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Introduction

Around 1780, soon after Lagrange derived the minimal surface equation, Meus-
nier found the first nonplanar solutions: Euler’s catenoid and the helicoid. More
than 200 years later, in 1980, the catenoid was still the only known finite total
curvature embedded minimal surface and the helicoid was the only known infinite
total curvature embedded minimal surface of finite topology. First, the finite total
curvature situation changed. Chen-Gackstatter [CG] found an immersed torus
with one end and - soon after that - Costa [C] found an embedded torus with three
ends. We now know that for every genus ≥ 1, there exists a one-parameter family
of embedded finite total curvature minimal surfaces with three ends ([HM]), and
we have some more examples - less well understood - with four and five ends.
([CHM,BW,W1,W2,HK]).
In this paper we describe the construction of a minimally embedded torus with
one end and infinite total curvature ([HKW]). The (elliptic) Gauss map of this
surface has an essential singularity at the puncture and this makes the surface
fundamentally different from all previous embedded examples. The other infinite
total curvature and finite topology embedded minimal surface, the helicoid, can
be described with the exponential map as Gauss map, i.e. with an essential
singularity. The new surface is substantially more complicated than the helicoid
because it does not cover a finite total curvature surface in a flat spaceform
(namely in IR2× S1 in the case of the helicoid). Therefore it cannot be described
on a quotient surface in terms of a meromorphic Gauss map. (In the case of the
helicoid, g(z) = z on C− {0}.)
It is a pleasure to contribute this paper to a volume dedicated to Dick Palais.
For one of us he is the only non-specialist who was seriously interested in our
work and was willing to spend many hours discussing it. To another he has
been a long-term source of good advice, both mathematical and computational.
The topic is also appropriate for another reason. Dick has worked hard to help
make computers more easily usuable by mathematicians, and the intuition to
achieve the results we describe was significantly influenced by computer output.
As friends we congratulate Dick and hope he enjoys this volume.
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Figure 1

Helicoid (left), Helicoid with handle (right)

1. Overview

1.1 How does one find such a new surface?

Over the past five years, we were led through the study of more and more compli-
cated examples to the discovery of the genus one helicoid. We want to explain this
story in steps of increasing detail. The surfaces we will discuss are constructed
via their Weierstrass representations in roughly the following way: Assume first
that one has a “qualitatively correct” picture of the expected minimal surface. It
is possible to deduce, perhaps up to several parameters, the underlying Riemann
surface structure, compatible with the qualitative picture. Then we interpret the
minimal surface as an excellent visualization of its Gauss map from the Riemann
surface to the Riemann sphere. As long as we are dealing with meromorphic
Gauss maps, a qualitatively correct visualization is precise enough to determine
the Gauss map (again, possibly, up to a few parameters). With the help of the
ends and the vertical points of the Gauss map, we then can determine a family
of Weierstrass data that defines the coordinate differentials of candidates for the
expected minimal surface. Finally, the undetermined parameters have to be ad-
justed so that the integrals of these coordinate differentials along closed paths
on the Riemann surface give closed curves in IR3. (This is the so-called period
problem.)
The reader will not be surprised to learn that there are some problems with
this “method”. First of all, the initial picture has to be “qualitatively correct,”
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otherwise one will deduce Weierstrass data that do not give the surface. Several
things can go wrong and, in the end, the period problem may not have a solu-
tion. There are at present only two theorems that prevent doomed attempts by
giving a priori impossible properties: A theorem of Lopez-Ros [LR] says that the
only nonplanar, finite total curvature, embedded, finitely punctured sphere is the
catenoid - more punctures are impossible; and a theorem of R. Schoen [SC] says
that the only embedded, finite total curvature minimal surface with two ends is
the catenoid - higher genus is impossible.
When a Gauss map has an essential singularity, there is another serious problem:
we don’t know how to recognize a function with an essential singularity from a
“qualitatively correct” picture. In fact, we do not even know how to do this from
a perfect picture. The Weierstrass representation has to be generalized to handle
this difficulty.

