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1 Introduction

The only connected minimal surfaces foliated by circles and lines are domains on one of

the following surfaces: the helicoid, the catenoid, the plane, and the examples of Riemann

([Ri] p329-33, [En] p403-6, [Ni] p85-6). All these surfaces are complete and embedded.

Topologically they are planar domains: the helicoid is simply-connected, the catenoid is an

annulus (conformally a twice-punctured sphere), and each Riemann example (see Figure 1)

is conformal to the plane minus the points {(n, 0), ( 1
n
, 0) |n ∈ � } [HKR]. In this section

we will show that the plane, helicoid, and catenoid arise naturally as limits of well-chosen

and properly normalized sequences of Riemann examples. The local behavior of domains

on Riemann examples accounts for the existence of these limits, thus allowing a change of

topology in the limit surfaces.

Theorem 1.1 Any sequence of Riemann examples that converges to a surface in �

3
con-

verges either to a Riemann example, a helicoid, a catenoid, an infinite set of equally spaced

parallel planes, or a single plane. Furthermore, there exist sequences of Riemann examples

that converge to each of these possibilities.

In order to be precise, we state what we mean by convergence of surfaces in �

3
in this

context.

Definition 1.1 A sequence of surfaces {Si}∞i=1 converges as i → ∞ to a surface S in �

3

if, for any compact region B ⊆ �

3
, there exists an integer NB such that for i > NB, Si ∩B

is a normal graph over S, and {Si ∩B}∞i=NB converges to S in the C∞-topology.

One can define analogously the convergence of a one-parameter family St, t ∈ � , as

t → t0. Since this convergence is in the C∞-topology, it requires that derivatives of all

orders of the coordinate functions on the graphs converge to the corresponding derivatives

of the coordinate functions on the limit-surface.

We observe that catenoids, helicoids, and planes are limit-surfaces of sequences of Rie-

mann examples. Therefore the collection of connected embedded minimal surfaces foliated

by circles and lines is itself connected in the topology associated with this convergence.

We wish to thank Rob Kusner, Pascal Romon, Ed Thayer, Johannes Nitsche and Harold

Rosenberg for helpful conversations.
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Figure 1: The Riemann Example Rλ, λ = 1

2 The Family of Riemann Examples

2.1 Definition of the Riemann Examples

We now describe properties of the Riemann examples, and we give a Weierstrass represen-

tation for these surfaces. Proofs of the statements in this section may be found in [HKR].

For any Riemann example R, there exists a translation T of �

3
so that T : leaves R

invariant; is orientation-preserving on R; generates the full cyclic orientation-preserving

translation symmetry group of R. The quotient-surface R/T is a twice-punctured rectan-

gular torus. Thus, Riemann examples can be parametrized via a Weierstrass representation

on such a torus. Fix λ > 0. We first define M̄λ:

M̄λ = { (z, w) ∈ ( � ∪ {∞})2 : w2 = z(z − λ)(z +
1

λ
) } . (2.1)

Let Mλ be the twice-punctured torus

Mλ = M̄λ \ {(0, 0), (∞,∞)} . (2.2)

With the Weierstrass data

g(z, w) = z , η(z, w) =
dz

zw
, (2.3)

the Weierstrass representation for the Riemann examples Rλ is

Rλ(p) := Re

∫ p

p0

Φ(g,η) dz , Φ(g,η) :=







(1−z2)dz

zw
i(1+z2)dz

zw
2dz
w






, p ∈Mλ . (2.4)
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The family Rλ of Riemann examples is parametrized by λ ∈ (0,∞).

The surface Mλ can be considered to be a double covering of the punctured z-plane,

branched at λ and −1
λ
. Consider a circle α in the z-plane with center −1

2λ
and radius 1

2
(λ+ 1

λ
),

and lift α to a closed curve α̂ in Mλ. The Weierstrass integral about α̂ results in a nonzero

period-vector, and this is the translation T .

Letting ź = −z and ẃ = iw, we have

ẃ2 = ź(ź − 1

λ
)(ź + λ) .

Thus we may consider the map (z, w)→ (ź, ẃ) to be a conformal diffeomorphism between

Mλ and M 1

λ
.

