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Introduction

In this paper we shall discuss hypersurfaces M of space forms of constant curva-

ture; where curvature means one of the symmetric functions of curvature associated

to the second fundamental form. The values of the constant will be chosen so that

the linearized equation will be an elliptic equation onM . For example, for surfaces in

�

3 the two possible curvatures are the mean curvature H and the Gaussian curvature

K. The linearized equation for H is always elliptic and for K it is elliptic when the

constant K is positive. In hyperbolic 3-space, the constant K > −1 yields an elliptic

equation. Hypersurfaces of constant scalar curvature S2 will be elliptic when S2 > 0.

We obtain height estimates for compact embedded hypersurfaces of �

m+1 whose

r + 1’st symmetric function of curvature, Sr+1, is a positive constant (§6.1.): Given

such a hypersurface M , with ∂M contained in a hyperplane P , then the maximum

distance of a point of M to P is

2×
(
Cr+1

Sr+1

) 1

r+1

, Ck =

(
m
k

)
.

So for constant mean curvature in �

3, it is 2/H (proved by Heinz: cf. §6), and for

constant K > 0, it is 2/
√
K.

As an application of this height estimate we prove (§8.1.), a theorem of P. Hartman

[10]: Let M be a complete embedded hypersurface of �

m+1 with Sr+1 a positive

constant. If M has nonnegative sectional curvature then M is isometric to Sp × �

`,

Sp a round sphere (in a linear p+1 plane of �

m+1). For scalar curvature (r = 1) this

result was obtained by Cheng and Yau [6].
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In Section 1, we discuss an obstruction for a smooth closed curve in �

3 to bound

a surface of positive Gaussian curvature; not necessarily constant. Perhaps the main

points of §1 are that there exists such an obstruction and the questions that arise.

In Section 2, we state the existence theorems that are relevant to us. Our main

interest is the boundary value problem: when does a given curve bound a positive

constant Gaussian curvature surface?

In Section 3, we discuss the equations of Reilly and the variational problem whose

critical points are the hypersurfaces Sr+1 equals constant.

We derive the (known) first variation equation of the second fundamental form and

use this to calculate the first variation of the symmetric functions Sr+1 of curvature.

We discuss the linearized operator Lr in this equation and its Jacobi fields. An

important point is that Lr is a divergence operator: Lr(f) = div(Tr∇f), Tr the r’th

Newton transformation of the second fundamental form.

In Section 5, we derive the formula for Lr(X) and Lr(n) (in vector form), X

position and n the unit normal. Each is a linear combination of X and n whose

coefficients involve S1, Sr, Sr+1, and Sr+2, (§5.2.).
In Section 6, we apply the above formulae to obtain the height estimates. A basic

tool here are inequalities of Newton:

Hi−1 Hi+1 ≤ H2
i (1 ≤ i < m) ,

where Hi is the i’th mean curvature, Hi

(
m
i

)
= Si, and all real values are allowed

for the principal curvatures (positive and negative!).

In Section 7, we derive some applications of the height estimates: Hartman’s

theorem, a balancing formula and a theorem concerning embedded constant curvature

hypersurfaces with boundary a sphere.

1 An Obstruction to the Existence of Surfaces of

Positive Curvature

Let C ⊂ �

3 be a smooth immersed closed curve with no inflection points (points

of zero curvature). Let n:C → S2 denote the unit principal normal to C. Let I(C)

be the regular homotopy class of n(C), i.e., homotopies of n(C) in S2 among curves

with nonvanishing tangent vector (this is the same as the class represented by n(C)

in the unit tangent bundle of the sphere).

It is well known that I(C) takes its values in Z2; embedded curves on S2 represent

the zero of Z2, and the nonzero element is represented by a figure eight. If one adds
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a loop to a figure eight, this is zero as indicated by the regular homotopy in figure 1.

Figure 1

Theorem 1.1 Let f :M → �

3 be an immersion, C = f(∂M) and f(M) of positive

curvature. Then I(C) = 0.

Proof. Assume first thatM is a disc {0 ≤ x2+y2 ≤ 1}. Let C(t) = f(x2+y2 = t), for

0 < t ≤ 1. For t = ε sufficiently small, C(ε) is embedded and close to a convex planar

curve in �

3, since our positive curvature hypothesis implies that fM is strictly locally

convex in a neighborhood of f(0, 0). Thus n(C(ε)) is an embedded curve close to a

great circle of S2 and consequently I(C(ε)) = 0. Since n(C) = n(C(1)) is regularly

homotopic to n(C(ε)), we have I(C) = 0. We have used here the fact that if α(s) is a

curve on a surface of positive curvature with nonzero tangent at each point, then the

curvature κ(s) of α is nonzero at each point hence the derivative (with respect to arc

length) of the unit normal nα(s) of α is never 0 (it equals −κ(s)tα(s) + τ(s)bα(s)).

Thus a homotopy of α on the surface of positive curvature yields a regular homotopy

on S2 of nα(s). 2

In general, M is an orientable surface with ∂M = C since K(M) > 0 so the

mean curvature vector orients M . We remark that the class I(C) can equally well

be defined as the regular homotopy class of the image of the tangent vector of C:

C has nonvanishing curvature at each point so (cos θ)t(s) + (sin θ)n(s) is a regular

homotopy between the tangent map t(s) ∈ S2 of C and the normal map n(s). The

two regular homotopy classes are then represented by a circle on S2 with its’ tangent

and a figure eight on S2 with its’ tangent.

Now let C1, C2 be immersed closed curves on M with K(M) > 0. Let x ∈ C1, y ∈
C2, x 6= y, and let α be an arc on M joining x to y, transverse to C1 at x and C2 at

y. Let C1 #C2 be a smooth curve on M obtained by thickening α, to obtain two arcs
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α1, α2 joining C1 and C2, and then C1 #C2 is C̃1α1C̃2α2 smoothed along the corners;

cf. figure 2.

Figure 2

We claim that I(C1 #C2) = I(C1) + I(C2). This can be seen as follows. Let z be

a point on α distinct from x and y. Perform a regular homotopy of C1 by sliding a

neighborhood of x on C1, along α until a point just before z. Similarly do a regular

homotopy of C2 by sliding a neighborhood of y on C2 along α until z. Now C1 #C2

can be constructed with support in a neighborhood N of z; cf. figure 3.

Figure 3

Next perform regular homotopies of C1 and C2, leaving N fixed, to standard circles

or figure eights. Then the formula I(C1 #C2) = I(C1) + I(C2), in Z2, is clear.