1.2 Which surfaces contributed to our discovery?

In the first few steps we go from surfaces of Scherk (1835) to a singly-periodic
surface of Hoffman and Wei, which looks like a helicoid with an additional handle
in each fundamental piece of the translational symmetry group. All the surfaces
we will describe have meromorphic Gauss maps. For the last step, we need a gen-
eralization of the Weierstrass representation. The first examples that illustrated
the usefulness of such a generalization were twisted deformations of Scherk’s
saddle-tower surface. For these surfaces, the Gauss map is multivalued on the
parametrizing Riemann surface because of screw-motion symmetries of the mini-
mal surface. However, the logarithmic differential dg/g is well-defined and the
multivalued Gauss map is obtained as exp(

∫

dg/g) (the integration taking place
on a simply-connected fundamental piece) [K1].
We will explain how we were led to assume that such “generalized” Weierstrass
data for the genus one helicoid were meromorphic differential forms, and therefore
that they could be deduced. This data gave us the desired minimal surface; its
Gauss map has one zero, one simple pole and one essential singularity on a
specific rhombic torus. We had not met such a function before, but we have
since learned that it is a specific Baker-Akhiezer function. For the Weierstrass
representations of those surfaces that we wish to explain in detail we need some
specific information about elliptic functions, especially on rhombic tori. This is
found in Section 3, which may be read independently from the rest of the paper.
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2. Surfaces that are (in retrospect) related to the genus one helicoid.

We discuss first the surfaces that educated our intuition.

2.1 Scherk’s surfaces.

Figure 2

Scherk’s doubly-periodic surface

If one divides Scherk’s doubly-periodic minimal surface [S] (or its conjugate, the
singly-periodic Scherk saddle tower) by its translational symmetries, then one
obtains a sphere, punctured in four points, on which the Gauss map is of degree
one. After a Möbius-reparametrization, we can assume g(z) = z. After a rotation
in IR3, the values of g at the four punctures are g = ±e±iπ/4. We call the vertical
height function x3 and denote its complex differential by dh := dx3− idx3 ◦Rπ/2.

(Here, Rπ/2 is the 900 rotation that gives the complex structure in each tangent
plane.) From the Weierstrass data g, dh, the minimal surface is obtained via

2.1.1. The “Weierstrass-integral”:

Re

∫
(

1

2

(

1

g
− g

)

,
i

2

(

1

g
+ g

)

, 1

)

dh.

2.1.2. Riemannian metric:

ds =

(

|g|+ 1

|g|

)

|dh|.

Using the metric we can now determine dh: This differential form has to have
simple zeros at the zero and the pole of g and therefore four, necessarily simple,
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poles, necessarily at the punctures. That is,

dh = reiϕ
1

z2 + z−2
· dz
z
.

The scaling parameter r controls only the size of the minimal surface; we ignore
it. It remains to verify that, for ϕ = 0, we get Scherk’s saddle tower and, for
ϕ = π/2, his doubly-periodic surface; we omit this (since we want to concentrate
on the determination of Weierstrass data from qualitatively correct pictures. See
[K1,K2,HW] for further details.). Scherk’s surfaces can be deformed by moving
the punctures to ±e±iα, 0 < α ≤ π/4. Apart from these related surfaces, his
doubly-periodic one remained the only such example for 150 years.

2.2 Doubly-periodic punctured tori.

The next examples were found using the following qualitatively correct picture:
Karcher [K1] assumed that one could have minimal surfaces which look like a
fence of Scherk saddle towers “glued together”, either along vertical straight
lines or along vertical planar symmetry curves. Division by the translational
symmetries of such a surface gives a torus with four punctures. The orientation-
reversing symmetry from the rotation around a vertical line (resp. reflection in
a vertical planar symmetry curve) descends to the torus and has a fixed point
set with two components (from a pair of neighbouring symmetry lines; note
also that their symmetries compose to give a period translation). The torus is
therefore a rectangular torus. On it, the Gauss map is of degree-two. At the
points where a straight line meets a planar symmetry curve the Gauss curvature
is zero; i.e. we have a branch point of the Gauss map. The four branch points of
a degree two elliptic function form a half-period lattice, and two such functions
with the same branch points differ by a Möbius transformation. This Möbius
transformation determines where on the torus the zeros and poles of the function
are located. It is convenient to rotate the surface in IR3 so that the Gauss map
is vertical at the four punctures. The Riemannian metric (2.1.2) shows that
dh can have neither poles nor zeros outside the punctures and no zeros at the
punctures; it therefore is proportional to the standard holomorphic form on the
torus: dh = reiϕdz, z ∈ C/Γ, Γ a lattice.
It remains to determine the Möbius transformation and to consider the period
problem. For the Möbius transformation one has many choices, since the surfaces
turn out to be quite deformable: one does not need to take Scherk’s orthogonal
saddle tower in our initial qualitatively correct picture, but any of the deformed
saddle towers (with non-orthogonal ends) will do. Also, the relative height be-
tween the first and the second tower is a free parameter. Since we also can rec-
ognize symmetries of the minimal surface from its Weierstrass data, we can see
that the period problem is solved automatically for the most symmetric choices
of the Möbius transformation (e.g. g = (℘

g
−i)/(℘

g
+i) on any rectangular torus,

where ℘
g
is the geometrically normalized Weierstrass ℘ -function. See Section 3).

