
Abstract

We describe first the analytic structure of Riemann’s examples of singly-periodic
minimal surfaces; we also characterize them as extensions of minimal annuli
bounded by parallel straight lines between parallel planes. We then prove their
uniqueness as solutions of the perturbed problem of a punctured annulus, and we
present standard methods for determining finite total curvature periodic minimal
surfaces and solving the period problems.

Résumé

Nous exposons d’abord la structure complexe de la famille de surfaces mini-
males simplement périodiques découverte par Riemann; elles sont caractérisées
comme extensions analytiques des anneaux minimaux bordés par deux droites
parallèles dans deux plans parallèles. Nous montrons alors leur unicité en tant
que solutions du problème généralisé aux anneaux épointés. Nous présenterons ce
faisant les méthodes usuelles de détermination des surfaces minimales simplement
périodiques de courbure totale finie, et d’élimination des périodes.
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1 Introduction

We are interested here in properly embedded minimal surfaces in R3, which are
invariant under a translation τ . Much has been proven about complete embed-
ded minimal surfaces in general (see [6], [7], [8] for example) and singly-periodic
ones in particular ([1], [2], [5]). However the classification of examples satisfying
certain geometric constraints, like fixed genus or number of ends, is still open in
almost all cases.

The most famous of these surfaces are Riemann’s Examples (see fig 1), which
are, with the catenoid, the only minimal surfaces fibered by circles. However,
while the catenoid is fibered by circles only, Riemann’s Examples’ circles tend
periodically to parallel lines. Two successive lines bound an annulus. Using
Schwarz Reflection, we can extend this annulus by rotation around these lines and
their images, in order to reconstruct the complete surface R. The translation τ
induced by rotation around two successive lines leaves the surface invariant. In
fact there is a one-parameter family of singly-periodic minimal surfaces. A more
detailed construction of R will be found in section 2 and in [3].

A natural question to ask is whether there are any non trivial ε-deformations of
Riemann’s Examples (keeping some straight lines fixed), or if all minimal planar
domains bounded by straight lines and lying in a slab belong in this family. The
latter was proven in [3] to be true if the lines are parallel and the total curvature
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Figure 1: domaine fondamental d’un exemple de Riemann avec ses lignes de
niveau, qui sont des cercles.
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of the domain is 4π 1. We will now generalize that result to the following

Theorem 1 : If A is a properly embedded minimal annulus, punctured in a

single point, that lies between two parallel planes, and is bounded by two parallel

lines in these planes, then A is a piece of a Riemann Example.

Equivalently, we can state a result about minimal surfaces properly embedded
in R3 modulo a translation, since they are in 1-1 correspondance with singly-
periodic embedded minimal surfaces.

Theorem 2 : Any complete minimal torus embedded in some R3/τZ with planar

ends and two lines, and total curvature 16π or less, is a covering of a Riemann Ex-

ample.

Proof of Theorem 2:
Let M be such a surface. After a rotation in R3, if necessary, we may assume

that its ends are all horizontal. The number of ends is even because M is embed-
ded and thus orientable (see [3]). Using the Callahan-Hoffman-Meeks formula
(see [2])

∫

M
|K| dA = 4π(r + γ − 1)

where γ is the genus of M and r the number of ends, we deduce the following: if
the total curvature of M is 8π, there are only two ends, which obviously corre-
spond to each of the two lines. Furthermore, the degree of the Gauss map g is 2,
by the Gauss-Bonnet Theorem. If, on the other hand, the total curvature is 16π,
then there are four ends and the degree of the Gauss map g is 4. Since the ends
are planar, the Gauss map is branched at each one of them, and takes the values
0 and ∞ alternatively. Thus their branching order is exactly 1.

