lies above E(s1) near its boundary. Again the usual application of the

maximum principle proves that D1 cannot exist which completes the proof that ∆ is

simply connected. This completes the proof of Assertion 2.2. 2

We will use ∆ as a barrier to construct a minimal graph G with boundary in E(s2)

for some s2, s1 > s2 > T0, in a way similar to how we used the surface ∆ defined in

the proof of Lemma 2.3 as a barrier to construct a minimal graph there. We will use

∂R(s2) also as a barrier so that G ⊂ R(s2). As in the proof of Lemma 2.3, let C(t)

denote the solid cylinder of radius t and choose a divergent sequence t1 < t2 < t3 < . . .

such that C(ti) is transverse to ∆. Assume that C(t1) contains ∂E and some fixed

point q ∈ ∆.

Let N be the closed complement of R(s1)−∆ that contains E(T0) in its boundary.

Let ∆(ti) be the component of ∆ ∩ C(ti) containing the point q. The same proof as

in Lemma 2.3 shows ∆(ti) is a disk. Since ∂N is a good barrier for solving Plateau

problems, we can replace ∆(ti) by an embedded disk D(ti) of least area in N .

Now consider a sequence s1 > a1 > a2 > a3 > . . . converging to T0 and consider

the catenoids E(ai). The curvature estimates of Schoen imply that for n sufficiently

large, there are curvature estimates for D(ti) ∩R(an) ∩ ∂C(t) when t¿ ti.

Assertion 2.3 For n À 0, 0 ¿ t ¿ ti, and p ∈ D(ti) ∩ ∂C(t) ∩ R(an), the tangent

plane at p is within π/4 of the horizontal.

Proof. It is sufficient to prove that the tangent planeD(ti) at p is close to the tangent

plane of E(T0) at the projection point π(p) ∈ E(T0) on the same vertical as p. (Close

here means that the angle between the two planes is small.) This is true since if t is

sufficiently large, the tangent plane to E(T0) along the circle E(T0)∩ ∂C(t) is almost

horizontal.

For fixed large n consider the vertical interval I(n, p) joining π(p) to E(s1). Let

Tp be the translation of �

3 sending π(p) to the origin. Let H be the homothety

of �

3 that sends Tp(I(n, p)) to the vertical interval I of height 1 at the origin. Let

f(p,n) = H ◦ Tp.

Fix a compact cylinder

K = {(x1, x2, x3) | x
2
1 + x

2
2 ≤ 1, −1 ≤ x3 ≤ 2} .
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Consider the intersection Q(p) = f(p,n)(R(s1))∩K. As t→∞, Q(p) converges to the

subcylinder K of K of height 1 with axis I. The image of E(s1) converges to the top

disk of K, i.e., K ∩ {x3 = 1}, the image of E(T0) in K converges to the bottom disk

of K and the image of E(an) in K converges to the horizontal disk of K of height

hn =
s̃1−ãn

ãn−T̃0

where ∼ means the logarithmic growth of the catenoids in question.

It follows that when t and ti are large that the distance from f(p,n)(R(an))∩K to

f(p,n)(∂D(ti))∩K is greater than 1−hn

2
. This gives uniform curvature estimates, using

Schoen’s inequality, for points of Σn = f(p,n)(D(ti)∩R(an))∩K and hence the second

fundamental forms of Σn are uniformly bounded. Thus, there exists an ε > 0 and an

h > 0 independent of n such that for each q ∈ Σn,Σn is a graph of height at most h

over the disk of radius ε in the tangent plane to Σn at q. Since hn → 0 as n→∞, it

follows that the tangent planes to Σn converge to the horizontal as n→∞, otherwise

the Σn would cross f(p,n)(E(T0)) ∩K. This proves Assertion 2.3. 2

Fix k and n sufficiently large and tk ¿ ti. Then by Assertion 2.3, the tangent

plane to points p ∈ D(ti) ∩ (C(t) − C(tk)) ∩ R(an) are π/4 close to the horizontal,

for tk ≤ t ≤ ti/2. A small modification of the arguments at the end of the proof

of Lemma 2.3 shows that the components of D(ti) ∩ (C(ti/2) − C(tk)) ∩ R(an) are

graphs. Furthermore, the arguments there show that some subsequence of these

graphs converges to a simply connected minimal graph G contained in the region

between E(an) and E(T0) and that ∂G consists of a compact part in C(tk) and the

rest in E(an). Furthermore, we have G is not contained in E(an).