We will be more detailed later, but since these initial examples are published
[K1] we wish to emphasize only the noncomputational parts of the arguments.
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Figure 3

Karcher’s genus one doubly-periodic surface (left),
and Wei’s genus two doubly-periodic surface (right)

2.3 Doubly-periodic examples of genus two.

The next experience was gained from triply-periodic minimal surfaces. They
could be modified rather easily into more complicated ones by adding handles, as
if “minimal surface surgery” were possible. With more effort, these ideas could
be used to modify singly-periodic and finite total curvature minimal surfaces.
However, the doubly-periodic ones resisted modification. In restrospect, the rea-
son for this is simple to see; the period problem had always become simpler if
one assumed the expected minimal surface to be as symmetric as possible, while
remaining compatible with a qualitative picture. It was Wei [WE] who found
that the modifications did succeed on the known doubly-periodic minimal tori
if one added only half as many handles as the most symmetric treatment would
require. He obtained embedded, doubly-periodic minimal surfaces, parametrized
by genus two Riemann surfaces. The moduli space of genus two surfaces has three
complex dimensions, and of course its elements are not as well-known by individ-
ual names (e.g. square, rhombic, hexagonal) as the tori are. From a qualitatively
correct picture of a desired surface, including knowledge of its symmetries, one
has to determine the compatible Riemann surface structure(s), which in turn
must support meromorphic functions that are suitable candidates for the Gauss
map. When the genus is greater than one, this is a much more serious part of
the problem.
In the present cases (and in many others), we have two natural meromorphic
functions without common branch points on the Riemann surface. Together
they supply an atlas of holomorphic coordinates. The coordinate changes are
given by an algebraic relation between these functions, and this relation, in turn,
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defines the Riemann surface in the best known, the “classical”, way. One of
these natural functions is the Gauss map, of degree 3. To see the other one,
observe that the planar symmetry lines cut (a qualitatively correct picture of)
the surface into simply-connected right angle pentagons. The 1800 rotations
around the normals at the vertices are orientation-preserving isometries of the
minimal surface. If we divide by the group generated by the vertical rotation
and then by the translations, we get the sphere as quotient Riemann surface.
The quotient map of degree two sends each of the above pentagons to a quarter-
sphere. The Gauss map is vertical on three of the vertices and has values in the
set {±1,±i} at the other two. We Möbius-normalize the quarter-sphere to be
the first quadrant; specifically, we send the two vertices with horizontal normal
to 0,∞ and we send the other three to λ < 1 < λ1 on IR+, where λ, λ1 are two
conformal parameters. In this normalized form, we call the projection map Z.
The functions

g2 and (Z − λ)(Z − λ1)(Z + 1)/(Z + λ)(Z + λ1)(Z − 1)

have the same zeros and poles; i.e. they are proportional, and they agree at the
other vertices where g2 is ±1. Therefore, the equation

g2 =
(Z − λ)(Z − λ1)(Z + 1)

(Z + λ)(Z + λ1)(Z − 1)

describes our Riemann surfaces as hyperelliptic curves, with one of the defining
functions the candidate for the Gauss map! Finally, the qualitatively correct pic-
ture shows that the Gauss map is ±1 at the puncture; i.e. the puncture has to
be at Z = ±a, where (a+ λ)(a+ λ1)(a− 1) = (a− λ)(a− λ1)(a+ 1) or

a2 · (λ+ λ1 − 1) = λ · λ1.

Now one sees immediately from the Riemannian metric (2.1.2), that dh needs
simple zeros at the vertical points of g and simple poles where Z = ±a. This
determines

dh = reiϕ · dZ

Z2 − a2
.