Because the metric on Rλ ([Os] p65, [HKR]) is

ds2 =
(1 + |z|2)2
4|z|2|w|2 |dz|

2 ,

the maps (z, w) → (z̄, w̄) and (z, w) → (z̄,−w̄) both restrict to isometries of Mλ in the

induced metric. The set A = {(t, w) ∈ Mλ | t ∈ � }, which consists of the union of their

fixed-point sets, is mapped by the Weierstrass integral to geodesics in Rλ. It is clear from

the Weierstrass integral that the intervals in A of the form t ≤ −1
λ

or 0 < t ≤ λ represent

lines in Rλ, while intervals in A of the form −1
λ
≤ t < 0 or t ≥ λ represent planar geodesics

in Rλ. Planar geodesics must be principal curves.

The surfaces Rλ have the following additional properties:

1) Rλ is foliated by circles and lines in horizontal planes. All the lines in Rλ are

the image under the Weierstrass representation of points in A such that t ≤ −1
λ

or 0 < t ≤ λ, which is the fixed-point set of the map (z, w(z))→ (z̄,−w̄(z)).

2) Rλ has an infinite number of equally spaced horizontal flat ends. These ends

correspond to the punctures of M̄λ at z = 0,∞.

3) Rλ is invariant under reflection in a plane parallel to the (x1, x3)-plane. The

intersection of this plane with Rλ consists of the image under the Weierstrass

representation of points in A such that −1
λ
≤ z < 0 or z ≥ λ, which is the

fixed-point set of the map (z, w(z))→ (z̄, w̄(z)).

4) Rλ is invariant under rotation about horizontal lines that are perpendicular

to the (x1, x3)-plane, and meet the surface orthogonally at the points where

g(z) = ±i. The map (z, w)→ (−1
z
, w
z2
) restricted to Mλ represents this rotation.

We will consider a Riemann example to be any surface that is the image of one of these

surfaces Rλ under an isometry or homothety of �

3
.
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2.2 Conjugate Pairs of Riemann Examples

Proposition 2.1 For any positive λ 6= 1, the Riemann examples Rλ and R 1

λ
are conjugate

but not congruent. R1 is self-conjugate.

Proof. Choose λ > 1. The conjugate surface of Rλ has Weierstrass data

g = z ,

iη =
idz

zw
=

dz

(−z)(iw) .

The Weierstrass data for the conjugate surface, expressed in terms of (ź, ẃ) = (−z, iw) on
M 1

λ
, is

g̃(ź, ẃ) = −ź ,

η̃(ź, ẃ) =
−dź
źẃ

.

Because

Φ(g̃,η̃) =







−1 0 0
0 −1 0
0 0 1






Φ(g,η) ,

it follows from equation (2.4) that the minimal surface in �

3
with this Weierstrass data

is the image of R 1

λ
under a rotation by π about a vertical axis. Hence Rλ and R 1

λ
are

conjugate surfaces.

We use the Weierstrass data to show that Rλ and R 1

λ
cannot be congruent for λ 6= 1.

Consider the points onRλ where g = ±1. As shown in the previous Section 2.1 (Property 1),

when λ > 1, these points lie on the lines in Rλ. By contrast, the points of R 1

λ
where

g(z) = ±1 lie on the planar geodesics in the vertical plane of reflective symmetry of the

surface. Suppose there exists a symmetry of �

3
taking Rλ to R 1

λ
, then this symmetry must

take lines to lines, ends to ends, and planar geodesics to planar geodesics. Since the lines in

these two surfaces are all parallel to the x2-axis and the ends are horizontal, the symmetry

of �

3
must be of the form







±1 0 0
0 ±1 0
0 0 ±1






.

Therefore points of Rλ where g = ±1 must be mapped to points of R 1

λ
where g = ±1. This

implies that the points of Rλ and R 1

λ
where g = ±1 are the points where the lines and

planar geodesics in the surface intersect i.e. where g = ±λ±1. But we are assuming λ 6= 1.

Thus Rλ and R 1

λ
are not congruent. 2

Remark. One checks that the mapping (z, w)→ (z′, w′) from Mλ to M 1

λ
has the property

that on fundamental cycles it preserves the periods (one of which is always zero) of (2.4).

Hence this mapping induces an isometry of Rλ and R 1

λ
. 2
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Upon considering the behavior of Rλ and R 1

λ
as λ → 0, one finds that Rλ and R 1

λ

do not have limits that are regular surfaces. However, if these surfaces are normalized

appropriately they converge to a catenoid and its conjugate surface, the helicoid, which is

consistent with Proposition 2.1. We shall prove this in the next section.