Since genus(M)=1, any fundamental domain is planar, and so is its intersec-
tion with a horizontal slab. Namely, if there were topology in any subdomain,
say genus γ, then the genus if M would be at least γ + 1. So if P is a limit
plane for an end, its intersection with M must be a simple infinite curve. The
genus 1 assumption forbids any closed loop, and if there were another curve going

1It was also proven by Toubiana [11] and then by Pérez and Ros [9] that the lines have to
be parallel, provided they lie in parallel planes.
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to infinity, then the branching order of g would be strictly greater than 1, which
is excluded. Recall that the order of the Gauss map at a finite point equals the
number of level curves crossing at that point, minus 1, and at a planar end, the
order is equal to the number of curves going to that end, minus 2. Consider now
the two horizontal lines: rotation around them generates the whole surface, so
that they bound a fundamental piece of the surface, lying between two horizontal
planes. Furthermore, it is a planar domain, punctured at most once. So we are
back to Theorem 1.

I also want to thank Harold Rosenberg, David Hoffman and Fu Sheng Wei for
their support and fruitful discussions.

2 Riemann’s example

2.1 Some notations

We will first recall briefly the construction of Riemann’s example. Let T de-
note the rectangular torus whose vertices are (0, µ, µ+ i, i) in the complex plane
(µ ∈ R+). We can associate to this torus the lattice generated by (2ω1, 2ω3),
where (ω1, ω2, ω3) are defined as (µ

2
, µ+i

2
, i

2
) as usual. Let P be the unique ellip-

tic function having a double pole at 0, a double zero at ω2 (and no other pole
or zero), and two other branch points at ω1 and ω3, whose respective values are
λ,−1/λ, where λ is a positive constant characterizing the lattice. Then P has the
following properties of symmetry: P (−z) = P (z) and P (z̄) = P (z). Furthermore
it satisfies the functional equation: P ′(z)2 = Cλ P (P − λ)(P + 1/λ), for some
positive real Cλ depending on the lattice. The function P will allow us to define
the Weierstrass-Enneper representation of Riemann’example on this torus. For
more details about this function, see [3].
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2.2 The Weierstrass-Enneper representation

We define a minimal immersion R : T → R3 up to translation by:

R(z) = Re
∫ z

(1− g2, i(1 + g2), 2g)η

where g = P is a degree two meromorphic map from T to S2 corresponding to
the stereographic projection of the Gauss map of the surface, and η = idz/g is a
holomorphic 1-form defined on T minus the ends. The ends will naturally be 0
and ω2, and then we define τ to be the translation of vector

Re
∮

(1− g2, i(1 + g2), 2g)η

the integration being taken along any “vertical” simple loop, that is homologous
to the segment [0, i] oriented upward. Then R induces a proper finite total cur-
vature embedding of the torus in R3/τ . This embedding also has the following
properties: each horizontal curve on T is mapped to a horizontal circle, except
for the heights 0 and 1/2, where the curves is mapped to a horizontal line. There
is a natural rotational symmetry around these lines (see fig. 1). Conversely, we
can state the uniqueness theorem proven in [3]

Theorem 2 : Let A be a properly embedded minimal annulus bounded by two

parallel lines; assume further that A lies between two planes with one line in each

plane. Then there exist a real constant µ such that A lies in the image of R, up
to obvious isometries.

3 General properties

3.1 Extension of the surface
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Let us now prove Theorem 1. We will start with two horizontal parallel lines
L0 and L1 bounding a properly embedded minimal annulus A with one end. We
also suppose that A lies between two horizontal planes, each containing L0 or
L1 respectively. Applying Schwarz Reflection Principle, we can rotate by 180o

around those lines in order to extend the surface. Repeating this procedure, we
get a complete orientable minimal surface S, with parallel horizontal ends. If we
define the translation τ as the composition of the two basic rotations around L0

and around L1, then the quotient M = S/τZ is an orientable, genus 1, embedded

minimal surface, with four horizontal ends. It is a general result in minimal sur-
face theory ([8]) that any complete finite topology properly embedded minimal
surface is conformally equivalent to a punctured Riemann surface. Our purpose
will now be to prove that M is conformally a rectangular torus.