Now we can prove Theorem 1. Decompose M into pairs of pants P1, · · · , Pn, and
an annulus A (a pair of pants is topologically a disc minus two (interior) open discs);

cf. figure 4.
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Figure 4

Consider the pair of pants P1, let C1, C2 be the other boundary curves of P1, besides C.

Let α be an arc on P1 joining a point of C1 to a point of C2. Then C1 #C2 and C bound

an annulus on P1 hence I(C) = I(C1 #C2), and we conclude I(C) = I(C1) + I(C2).

The same reasoning in P2 implies I(C) = I(C̃) where C̃ is ∂P2−(C1∪C2). Continuing

in this way we obtain I(C) = I(∂A). Since A is an annulus, the two components

∂1, ∂2 of ∂A are isotopic. M has positive curvature so the normal images of ∂1, ∂2 are

regularly homotopic. Hence I(C) = I(∂A) = 2 I(∂1) = 0.

Now we can give an example of a Jordan curve with no inflection points which

bounds no surface with K(M) > 0.

Consider the curve C of figure 5.

Figure 5

The arc
→
pq is chosen to be part of a helice and the arc

→

ba part of a circle. Then the

tangent (or normal) spherical image has one point of self intersection hence I(C) 6= 0.

We remark that in the proof of Theorem 1, it is rather easy to see why C bounds

no immersed disk of positive curvature when I(C) 6= 0. For the C of figure 5, it

is also simple to show that C bounds no higher genus immersed surface of positive
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curvature. One observes that C can be constructed so the height function has exactly

two critical points on C. Then if M is an immersed surface with ∂M = C and the

height function is a Morse function on C (which we can assume) then one has the

formula:

i(M) +
1

2
(T (M)− F (M)) = 1− 2g .

Here i(M) are the number of interior critical points of M , T (M) the number of true

extremum of the height function on ∂M , F (M) the number of false extremum, and

g = the genus of M . We used K(M) > 0 in this formula as each interior critical

point has index one. Now using the fact that there are exactly two critical points on

C, it’s easy to see that M can not exist.

1.1 The self-linking number

Christian Bonatti has suggested another invariant J(C): the linking number of

C and the curve C(ε) obtained by going ε along the normal n of C. For ε small

and C with no inflection points, C(ε) is disjoint from C and J(C) is a well defined

integer. Bonatti observed that J(C) is zero if C bounds an embedded surface of

positive curvature. For if M is such a surface then the scalar product of n(C) and

the normal N of M along C is never zero. Therefore, the curve C(ε) is isotopic, in

the complement of C, to the curve C̃ on M obtained by going ε along the normal to

M . Since M is embedded, C̃ is disjoint from M , hence the intersection number of C̃

and M is zero. Thus the same holds for C(ε) and J(C) = 0. Notice that M need

have positive curvature only near C for this argument, and be orientable.

For the curve C of figure 5, J(C) = 1, so C bounds no embedded M of positive

curvature.

We observe that J(C) mod 2, is an obstruction to the existence of an immersed

surface of positive curvature with boundary C. For if we supposeM is such a surface,

we can assume the double points ofM are in general position; we consider f :M → �

3

the immersion. The double points, D(M), is a one dimensional submanifold of M ,

composed of embedded cycles in Int(M) and embedded arcs joining two points of

∂M . Now, as in the previous paragraph, we must show the intersection number of C̃

and M is even. If C̃ is disjoint from D(M) then as before, the intersection number

is zero. C̃ can be chosen close enough to C so that the only points of intersection

of C̃ with D(M) are the arcs of D(M) joining two points of ∂M . Assuming C̃ is

transverse to D(M), it is clear that this number is even. When C̃ is lifted off M by

N , each intersection point of C̃ and D(M) gives rise to one intersection point of C̃

and M . Thus J(M) = 0 mod 2.
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1.2 I(C) = J(C) mod 2

That the two invariants are the same is a consequence of a theorem of Feldman:

there are two classes of immersed closed curves in �

3 with no inflection points; the

circle represents one class and the curve of figure 5 represents the other class [8].

Naturally, two immersions in the same class means they are homotopic through

immersions with no inflection points. Clearly I(C) and J(C) mod 2 do not change

during such a homotopy so to prove they are equal it suffices to check this for the

circle and the curve of figure 5.

1.3 Vertices of C

Generically, an immersed curve C in �

3 has nonvanishing curvature and torsion

that vanishes at isolated points. It is reasonable to consider vertices of a space curve

as points where the torsion vanishes. For planar curves, vertices are points where

the curve is locally on one side of its osculating circle. Clearly, vertices are preserved

under Möbius transformations so when one projects a plane curve stereographically

into the unit sphere, the image curve is locally on one side of its osculating plane at

the image of the vertex, i.e., it is a point of vanishing torsion.

Now if C is a space curve that bounds a surface M of positive curvature, there

are two questions one can pose:

• does C have at least four vertices?

• does n(C) have at least four vertices?

The classical four vertex theorem answers the first question affirmatively for C

an embedded curve on the sphere S2. Indeed, Barner has proved this to be true for

embedded curves on strictly convex bodies [2].

Segre has proved that an embedded curve C in �

3 whose tangent spherical image

is an embedding and has at least four vertices [22].

A curve C that projects injectively onto a planar convex curve has an injective

tangential image hence at least four vertices. Such a curve also bounds surfaces of

positive curvature.

1.4 Higher dimensions

Let C be a codimension two immersed sphere in �

m+1. When does C bound an

immersed submanifold M ⊂ �

m+1 of positive curvature? We now have a choice of
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curvatures for which to pose this question; any symmetric function of the second

fundamental form is a candidate. The obstruction I(C) generalizes directly to the

Gauss-Kroneker curvature, the determinant of the second fundamental form. This

is equivalent to finding a locally convex hypersurface M with ∂M = C. The mean

curvature vector H of C would then be nonvanishing and point locally to the convex

side of M . As before, the map C 7→ Sm given by the (normalized) mean curvature

vector, is regularly homotopic to the equatorial inclusion map, whenM is an immersed

m-ball that is locally convex. Thus, the regular homotopy class is trivial.

It would be interesting to find obstructions for the scalar curvature. When the

scalar curvature is positive, the Gauss map of M has rank at least two at each point.

2 Some Existence Theorems

Now consider curves C ⊂ �

3 that do bound surfaces of positive curvature. When

can one find such a surface M of constant positive curvature? This should be true

for curves C on the boundary of a convex body.