3 Proof of the Main Result

To find a sequence of Riemann examples that converges to a catenoid or helicoid, we renor-

malize the surfaces Rλ as follows. Begin the integration in the Weierstrass representation

at the point z0 = 1. If λ > 1, rescale by
√
λ; if λ < 1, rescale by 1√

λ
. We name these

normalized Riemann examples Ŕλ. Note that the rescaling is accomplished by multiplying

η in the Weierstrass representation by
√
λ and 1√

λ
, respectively. Thus, the Weierstrass

representation for Ŕλ is

g = z , η =

√
λdz

zw
, λ ≥ 1 ,

g = z , η =
dz√
λzw

, λ ≤ 1 .

One can check as in Proposition 2.1 that Ŕλ and Ŕ 1

λ
are conjugate.

Let K denote Gauss curvature.

Lemma 3.1 There exists a universal bound c such that |K| ≤ c on Ŕλ for all λ ∈ (0,∞).

Proof. With Weierstrass data given locally as g and η = fdz, the Gauss curvature of a

minimal surface is ([Os], p76)

K = −( 4|g′|
|f |(1 + |g|2)2 )

2 . (3.5)

In the case of Ŕλ a computation using equations (2.1) and (3.5) yields

|K| = 16λα
|z − λ||z + λ−1|
|z|(|z|+ |z|−1)4

.

where α = 1 if λ ≤ 1, and α = −1 if λ ≥ 1. If λ ≤ 1, then

|K| ≤ 16
(|z|+ 1)λ(|z|+ λ−1)

|z|(|z|+ |z|−1)4
≤ 16

(|z|+ 1)2

|z|(|z|+ |z|−1)4
≤ 4 .

Similarly, if λ ≥ 1, then

|K| ≤ 16
λ−1(|z|+ λ)(|z|+ 1)

|z|(|z|+ |z|−1)4
≤ 16

(|z|+ 1)2

|z|(|z|+ |z|−1)4
≤ 4 .

Thus, |K| has a universal upper bound. 2
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Remark. More calculation shows that |K| on Rλ is maximized at a fixed point of one of

the symmetries of the surface. Thus K is maximized in one of the following three places:

somewhere along a straight line in Rλ; somewhere along a planar geodesic in the plane of

reflective symmetry parallel to {x2 = 0}; or at the points where g(z) = ±i, which are the

fixed points of the normal rotation. At the points where z = g(z) = ±i, the value of |K| on
Rλ is λ+ 1

λ
. Hence on Ŕλ the value is 1 + 1

λ2
(resp. 1 + λ2) when λ > 1(resp. when λ < 1).

The following conjecture has been verified numerically: The absolute value of the Gaus-

sian curvature on Rλ is maximized at the points where z = g(z) = ±i. This implies that

the optimal value in Lemma 3.1 is c = 2. 2

Proposition 3.1 There exist sequences of Riemann examples that converge to a helicoid

and sequences that converge to a catenoid.

Proof. We will prove this proposition by showing that the limit, as λ → 0, of Ŕλ is a

catenoid, and the limit, as λ → ∞, of Ŕλ is a helicoid (see Figures 2 through 4). We

consider first the case λ→ 0.

For a large positive number L, let AL be the annular ring {z ∈ � : 1
L
< |z| < L}.

One can think of z in (2.1) as a map from Mλ to � \ {0}. Then for λ sufficiently small,

z−1(AL) consists of two disjoint sets in Mλ. Choose either one and name it ÁL,λ. Since z

parametrizes ÁL,λ, we shall refer to points in ÁL,λ by their z coordinates.

Let Br be a ball centered at the origin in �

3
with radius r. Let Sr be the horizontal

slab {(x1, x2, x3) ∈ �

3 | − r ≤ x3 ≤ r}, with boundary planes x3 = ±r.
Let C be the catenoid obtained by using the Weierstrass data

g(z) = z , η(z) =
dz

z2
,

and integrating over � \ {0} with base point z0 = 1. The Weierstrass representation for the

catenoid C is

C(p) := Re

∫ p

1







(1−z2)dz

z2

i(1+z2)dz

z2
2dz
z






, p ∈ � \ {0} .