Again r is the irrelevant scaling factor and ϕ = 0 picks the desired surface in the
associate family, since dh has to be real on the tangent vectors of the vertical
symmetry lines.
At this point we have derived a 2-parameter (λ, λ1)-family of Weierstrass data
and have to turn to the period problem. There are not enough symmetries to
solve it automatically, but Wei [WE] shows that λ1(λ) can be chosen so that for
each λ ∈ (0, 1) the period problem is solved. We do not go into further details
here because the main lesson of this example - less symmetry is sometimes better
than more - can be understood without the details. We gave the noncomputa-
tional part of the derivation to illustrate - as in all other cases - what we mean
by the dictum:“Deduce a candidate for the Weierstrass representation from a
qualitatively correct picture.”
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3. A supply of basic elliptic functions

At this point the narration should continue with a discussion of Karcher’s mod-
ification of Scherk’s doubly-periodic surface of genus 1, which was suggested by
the “less than maximal symmetry” approach in the previous example of Wei.
However, with this next example, we come close enough to our final surface so
that we also want to explain how the period problem is solved. Since all the
remaining surfaces will be parametrized by punctured tori we have to deal more
explicitly with elliptic functions. We give a self-contained introduction that is
tailored to our needs. In particular:
(i) The symmetries (or functional equations) of degree two elliptic functions

are usually expressed in terms of Möbius transformations of the Riemann
sphere. We want these Möbius transformations to be isometric rotations;
we will in fact realize them as rotations about the coordinate axes of the
sphere in IR3, given in C as z → ±z±1. In the special case of rectangular
or rhombic tori— the ones with “complex conjugation”— we realize the
corresponding Möbius reflections as isometric reflections in coordinate planes
(i.e. z → ±z̄, z → 1/z̄);

(ii) We want to build more complicated functions by multiplying simple ones
with known zeros and poles (as we do with rational functions). The classical
approach treats only two functions in a distinguished way, namely the ones
that go into the equation of the surface. We need a larger collection of
distinguished functions together with their mutual relations.

3.1 Construction of degree-two elliptic functions.

3.1.1. Quotient functions. The typical degree two elliptic function can be
constructed as follows. View the torus T as C/Γ. Any 1800 rotation r of C
around a point c0 induces an orientation-preserving involution of T with four
fixed points (which are given in C as c0 + 1

2
· Γ, a “half-period lattice”). The

quotient surface is the Riemann sphere since χ(T/r) = 2. This follows either
from 0 = χ(T ) = 2 · χ(T/r) − 4 or by applying Euler’s χ = V − E + F to the
tessalation of T by the four parallelograms whose vertices are the fixed points of
r and to the quotient tessalation, which has F = 2 quadrilaterals, E = 4 edges
and V = 4, the fixed points. At this point the quotient sphere is only a conformal
sphere, not yet the standard sphere in IR3 which is identified with C ∪ {∞} via
stereographic projection. But after we call three arbitrary points of the quotient
sphere 0, 1, ∞ we have a unique identification with the standard sphere. We
then call the quotient map a function. Any two such choices of 0, 1, ∞ give two
functions that differ by a Möbius transformation. Moreover, if two degree two
elliptic functions f1, f2 on T have one branch point c0 ∈ T in common then, all
their branch points agree. Here is a proof. We may assume f1(c0) = 0, f2(c0) = 0,
and also that f1 has been constructed as above with a double pole at one of its
other three branch points, say c1. If necessary, replace f2 by f2/(f2 − f2(c1)) so
that f2(c1) = ∞. Then f1/f2 has at most one pole (at c1) and one zero, hence
it is constant, q.e.d..
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We may summarize this as follows: Any two degree two elliptic functions on
the same torus differ by a translation of the torus—which positions their branch
points— and by a Möbius transformation of the sphere—which positions 0, 1, ∞.

3.1.2. Remark. This approach shows that the cross-ratio of the four branch
values (in suitable order) depends only on the torus; it is called the modular
invariant of the torus and it is usually computed from the finite branch values
of the Weierstrass ℘ -function as (e1 − e3)/(e2 − e3). The differential equations
below for our elliptic functions will depend only on this modular invariant.

3.1.3. Symmetries. The following simple observation is responsible for the
symmetries of the degree two elliptic functions: Given one 1800 rotation r of the
torus T , there are three other 1800 rotations of T which permute the fixed points
of r . This means for the quotient map f : T → T/r:

f ◦ Torus-rotationk = Möbius-involutionk ◦ f, k = 1, 2, 3,

since on the left side we have degree two maps T 2 → S2 with the same branch
points as f . One of our aims is to have these Möbius involutions as simple as
possible; we will achieve them as z → ±z±1.

