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1. Introduction.


Recently Freedman, He and Wang [FHW], following work of O’Hara [O], in-
troduced an energy E(Γ) for a simple closed curve Γ ⊂ R3. The functional E is
continuous on each isotopy class of curves, and tends to infinity as Γ nears self-
intersection. Moreover, E is “proper” on the set of all isotopy classes, in the sense
that there are only finitely many knot types below a given energy level.


A useful geometric property of E is conformal invariance: if µ is a Möbius trans-
formation of R3 ∪∞, and µ(Γ) ⊂ R3, then E(µ(Γ)) = E(Γ). This can be used to
prove [FHW] that each prime knot class has an energy minimizing representative
(of differentiability class C1,1), and that the round circle is the unique energy min-
imizer among all curves (E = 4). It is also a non-trivial result of [FHW] that, at
least for C1,1 curves, the functional E is sufficiently smooth to have a “gradient”
dE (see §3). Thus it becomes an interesting problem to find E-critical curves, that
is, solutions to dE = 0.


In this note we construct the first explicit examples of knotted curves which are
critical for E. Our basic observation (§2) is that the conformally invariant energy
E extends naturally to simple closed curves Γ ⊂ Rm. In particular, if Γ ⊂ S3 ⊂ R4


and σ : S3 −→ R3 ∪∞ is stereographic projection, then E(σ(Γ)) = E(Γ) provided
σ(Γ) ⊂ R3. Then we use the principle of symmetric criticality (§3) to show that
for each relatively prime pair of integers (p, q) there is a (p, q)-torus knot Γp,q ⊂ S3


which is critical for E. This curve Γp,q is a principal orbit for an isometric S1-
action on S3. In the same way, we construct critical orbital links with more than
one component.


The energies E(Γp,q) can be computed explicitly in terms of rational trigonomet-
ric integrals. This makes them ideal benchmarks to check the accuracy of computer
experiments with various discretized energies. We mention one such discrete model
in §4. The authors have implemented several programs using this model, run a
number of experiments, and tabulated some of the results (§4), but clearly more
work needs to be done. In this regard, we should mention that several Japanese
mathematicians – and independently, S. Bryson – as noted in [BFHW], have also
conducted computer experiments to seek nontrivial extrema.


It is well-known (see, for example, [S], p. 250) that torus knots are prime, and
it is tempting to conjecture that the stereographic images σ(Γp,q) are the energy
minimizers guaranteed to exist by [FHW]. However, we expect this conjecture is
false when both p and q are large, for the following reason: we can view Γp,q as a


Typeset by AMS-TEX


1







2


p- or q-strand braid lying on the surface of a torus, and if both p and q are at least
4, energy can be saved when “extra strands” of Γp,q depart from the surface of the
torus and push into the interiors of the complementary solid tori. Our most recent
experiments (§5) suggest that Γp,q is a stable local minimum for E when p or q is
less than 4, but not a minimizer otherwise, lending evidence for our conjecture (as
qualified) above. The general E-stability question will be explored elsewhere [KS].


2. Conformal Invariance.


Suppose Γ ⊂ Rm is a C1,1 simple closed curve, meaning Γ admits a parametriza-
tion Γ : S1 ↪→ Rm whose first derivative Γ′(z) is Lipschitz. (Weaker differentiability
assumptions are possible – see §1 of [FHW] – but we find C1,1 suitable for our pur-
poses.) Let


D(x, y) = min


{∫ y


x


|Γ′(z)| dz ,
∫ x


y


|Γ′(z)| dz
}


denote the distance between Γ(x) and Γ(y) within Γ.


Definition/Proposition Given Γ as above, its (conformal) energy


E(Γ) =


∫∫


S1×S1


[
1


|Γ(x)− Γ(y)|2 − 1


D2(x, y)


]
|Γ′(x)| |Γ′(y)| dxdy


is finite and independent of the parametrization of Γ. Moreover, if µ is a Möbius


transformation of Rm ∪∞, then E(µ(Γ)) = E(Γ) provided µ(Γ) ⊂ Rm.


Proof: The arguments, with only formal modifications to move from 3 to m
dimensions, are essentially in §1 and §2 of [FHW]. In particular, concerning the
conformal invariance, the first term in the integrand is pointwise invariant, whereas
the second term in the integral is “intrinsic”, in the sense that, for any ε > 0, the
asymptotic expansion


∫∫


|x−y|≥ε


|Γ′(x)| |Γ′(y)|
D2(x, y)


dxdy =
4π


ε
− 4 +O(ε)


is invariant under all C1,1 diffeomorphisms of Rm, not only Möbius transformations.
(Note that the 4π/ε term here precisely cancels a corresponding singular term from
the first integral. This is the “regularization” of E introduced in [O].) ¤


Corollary. If Γ ⊂ Sm ⊂ Rm+1 and σ : Sm −→ Rm ∪ ∞ is stereographic


projection, then E(σ(Γ)) = E(Γ) provided σ(Γ) ⊂ Rm.