3.2 The first conformal representation

Let σ denote the 180o rotation in space around L1; then B = A ∪ σ(A) is a
fundamental domain of M and is topologically an annulus bounded by two lines,
L0 and L2 = σ(L0), minus three points, namely l1, l2 and σ(l2). Here l1 is the end
at the height of L1, and we will write abusively l1 ∈ L1; l2 is the additional end in
between the two original lines. Since B is minimal, it is conformally isomorphic
to an annulus in the complex plane, that is {z ∈ C; 1 ≤ |z| ≤ r2}; from now on,
we will see B as that particular annulus. Furthermore the third coordinate X3

of the embedding is harmonic and constant on the boundary (here circles); thus
it has to be something like

X3(z) = a log |z|+ b

An obvious consequence of this is that L1 is also a circle in this conformal rep-
resentation, whose radius is the geometric mean of the radii of the boundary
circles.

Considered as an isometry of R3, σ is orientation-preserving; but by construc-
tion of M , we see that σ sends the normal vector at any point q ∈ M to the
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opposite of the normal at σ(q):

σ∗(n(q)) = −n(σ(q)) (1)

We can now conclude that σ is an orientation-reversing isometry of the surface.
But the only anti-conformal map from B into itself that sends L0 to L2 and
leaves the circle L1 pointwise invariant is the affine inversion z 7→ k/z̄, where k is
some real constant uniquely determined by the position of L1. So that M is con-
formally this annulus in the complex plane with boundary identified through σ.
However we will use another representation.

3.3 Parameterization on the flat rectangular torus

We now consider the rectangle in C whose vertices are 0, µ, µ+ i, i (as in sec-
tion 2, whose notations we will use). It is conformally equivalent to the annulus
defined above, provided we identify the vertical edges. The equivalence mapping
is z 7→ eicz for some real constant c. We see also that the lines L0, L1, L2 corre-
spond to horizontal segments of height 0, 1/2, 1 respectively (see figure 2). For
the sake of simplicity, we will keep calling these lines L0, L1 and L2.

l0 = 0 µ

i

L0

L1

L2 = L0

ω1

ω2ω3 rl1
ql2
q σ(l2)

fig. 2
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Note that X3 is here an affine function of Im(z), therefore X maps the hori-
zontal lines to horizontal curves in R3. L1 is the middle horizontal line, and the
rotation σ in space induces a line of symmetry on the torus. It is easy to see
that σ is here the usual reflection around L1, which identifies any point of L0

with the point of L2 with the same real part. Therefore the conformal model of
M is a rectangular torus. In that quotient, σ can be seen as the usual complex
conjugation. Then we have to remove the four ends. We will keep on calling lk
the end that is “on” the line Lk, for k = 0, 1 and we can always suppose l0 = 0.
Let l2 still be the end between L0 and L1 and, because of the symmetry, l̄2 is the
other one. So that M ' T−{l0, l1, l2, l2} conformally. We deduce from section 2
that in the case of the double covering of Riemann’s example, the four ends are
located at (0, ω3, ω2 − i/4, ω2 + i/4) (provided of course we locate l0 at 0). We
will prove that these points are the only possible choices.

3.4 The Weierstrass-Enneper representation

Now that we have a proper conformal model forM , we will try to determine the
Weierstrass-Enneper parametrization of the immersion X : M → R3. Let us sum
up what we know about M : it is a finite topology, orientable, embedded minimal
surface; its genus is equal to 1, with four ends. Then the Euler characteristic
χ(M) = −4; the total curvature is finite and satisfies the Callahan-Hoffman-
Meeks formula:

∫

M
K dM = 2π(χ(M)− 4) = −16π = −4πd(g)

Here g denotes the extended Gauss map, which is a meromorphic map from T,
the completion of M as a Riemann surface, to S2, the extended complex plane.
Thus the degree of g is 4. Using the orientability of M , we may suppose that
the normal map at l0 and l1 is vertical in the upward direction while at p and its
conjugate it is vertical but goes downward. In terms of the Gauss map, l0 and l1
are poles, while l2 and l̄2 are zeros.
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Up to a scaling, we have X3(z) ≡ Re
∫ z 2idz (mod 1). Thus if η denotes

the holomorphic 1-form associated to g in the Weierstrass representation, then
gη = idz.

