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We have constructed two minimal surfaces of theoretical interest. The first is

a complete, embedded, singly-periodic minimal surface (SPEMS) that is asymptotic

to the helicoid, has infinite genus, and whose quotient by translations has genus one.

The quotient of the helicoid by translations has genus zero and the helicoid itself is

simply-connected.

Theorem 1. There exists an embedded singly-periodic minimal surface W1, asymp-

totic to the helicoid and invariant under a translation T . The quotient surface W1/T

has genus equal to one and two ends.

W1 contains a vertical axis, as does the helicoid, andW1/T contains two horizontal

lines.

The second surface is a complete, properly-embedded minimal surface of finite

topology with infinite total curvature. It is the first such surface to be found since

the helicoid, which was discovered in the 18th century.

Theorem 2. There exists a complete, properly-embedded minimal surface, He1, of

genus-one, whose one end is of helicoidal type.

He1 contains a vertical line, like the helicoid, and one horizontal line that crosses

it. Schwarz reflection in these two lines generates the symmetry group of the surface.
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Figure 1: The surfaces W1 (left) and He1 (right)

1 History and context

Except for the plane, the helicoid is the only ruled minimal surface. It’s discovery

is attributed to Meusnier in 1776; together with the catenoid (Euler, circa 1744) these

were the only minimal surfaces explicitly known to Eighteenth Century mathematics.

From Scherk in the 1830s, came the next major discovery: multiple families of peri-

odic minimal surfaces, including the famous families of singly- and doubly-periodic

examples that bear his name [11, 15]. That the surfaces in these two families share the

same normal mapping is implicit in the work of Scherk. This fundamental relationship

was made explicit by Enneper, Weierstrass and Riemann. They developed an integral

representation formula for minimal surfaces via contour integration of meromorphic

data derived from the normal mapping, which they knew to be conformal [13]. (See

(3.3) below.) Minimal surfaces were seen to be, from this point of view, the real part

of null curves in �

3. The helicoid and catenoid were recognized as, locally, the real

and imaginary part of the same curve. The same is true of the two families of Scherk.

Minimal surfaces related in this way are said to be conjugate.

For complete minimal surfaces, whose quotient by orientation-preserving symme-

tries has finite total curvature, the quotient is naturally a compact Riemann surface,
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possibly punctured in a finite number of points. Moreover, the meromorphic data is

well-defined on the compact surface (Osserman [12, 13]). Translations are produced

when the integral representation has periods on the Riemann surface. The classical

examples mentioned above can be represented on a sphere punctured two (resp. four)

times for the helicoid/catenoid pair (resp. Scherk’s singly-/doubly-periodic surfaces).

Moreover, the Gauss map can be taken to be the identity on S2. All these examples

are embedded.

The existence of higher-genus embedded examples has been an open question until

recently. For complete embedded examples of finite total curvature (FEMS) in �

3,

Lopez-Ros [9] showed that the plane and the catenoid are the only FEMS of genus

zero. Schoen [16] proved that the catenoid was the only FEMS with two ends. The

existence of examples with genus greater than zero and more than two ends is well

documented [2, 3, 4, 5, 18].

The helicoid was the only known example of a complete embedded minimal sur-

face with finite topology and infinite total curvature. It has been a longstanding open

question as to whether there are others. Theorem 2 answers this question affirma-

tively. Also, all known properly embedded examples of infinite total curvature had

infinite symmetry groups, and the quotients of these surfaces by these groups were

compact (possibly punctured) Riemann surfaces whose inherited metric had finite

total curvature. The surface He1 of Theorem 2, is conformally a once-punctured

rhombic torus with symmetry group Z2 ⊕ Z2.

All classical, complete, embedded, doubly-periodic minimal surfaces (DPEMS)

can be defined by meromorphic data with periods on punctured spheres. Karcher [8]

and Meeks-Rosenberg [10] constructed new families of DPEMS that had genus one in

the quotient. No higher-genus examples were known that were not coverings of these

examples. Moreover, there were no known genus-one examples with the same end

behavior as the Scherk doubly-periodic examples. In [17], Wei constructed the first

DPEMS of genus equal to two in the quotient. Based on the construction strategy

used in that paper, Karcher was able to modify Scherk’s doubly-periodic example to

produce a genus-one DPEMS that had the same end-behavior as the Scherk example.

We refer to this surface as K π
2
for reasons that will be made clear below.