Proof: Stereographic projection always extends to a Möbius transformation of
Rm+1 ∪∞. ¤


Examples. Consider the (p, q)-torus knot Γrp,q ⊂ S3
(√


1 + r2
)
⊂ R4 = C2 defined


by


Γrp,q(x) =






r cos px
r sin px
cos qx
sin qx



 =


(
r eipx


eiqx


)
.
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Then the conformal energy of its stereographic image σ(Γrp,q) ⊂ R3 is


E
(
σ(Γrp,q)


)
= E(Γrp,q)


= (r2p2 + q2)


∫ 2π


0


dy


∫ y+π


y−π
dx


[
1


r2|eipx − eipy|2 + |eiqx − eiqy|2 −
1


D2(x, y)


]


= 2π(r2p2 + q2)


∫ π


−π
dθ


[
1


r2|eipθ − 1|2 + |eiqθ − 1|2 −
1


(r2p2 + q2)θ2


]


= 2π(r2p2 + q2)


∫ π/2


0


dϕ


[
1


r2 sin2 pϕ+ sin2 qϕ
− 1


(r2p2 + q2)ϕ2


]
.


3. Symmetric Criticality.


For each pair (p, q) of integers, there is an isometric action αp,q of S
1 on the unit


sphere S3 ⊂ R4 = C2 defined by


αp,q
(
eiθ
)
∗
(
z
w


)
=


(
eipθ z
eiqθ w


)
.


This action is effective when p and q are relatively prime. The case (p, q) = (1, 1)
is the familiar Hopf action, whose orbits are great circles in S3. In general, the
αp,q-orbits of the points


(
1
0


)
or
(


0
1


)
are p- or q-fold coverings of the z- or w-axis


circles S1
z or S1


w, respectively, while the principal αp,q-orbit which passes through
the point (


eit r√
1+r2


eit 1√
1+r2


)


for r > 0, is simply a rotation and rescaling of the (p, q)-torus knot Γrp,q defined
in §2. We can think of (r, t) as polar coordinates for the 2-dimensional orbit space
Sp,q = S3/αp,q(S


1) of this action.


Lemma. The knot Γrp,q is critical for E if and only if ∂
∂r E(Γrp,q) = 0 for some


r > 0.


Proof: The only if direction is clear, and the if direction is a consequence of the
“principle of symmetric criticality” (see, for example, [P] for a general discussion
of this principle) as follows: Consider a C1,1 vector field V : S1 −→ R4 and a
variation Γε = Γ + εV of Γ = Γrp,q. According to [FHW] (Lemma 6.1), there is a
unique linear functional dE such that


dE(V ) =
d


dε
E(Γε)|ε=0,


for any V as above. (More formally, the Banach space of C1,1 vector fields along Γ
is the tangent space to the Banach manifold of C1,1 curves, and dE is the gradient


one-form of E, at Γ. Several explicit formulas for dE are given in §6 of [FHW],
but its linearity is the only property we need here.) Suppose to the contrary that
dE(V ) 6= 0. Since Γ is an orbit of the S1-action α = αp,q, we can average the
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push-forward (α(eiθ))∗V over S1 to obtain an α-invariant vector field Ṽ for which


dE(Ṽ ) 6= 0 as well.


Now Ṽ induces a variation through α-orbits, so we can view Ṽ as tangent to the
orbit space S = Sp,q at Γ. But


dE|S =
∂E


∂r
dr +


∂E


∂t
dt =


∂E


∂r
dr,


because rotation of S by eit leaves E unchanged, and thus dE|S(Ṽ ) = dE(Ṽ ) 6= 0
implies ∂E


∂r 6= 0 as required. ¤


We come next to our main result.


Theorem 1. For each relatively prime pair of integers p and q greater than 1,
there is a (p, q)-torus knot Γp,q ⊂ S3 which is critical for the conformal energy E.


The knot Γp,q is a principal orbit of the S1-action αp,q defined above.


Proof: The energy E(r) = E(Γrp,q) = E
(


1√
1+r2


Γrp,q


)
is a smooth function of r.