3.1.4. Special choices. We now use the observations above to construct
three functions that have the same distribution of simple zeros and poles as
Jacobi’s degree two elliptic functions. A fourth function will be constructed with
a double zero and a double pole. On the square torus it is, up to scaling, the
Weierstrass ℘ -function. On other tori it is somewhat different and the values
are changed: a · ℘ + b. We facilitate our description by choosing a fundamental
parallelogram for the torus, which has its midpoint at 0 ∈ C. (We will also
refer to this point as a point 0 ∈ T = C/Γ.) The rotational position and the
scaling will be specified later. The half-period lattice 0 + 1

2
· Γ determines

the vertices and the midpoints of the edges of the chosen fundamental paralle-
logram. To specify a function of degree two we have to give its branch points
in the fundamental parallelogram (a half-period set marked by a • in the figure)
and we have to specify three points that are to go to 0,∞ and either 1 or i.
It is convenient to write these values in the domain parallelogram; the choice of
their position, of course, determines the functional relations. To simplify building
more functions by multiplication, we will always choose the zeros and poles at
the half-period points. By the definition of a quotient map we do not change the
values of the (quotient) function if we rotate the torus around the chosen branch
points. This means that, for the Jacobi-type functions, the branch points have to
be chosen as midpoints between the zeros (and hence also as midpoints between
the poles). The finite value 1 (resp. i) is placed at a midpoint between a zero
and a pole because 1800 rotation of the Riemann sphere around 1 interchanges
0,∞. This choice is responsible for the simplicity of the Möbius transformation
in the functional relations. In the case of the Jacobi-type functions and for the
geometrically normalized Weierstrass ℘ -function we denote the 1800 rotations of
the torus and their quotient functions as follows.

rotations: r
D
, r

E
, r

F
, r

P
; functions: J

D
, J

E
, J

F
, ℘

g
.
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The following diagrams define our four functions, which, of course, must sat-
isfy f ◦ r = f .

℘
g

J
D

J
E

J
F

3.1.5. Functional equations. Recall that each of the four rotations permutes
the fixed points of the other rotations and that this is the source of the functional
equations. In each case we get the first relation from the rotation around the
point where the finite value 1 (resp. i)) was chosen:

J
D
◦ r

F
=

1

J
D

, values ±1 at fixed points of r
F
;

J
E
◦ r

F
=

1

J
E

, values ±1 at fixed points of r
F
;

J
F
◦ r

E
=
−1
J
F

, values ±i at fixed points of r
E
;

℘
g
◦ r

D
=
−1
℘
g

, values ±i at fixed points of r
D
.

This says that the Jacobi-type functions are odd, and that ℘
g
is even:

J
D
◦ r

P
= − J

D
, ℘

g
◦ r

P
= ℘

g
.

The diagrams, completed with these first special values, look like this:

J
D

J
E

J
F

We read off the relations that (3.1.3) promised:

J
D
◦ r

E
=
−1
J
D

; J
E
◦ r

D
=
−1
J
E

; J
F
◦ r

D
=

+1

J
F

.

In the diagram, we have marked by × the fixed points of the relevant rotations.
At these fixed points (×) the functions have values which are fixed under the
corresponding Möbius-involution J

D
→ ±1/ J

D
, namely ±1, resp. ±i. The distri-

bution of the ±signs is a matter of orientation. For example in the case of J
D
, the
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parallelogram disk around 0 ∈ T that is indicated in the figure is mapped by J
D

biholomorphically to a disk around 0 ∈ C that has 1, i, −1, −i on its boundary
in the positive order. Therefore we have these values in the same order around
0 ∈ T . The same argument applies to J

E
, J

F
.

3.1.6. Branch values. So far we have not seen anything that is specific to
the torus under consideration. We have already mentioned that the cross-ratio
of the branch values is the modular invariant which distinguishes the tori. So, in
each of the three Jacobi-type functions, J

D
, J

E
, J

F
, we first give one branch value a

name: D,E, F , respectively. Then since all the functional equations (3.1.3) were
shown to use the Möbius involutions z → ±z±1 we find the other branch values as
±(D,E, F )±1. We summarize by giving the fundamental parallelograms with all
the special values. The subparallelogram with the first named branch point in its
right upper corner is shaded. Rotation around a zero or pole sends a branch value
B to −B; rotation around points with value ±1 sends B to 1/B; and rotation
around ±i sends B to −1/B.

J
D

J
E

J
F

3.1.7. Relations modulo translations. To emphasize the close relation
between these functions we also give the Möbius transformations that trans-
form these functions, modulo torus translations, into one another. We choose
the translations that map one of the shaded subparallelograms to another one.
The translated functions have the same branch points and are therefore Möbius-
related:

J
E
◦ translation1 =

J
D
−1

J
D
+1

, J
F
◦ translation2 = i · J

D
−i

J
D
+i
,

J
F
◦ translation3 = −J

E
−i

J
E
+i
.