Let us denote a surface M of constant positive Gaussian curvature a K-surface.

We now state some of the results we know about this problem.

The fundamental theorem was obtained by Caffarelli, Nirenberg and Spruck.

Theorem 2.1 ([4]) Let C be a smooth curve that admits an orthogonal injective

projection onto a strictly convex planar curve ∂Ω. Then C bounds a K-surface M .

M is a graph over Ω.

In fact, they proved the above theorem in dimension n. The value of K depends

on C and if one K-graph with boundary C exists, then they also exist for all K ′ in

the interval (0, K).

Their technique to find the K-surface is the continuity method. Start with some

graph u0 over Ω with C as boundary values and of positive curvature; this is easily

obtained from the convexity of ∂Ω. Consider the equation:

det(utij) = ct(1 + |∇ut|2)3/2 + (1− t)K0(1 + |∇u0|2)3/2 .

Here K0 is the Gaussian curvature of u0, c a constant, 0 < c < infK0, and ut,

0 < t ≤ 1 solutions one looks for, each ut has the same boundary values C. By the

formula for curvature, if u1 exists its curvature is c and the problem is solved.

One proves the set of t for which one can solve the equation for ut is open and

closed. The implicit function theorem in Banach space yields open rather easily. The
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difficult point is closed; here they work hard to obtain a priori C2 estimates for the

solutions.

Using the same techniques, Hoffman, Rosenberg and Spruck have proved:

Theorem 2.2 ([11]) Let Ω be a planar annulus with boundary two strictly convex

curves. Let C be a curve (with two components) that admits an orthogonal injective

projection onto ∂Ω. Assume C bounds some graph over Ω of positive curvature. Then

C bounds a graph over Ω that is a K-surface.

We remark that the hypothesis that C bound some surface of positive curvature

is necessary for ∂Ω bounds no such surface.

Guan and Spruck have announced a generalization of Theorem 2 to radial graphs

over certain annular domains on the sphere S2. Their result will have many interesting

consequences. We mention one:

• If C1, C2 are convex curves in parallel planes then there exists a K-surface M

with boundary C1 ∪ C2; M is topologically an annulus (this is unknown for

H-surfaces, H the mean curvature).

In this spirit there are some natural problems that arise:

• How many K-surfaces span a given link Γ? Is it finite for most Γ? (we do

not know the answer even for Γ = C1 ∪ C2, convex curves in parallel planes).

A major difficulty is the lack of boundary regularity: there are K-surfaces of

revolution that are bounded by two circles that are not C2 up to the boundary.

• Let C be a convex planar curve and M1 a K-graph with boundary C (which

always exists for K > 0, small enough, by 2.1). Does C bound a distinct K-

surface M2? (The analogous result for H-surfaces was proved by Bresis and

Coron, and Struwe [3, 23]: the existence of a small bubble with boundary C

implies the existence of a large such bubble).

We believe there is a Bridge principle: Let M1 and M2 be K-surfaces in �

3 with

nonempty boundary. There is an arc α joining ∂M1 to ∂M2 and one can thicken α

to form ∂M1#∂M2 = Γ so that Γ bounds a K-surface M . M is near M1 ∪M2∪ (the

bridge along α).

The results we have discussed should also hold in hyperbolic space. We mention

some of the work we have done.
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Theorem 2.3 ([18]) Let P be a horosphere in �

3 and Ω ⊂ P a compact domain with

smooth boundary. We parametrize �

3 by (x, t), x ∈ P and t the hyperbolic distance

along the geodesic through x, orthogonal to P . If C is a graph over ∂Ω (in the (x, t)

coordinate system) then C bounds a K-surface M for some K > −1, and M is a

graph over Ω. Moreover, for any K ∈ (−1, 0), there exists a K-surface M (a graph

over Ω) such that ∂M = ∂Ω.

It is natural to ask what curves at infinity of �

3 are the asymptotic boundary

of K-surfaces. Consider the unit ball model of �

3 with the sphere at infinity the

boundary of the ball. Assume P is the equatorial plane and the (x, t) coordinate

system is the latitude-longitude system on S∞. We prove:

Theorem 2.4 ([18]) Let C ⊂ S∞ be a smooth curve which is a graph over the

equator of S∞. Then there is a K-surface M , for some K ∈ (−1, 0), with asymptotic
boundary C, and M is a graph over P . Moreover, any K-surface with asymptotic

boundary C,K > −1, and embedded, is a graph over P . For a given K > −1, there
are at most two such M .

Francois Labourie has done much interesting work on K-surfaces in hyperbolic

manifolds [14, 15]. One of his results provides many complete K-surfaces in �

3, for

each K ∈ (−1, 0):

Theorem 2.5 Each end of a hyperbolic 3-manifold is foliated by a family of K-

surfaces, K varying from −1 to 0.

3 The Equations of Variation of Reilly

LetM be an oriented hypersurface of a space Nm+1 of constant sectional curvature

c; c = −1, 0, or 1. Let n be a unit vector field normal to M in N and let Y = fn

be a vector field along M for some smooth function f on M . We think of Y as a

variation vector field of M in N and let ψt:M → N satisfy ψ0(x) = x for x ∈M and
dψt(x)
dt

∣∣∣
t=0

= Y (x) , for all x ∈ M . When ∂M 6= ∅, we assume f and ∇f vanish on

∂M .

Let A(x) be the endomorphism of the tangent space Tx(M) defined by the second

fundamental form of M in N and for each r, 0 ≤ r ≤ m, let Sr(x) be the r’th

symmetric function of curvature of M ; Sr =

(
n
r

)
Hr, Hr the r’th mean curvature

of M .
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Robert Reilly has derived the variation formulas for integrals of the form:

∫

M
f(S1, . . . , Sm, h,Q)dV ,

where h is the support function and 2Q is the square of the length of the position

vector (c = 0) [17]. In particular:

d

dt

∫

M
SrdV =

∫

M
f {−(r + 1)Sr+1 + c(m− r + 1)Sr−1} dV = δY

(∫

M
Sr

)
.(3.1)

The last equality is simply notation. Now let c = 0 and let h(x) =< x, n(x) > be the

support function of M ⊂ �

m+1. It is well known:

δY

(∫

M
h
)
=

1

m+ 1

∫

M
f .(3.2)

Thus for any real number a, we have:

δY

(∫

M
(Sr + ah)

)
=
∫

M
f
{
−(r + 1)Sr+1 +

a

m+ 1

}
.(3.3)

Hence the critical points of the functional M 7→
∫

M
(Sr + ah)dV are those manifolds

M for which Sr+1 is the constant a
(r+1) (m+1)

. We remind the reader that we assumed

the variation was normal to M and C1 fixed on ∂M .