η =
idz

g

Equivalently, we can write dh = gη = idz where h is the “height function”.
Furthermore, the ends are double points; namely, at a flat end, g must have
branching order greater or equal to 1; but the degree of g is 4, so all the ends of

M have branching order 1 for g. We can now easily write the coordinates of the
immersion:











X1(z) = Re
∫ z(1− g2)η = Re

∫ z(g−1 − g)idz = Im
∫ z(g − g−1)dz

X2(z) = Re
∫ z i(1 + g2)η = −Re ∫ z(g−1 + g)dz

X3(z) = Re
∫ z 2gη = Re

∫ z 2idz = −2 Im(z − z0)

3.5 Properties of the Gauss map g

We have seen that M has by construction a symmetry, namely the complex
conjugation corresponding to rotation around the lines in space. Whether we
choose rotation around L0 or around L1 does not matter, since they yield the
same isometry on the torus. The most important point is the behaviour of g
under conjugation. If we choose the lines L0 and L1 to follow the X2 direction,
the property stated in (1) in terms of the normal vector translates as

g(z̄) = g(z).

We check easily that z = z̄ on the torus is equivalent to saying that z belongs to
L0 or L1, and in that case g has to be real, which means exactly that the normal
map is orthogonal to the X2 direction.

Since g is an elliptic function of degree 4, we know it can be written as
F (℘(z)) + ℘′(z)G(℘(z)), where F and G are rational functions, and ℘ is the
Weierstrass p-function associated with the lattice defining this torus. Rather
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than ℘, we will use the function P defined in 2.1, which similarily generates
the field of elliptic functions, and has the advantage of having a double zero at
ω2 = µ+i

2
. Then

Proposition : The end l1 is one of the two branch points of P on L1, namely

ω2 or ω3. F is a degree 2 fraction with simple poles at infinity and P (l1), while
G is only a degree 1 fraction, with a pole at P (l1) and a zero at infinity, unless

it vanishes everywhere.

Corollary 1 : There exist a degree 2 polynomial E, which does not vanish

at P (l1), and a complex constant ν such that :

g(z) =
E(P (z)) + νP ′(z)

P (z)− P (l1)

Corollary 2 : Since g is invariant under complex conjugation, then ν and all

the coefficients in the expansion of E are real.

Proof of proposition :

– By considering a neighbourhood of zero in the z-plane, we can see that F has a
simple pole at infinity, whereas G vanishes there. Namely, if F (w) = cwk+o(wk)
and G(w) = cwh + o(wh) when w →∞ (here and afterwards, c will denote some
non zero complex constant), then g(z) ∼ cz−2k + cz−3−2h. This is compatible
with the double pole requirement if and only if h ≤ −1 and k = 1.

– We will now prove by contradiction that l1 equals ω2 or ω3 (in other words
2l1 ≡ 0 on the torus). Indeed let us suppose that l1 is not a branch point of P .
We can find a function g having double poles at 0 and l1, and double zeros at
l2 and l̄2, provided these points satisfy 2(l1 − l2 − l̄2) ≡ 0 on the torus, by the
Abel-Jacobi theorem. However, in order to eliminate the periods, the Gauss map
must also satisfy the following criterion (proven in 4.1): both g and g−1 have no
residues. We will prove that under the hypothesis 2l1≡/ 0, the function f = g−1

has non-vanishing residues at l2. We proceed in technical lemmas.
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Lemma 1 : f ′′′(0) = 0.

Proof: This condition is actually equivalent to Res(g, 0) = 0. Indeed, let us
write the Taylor expansion of f = 1/g in a neighbourhood of the origin: if
f(z) = az2 + bz3 +O(z4) then:

g(z) =
1

f(z)
=

1

az2

(

1− bz

a
+O(z2)

)

So b = −a2 Res(g, 0), which vanishes by hypothesis. Hence f ′′′(0) = 0. Q.E.D.

Lemma 2 : Let f̂ be the odd part of f ; then:

f̂ =
αP ′

[(P − P (l2))(P − P (l̄2))]2

where α ∈ C∗ is a constant.