In particular, this shows the relation of the branch values:

E =
D − 1

D + 1
, F = i · D − i

D + i
, F = −E − i

E + i
.

Finally we observe that ℘
g
and J

E
· J

F
have the same zeros and poles and agree

where ℘
g
= i. This gives the geometrically normalized Weierstrass ℘ -function.

Its Möbius relation with J
D

and its diagram of special values are as follows:

℘
g
◦ translation4 = Möbius4(JD ) := −i ·

J
D
+D

J
D
−D, ℘

g
= J

E
· J

F
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with one finite branch value P = Möbius4(1/D) = i(D2 + 1)/(D2 − 1).

℘
g
= J

E
· J

F

3.1.8. Remark. We compute for later use the cross-ratio of the branch values:

1 + 4(D2 +D−2 − 2)−1 = (E2 + E−2 + 2)/4 = −4(F 2 + F−2 − 2)−1 = −P 2

and recall once more that it is the classical modular invariant of the torus.

3.2 Functional relations between the four functions.

3.2.1. Biquadratic Relations. The most common description of a Riemann
surface is in terms of an algebraic relation between two functions (usually called
z, w) on the Riemann surface. One may interpret the functions as (local) coordi-
nates — away from their branch points of course—and the algebraic relation is a
description of the change of coordinates. We can take any pair of our degree two
elliptic functions and find a biquadratic relation between them. The following list
of relations is immediately verified since both sides have the same zeros and the
same poles and agree at another point (a branch point of the function involved
on the left).

J
D
− 1

J
D

=
D − 1/D

2i
(J

E
− 1

J
E

) =
2i

E − 1/E
(J

E
− 1

J
E

)

J
D
+

1

J
D

=
D + 1/D

2
(J

F
+

1

J
F

) =
2

F + 1/F
(J

F
+

1

J
F

)

J
E
+

1

J
E

=
2

F − 1/F
(J

F
− 1

J
F

) =
E + 1/E

2i
(J

F
− 1

J
F

)

D2

J
D

2
=
℘
g
−1/℘

g
−P + 1/P

2i− P + 1/P
= D2 · ℘g −1/℘g −P + 1/P

F − 1/F − P + 1/P

As an example, let the branch value D be given and rename w = J
D
, z = J

E
. The

first equation then looks more familiar

(w − 1

w
)/(D − 1

D
) = (z − 1

z
)/(2i),

but we cannot immediately recover all our information about J
D
, J

E
from this

equation, and, of course, there are no relations with other functions.
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3.2.2. Logarithmic derivatives. Another common choice of a pair of func-
tions to describe a torus is to take a degree two elliptic function together with
its logarithmic derivative. In the following list of relations the functions on both
sides have the same zeros and poles; moreover, the first term of their Laurent
expansion at 0 ∈ C is the same — hence they agree. First we express the loga-
rithmic derivative of the Jacobi type functions in terms of other functions; then
we differentiate ℘

g
= J

E
· J

F
; we also note that ℘

g
+1/℘

g
is a derivative; finally we

give the differential equations:

J
F

′

J
F

= J
D

′(0) · ( 1

J
D

− J
D
) = J

D

′(0)
−2i

1/E − E
· ( 1

J
E

− J
E
)

J
E

′

J
E

= J
D

′(0) · ( 1

J
D

+ J
D
) = J

D

′(0)
2

1/F + F
· ( 1

J
F

+ J
F
)

J
D

′

J
D

= J
E

′(0) · ( 1
J
E

+ J
E
) = J

F

′(0) · ( 1
J
F

− J
F
)

℘
g

′

℘
g

=
J
E

′

J
E

+
J
F

′

J
F

= J
D

′(0) · 2

J
D

(

1

J
D

)′

= − J
D

′

J
D

2
= − ℘

g

′′(0)

2 J
D

′(0)
· (℘

g
+

1

℘
g

)

3.2.3. Differential equations. The three Jacobi type functions have the
same differential equation in terms of one of their branch values B. (Recall that
B2 +B−2 can be expressed by the modular invariant.)