In Reilly’s calculations appears an operator “T ijr λ,ij” which is fundamental to

our problem. We will introduce and derive the equations of this operator in a form

suitable to our problem. We refer the reader to [24] and [25], where calculations of

this nature appear.

We now assume Y = fn is a normal variation of Mm ⊂ Nm+1(c) = N and M(t)

the hypersurfaces arising from this variation, M =M(0). We make no hypothesis on

f/∂M . Let A(t) be the second fundamental form of M(t). Then one has the known

equation:
d

dt

∣∣∣
t=0

A(t) =
•

A (0) = D2f + cfI + fA2 .(3.4)

For the readers convenience, we now indicate how 3.4 is derived. Let ψ∗:M× � →
N be the variation of M , ∂

∂t
7→ fn at t = 0, and for u, v ∈ Tx(M) we abbreviate the

metric on M(t) < ψt∗(x), ψt∗(v) >=< u, v >, and II(t)(u, v) = − < ∇un, v >=<

At(u), v >. Then

−
•

II (t) =< ∇ ∂
∂t
∇un, v > + < ∇un,∇ ∂

∂t
v >

=< ∇u∇ ∂
∂t
n, v > − < R

(
∂

∂t
, u

)
n, v > + < ∇un,∇v

(
∂

∂t

)
> ,
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the latter part of the equation holds since ∂
∂t

and v commute. Now < ∇ ∂
∂t
n, n >= 0

so < ∇ ∂
∂t
n, u >= − < n,∇ ∂

∂t
u >= − < n,∇u(fn) >= −df(u), hence ∇ ∂

∂t
n = −

grad f = −∇f . Thus

−
•

II (t) = − < ∇u∇f, v > −f < R(n, u)n, v > + < ∇un,∇v(fn) >

= −D2f(u, v)− fc < u, v > +f < A2
t (u), v >

since < ∇un, df(v)n >= 0.

Now II(t) =< At(u), v > so

•

II (t) =< ∇ ∂
∂t
(At(u)), v > + < At(u),∇ ∂

∂t
v >

=<
•

At (u), v > + < At(∇ ∂
∂t
u), v > + < At(u),∇ ∂

∂t
v >

=<
•

At (u), v > −2f < A2
t (u), v > .

This together with the last equation for
•

II (t) yields 3.4.

4 The Linearized Equations and their Jacobi Fields

We now assume Mm ⊂ Nm+1(c) and M(t) is a normal variation of M , as in the

previous paragraph, with Y = fn and no assumption on the boundary values of f .

We have Sm(t) = det(A(t)) and S1(t) = trace(A(t)). Differentiating these equa-

tions at t = 0 we obtain:

•

Sm (0) = det(A) · trace( •A (0)A−1)

•

S1 (0) = trace(
•

A (0)) .

Now using equation 3.4, we have

•

Sm (0) = trace(|A|D2f ◦ A−1) + fcSm−1 + f |A|S1(4.1a)

•

S1 (0) = ∆(f) +mcf+ ‖ A ‖2 f .(4.1b)

Here |A| = detA and ‖A‖2 = tr(A2) is the square of the length of the second

fundamental form. When m = 2, K = detA+ c, is the intrinsic curvature of M .

In general, to calculate
•

Sr+1 (0), one introduces the r’th Newton transformation:

Tr = SrI − Sr−1A+ · · ·+ (−1)rAr, or inductively, Tr = SrI − ATr−1, T0 = I [17].

The properties of Tr we need are [17]:
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• Newton’s formula: (r + 1)Sr+1 = trace(ATr)

• trace(Tr) = (m− r)Sr

• trace(TrA
2) = S1Sr+1 − (r + 2)Sr+2

• the eigenvalues of Tr are
∂Sr+1

∂λj
, λj, 1 ≤ j ≤ m, the eigenvalues of A

• •

Sr+1 (0) = trace(
•

A (0)Tr)

These properties are algebraic, except for the last; we will subsequently prove this

last property for the reader’s convenience.

Theorem 4.1
•

Sr+1 (0)(f) = Lr(f)+ (c(m− r)Sr)f +(S1Sr+1− (r+2)Sr+2)f where

Lr(f) = div(Tr∇f).

Proof. Combining equation 3.4 and the properties of Tr one has:

•

Sr+1 (0) = trace(D2f · Tr) + (c(m− r)Sr + S1Sr+1 − (r + 2)Sr+2)f .

Hence one needs to show trace(D2f ◦ Tr) = div(Tr∇f). This clearly follows from:

trace(u→ ∇T (u)v) = trace(u→ ∇uTv)(4.2)

for all v ∈ T (M), T = Tr. Fix a point x ∈M and let ej, 1 ≤ j ≤ m, be a orthonormal

frame in a neighborhood of x such that ∇ei
ej = 0 at x, for all i and j.

A simple calculation shows that if equation 4.2 is true for a vector field v, then

it is also true for φv, for any smooth function φ. So it suffices to establish 4.2 for

v = ej, 1 ≤ j ≤ m. We do this for v = e1 for notational convenience. When v = e1,

the left side of 4.2 vanishes at x, so we show the right side vanishes too.

We have Tr = SrI − Tr−1A so the right side of 4.2 vanishes provided:

trace(u 7→ ∇uTr−1Ae1) = trace(u 7→ ∇u(Sre1)) .(4.3)

The left side of this equation, we calculate assuming 4.2 has been established for r−1:

m∑

i=1

〈ei,∇ei
Tr−1Ae1〉 =

m∑

i=1

〈ei, Tr−1∇ei
Ae1〉

=
m∑

i=1

〈ei, Tr−1∇e1Aei〉 = trace(Tr−1∇e1A) .

(Here we used Codazzi and ∇ei
ej(x) = 0.) The right side of 4.3 is:

m∑

i=1

〈ei,∇ei
(Sre1)〉 =

m∑

i=1

〈ei,∇ei
(Sr)e1〉 = ∇e1(Sr) .

13



Hence it remains to show:

trace(Tr−1∇e1A) = ∇e1(Sr) ,(4.4)

(notice that this proof also yields:
•

Sr+1 (0) = trace(
•

Ar (0)Tr).)

We prove 4.4 by calculating in a basis that diagonalizes A,A = diag(λ1, · · · , λm).
Then

Tr−1 = diag(t1, · · · , tm), where

ti =
∑

λi1 · · ·λir−1

i1 < i2 < · · · < ir−1

ij 6= i .