Proof: By hypothesis 2l1≡/ 0, hence l2 + l̄2≡/ 0. Consequently, ±l2,±l̄2 are
four distinct points on T. f̂ is defined by f̂(z) = 1

2
(f(z) − f(−z)), and has

double poles at each of these four points, and nowhere else: hence d(f̂) = 8.
Being odd, f̂ must vanish at 0, ω1, ω2, ω3; using lemma 1, we see that f̂ has a
zero of order at least 5 at the origin. We conclude that it has simple zeros at
ωj, j = 1, 2, 3. Finally we consider f̂/P ′, which has the same poles as f̂ with
the same multiplicity, and only one zero of order 8 at the origin. It can only be
α[(P − P (l2))(P − P (l̄2))]

−2 for some α ∈ C∗. Q.E.D.

Lemma 3 : Res(f̂ , l2) =
1
2
Res(f, l2)

Proof: Since f(−z) is non singular at −l2, then in some neighbourhood of
l2, one can write:

f̂(z) =
1

2
(f(z)− f(−z)) = 1

2
(f(z) +O(1))

Q.E.D.
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Lemma 4 : The residues of f̂ and f at l2 never vanish.

Proof: Let us write the Taylor expansion of P in a neighbourhood of l2;
P (l2 + ζ) = a+ bζ + cζ2 +O(ζ3). Notice that neither a nor b vanish. Then

(P − P (l2))
−2 =

1

b2ζ2

(

1− 2c

b
ζ +O(ζ2)

)

(P − P (l̄2))
−2 =

1

a′2

(

1− 2b

a′
ζ +O(ζ2)

)

where a′ = a− ā (a′ 6= 0 because l̄2≡/ − l2).

P ′

[(P − P (l2))(P − P (l̄2))]2
=

1

ba′2ζ2

(

1 +
2c

b
ζ +O(ζ2)

)(

1− 2(
b

a′
+
c

b
)ζ +O(ζ2)

)

=
1

ba′2ζ2
(1− 2b

a′
ζ ++O(ζ2))

The residue of f̂ is −2αa′−3 which never vanishes under our hypotheses. Using
lemma 3, we see that f itself has non vanishing residues, which contradicts sec-
tion 4.1. We must exclude this case. Q.E.D.
Therefore we know that l1 = ω2 or l1 = ω3; equivalently, P (l1) = 0 or
P (l1) = −1/λ. One deduces that F has another simple pole at P (l1), while
G can have at most a simple pole there.

– Let us finally look for the other possible poles of G. There must be at least
one pole, since we have shown G vanishes at infinity (unless G ≡ 0). If G has
a pole at some P (z0), then z0 must be a pole for g. In fact, if it were not, then
P ′(z)G(P (z)) would have to stay bounded near z0; this is never possible, whether
z0 is a branch point of P or not. Thus P (z0) is either infinity or P (l1). The first
is excluded, so we can conclude that G has a simple pole at P (l1). The corollaries
follow. Q.E.D.
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4 The period constraints

4.1 The different types of periods

In order for X to be well defined, we need to check that there are no periods for
X on the torus. These real periods fall into two distinct categories: “analytical”
periods coming from poles of a differential form, and “geometric” periods coming
from the homology. For the latter, we will take into account only the real periods
along any horizontal loop (by horizontal loop, we mean homologous to L0).

It is obvious already that dX3 = −2 Imdz has no period, either around
the ends, or along a horizontal loop. However dX1 = Im((g − g−1)dz) and
dX2 = −Re((g + g−1)dz) may have periods around the poles and zeros of g.
Clearly their analytical periods vanish if and only if g and g−1 have no residues.
There remains then to check the homological periods.

4.2 The planar symmetry

We will show that there has to be a plane of symmetry for the immersion X,
and how this translates into analytical terms.

Proposition : The function g is even; this implies that there is a plane of

symmetry perpendicular to the X2 direction.

We will need the following

Lemma : The residue of g at 0 is −2ν .

Proof of the lemma :
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We have found an expression of g as

g(z) =
E(P (z)) + νP ′(z)

P (z)− P (l1)

where l1 is the pole of g on L1, and is one of the two branch points of P on L1.
Obviously, E(P (z))

P (z)−P (l1)
is even, and thus has no residue at 0; then

Res(g, 0) = νRes(P ′/(P − P (l1)), 0)

Near zero, we know that

P ′(z)/(P (z)− P (l1)) ∼ −2/z.
This proves the lemma.