(

J′

J

)2

= J′(0)2 · (J2 + J
−2 −B2 −B−2)

(

℘
g

′

℘
g

)2

= −2℘
g

′′(0) · (℘
g
− 1

℘
g

− P +
1

P
)

We repeat that these relations hold because both sides have the same zeros and
the same poles, and their Laurent expansions at 0 ∈ C agree. Note that at this
point the derivatives at 0 ∈ C in the above relations are not yet determined,
because we have not fixed the scaling size and the rotational position of the
fundamental parallelogram in C. If we fix this derivative at 0 in one of the
differential equations, then the size and rotational position of the fundamental
domain and also the derivative at 0 of each of the other functions are chosen.
Their relation is obtained by comparing Laurent expansions at 0 ∈ C in the
biquadratic equations in (3.2.1):

J
E

′(0) =
D − 1/D

2i
· J

D

′(0) =
2i

E − 1/E
· J

D

′(0)

J
F

′(0) =
D + 1/D

2
· J

D

′(0) =
2

F + 1/F
· J

D

′(0)

J
F

′(0) =
−2

F − 1/F
· J

E

′(0) =
E + 1/E

−2i · J
E

′(0)

℘
g

′′(0) =
2

P + 1/P
· (J

D

′(0))2

13



(For the last line, insert D2 = (P + i)/(P − i) into −D2 · (2i − P + 1/P ) =
D2 · (P − i)2/P.)

3.3 Specializations: Rectangular and Rhombic Tori.

3.3.1. Reflection symmetries. The tori with orientation-reversing symme-
tries are known as tori with complex conjugation. The ones that are quotients of
C by rectangular lattices (basis {1, it}) are called rectangular tori, the ones with
a lattice basis of equal length ({1, eiϕ}) are called rhombic tori. They are easy to
distinguish: For the rectangular tori the axis of reflection in C is parallel to the
edges of a rectangular fundamental domain and it projects to a fixed point set
on the torus having two components; for the rhombic tori the axis of reflection
in C is parallel to a diagonal of the rhombic fundamental domain and it projects
to a fixed point set on the torus having one component. Now for a given elliptic
function of degree two, only four of the reflections mentioned above have the
property that they permute its branch points; either the axis of reflection passes
through branch points or it passes through midpoints between branch points.
Because the branch points—i.e. the fixed points of the 1800 rotation by which
we divide to get the degree two function — are permuted by the reflections of the
torus, these orientation-reversing involutions pass to the sphere and we get fur-
ther symmetries of our functions. We can determine these as Möbius-reflections
in coordinate planes (i.e. z → ±z̄, z → 1/z̄ ), because the fixed point set of the
reflection passes through points at which we chose simple antipodal values of the
function (namely, values in {0,∞,±1,±i}).
3.3.2. Rectangular Tori. The image under J

D
, J

E
of the symmetry lines

joining points with values 0, 1,∞ is the real line. It is therefore reasonable
to normalize J

D

′(0) = 1,
because then J

D
, J

E
, J

F
map the real resp. the imaginary axis and the respectively

parallel boundaries of the fundamental rectangle to the real resp. imaginary axis.
The remaining symmetry lines are mapped to the unit circle, in particularD ∈ S1.
We will mainly be interested in rhombic tori, but for illustrative purposes we first
specialize our formulas to the rectangular case.
The branch values in the rectangular case (computed from D) are as follows:

D := eiα; E =
eiα − 1

eiα + 1
= i tanα/2; F =

cosα

1 + sinα
; P = i · e

2iα + 1

e2iα − 1
= cotα.

Each of the following differential equations (and also the equation between J
D
, ℘

g
)

describe the torus in terms of its modular invariant − cot2(α):

(

J
D

′

J
D

)2

= (J
D

2 +
1

J
D

2
− 2 cos 2α);

1

4

(

℘
g

′

℘
g

)2

= − sin 2α

2
· (℘

g
− 1

℘
g

− 2 cot 2α) =
1

J
D

2
.
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The square torus has the 450 diagonals as additional symmetry lines. Hence

α = π/4, P = 1, ℘
g

′′(0) = sin 2α = 1.

In the figures below, the values indicated are values of ℘
g
.

3.3.3. Rhombic Tori. We view these tori as deformations of the square torus
which preserve the diagonal symmetries. Let µ denote reflection in one of the
diagonals of the rhombic fundamental domain. Then we have

J
D
◦µ = i · J

D
, ℘

g
◦µ = −℘

g
.