We have

trace(Tr−1∇eA) =
∑

i

ti∇eλi = ∇eSr .

This completes the proof of 4.2 (we leave to the reader to verify that one has 4.2 valid

for r = 1, i.e. 4.3 holds for r = 1).

The point of view we wish to pursue is that the equations 4.1 (r varying) are of

the same nature in many situations.

For example, for surfaces in �

3 the equations become:

a)
•

K (0) = L(f) + 2KHf,L = L1,

b)
•

H (0) = ∆(f) + (4H2 − 2K)f

When the eigenvalues of A are positive, i.e., M is strictly locally convex, a) is an

elliptic equation and the operator L is a self adjoint Fredholm operator of index 0;

just as the equation b).

Similarly, for surfaces in S3 or �

3, L is elliptic provided the eigenvalues of A are

positive.

Therefore, theorems and problems concerning the mean curvature of surfaces and

using the equation 4.1b), have their analogous statement for K-surfaces, using 4.1a).

A Jacobi field of (an H or K) surface is a normal variation fn of M, f = 0 on

∂M , which is a solution of the equation

L(f) + 2KHf = 0, (K-surface)
∆(f) + (2c+ ‖A‖2)f = 0, (H-surface).

In the elliptique case, M compact, the dimension of the vector space of Jacobi

fields is finite. A natural source of Jacobi fields comes from the vector fields of the

ambient space.

14



For any (not necessarily normal) vector field Y on N , the normal component of

Y,< Y, n > Y , changes the curvature (H or K) of M the same way Y changes the

curvature of M , when the curvature function of M is constant. Since in this case,

the tangent component of Y leaves the curvature of M fixed. Hence the function

φ =< Y, n > satisfies the equation 4.1a) if M is a K-surface and equation 4.1b), if

M is an H-surface.

For example if a is a fixed point of �

3 and Y is the constant vector field a, then

Y does not change curvature, hence the function φ =< a, n > satisfies:

L(φ) + 2HKφ = 0, if M is a K-surface ,
∆φ+ ‖A‖2φ = 0, if M is an H-surface .

Locating the components of M where φ is zero provides Jacobi fields on these com-

ponents.

Taking a over a basis of �

3 we can write these equations as vector equations for

n:
L(n) + 2HKn = 0 (K-surface)
∆(n) + ‖A‖2n = 0 (H-surface) .

Let Y be the vector field arising from homothety: Y (x) = x, x ∈ �

3. Then

ψt(x) = (1 + t)x, and we know how Y changes curvature: H(t) = H
1+t
, K(t) = K

(1+t)2
,

hence the function (support) φ =< Y, n >=< x, n > satisfies:

L(φ) + 2HKφ = −2K(=
•

K (0)) for a K-surface ,

∆(φ) + ‖A‖2φ = −H for a H-surface .

For hypersurfaces of �

m+1, with Sr+1 constant, the same reasoning as above,

together with equation 4.1, shows the support function φ satisfies:

Lr(φ) + (S1Sr+1 − (r + 2)Sr+2)φ = −(r + 1)Sr+1 .

One has analogous formulae in Nm+1(c) which we shall derive shortly.

We remark that these formulae are well known for H-surfaces.

Of particular interest are those manifolds M for which every compact subdomain

admits only zero as Jacobi field (M is then stable). In �

3, a complete stable minimal

surface is necessarily a flat plane [21]. A K-surface M in �

3, K > 0, is compact, so if

∂M = ∅, M is a round sphere. This means the interesting K-surfaces in �

3 are those

for which ∂M 6= ∅. When is such a surface stable? For minimal surfaces M in �

3 one

has the useful stability condition of Barbosa-do Carmo: if the total curvature of M

is less than 2π then M is stable [1].
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In �

3, K-surfaces M , with K ∈ (−1, 0), are stable and the operator L is elliptic.

The equation is

L(f) + 2HKf = 0 .

Since K = detA − 1, we have detA ∈ (0, 1) so (for an appropriate choice of the

normal to M) both eigenvalues of A are positive, L is elliptic and 2H = trace A > 0.

Hence HK is negative and the usual maximum principle for elliptic operators shows

there are no Jacobi fields on compact domains with boundary [14]. In particular, a

complete K-surface M in �

3 with K ∈ (−1, 0) is stable.
As an application of the linearized operator Lr, we have generalized the theorem

of B. White concerning the structure of the space of constant mean curvature surfaces

[26].

Let M be the space of parametrized compact immersed hypersurfaces M in �

n

that are locally convex and Sr+1 is a fixed positive constant. We identify two such

M if they differ by a parametrization leaving the boundary fixed. We have:

Theorem 4.2 ([19]) M is a C∞ Banach manifold modelled on C j+3,α(∂M, �

n), and

the projection π:M → Cj+3,α(∂M, �

n), [f ] 7→ [f/∂M ], is a C∞ Fredholm map of

index zero. Using this we prove: generically a Jordan curve on the boundary S of

a convex body B, bounds at most a finite number of K-surfaces in B, for K fixed,

0 < K < inf(K(S)).

5 Some Formulas for L in Rm+1 and Hm+1

Let Mm ⊂ �

m+1(c) where N = Nm+1(c) = �

m+1 for c = 0 and �

m+1 for c = −1.
We take the Minkowski model of �

m+1:

{X = (x0, x) ∈ �

m+2 | x ∈ �

m+1, x0 > 0, |x|2 − x2
0 = −1} .

Hm+1 is the “unit sphere” in (m+ 2) dimensional Minkowski space with the Lorentz

metric −dx2
0 + dx2

1 + · · ·+ dx2
m+1.

ThenM ⊂ �

m+1 can be thought of as a codimension-two submanifold of �

1,m+1 =

�

m+2. By position vector X of a point of M we mean the position vector of the point

in �

m+2. Let n denote a unit normal vector field to M in �

m+1. Then it is easy to

see that the normal bundle of M in �

m+2 is generated by n and X.

We have the formulas for Lr(X) and Lr(n).

Theorem 5.1

L(X) = −c0(r)(Hr+1n−HrX)

L(n) = −(S1Sr+1 − (r + 2)Sr+2)n+ (r + 1)Sr+1X ,
(5.1)
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this formula for L(n) assumes Sr+1 constant. Here

L = Lr, c0(r) = (m− r)

(
m
r

)
.