We now apply Theorem 3.1 to G and the part of the catenoid E(an) which is a

graph over the same domain of P as G. Since the difference of these two graphs grows

at most logarithmically, we have a contradiction which proves Lemma 2.4. 2

Proof of Theorem 1.1. Suppose M ⊂ �

3 is a properly embedded minimal surface

with more than one end. Assume, after a possible rotation of M , that the limiting

normal line of E is vertical. By Lemma 2.2 there exists an end E of a catenoid or

the end of a plane in one of the closed complements of M in �

3. Let A be an annular

end ofM . If A has finite total curvature, then the theorem holds for A. Suppose now

A has infinite total curvature. If E is the end of a plane Q, then Q ∩ A is compact.

Hence, A has a subend Ã that is disjoint from a horizontal plane or else A is disjoint
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from the end of a vertical catenoid. Thus, Lemmas 2.3 and 2.4 now imply that x3|A

is a proper harmonic function, which completes the proof of Theorem 1.1. 2

3 The Uniqueness of Certain Minimal Graphs

Theorem 3.1 Let u1, u2 be solutions of the minimal surface equation on a domain Ω

with some component of ∂Ω noncompact. Assume u1 − u2 = u is of compact support

on ∂Ω and ∇u1,∇u2 are bounded. Let M(r) = sup{|u(x)|/|x| = r}.

1. If M(r) is bounded, then M(r)→ 0 as r →∞;

2. if M(r) is not bounded, then for every integer n > 0,

lim inf
M(r)

(ln(r))n
> 0 .

In particular, for any constant K, lim inf M(r)
K ln r

> 0.

Proof. We shall use the techniques in [2]. Let Ωr = {x ∈ Ω/|x| < r}, Cr = Ωr∩{|x| =

r} and u1 = u2 on ∂Ω ∩ {|x| ≥ r̃0}. Let p =
∂
∂x
(u1 − u2) = ux , q =

∂
∂y
(u1 − u2) = uy,

w =
√
1 + |∇u|2 and pi =

∂
∂x
ui, qi =

∂
∂y
ui for i = 1, 2.

Since u1, u2 satisfy the minimal surface equation, the form

(
p1
w1
−
p2
w2
) dy − (

q1
w1
−
q2
w2
) dx

is closed; we write this form as dψ, ψ a (multi-valued) function on Ω.

A direct calculation (cf. [2]) shows:
∫ ∫

Ωr

|dψ|2 ≤
∫

∂Ωr

u dψ .

Let R > R0 > r̃0, and µ(r) =
∫ ∫

Ωr

|dψ|2, we have:

µ(R0) +
∫ ∫

ΩR−ΩR0

|dψ|2 ≤
∫

∂ΩR

u dψ =
∫

∂ΩR∩{|x|≤r̃0}
u dψ +

∫

CR

u dψ

since u = 0 on ∂Ωr ∩ {|x| > r̃0}. Let c0 =
∫

∂ΩR∩{|x|≤r̃0}
u dψ and µ̃(R) = µ(R) − c0.

Then the last inequality may be written:

µ̃(R0) +
∫ ∫

ΩR−ΩR0

|dψ|2 ≤
∫

CR

u dψ ≤ sup
|x|=R

|u(x)|η(R) ,

where η(R) =
∫

CR

|dψ| .
(3.1)
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By Cauchy-Schwarz we have:

η(r)2

2πr
≤
∫

Cr

|dψ|2 .

Then inequality 1. becomes:

µ̃(R0) +
∫ R

R0

η(r)2

2πr
dr ≤M(R)η(R) . (3.2)

Since |∇u1|, |∇u2| are bounded, we assert that there is a constant d0 > 0, so that

d0|∇u| ≤ |dψ| .

We postpone the proof of this assertion until the end of the proof of Theorem 3.1.

On Cr, r > r̃0, u is zero on ∂Cr (which is nonempty by our hypothesis that ∂Ω

has a noncompact component) and its’ maximum value on Cr is M(r), so
∫

Cr

|∇u| ≥

d1M(r), for some positive constant d1, and

d0M(r) ≤ η(r), d0 = d0 d1 . (3.3)

Since u is the difference of two solutions of the minimal surface equation, M(r)

can not have a local maximum for r > r̃0, by the maximum principle. Hence if

M(r), r > r̃0 is monotone increasing at one point, it remains monotone increasing for

larger values of r.

In particular, if either M(r) does not tend to zero as r → ∞ or if M(r) is

unbounded, there is a positive constant c1 such that M(r) ≥ c1 for r larger than

some R0 ≥ r̃0. Thus η(r) ≥ d0c1 = c2 > 0 for r ≥ R0 by 3.3. When η(r) ≥ c2 > 0 for

r ≥ R0, we have for R ≥ R0; µ(R) ≥
∫ R

R0

∫

Cr

|dψ|2dr ≥
∫ R

R0

η(r)2

2πr
dr →∞, as R→∞.