Proof of the proposition :

According to the previous section, it is necessary for ν to vanish; thus g(−z) = g(z).
One checks easily that it amounts to saying that there is a vertical plane of sym-
metry, orthogonal to the X2 direction. QED.

Finally, we deduce

Corollary : P (l2) ∈ R and there is a real number α such that :

g(z) = α
(P (z)− P (l2))

2

P (z)− P (l1)
.

Proof :

Now that we have eliminated the odd part in the expansion of g, we can easily
determine its accurate expression. In fact, let us compute the derivative of g :

g′(z) = P ′(z)
E ′(P (z))(P (z)− P (l1))− E(P (z))

(P (z)− P (l1))2

and apply the condition g(l2) = g′(l2) = 0. Since obviously P (l2) 6= P (l1) and
P ′(l2) 6= 0, P (l2) has to be a double zero of E. Furthermore all parameters in the
expansion of g must be real in order to satisfy the requirement that g(z̄) = g(z).
QED.
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4.3 The value of l1

We have two possibilities for l1: either ω2 or ω3, whose values under P are
respectively 0 and −1/λ < 0. We also know from section 3.5 that g(L1) lies
either in R∗+ or R∗−. Namely the image of each of these lines lies in R but doesn’t
include zero, and reaches∞ only once (though with order 1). We will prove that
the sign of g along both L0 and L1 must be the same, namely the sign of α. As
a corollary this will force l1 to be ω3.

Proof :

A necessary condition on g is that neither g nor g−1 have residues on T. Thus
∫

L1

g−1dz =
∫

L0

g−1dz

both lines having the same orientation (say increasing real part). It is clear
then that g has the same sign on both of them. Suppose now that l1 = ω2, or
equivalently, P (l1) = 0. Let us evaluate g in the neighbourhood of this pole.
It is easy to compute that for small ζ, P (l1 + ζ) ∼ −Cλ

4
ζ2. Hence g(l1 + ζ) ∼

−Cλ
4
αP (l2)

2/ζ2. Meanwhile, near zero, on L0, g(z) ∼ α/z2. Both expressions
have opposite signs, we get a contradiction (recall Cλ > 0). We can now write :

g(z) = α
(P (z)− P (l2))

2

P (z) + 1/λ

4.4 The period condition at the l2 end

Let us now consider periods around l2 (or l2 which is equivalent). We need
only check that the residue of g−1 vanishes. Therefore we write for small u,

P (l2 + u) = P (l2) + au+ bu2/2 +O(u3)
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then
(P (l2 + u)− P (l2))

2 = a2u2(1 + bu/a+O(u2))

and

g−1(l2 + u) =
((P (l2)+1/λ)+au+O(u2))(1−bu/a+O(u2))

αa2u2

=
(P (l2)+1/λ)+(a−b(P (l2)+1/λ)/a)u+O(u2)

αa2u2

Therefore the residue is a2−b(P (l2)+1/λ)
αa3 . Note that a = P ′(l2) 6= 0.

We will now show that only two possible choices of l2, up to conjugation, make
this residue vanish. The condition is:

a2 = b(P (l2) + 1/λ)

where a, b are respectively the first and second derivative of P at l2. Let us first
compute b in terms of the other quantities. The structural equation for P being
P ′2 = Cλ P (P + 1/λ)(P − λ), derivation yields :

2P ′P ′′ = Cλ P
′(P (P + 1/λ) + P (P − λ) + (P + 1/λ)(P − λ)),

therefore










2b = Cλ (P (l2)(P (l2) + 1/λ) + P (l2)(P (l2)− λ) + (P (l2) + 1/λ)(P (l2)− λ))
a2 = Cλ P (l2)(P (l2) + 1/λ)(P (l2)− λ)
a2 = b(P (l2) + 1/λ)

This implies:

2P (l2)(P (l2)−λ) = (P (l2)(P (l2)+1/λ)+P (l2)(P (l2)−λ)+(P (l2)+1/λ)(P (l2)−λ))

namely
P (l2)

2 + 2P (l2)/λ− 1 = 0

whose solutions are P (l2) =
±
√
λ2+1−1
λ

.
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4.5 The homology period

We have hencewith verified that no real period can arise from loops around
l2, l2, 0 or l1. This leaves us with two distinct families of solutions. However
there remains to check the homological condition, which will eventually reduce
the solution to the known Riemann’s example.