Proof of Theorem 5.1. When M ⊂ �

m+1 and r = 1, these formulae are derived

by Cheng and Yau [6], once one identifies their operator

2f =
∑

i,j

(mHδij − aij)f,ij

with L2(f). Also they can be found in Reilly, for M ⊂ �

m+1 and Sm+1.

We derive the formulae in �

m+1.

Fix a point p ∈ M and let e1, · · · , em be an orthonormal frame tangent to M in

a neighborhood of p, chosen so that, for all i, j, ∇ei
(ej)(p) is normal to M in �

m+2

(∇ the connection of �

m+2) and at p, the second fundamental form of M is diagonal:

< ∇ei
(ej), n(p) >= −λiδji . Then

L(X)(p) = trace(u 7→ ∇T (u)(∇X))

=
m∑

i=1

< ei, T∇ei
∇X >=

m∑

i=1

αi < ei,∇ei
∇X >

(where T = Tr = diag(αi, · · · , αm))

=
∑

αi < ei,∇ei




m∑

j=1

ej(X)ej


 >

=
∑

i

αi < ei,
m∑

j=1

∇ei
(ej(X))ej >

(since the tangent part of ∇ei
(ej)(p) = 0)

=
m∑

i=1

αi∇ei
(ei(X)) =

∑

i

αi∇ei
(ei)

=
∑

αi < ∇ei
(ei), n > n−

∑
αi < ∇ei

(ei), X > X

(since n and X span the normal bundle and < X,X >= −1)

= (−
∑

i

αiλi)n+ (
∑

i

αi)X = −(trace(TA))n+ trace(T )X

= −(r + 1)Sr+1n+ (m− r)SrX = −c0(r)(Hr+1n−HrX) .
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The calculation of L(n) is similar but one uses Sr+1 = constant:

L(n)(p) =
∑

i

αi < ei,∇ei
(∇n) >

=
∑

αi < ei, ei(
∑

j

ej(n)ej) >

=
∑

αi∇ei
(ei(n)) .

Now ∇ei
(n) is orthogonal to n and X, so

∇ei
(ei(n)) = ∇ei

(
∑

j

< ej,∇ei
(n) > ej)

=
∑

j

∇ei
(aij)ej + aij∇ei

ej

=
∑

j

∇ej
(aii)ej +

∑

j

aij∇ei
ej (Codazzi) .

We observe the first term will not contribute to L(n); for e any vector, we have:

∑

i

αi∇e(aii) = trace(T∇eA) = ∇e(Sr+1) by 4.4 .

Since Sr+1 is constant, this is zero.

L(n)(p) =
∑

i

αiλi(∇ei
(ei))

=
∑

i

αiλi(−λin+X) = −trace(TA2)n+ trace(TA)X

= −(S1Sr+1 − (r + 2)Sr+2)n+ (r + 1)Sr+1X .

Remark 5.1 Let M ⊂ Sm+1 ⊂ �

m+2 be a codimension one submanifold of the unit

sphere Sm+1 and let X be the position vector of M in �

m+2, n the normal vector

of M in Sm+1. The above calculation of Lr(X) and Lr(n) is exactly the same here,

except when one expresses ∇ei
(ei) in terms of X and n, the sign of the coefficient of

X changes since 〈X,X〉 = 1; i.e.

∇ei
(ei) = 〈∇ei

(ei), X〉X + 〈∇ei
(ei), n〉n .

Thus the formulae for L(X) and L(n) are the same as in �

m+1 except the coefficients

of X change sign. We can now write these equations for Mm ⊂ �

m+1, Sm+1 or

�

m+1(c = 0, 1, or− 1) in the form:

Lr(X) = −((r + 1)Sr+1)n− c(m− r)SrX

= −c0(r)(Hr+1n+ cHrX)

Lr(n) = −(S1Sr+1 − (r + 2)Sr+2)n− c(r + 1)Sr+1X .

(5.2)
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The latter equation assumes Sr+1 is constant.

Notice that when M is a closed hypersurface, the fact that Lr is a divergence op-

erator (and Stoke’s theorem) gives the Minkowski formulae in �

m+1, Sm+1 and �

m+1:
∫

M
(Hr+1n+ cHrX) = 0 .(5.3)

2

6 Height Estimates

Heinz obtained an estimate for the maximum height a graph of constant mean

curvature in �

m+1 can obtain, provided the graph is defined on a compact domain of

�

m and has zero boundary values. The answer is m
S1

= 1
H

and a hemisphere shows

this is the best possible. The proof of this is a simple application of the maximum

principle and equations 5.2 for r = 0.

Now if M is any compact embedded hypersurface in �

m+1, of constant mean

curvature, whose boundary is in �

m = �

m × 0, then the maximum height M can

rise above �

m is 2
H
. This follows from Heinz’s estimate and the Alexandrov reflection

principle applied to M , using horizontal hyperplanes coming down from the hightest

point of M : the part of M above such a plane, must remain a graph, at least until

the hyperplane is halfway down to the hyperplane �

m.

This result is generalized to constant mean curvature hypersurfaces in �

m+1 in

[13].

We shall now obtain height estimates for other curvature functions.

First, let M be a hypersurface in �

m+1 with Sr+1 a positive constant. M a graph

over a compact domain in �

m, ∂M ⊂ �

m. M is the graph of the function xm+1 and

the normal n to M is chosen so that nm+1 ≥ 0.

It is clear there is at least one interior point of M where M is strictly locally

convex (englobe M with spheres of large curvature until such a sphere touches M on

one side at an interior point). Just as it is proved in [12], it follows that Lr is elliptic

at every point of M and Sj is positive for 1 ≤ j ≤ r, at each point of M .

More precisely, let f(λ1, · · · , λm) = S1/r
r (λ1, · · · , λm). Let Γ be the connected

component in �

m, containing 1 = (1, . . . , 1), where f > 0. It is proved in [[5], pp.

269-270] that ∂Sr

∂λi
> 0 on Γ for 1 ≤ i ≤ m. Hence if Sr is positive on M and p ∈ M ,

is strictly convex, so that λ(p) ∈ Γ, (λ(p) the m principal curvatures of M at p), and

if q ∈ M is any point that can be joined to p by a path on M , then q ∈ Γ, and
∂Sr

∂λi
(q) > 0 for all i. This means Lr−1 is elliptic on M .
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We remark that S2 > 0 is always elliptic on any hypersurface in a space form.

S2
1 =

m∑

j=1

λ2
j + 2S2 > λj, for each j. Hence S1 − λj =

∂S2

∂λj
> 0, and the eigenvalues of

T1 are positive.