2 SPEMS as limits of DPEMS

The Scherk family can be considered to be the desingularization of two families of

equally spaced, parallel, vertical halfplanes meeting at an angle θ, 0 < θ ≤ π/2. In the
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Figure 2: Scherk’s doubly periodic surface, θ = π
2
(top) and Kπ

2
(bottom)

slab |x3| < ε, the surfaces look like saddles over alternating regions in a tiling of x3 = 0

by rhombi. With appropriate scaling as θ goes to zero, the rhombi diagonals grow

in one direction only, approaching a strip in the plane. There is a basic relationship

between the Scherk family and the helicoid. Namely, if one keeps the symmetric point

of a fixed saddle at the origin, the limit surface, with appropriate scaling as θ goes to

zero, exists and is the helicoid (Hoffman and Wohlgemuth, [6]).

The generalization, K π
2
, of Scherk’s surface can be understood as Scherk’s surface

with a tunnel replacing every other saddle. The underlying Riemann surface is the

square torus punctured in four points. We proved that this surface can be deformed

in exactly the same manner as the Scherk family.
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Proposition 1. There exists a one-parameter family Kθ of embedded doubly-periodic

minimal surfaces, whose quotient has genus equal to one and four Scherk ends, two

up and two down. Each genus-one surface is a rhombic torus. The angle θ between

the up and down ends, 0 < θ ≤ π/2, parametrizes the family.

Figure 3: A surface in the Scherk family (top) and Kθ (bottom), θ = π
4

Each member of the family may be considered to be a desingularization of two

families of parallel halfplanes. Unlike the Scherk family, these planes are not equally

spaced. The interplanar distance alternates. The smaller distance between planes is

spanned by tubes, while the larger one is bridged by saddles.
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The singly periodic surface W1 of Theorem 1 has the same relationship to Kθ

as the helicoid has to the Scherk family. Namely, choose a distinguished point in a

fundamental domain that is identifiable on each surface (for example the point on the

saddle where the normal is vertical) and keep this point at the origin. Then

Theorem 3. The limit surface as θ → 0 of the surfaces Kθ exists and is equal to W1.

3 The Weierstrass Representation for Kθ and W1

We shall first derive the Weierstrass representation for the surfaces Kθ. When we

take θ = 0 in the representation, it defines the singly-periodic minimal surface W1.

Consider an orientable fundamental domain of Scherk’s doubly-periodic surface

with an angle θ between the top and bottom ends. On that surface, there are vertical

lines connecting the top and bottom ends, as well as two horizontal lines meeting

orthogonally at the saddle points. Moreover, there is a 180◦ rotational symmetry

about a vertical line passing through the saddle point. Now imagine putting a tunnel

between the two top ends over one of the saddles. We wish to preserve the 180◦

rotational symmetry on the vertical lines passing the saddle points as well as the two

horizontal tangential lines which meet orthogonally at saddle points.

Assume such a surface Kθ exists for the time being. Then Kθ is a genus-one surface

with four ends. We may assume that the normals at the saddle points are vertical

and that the x1- and x2- directions are parallel to the two horizontal lines. Since Kθ

has a 180◦ rotational symmetry R around a vertical line passing the saddle points, g2

is well defined on the quotient Kθ/R, where g is the stereographic projection of the

Gauss map. Cutting the quotient sphere along the horizontal lines, we get a piece of

Kθ/R that is conformal to a half plane. Use a Möbius transformation to define a map

z, which takes this region to the upper half plane and maps the three saddle points

to∞, 0 and a, where a is a complex number. Then compare g2 and z on the quotient

sphere Kθ/R. We may write

g2 =
(z − a)(z − a)

z
.(3.1)

By the relation between the zero and poles of g and those of the meromorphic

form dh, (see [17]), we can deterimine that

dh =
zdz

(z − e)(z − e)
,(3.2)

where dh is the complex differential of the height function of the surface in the direc-

tion parallel to the ends, and e is the end-point where g(e) = eiθ/2.
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Now without assuming the existence of Kθ, we define a closed Riemann surface as

in (3.1) and a meromorphic function g and one-form dh as in (3.1) and (3.2). Then

the Weierstrass representation,

X(p) = Re
∫ p

p0

(
1

2
(g−1 − g),

i

2
(g−1 + g), 1)dh(3.3)

defines an immersed minimal surface. It is easy to check that this map is invariant

under the desired symmetries, namely, a 180◦ rotation about a vertical line and about

two horizontal lines on the surface.

To make X:M → �

3 in (3.3) a doubly-periodic minimal surface, we must satisfy

the condition that the image of the homotopy cycle around a cut with end points 0

and a be closed. That can be written as

Re
∫ a

0
(g−1 − g)dh = 0 ,

Re(i
∫ a

0
(g−1 + g)dh) = 0 .

We now consider the cases θ = π
2
and θ = 0. For θ = π

2
, the top ends are orthogonal

to the bottom ones. Moreover, the surface has two reflectional symmetries. When

θ = 0, the number e in (3.2) must be real. From the image it is clear that the surface

K0 is generated by reflection about the straight lines and a 180◦ rotation about a line

connecting X(0) and X(a). This gives the surface W1.

