
The Number of Faces in a Minimal Foam

Rob Kusner

Mathematics Department

University of Massachusetts

Amherst, MA 01003

1 Introduction

A compound bubble is a partition of a Riemannian 3-manifold M into domains

whose boundaries are smooth constant mean curvature surfaces, meeting 3 to a

smooth edge or 6 to an isolated vertex, at equal angles. Observe that the equal

angle condition means that at any point on the support Σ (that is, the union of the

boundary surfaces) of the compound bubble the tangent cone is either a plane, the

product of a line with an equiangular “Y ” or the central cone over the 1-skeleton of

a regular tetrahedron.

These local regularity properties of compound bubbles were first articulated by

Plateau in the 1800’s, and only recently derived from an area minimizing property

by Jean Taylor [10] (cf. also [2, 3, 4, 6]). An important problem is whether they

imply any global properties. For example, R. Gulliver (Problem 1.2 [1]) has asked if

a partition of R3 into domains of equal volume by minimal surfaces must be periodic,

in the sense that all domains translates of a single fundamental domain?

In this note we consider a special type of compound bubble Σ which arises from a

cell decomposition of M : in this case we call Σ a foam, and say that a foam is minimal

if each 2-cell (or face) is a minimal surface. Minimal foams arise naturally from the

least boundary area fundamental domains of irreducible 3-manifolds (for example,

spaceforms) considered by J. Choe [6].

The main result here is a formula for the average number of faces per cell in a

minimal foam. In case of a periodic minimal foam in R3 this formula implies that

the fundamental cell has at least 14 faces, a lower bound realized by Lord Kelvin’s

[12] remarkable example of 1887 (see below). The formula also provides constraints

on minimal foams in other 3-manifolds, such as the sphere S3.
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While the existence and regularity results cited above rely on geometric measure

theory, the methods employed here are classical: differential geometry of curves and

surfaces, most notably, the Gauss equation and Gauss-Bonnet formula. Thus, in

principle, our face formula could have been derived in Plateau’s day.

2 The face formula

For simplicity in stating the formula assume that M is a compact Riemannian

3-manifold and that C1, . . . , Cn are the cells of a minimal foam Σ in M . Given a cell

Ci of Σ, its (abstract) boundary ∂Ci is a 2-sphere containing fi faces, ei edges, and

vi vertices. From the Euler formula

fi − ei + vi = 2 ,(1)

and from the incidence relation

2ei = 3vi(2)

one sees that any one of fi, ei, or vi determines the other two.

Let A denote the second fundamental form of a face of Σ, and R, the sectional

curvature of M in planes tangent to the face. Using δ = arcsec(3) for the dihedral

angle of a regular tetrahedron, and a “tilde” to denote the average of a quantity over

the collection of cells (for example, ∼
∫

∂C
=:

1

n

∑

1≤i≤n

∫

∂Ci

) one has the following formula.

Theorem 1 Let Σ be a minimal foam in a compact Riemannian 3-manifold M . The

average number of faces in Σ is

f̃ = (12δ+ ∼
∫

∂C
(|A|2/2−R))/(6δ − 2π) .(3)

In particular, if the ambient manifold M is nonpositively curved (R ≤ 0) then

f̃ ≥ 6δ/(3δ − π) = 13.39733 . . .(4)

Moreover, if the foam is also periodic, then (1), (2) and (4) imply

(f, e, v) = (f̃ , ẽ, ṽ) ≥ (14, 36, 24) .(5)

Proof. Let C be any cell of Σ. The derivation of (3) begins with the Gauss equation

relating the intrinsic curvature K of a face F ⊂ C to the extrinsic and ambient

curvatures:

K = det(A) +R = (H2 − |A|2)/2 +R = −|A|2/2 +R ,(6)
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where the mean curvature H = trace(A) = 0 since F is minimal. Write κ for the

geodesic curvature of an edge E ⊂ F and note that any two edges meet a vertex with

exterior angle δ = arcsec(3).