Suppose γ is a simple horizontal loop. We must have :
{

Im
∫

γ(g
−1 − g) dz = 0

Re
∫

γ(g
−1 + g) dz = 0

We suppose of course that γ does not meet any zero or pole of g; however, in
order to evaluate the integral, we can split it and consider homologous curves.
The first integral is always zero, because of the invariance of g under conjugation.
Namely, the integrals of g and g−1 along γ are both real. The second equation
can be written as

α
∫

γ

(P (z)− P (l2))
2

P (z) + 1/λ
dz +

1

α

∫

γ

P (z) + 1/λ

(P (z)− P (l2))2
dz = 0

where we must find a real α, for one of the two possible P (l2). A necessary and
sufficient condition is that both integrals have opposite signs (or both 0). But
we see at once that

∫

γ g
−1dz is positive if α is, by integrating along L0. Thus

∫

gdz and α must have opposite signs. However this integral can be seen as a
polynomial in P (l2); in fact let us define:

P(w) = 1
α

∫

γ g dz =
∫ (P (z)−w)2

P (z)+1/λ
dz

=
∫

[(P (z) + 1/λ)− 2(w + 1/λ) + (w+1/λ)2

P (z)+1/λ
]dz

=
(

− µ(2w + 1/λ) +
∫

P (z)dz + (w + 1/λ)2
∫ dz
P (z)+1/λ

)

The study of P shows that : P is a upward-oriented parabola which is positive at

−1/λ, negative at 0, and attains its minimum after λ. Therefore P(−
√
λ2+1−1
λ

) > 0,
which excludes the smallest possible value for P (l2). On the other hand,

P(
√
λ2 + 1− 1

λ
) < 0,
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which corresponds to the known Riemann’s example.

Proof :

Note first that the leading term in P is positive. In fact we can integrate
∫ dz
P (z)+1/λ

along L0 instead of γ, where we have the following inequality : P (z) ≥ λ

(remember λ > 0). So P (z) + 1/λ ≥ λ + 1/λ > 0; this yields the desired result
but also a bound on the integral, namely :

∫

L0

dz

P (z) + 1/λ
<

∫

L0

(λ+ 1/λ)−1dz =
µλ

1 + λ2

Let us now evaluate the position for the minimum of this parabola, which we
will call wm :

wm = −1/λ+
µ

∫ dz
P (z)+1/λ

It is very easy to verify that the previous inequality is equivalent to

wm > λ

Third and last point, we would like to have an estimate of P at 0 and −1/λ.

P(0) = −µ
λ
+
∫

P (z)dz +
1

λ2

∫ dz

P (z) + 1/λ

By integrating along L1, it is obvious that
∫

P (z)dz < 0; we know more, namely
−µ/λ < ∫

P (z)dz < 0. Therefore to prove that P(0) < 0 we need only show that

1

λ2

∫ dz

P (z) + 1/λ
<
µ

λ

that is
∫ dz

P (z) + 1/λ
< µλ

Using the previous result, we know that

∫ dz

P (z) + 1/λ
<

µλ

1 + λ2
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which is sufficient. And when w = −1/λ,

P(−1/λ) = µ

λ
+
∫

P (z)dz

which is positive, as seen previously. QED.

4.6 Conclusion

The Riemann Example is only minimal surface which is conformally a once-
punctured annulus lying between two parallel planes, bounded by two lines in
those planes. Up to scaling, there is only a one-parameter family of such exam-
ples, parameterized by µ (or λ).
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[10] B. Riemann : Über die Fläche vom kleinsten Inhalt bei gegebener Begren-
zung. Abh. Königl., d. Wiss. Göttingen, Mathem. Cl., 13:3-52, 1867.

[11] E. Toubiana : On the minimal surfaces of Riemann.

21