Let ĈL be the image of the restriction of C(p) to AL. By examination of the third coordinate

of the Weierstrass representation, we see that ĈL = C ∩ S2 lnL. Choose a large value for r,

and choose L > er so that C ∩ S2r ⊆ ĈL.
For λ < 1, the Weierstrass representation for Ŕλ is

Ŕλ(p) := Re

∫ p

1









(1−z2)dz√
λzw

i(1+z2)dz√
λzw
2dz√
λw









= C(p) +Re

∫ p

1







f0,λ(z)
(1−z2)dz

z2

f0,λ(z)
i(1+z2)dz

z2

f0,λ(z)
2dz
z






, (3.6)
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Figure 2: Portions of Riemann Examples Ŕλ, λ = 0.1 (left), λ = 0.5 (right)

Figure 3: Portions of Riemann Examples Ŕλ, λ = 1.0 (left), λ = 3.0 (right)

Figure 4: Portions of Riemann Examples Ŕλ, λ = 5.0 (left), λ = 10.0 (right)
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where

f0,λ(z) =

√
z

√

(z − λ)(λz + 1)
− 1 .

If λ is close to zero, then the Weierstrass integral Ŕλ along any closed curve in ÁL,λ is

zero. Therefore the Weierstrass integral depends only on the endpoints of a path in ÁL,λ.

All paths from z0 = 1 to p ∈ AL may be chosen to be of length less than cL, where c is

some fixed constant.

Note that the functions
1− z2

z2
,
1 + z2

z2
,
2

z

are bounded on AL. Also, for all z ∈ AL,

lim
λ→0

|f0,λ(z)| = 0 .

It follows that the last integral in equation (3.6) becomes arbitrarily small, uniformly on

ÁL,λ, as λ→ 0. In particular, for all p ∈ AL, limλ→0 Ŕλ(p) = C(p).

Let R̂λ be the image of ÁL,λ under the map Ŕλ(p). It follows that R̂λ is a small

perturbation of ĈL for λ close to zero. We conclude that Ŕλ ∩ Br ⊆ R̂λ. Thus to examine

the behavior of Ŕλ, as λ → 0, in arbitrary compact regions of �

3
, it is enough to examine

R̂λ in Br for arbitrarily large fixed r.

We claim that the surface Ŕλ ∩ Br is a graph over a subset of the catenoid C, for λ
close to 0. By Lemma 3.1, the Gaussian curvature K is uniformly bounded for all Ŕλ. This

implies that the normal curvatures are also uniformly founded. This in turn implies Ŕλ∩Br

is a union of graphs over a subset of the catenoid C. Since the surface Ŕλ is foliated by

lines and circles in horizontal planes, there is a single graph.

We now show that Ŕλ ∩Br converges to C ∩Br, in the C∞-topology, as λ→ 0. Because

the curvature of Ŕλ is bounded uniformly in λ, it follows from standard elliptic theory that

the convergence is C∞. (Curvature bounds give C1 estimates.) However, we can give in our

specific case a direct proof. Let p ∈ C ∩Br. Let zp ∈ AL be the point such that C(zp) = p,

and let Bh(zp) ⊆ AL be a ball of radius h about zp. Note that Ŕλ(Bh(zp)) consists of disks

in �

3
converging in the C0-norm, as λ→ 0, to a disk containing p and lying on the catenoid

C. Let xi,λ(z) be the i’th coordinate function of Ŕλ, let xi(z) be the i’th coordinate function

on C, and let fλ(z) = xi,λ(z)− xi(z). Note that

max
w∈Bh(zp)

|fλ(w)| → 0 , as λ→ 0 .

Since fλ(z) is harmonic, it is the real part of a holomorphic function Fλ(z), and Fλ(z) can

be chosen so that

max
w∈Bh(zp)

|Fλ(w)| → 0 , as λ→ 0 .
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Assuming z ∈ B h
2

(zp), and using the Cauchy integral formula, we have

∣

∣

∣f
(k)
λ (z)

∣

∣

∣ ≤
∣

∣

∣F
(k)
λ (z)

∣

∣

∣ =

∣

∣

∣

∣

∣

k!

2πi

∫

∂Bh(zp)

F (ξ)

(ξ − z)k+1
dξ

∣

∣

∣

∣

∣

≤ k!

2π

(

2

h

)k+1

2πh max
w∈Bh(zp)

|Fλ(w)| ,

and so we have that |f (k)
λ (z)| → 0 ∀k, ∀z ∈ B h

2

(zp), as λ → 0. Therefore |f (k)
λ (z)| →

0 ∀k, ∀z ∈ AL, and the convergence is in the C∞-topology in Br.

Since r is arbitrary, we have completed the proof that Ŕλ converges to the catenoid C
as λ→ 0.