Because the orbit 1√
1+r2


Γrp,q converges to either a p- or q-fold covering of a round


circle as r approaches ∞ or 0, and since p, q ≥ 2, we have lim
r↓0


E(r) = lim
r↑∞


E(r) =


+∞. Thus there is a finite value r0 > 0 minimizing E(r). By the previous lemma,
the principal orbit Γp,q =


1√
1+r2


0


Γr0p,q is critical for E. ¤


In [FHW] the conformal energy of a k-component link (Γ1, ... ,Γk) is defined as
a natural extension of the conformal energy of a knot:


E(Γ1, ... ,Γk) =
∑


1≤i,j≤k
E(Γi,Γj) ,


where E(Γi,Γi) = E(Γi) as before, and the cross-terms (i 6= j) are


E(Γi,Γj) =


∫∫


S1×S1


|Γ′i(x)| |Γ′j(y)|
|Γi(x)− Γj(y)|2


dxdy .


If we consider links whose k components are each orbits of the S1-action αp,q, the
principle of symmetric criticality applies: the orbital link (Γ1, ... ,Γk) is critical for
E among all links if and only if it corresponds to an E-critical configuration of k
distinct regular points in the orbit space S = Sp,q, that is, to a critical point of E
restricted to Sk∗ = Sk \ D (here D is the big diagonal ∆ of Sk union the singular
orbits). But E is a positive proper function on Sk∗, so it has a minimum, implying:


Theorem 2. There are infinitely many E-critical links with any number of com-


ponents. ¤


We refer to a link L in S3 ⊂ C2 whose component curves are orbits for the Hopf
action α1,1 as a Hopf link. Note that L corresponds to a collection of points on
S1,1 = S2, which we take to be the 2-sphere of radius 1. By a direct integration, as
in the example of §2, one finds:
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Proposition. For a Hopf link L, the energy cross-term E(Γi,Γj) = 2π2 cscσ,
where σ is the the angle between 2-planes in R4 meeting S3 in the Hopf orbits


Γi and Γj , or equivalently, where s = 2σ is the angular distance between the


corresponding points in S2. ¤


Remark. We observed with John Sullivan that this means the total energy of a
k-component Hopf link is, up to a constant, simply the “Coulomb” energy for k
point charges in R3 constrained to lie on S2.


Corollary. The Hopf link L2 = S1
z ∪ S1


w with E = 8 + 4π2 is critical for E.


Proof: Since L2 corresponds to a pair of antipodal points on S2, it is the E-
minimizer among 2-component Hopf links. (In fact, L2 minimizes among all non-
trivial 2-component links with at least one component a round circle [FHW], §7.)
Therefore dE restricted to S2∗


1,1 = S2 × S2 \ ∆ vanishes at L2, so the principle of
symmetric criticality gives the result. ¤


Remark. One can also show that the minimum energy Hopf link Lk with k = 3 or 4
components corresponds to the obvious equilateral configuration of k points on S2.
(Their energies are E(L3) = 12 + 8


√
3π2 ≈ 148.7572 and E(L4) = 16 + 12


√
6π2 ≈


306.1059, respectively.) On the other hand, there is a 4-component critical link


L4,e (with E = 16+8(1+2
√
2)π2 ≈ 318.2805), corresponding to 4 points arranged


in an “equatorial square” on S2, which is not a local minimum for E. Observe
that L4,e lies on the surface of a torus (since, in the orbit space S2, these 4 points
lie on a circle), but that energy is lowered as a component leaves the surface (in
S2, as the 4 points move to the regular tetrahedral configuration). If we think of
L4,e as a “(4, 4)-torus link”, this phenomenon illustrates the conjectured behavior
(mentioned in the Introduction) of an E-minimizing (p, q)-torus knot for p and q
at least 4. (Further results on Hopf links are given in [KS].)


4. Discretization and Computer Experiments.


Given a C1,1 knot Γ : S1 = R/2πZ −→ Rm, and a sufficiently large integer n,
the polygon γ with vertices γ(h) = Γ(2πh/n) , 1 ≤ h ≤ n, is a knot isotopic to Γ,
which we call a polygonal approximation to Γ. One possible discretized energy is
simply E(γ), which unfortunately is infinite! It can be regularized, by deleting the
contributions of adjacent edges, to an energy E∗(γ) which has the advantage of an
infinite barrier to changing isotopy type (but the disadvantage of being difficult to
compute). Another discrete energy e(γ), defined below, is much easier to compute.
It can be shown that both E∗(γ) and e(γ) converge to E(Γ) as γ approaches Γ for
n very large.


Definition. The discrete energy of a polygon with vertices γ : Z/nZ −→ Rm is


e(γ) =
∑


1≤i6=


∑


j≤n


[
1


|γ(i)− γ(j)|2 −
1


d2(i, j)


]
|γ′(i)| |γ′(j)|,


where


d(i, j) = min


{ ∑


i≤h<j
|γ(h)− γ(h+ 1)| ,


∑


j≤h<i
|γ(h)− γ(h+ 1)|


}
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and


|γ′(h)| = |γ(h− 1)− γ(h)| + |γ(h)− γ(h+ 1)|
2


.