4 Construction of He1

The surface W1 can be described as a helicoid, into which has been sewn a han-

dle at every other half-turn. Thus a handle has been added to the surface modulo

translation. One could imagine adding a handle to every other fundamental domain,

producing three half-twists between handles, and (why stop at three?) in general

2k + 1 half-twists between handles, k ≥ 0. The quotient by orientation-preserving

translations of such a surface will have genus-one. Now imagine fixing one horizontal

line in a fundamental domain to be the x2-axis and letting k → ∞. The resulting

surface: will have genus one; will contain the x2-axis and x3-axis but no other lines;

will not be periodic; and should be asymptotic in some sense to the helicoid. In fact

such a surface exists and is the surface He1 of Theorem 2. Determining whether or

not the imagined surfaces with 2k + 1 half-twists exist is an exercise, which we have

not carried out, involving specification of Weierstrass data on a once-punctured torus,
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as is the case forW1. However, He1 is not periodic and its Gauss map has an essential

singularity at the end so it cannot be described by a meromorphic Gauss map on a

punctured torus.

The key to constructing He1 is to realize that, while its Gauss map g has an

essential singularity at the end, its logarithmic differential, dg

g
, is meromorphic. Note

that, in general, at an end where g has a pole or a zero of finite order, dg

g
has a simple

pole. The helicoid may be described on � by the Weierstrass data g = ez, dh = idz.

The single end occurs at infinity, where dg

g
has a double pole, as does dh. Thus, in order

to expect a helicoidal end on a torus, we must look for a meromorphic differential dh

with a double pole at the end and, by the Riemann relation, two zeros. We expect

from our Gedankenexperiment that the zeros of dh will lie on the horizontal line, and

by symmetry, there must be two simple zeros. A zero of dh occurs precisely at a point

on He1 where g = 0, or∞, and at such a point dg

g
has a simple pole. This forces dg

g
to

have precisely four zeros, corresponding to branch points of g, which we assume, for

the aforementioned reason, to be simple and to lie on the lines in He1. Rotation, ρ,

by π about the x1-axis is a symmetry of the surface, produced by successive reflection

in the x2- and x3-axis. This rotation fixes three finite points on He1 (one of which is

the origin), and also the end. The surface He1/ρ is the sphere S2 = � ∪ {∞}. Let z

denote the projection onto � ∪{∞} and also the variable there. We may specify that

the end is over z =∞, and the two other fixed points not at ~0 ∈ �

3 lie over z = ±i.

The rotation ρ leaves invariant the x2- and the x3-axis, while fixing three points on

the x1-axis, where z is real. Hence the x2- and x3-axis on He1 project by ρ to the real

axis in the z-plane. In particular, the origin sits over a point on the real line, say λ,

and He1 is conformally

w2 = (z − λ)(z2 + 1) ,(4.1)

for some λ ∈ � . (As we already knew, because of the presence of the two lines on

He1 crossing at ~0 and at the end, He1 is a rhombic torus). The vertical points of g

occur at two points where z = a, a ∈ � , and the branch points of g at four points,

z = α or z = β, α, β ∈ � . Since dz
w

is holomorphic on He1 we have

dg

g
= ρ

(z − α)(z − β)

(z − a)

dz

w
(4.2)

dh = c(z − a)
dz

w
(4.3)

The symmetries of He1 force c to be purely imaginary and, by scaling, we may assume

c = i. A natural residue condition for g to be well-defined gives ρ−1 = ± (a−α)(α−β)
w(a)

,

while dg

g
must have period 2πin, n ∈ Z on nontrivial cycles in M . By symmetry
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conditions there is only one essential cycle, which may be considered to lie in the

z-plane. We choose n = ±1, which turns out to work, but is not forced. (Other

values may work, too.) This gives additional constraints. To see how to make the

Weierstrass integral (3.3) well-defined on the Riemann surface in (4.1), we may agrue

geometrically. Beginning integration at λ ∈ � automatically maps this point to the

origin ~0 ⊂ �

3. We want the image of i to be a fixed-point of rotation about the

x1-axis. That is

Re
∫ i

λ
dh = 0 ,(4.4)

Re(i
∫

(g−1 + g)dh) = 0 .(4.5)

Given λ > 0, i.e. knowing the conformal type of He1, we can use (4.4) to write a

as a function of λ, and the period condition on dg

g
to determine α and β. Thus (4.5)

becomes a single real condition on λ > 0, now considered a variable. For λ ∼= −.32

we get a solution.

5 Computation

To produce the pictures and find strong experimental evidence that these surfaces

exist, MESH [1, 7] was used. Computational programs were used to solve the period

problems inherent in these representations. A proof for the existence of W1 can be

given using a degree theory argument for the period mapping.
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