It is now intuitively clear that the surfaces Ŕλ converge to a helicoid for the following

reason: as λ → ∞, their conjugate surfaces Ŕ 1

λ
converge to a catenoid. One can give an

explicit proof of this, similar to the proof just given for the case λ→ 0. However, there are

some differences in the proof of the case λ → ∞. For λ close to ∞, the representation for

Ŕλ is

Ŕλ(p) := Re

∫ p

1









√
λ(1−z2)dz

zw
i
√
λ(1+z2)dz

zw
2
√
λdz
w









=

−Re

∫ p

1







i(1−z2)dz

z2

−(1+z2)dz

z2
2idz
z






+Re

∫ p

1







f∞,λ(z)
i(1−z2)dz

z2

f∞,λ(z)
−(1+z2)dz

z2

f∞,λ(z)
2idz
z






, (3.7)

where

f∞,λ(z) = 1−
√
z

√

(1− z
λ
)(z + 1

λ
)
.

Note that the first integral in the above sum in equation (3.7) is the Weierstrass integral

for a helicoid, since Weierstrass data for a helicoid is

g(z) = z , η(z) =
idz

z2
.

If λ is large, then the vertical distance between adjacent planar ends of Ŕλ is approx-

imately 2π. This can be verified by integrating the third function in the integrand of the

Weierstrass representation from +1 to −1 along the half of the unit circle lying in the upper

half of the complex plane. This curve is z = eit, 0 ≤ t ≤ π. The distance between adjacent

planar ends for large λ is

Re

∫ π

0

2
√
λieitdt

√

eit(eit − λ)(eit + 1
λ
)
≈ Re

∫ π

0

2
√
λidt√
−λ

= 2π .

The major difference from the proof in the case λ → 0 is this: When λ is close to ∞,

then a homologically nontrivial loop in ÁL,λ has a nonzero real period with respect to the

9



Weierstrass integral. Now one may only assume that a path from z = 1 to z = p in AL has

length less than cnL, where n is the number of times that the path wraps about the origin,

and c is some fixed constant. Since the distance between adjacent ends is approximately 2π,

it follows that if the wrapping number n about the origin of a path from 1 to p is sufficiently

large, then z = p will be mapped by the Weierstrass integral to a point outside Br. Thus,

we may assume there is an upper bound N for |n|, depending only on r. Hence, for large

λ, we may assume that any path from 1 to p has length less than ćL, where ć = cN .

The other parts of the proof of the case λ → ∞ transfer directly from the proof of the

case λ→ 0. 2

Corollary 3.1 As λ→∞, the radius of any level-circle of Ŕλ diverges to infinity.

Corollary 3.2 The planar curve described by the set of centers of the horizontal circles

that foliate Ŕλ has the property that its maximum curvature approaches zero as λ→∞.

It remains to determine what other surfaces are limits of Riemann examples. Three

possibilities are clear: a single flat plane; an infinite number of equally-spaced flat planes;

and another Riemann example. The following proposition states that these are the only

other possibilities, completing the proof of Theorem 1.1.

Proposition 3.2 Any convergent sequence of Riemann examples converges to one of the

following surfaces:

a Riemann example;

a helicoid;

a catenoid;

a single flat plane;

an infinite number of equally-spaced flat planes.

Proof. Let {Rj}∞j=1 be a sequence of Riemann examples converging to a surface S. From

the definition of convergence, S is clearly minimal, properly embedded, and complete. With-

out loss of generality we may assume that the limiting normals ~vj at the ends of the surfaces

Rj converge in S
2 to a vertical vector. With this normalization, the surfaces Rj are foliated

by circles and lines lying in planes that are becoming horizontal as j →∞. These almost-

horizontal planes intersect Rj in connected sets, and these connected sets each consist of a

single circle or a single line. Thus every curve S ∩ {x3 = c} is the limit set of a sequence of

circles and/or lines. It follows that S∩{x3 = c} is either a circle, a line, the empty set or the

plane {x3 = c}. Recall from the introduction that this implies that each component of S
is either a helicoid, a catenoid, a Riemann example or a plane. Moreover: the helicoid and

catenoid must have vertical axes; the plane and the ends of the Riemann example must be

horizontal. If S has more than one component, they must all be horizontal planes (because
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S is fibred by circles or lines, one in each horizontal plane). Suppose S consists of two or

more horizontal planes. Since the points on the surfaces Rj where the Gauss map is vertical

must approach the ends of Rj as j → ∞, it is the equally spaced-ends of the surfaces Rj

that converge to S. Therefore S is an infinite collection of equally-spaced planes. 2
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