In particular, µ̃(R) = µ(R)− c0 > 0 for R large.

Now we shall prove 1. Assume, on the contrary, that M(r) does not tend to zero

and M(r) is bounded, M(r) ≤ A. Let R0 be large so that µ̃(R0) > 0. Inequality 3.2

yields:

µ̃(R0) +
∫ R

R0

η(r)2

2πr
dr ≤ Aη(R) . (3.4)

Let J be the interval [R0, R0 exp(4πA
2/µ̃)], µ̃ = µ̃(R0), and ξ(r) the function on J :

2A

µ̃
−

1

ξ(r)
=

1

2πA
ln
(
r

R0

)
.
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Then
ξ′(r) = ξ(r)2/2πAr and

ξ(R0) =
µ̃

2A
<
µ̃

A
≤ η(R0) (by 3.4).

Hence R0 is in the set {R ≥ R0 | for all R
′, R0 ≤ R′ ≤ R, ξ(R′) < η(R′)}, and this

set is open. It is closed (by 3.4 and) since Aξ(R) = µ̃
2
+
∫ R

R0

ξ(r)2

2πr
dr.

It follows that this set is J ∩ [R0, R]. Since ξ(r) → ∞ as r → R0 exp(
4πA2

µ̃
)

from below, and η is defined there, ξ(r) < η(r) is impossible at this point, so R <

R0 exp(
4πA2

µ̃
). This is a contradiction since R is arbitrary in the above argument, and

Case 1 of Theorem 3.1 is proved.

Notice that the above argument proves the following. Suppose thatM(r) is mono-

tone increasing from some R̃0 on (e.g., if M(r) is unbounded as in case 2 of our

theorem). Choose R̃0 so that µ̃(R̃0) > 0 and let R1 > R̃0, M(R1) = A. Then

R1 < R̃0 exp(
4πA2

µ̃
) , i.e.

A =M(R1) > (
µ̃

4π
ln(

R1

R̃0
))1/2 , µ̃ = µ̃(R̃0) . (3.5)

We estimate µ(R0), R0 ≥ R̃0:

µ(R0) ≥
∫ R0

R̃0

∫

Cr

|dψ|2 ≥
∫ R0

R̃0

η(r)2

2πr
dr ≥

∫ R0

R̃0

(d0M(r))
2

2πr
dr

(the last inequality by 3.3). By 3.5, one has

µ(R0) ≥ c3µ̃(R̃0) ln(
R0

R̃0
)2 , c3 =

d20
16π2R̃0

. (3.6)

Now µ̃(R0) = µ(R0) − c0, so estimate M(R1) with 3.5, 3.6 (with R0 in place of

R̃0) and R0 =
√
R1R̃0:

M(R1) >
(
µ̃(R0)
4π
ln
(
R1

R0

))1/2
=
(
(µ(R0)−c0)

4π
ln
(
R1

R0

))1/2

≥ 1
2
√
π

(
c3µ̃(R̃0) ln

(√
R1

R̃0

)2
ln
(√

R1

R̃0

)
− c0 ln

(√
R1

R̃0

))1/2
.

The growth of this last expression is like

ln

(√
R1

R̃0

)3/2
∼ ln

(
R1

R̃0

)3/2
.
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Now it is clear that one can iterate this procedure (bound µ(R0) from below by a

higher power of ln
(

R0

R̃0

)
and then M(R1)) to obtain any power of ln(R) as a growth

rate. 2

We now prove our earlier assertion that when |∇u1|, |∇u2| are bounded that there

is a constant d0 > 0, so that d0|∇u| ≤ |dψ|.

The normals to the graphs of u1, u2 are n1 = (−
p1
w1

,− q1
w1

, 1
w1

) and n2 = (−
p2
w2

,− q2
w2

, 1
w2

),

and they are bounded away from the equator of S2 since |∇u1|, |∇u2| are bounded.

Thus the vector n1 − n2 is bounded away from the vertical whenever n1 6= n2. It

follows that |n1 − n2| and the length of the projection of n1 − n2 (which is |dψ|) are

of the same order; i.e. there exists a c > 0 such that

1

c
|dψ| ≤ |n1 − n2| ≤ c|dψ| .

So it suffices to show |n1− n2| and |∇u| are of the same order. Consider the map

I that radially projects the open upper hemisphere of S2 to the plane P = {x3 = 1}.

With respect to the metric d(p, q) = |p−q| on S2, I is a quasi-isometry on any compact

subset of the open hemisphere. Since I(n1) = (−p1,−q1, 1) and I(n2) = (−p2−q2, 1),

then |∇u| = |I(n1)− I(n2)| has the same order as |n1 − n2|.
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