Observe that if γ = γp,q is a polygonal approximation to the orbit Γp,q ⊂ S3,
then (by setting h = i− j) the double-sum reduces to


e(γ) = n |γ′(1)|2
∑


1<h≤n


[
1


|γ(1)− γ(h)|2 −
1


d2(1, h)


]
.


We used this in a simple search routine called Torus Knot Energy to produce the
following table of approximate values for the conformal energies of our critical
(p, q)-torus knots. (Our program, written in FORTRAN, is available from polyphe-


mus.gang.umass.edu by anonymous ftp in the directory pub/knot/.) The third
column gives the corresponding critical radius (r0). Note, by comparing the first
six lines of the table with the exact value E = 4 for the round circle, that the
approximate turning angle (d◦, in degrees) at each vertex gives a rough percentage
bound for the underestimation by e = e(γp,q) of the true energy E(Γp,q). The
number of vertices (n) in the polygonal approximation γp,q is given in the far right
column. Although not recorded in our table, we checked our computed values by
interchanging p and q: to the number of digits given, this led to the same e and
reciprocal r0, as expected. (Bryson reports that his experiments found a trefoil –
that is, a (2, 3)-torus knot – with energy about 74; compare with lines 7 through
10 of the table. The sharpest value we have computed for e(γ2,3) is 74.4111 with
r0 around 1.8572078 at n = 92160. From the geometric progression of the values
of e as we double n, it appears 74.4121 < E(Γ2,3) < 74.4122.)


5. Further Experiments.


Very recently, the second author and John Sullivan computed the gradient de
of the discretized energy e, and had Ken Brakke incorporate this into his Surface


Evolver computer program (Version 1.89). Because e and de are each quadratic in
n, convergence of the negative gradient flow to a critical knot or link is considerably
slower than in our program Torus Knot Energy, which searches only among orbits;
the practical size of n in the Surface Evolver is limited accordingly. Nevertheless,
we were able to test the stability of Γ2,q and Γ3,q for q small, as well as find a non-
orbital (4, 5)-torus knot with energy E ≈ 388, considerably less than E(Γ4,5) ≈ 406
(see table). We hope to report further on this in future joint work with Brakke,
Sullivan, and a group of students at the Five Colleges Geometry Institute.
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p q r0 e d◦ n


1 1 —— 3.9608 1 360
1 1 —— 3.9804 .5 720
1 1 —— 3.9902 .25 1140
1 1 —— 3.9951 .12 2880
1 1 —— 3.9975 .06 5760
1 1 —— 3.9987 .03 11520
2 3 1.85... 74.353 .68 1440
2 3 1.857.. 74.383 .34 2880
2 3 1.8572. 74.397 .17 5760
2 3 1.85720 74.405 .09 11520
2 5 3.4384. 130.69 .34 5760
2 5 3.43849 130.70 .17 11520
2 7 4.9479. 184.89 .42 5760
2 7 4.94799 184.92 .21 11520
2 9 6.4322. 238.43 .55 5760
2 9 6.43225 238.47 .27 11520
3 4 1.4868. 204.19 .21 5760
3 4 1.48687 204.20 .11 11520
3 5 1.9677. 264.20 .27 5760
3 5 1.96779 265.26 .14 11520
3 7 2.9015. 383.48 .48 5760
3 7 2.90157 383.52 .24 11520
3 8 3.3588. 441.48 .47 5760
3 8 3.35885 441.62 .23 11520
4 5 1.3409. 406.11 .29 5760
4 5 1.34094 406.14 .14 11520
4 7 2.0210. 599.52 .40 5760
4 7 2.02106 599.56 .20 11520
4 9 2.6867. 787.80 .52 5760
4 9 2.68677 787.85 .26 11520
5 6 1.2623. 686.65 .35 5760
5 6 1.26234 686.69 .18 11520
5 7 1.5265. 823.83 .40 5760
5 7 1.52659 823.88 .20 11520
5 8 1.7899. 959.15 .46 5760
5 8 1.78991 959.20 .23 11520
5 9 2.0513. 1093.0 .52 5760
5 9 2.05137 1093.1 .26 11520
6 7 1.2131. 1050.9 .41 5760
6 7 1.21313 1050.9 .21 11520
7 8 1.1793. 1503.0 .47 5760
7 8 1.17939 1503.1 .24 11520
7 9 1.3604. 1726.4 .52 5760
7 9 1.36044 1726.5 .26 11520
8 9 1.1548. 2046.6 .54 5760
8 9 1.15483 2046.7 .27 11520
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