Let Hi be the i’th mean curvature function of M :Si =

(
m
i

)
Hi. It is always

true that

Hi−1Hi+1 ≤ H2
i (1 ≤ i < m)

and

H1 ≥ H
1/2
2 ≥ H

1/3
3 ≥ · · · ≥ H

1/i
i ,

provided H1, H2, · · · , Hi are nonnegative, [page 52 of [9]].

On M,Hi > 0 for i ≤ r + 1, so the above inequalities yield:

(∗) (m− i− 1)S1Si+1 −m(i+ 2)Si+2 ≥ 0 (H1Hi+1 ≥ Hi+2) ,

for i ≤ r − 1. Morever, at points of M where Sr+2 ≥ 0, the inequality is valid for

i = r as well and where Sr+2 < 0, it holds, so (∗) is valid for i = r.

Let a > 0 be a constant to be chosen later. Define f = axm+1 − nm+1. We

calculate Lr(f) with the equations 5.2:

Lr(f) = (Sr+1(S1 − a(r + 1))− (r + 2)Sr+2)nm+1 .

We wish to choose a so that Lr(f) ≥ 0 on M . This will yield a height estimate

since on ∂M , f ≤ 0, and Lr is elliptic so by the maximum principle, f ≤ 0 on M ,

and axm+1 ≤ nm+1 ≤ 1 so xm+1 ≤ 1
a
.

We know that:

(∗) (m− r − 1)S1Sr+1 −m(r + 2)Sr+2 ≥ 0 .

Add and substract (m−r−1
m

)S1Sr+1 to the coefficient of nm+1 in Lr(f) and use (∗) to
obtain:

Lr(f) ≥ Sr+1

[
(S1 − a(r + 1))−

(
m− (r + 1)

m

)
S1

]
nm+1

= Sr+1

[
S1

(
r + 1

m

)
− a(r + 1)

]
nm+1 .

Hence Lr(f) ≥ 0 when a ≤ S1

m
. Since H1 ≥ H

1/r+1
r+1 , one can choose a = (Sr+1

cr+1
)1/r+1,

ci =

(
m
i

)
.

For r = 0, a = S1/m, L0 = ∆ is elliptic and this is Heinz’s estimate. Thus we

have proved:
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Theorem 6.1 Let M ⊂ �

m+1 be a compact embedded hypersurface with ∂M ⊂ �

m =

�

m × 0. If Sr+1 is a positive constant on M , then the maximal distance of M to the

hyperplane �

m is 2
(
cr+1

Sr+1

)1/r+1
.

Remark 6.1 The above height estimate gives an estimate (the same) for the maxi-

mum distance of points of M to the convex hull of its boundary. Here M is a compact

embedded hypersurface in �

m+1 with Sr+1 a positive constant. Again, to prove this,

one does Alexandrov reflection with planes coming from the furthest point q of M to

the boundary of its convex hull, parallel to the tangent plane at q.

In �

m+1, one can also obtain height estimates for compact embedded hypersurfaces

with boundary in a totally geodesic hyperplane, having one curvature function Sr+1

a positive constant. Let M be a graph in the Minkowski model, of the function xm+1,

with ∂M ⊂ {xm+1 = 0} and the normal oriented so that nm+1 ≥ 0 on M .

Let f = axm+1 − nm+1 as before, and calculate Lr(f). The coefficient of nm+1 is

the same as in the Euclidean calculation so it is nonnegative for a ≤ S1

m
; in particular,

for a =
(
Sr+1

cr+1

)1/r+1
.

The coefficient of X is nonnegative provided:

(r + 1)Sr+1 ≤ a(m− r)Sr .(6.1)

Using the inequality: H
r/r+1
r+1 ≤ Hr, one verifies that 6.1 is satisfied for

a =
(
Sr+1

cr+1

)1/r+1
.

Now we can state:

Theorem 6.2 Let M be a connected compact embedded hypersurface in �

m+1, with

∂M contained in a totally geodesic hyperplane P . Assume Sr+1 of M is a positive

constant and let a =
(
Sr+1

cr+1

)1/r+1
. Then the maximum distance between a point of M

and P is 2 arctanh ( 1
a
). When ∂M is not necessarily in a hyperplane, the estimate

applies to the maximum distance between points of M and the convex hull of ∂M .

Proof. Let p ∈ M be a point of maximal distance from P , and let γ be the unit

speed geodesic with γ(0) ∈ P and γ(d) = p; γ is orthogonal to P at γ(0). Let Y

be the Killing field generated by the hyperbolic isometries ht (translations along γ)

with h0 the identity. Let Rt: �

m+1 → �

m+1 be hyperbolic reflection in the geodesic

hyperplane Pt = ht(P ) (we remark that this Alexandrov reflection part of the proof

is done in [13] where the theorem is proved for constant mean curvature. We repeat

it here for the reader’s convenience).
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Let Mt = ∪t′≥t(Pt′ ∩ M). The Alexandrov reflection principle implies that for

t ≥ d/2, Rt(Mt)∩M = ∂Mt and the intersection is transverse. Hence M̃ = h−d
2

(M d
2

)

is a graph with respect to the Killing coordinate t over a domain Ω ⊂ P .

Notice that M̃ is also a graph over Ω with respect to the distance function s from

P , since, by the previous discussion, if β is any geodesic orthogonal to P then M̃

is a graph over Ω with respect to the Killing coordinate t defined by β: Along β, t

coincides with s.

It remains to show s ≤ arctanh( 1
a
).

Let P be the geodesic hyperplane xm+1 = 0, in the Minkowski model of �

m+1.

Then the distance s from P is s = arcsinh(xm+1). M̃ is a graph with respect to xm+1

and xm+1 = 0 on ∂M̃ . On M̃

nm+1 ≥ 0 and nm+1 ≤
√
1 + x2

m+1 = cosh s .

This last inequality follows from:

∇xm+1 = em+1 + xm+1X − nm+1n, X ·X = −1 ,

so

|∇xm+1|2 = 1 + x2
m+1 − n2

m+1 .

Now sinh(s) = xm+1 ≤ nm+1

a
≤ cosh(s)

a
which proves Theorem 6.2. 2

7 Some Applications

The height estimates enable us to simplify the proof of a theorem of Hartman [10].

We have:

Theorem 7.1 Let M be a complete embedded hypersurface in �

m+1 with nonnegative

sectional curvature. If some curvature Sr+1 of M is a positive constant then �

m+1

can be expressed as a metric product �

k+1 × �

` and M is isometric to Sk × �

`, Sk a

round sphere in �

k+1. If one assumes M is complete and strictly convex and Sr+1 is

a positive constant, then M is compact hence a round sphere.