Integrating (6) over F , and applying the Gauss-Bonnet formula, this yields
∫

F
(−|A|2/2 +R) = 2π − δv(F )−

∑

E⊂F

∫

E
κ ,(7)

where v(F ) is the number of vertices in ∂F . Now sum (7) over the f faces F ⊂ ∂C

(using (1) and (2) to write 6(f − 2) = 3v =
∑

F⊂C v(F )) and rearrange terms to

obtain

(6δ − 2π)f = 12δ +
∫

∂C
(|A|2/2− r)−

∑

F⊂C

∑

E⊂F

∫

E
κ .(8)

By averaging over the collection of cells, this gives the face formula (3) provided we

can show that the “error” vanishes:

∑

1≤i≤n

∑

F⊂Ci

∑

E⊂F

∫

E
κ = 0 .(9)

To prove (9) one must recall that the geodesic curvature κ of an edge E ⊂ F is

related to the space curvature vector k of E ⊂M by the formula

κ = η · k(10)

where η is the (inward) conormal vector to E ⊂ F ; that is, η is tangent to F and

normal to E. Because each edge E meets exactly 3 faces (say) F, F ′, and F ′′, with

their corresponding conormals η, η′, η′′, observe that (with aid of (10)) formula (9)

can be rewritten as

2
∑

E

∫

E
(η + η′ + η′′) · k = 0 ,(11)

which is true pointwise because the equiangular “Y ” configuration along E implies

(η + η′ + η′′) = 0.

3 Extensions, examples and remarks

i) When M is complete and noncompact the same derivation applies, pro-

vided one makes some additional assumptions on the minimal foam Σ. For

instance, if one assumes Σ is “quasi-periodic” in the sense that Σ is invari-

ant under a discrete group of isometries acting freely on M with compact

quotient, then the face formula follows from the obvious lifting argument.
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A special case is the periodic minimal foam arising from a fundamental

domain with least boundary area mentioned in the Introduction.

ii) In the absence of a symmetry group in (i), one can instead impose certain

uniformity conditions on the cells of Σ (for example, uniformly bounded

volume ratios, diameters, and curvatures) so that the “error” (9) averaged

over the cells meeting a ball Bρ of radius ρ in M is bounded by

C|∂Bρ|/|Bρ| ,

which is O( 1
ρ
) if M is flat (R = 0) or asymptotically flat. Letting ρ tend

to ∞, this “error” term decays to 0.

iii) The standard 3-sphere S3 (with constant curvature R = 1) supports a va-

riety of minimal foams with totally geodesic (|A| = 0) faces: these include

cell decompositions defined by the equator S2, the “spherical simplex”,

and the “Poincare dodecahedral decomposition”. One may ask if these

foams correspond to the least boundary area fundamental domains for the

appropriate spherical-space-forms. Note that the area of each face is easily

computed from the face formula. For example, the Poincare foam in S3

whose 60 cells are totally geodesic regular dodecahedra has total surface

area 720π – 1800δ. An important problem is to determine the minimal

foams in S3 for which the associated 3-cone in R4 is volume-minimizing

(Problem 5.14 [1]).

iv) W. Thomson (Lord Kelvin) [12] provided an example of a periodic minimal

foam Σ in R3 with period lattice Λ generated by the vectors (2,0,0), (0,2,0)

and (1,1,1). The fundamental cell of Σ is (combinatorially) a truncated

octahedron with 14 faces (6 flat quadrilaterals, 8 curved hexagons), 36

edges, and 24 vertices, showing that the lower bound (5) is sharp. Choe

[6] has speculated that this example may give the least boundary area

fundamental domain for the flat torus R3/Λ. Some computer simulations

of this foam have been carried out recently by K. Brakke and J. Sullivan.

v) WhenM is flat the inequality (4) cannot be sharp: this would require each

face to be totally geodesic, which is easily excluded (for example, using

the proof of the face formula). In fact, estimating the total curvature∫
|A|2 of the faces is equivalent (via (3)) to finding an upper bound on
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the average number of faces. If the foam is actually area minimizing,

perhaps the stability (second variation) inequality can be employed to get

the required integral curvature estimate.

vi) H. Coxeter has noted that Kelvin’s example is closely related to a lattice

packing of equal spheres; he also describes a sequence of delightful “con-

densation” experiments (cf. [7] and the references therein, especially [5])

which seem to indicate that the average number of faces for a minimal

partition is closer to 13.5, possibly (via (5)) precluding periodicity. In

fact, the coincidence between the lower bound (4) and Coxeter’s proposed

upper bound ([7], p.66) on the density of a unit sphere packing suggests

that there may be some interesting geometry lurking in this condensation

phenomenon. (It is still unknown whether the most dense unit sphere

packing in R3 can be realized by a lattice packing.)

vii) It is hoped that formulas such as (3), (4), (5) will be of some interest to

researchers in fields other than mathematics. In addition to soap froth

— or the “head” on a fresh beer! — compound bubbles appear to model

a number of interesting natural systems: the classical monatomic fluid

(such as liquid argon) [5], the cellular structure of an organism [11], and

the overall distribution of galaxies in the universe [8].
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