Proof.

If at each point of M , some principal curvature were zero, then by Sacksteder, we

could write M as a metric product: M1× � , and we then would consider M1 [20]. So

we can assume M is strictly convex at some point p. After a Euclidean motion of M ,

we can suppose p is the origin of �

m+1, n(p) = em+1 = (0, · · · , 0, 1), and locally, near
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p, M is the graph of a nonnegative strictly convex function defined in a neighborhood

of p in the hyperplane P = �

m × 0.

Let P (t) = �

m × (t) for t > 0. We claim that M ∩ P (t) is compact for all t > 0

and M ∩ P (T ) is empty for T large. Hence M is compact and a round sphere by the

theorem of Ros-Montiel [16] (one does Alexandrov reflection starting with any plane).

By strict local convexity at P , the component S(t) of M ∩ P (t), that is near p, is
compact for t > 0, t small. Also S(t) is diffeomorphic to a sphere Sm−1, for t = t0 a

small positive number. Let T > t0.

For each x ∈ S(t0), let A(x) be the intersection of the tangent space of M at x

with P (T ). A(x) is a codimension one affine subspace of P (T ). The envelope E(T )

of these subspaces, as x varies in S(t0), is a compact codimension one submanifold

of P (T ). E(T ) bounds a domain Ω in P (T ) and by convexity of M , we have S(T ) =

M ∩ P (T ) ⊂ Ω. Hence S(T ) is compact.

By the height estimates S(T ) must be empty for T large and since M is in the

“cone” E, we have M compact. So the theorem of Ros-Montiel applies. 2

7.1 A balancing formula

Let M ⊂ �

m+1 be a compact hypersurface with some curvature function Sr+1 a

positive constant. Let D be a compact hypersurface with ∂M = ∂D and assume

M ∪ D is an oriented m-cycle of �

m+1, M oriented by its mean curvature vector.

Let nD be the normal that orients D (so that M ∪ D is an oriented cycle when M

is oriented by its mean curvature vector). Then for any constant vector field Y on

�

m+1, we have:

Theorem 7.2 (Balancing Formula)

∫

D
< Y, nD >=

1

(r + 1)Sr+1

∫

∂M
< Y, Tr(ν) > .

Here ν is the inner pointing conormal to M along ∂M .

Proof. Let a = −(r + 1)Sr+1, L = Lr, T = Tr, so that L(X) = −an, n the “outer”

pointing normal to M , i.e., the opposed orientation of the mean curvature vector.

Since L is a divergence operator:

∫

M
< Y,L(X) > =

∫

M
L(X · Y ) = −

∫

∂M
< T (∇(X · Y )), ν >

= −
∫

∂M
< ∇(X · Y ), T (ν) >= −

∫

∂M
< Y, T (ν) > ,
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(we used the fact that T is symmetric).

The flux of any constant vector field going into M ∪D along D equals the flux of

the field going out of M . It follows that
∫

D
nD =

∫

M
n. Combining this equation with

L(X) = −an we obtain:

∫

D
< Y, nD > =

∫

M
< Y, n >= −1

a

∫

M
< Y,L(X) >

=
1

a

∫

∂M
< Y, T (ν) > .

As an application of this formula we generalize Theorem 1 of [7].

Theorem 7.3 Let S ⊂ �

m = �

m × 0 ⊂ �

m+1 be a strictly convex hypersurface and

M ⊂ �

m+1 a compact embedded hypersurface with ∂M = S. Assume some curvature

function Sr+1 of M is a positive constant and M is transverse to P = �

m along S.

Then M is contained in one of the half-spaces of �

m+1 determined by P and M has

all the symmetries of S. In particular, if S is a round sphere then M is part of a

round sphere. If r = m − 1 then one does not need to assume M is transverse to P

along S.

Proof. The proof uses the ideas in [7]. The hypothesis ∂M ⊂ P a convex hypersur-

face implies either M ⊂ P or there is some point of M that is strictly convex. One

sees this coming down (and up) to P with very flat spheres (i.e., small curvature); a

first point of contact with the interior of M is strictly convex. If there is no such first

point then M ⊂ P which contradicts Sr+1 > 0. Thus the operator L = Lr is elliptic

onM and S1 never vanishes onM . Also ellipticity of L means ∂Sr+1

∂κk
is positive at each

point of M and for each j, 1 ≤ j ≤ m; these numbers are the eigenvalues of T = Tr.

In particular, for each nonzero tangent vector v to M , we have < v, T (v) >> 0. Also,

Alexandrov reflection applies to M so once M is contained in one of the half-spaces

determined by P , one does Alexandrov reflection with vertical planes to show that

M inherits the symmetries of ∂M .

Now to prove M is indeed contained in a half space, one proceeds exactly as in

the proof of Theorem 1 of [7]. We do not give the details here; we will briefly sketch

the proof.

Apply the balancing formula to M and Y the unit vertical field to show that

M ∩ (P − ∂P ) cannot be entirely contained in the domain Ω of P bounded by ∂M .

This uses our above remark: < v, T (v) >> 0 for every nonzero tangent vector v to

M .
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Next one observes that if A is a component of F = M ∩ (P − Ω), then A cannot

bound in F . If so, one uses vertical planes coming from infinity which sweep out A

before meeting ∂M(∂M is convex so this is possible). Alexandrov reflection yields a

position of such a plane which is a symmetry plane of M , yet the plane is disjoint

from ∂M ; this is impossible.

Thus, a component A of F is homologous to ∂M in F and again by Alexandrov

reflection there is at most one such component.

Finally, the balancing formula shows no such component A exists.

The eigenvalues of Tm−1 are κ1 · · · κ̂i · · ·κm, 1 ≤ i ≤ m, κi the eigenvalues of

A. Since there is one point where the κi are all positive, it follows that they are all

positive at every point when Sm is a positive constant. Hence M is strictly convex at

each point.

Now come towards P from above with horizontal hyperplanes P (t). P (t) ∩M is

strictly convex for all t hence M is contained in one halfspace and topologically a

disc. 2
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und hyperflächen, Math. Ann. 131 180–218, (1956).

[25] R. Walter, Compact hypersurfaces with a constant higher order mean curvature

function, Math. Ann. 270 125–145, (1985).

[26] B. White, The space of m-dimensional surfaces that are stationary for a para-

metric elliptic functional, Indiana Math. J. 36:3 567–602, (1987).

27