This says that on the diagonals we have J
D
∈ e±iπ/4·IR, ℘

g
∈ i·IR. The normaliza-

tion J
D

′(0) = 1 therefore implies that the diagonals of the rhombic fundamental
domain point in the 450 directions—a reasonable rotational normalization. Fur-
thermore we have for the branch values D = −i ·D,P = 1/P , and this gives us
the branch value parametrization of rhombic tori via the following differential or
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functional equations:

D = R · eiπ/4, P = eiρ, related via

D2 = iR2 =
P + i

P − i
=

i · cos ρ
1− sin ρ

= i · cot(π/4− ρ/2);

(

J
D

′

J
D

)2

= (J
D

2 +
1

J
D

2
− 2i · tan ρ);

1

4

(

℘
g

′

℘
g

)2

= − 1

2 cos ρ
· (℘

g
− 1

℘
g

− 2i · sin ρ) =
1

J
D

2
.

Our functions have more symmetries since we have two more reflections that
permute the branch points. The above µ fixed the zeros of J

D
(where ℘

g
= 0,∞)

and permuted the poles; now let ν be one of the reflections that fixes the poles
of J

D
(where ℘

g
= eiρ,−e−iρ) and permutes the zeros. Then:

℘
g
◦ν =

1

℘
g

, i.e. ℘
g
∈ S1 on the fixed point set of ν;

J
D
◦ν = i · J

D
, i.e. J

D
∈ e±iπ/4 · IR on the fixed point set of ν.

For the other two functions J
E
, J

F
we have relations such as J

E
◦µ = −i · J

F
, Ē =

i · F , which we do not use.

4. Surfaces that lie in a continuous family of embedded

examples with the genus-one helicoid

4.1 Scherk’s doubly-periodic surface with a handle.

The lesson described in Section 2.3 allowed Karcher to add handles to Scherk’s
doubly-periodic surface, adding them not in each layer but in every second one
only. The planar symmetry curves compatible with such an Ansatz cut the ex-
pected surface into four conformal rectangles, making the underlying Riemann
surface a rectangular torus with four punctures. However we can assume in
addition the existence of orthogonal horizontal straight lines at level 0 (as di-
agonals of the rectangles) on the surface. In other words, we have a diagonal
symmetry of the underlying torus, which therefore must be the square torus.
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As before, we now can see the Weierstrass data: The only vertical points of the
Gauss map are at the vertices of the “four squares” (into which the symmetry
curves cut the surface); the normals are alternatingly up and down. That is, the
Gauss map of degree two is already determined, up to a constant real factor ρ
(a phase factor being irrelevant). The four points with vertical normal are not
punctures. Therefore we see from ds = (|g| + 1/|g|) · |dh| that dh has to have
simple zeros at these four points. The four punctures, where dh has to have
simple poles, are symmetric with respect to the straight line diagonals and they
lie on the symmetry curves, i.e. on the boundary of the four tesselating squares.
Now we know the poles of dh up to one real parameter R, and we know its zeros;
i.e. we know our Weierstrass candidates. We have to choose ρ(R) to make g
horizontal at the punctures and then use R to solve the period problem. This
time we wish to go into more detail because we are getting closer to the final
example.

17



Figure 4

Scherk’s doubly-periodic surface with a handle

4.2 Details for the Scherk surface with a handle.

4.2.1. Ansatz. With our explicit supply of elliptic functions we can now
write formulae for the Weierstrass data. The square torus is given by each of the
equations (3.3.2)

4

J
D

2
= −2(℘

g
− 1

℘
g

) =

(

℘
g

′

℘
g

)2

.

The branch value parameters of ℘
g
and J

D
are P = 1, D = eiπ/4. The Gauss

map g and the differential dh, qualitatively described in section 4.1 (and recalling
that a phase factor in the Gauss map only rotates the surface), are now given by:

g = ρ · J
D
, ρ a real parameter;

dh =

(

℘
g

R
− R

℘
g

)−1

· d℘g
℘
g

.

The poles of dh show that the punctures are where ℘
g
= ±R or, using the equation

of the torus, where 2/ J
D

2 = 1/R−R. Since the Gauss map has to be unitary at
the punctures we get from g = ρ · J

D
:

ρ = ρ(R) =

√

1

2
(R− 1

R
).

We mention that | J
D
| and |℘

g
| do not change their values if we reflect in the

expected symmetry lines (the edges of the four tessalating squares and one of the
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diagonals of each square). These reflections are therefore Riemannian isometries
of the metric ds = (|g| + 1/|g|) · |dh| of our Weierstrass data. Thus, we have
realized the expected symmetry lines as geodesics (namely, fixed point sets of
isometries).

4.2.2. Second fundamental form. Since the second fundamental form of
a surface that is given by the Weierstrass integral (2.1.1) is (in a holomorphic
coordinate system, so that tangent vectors are complex numbers) :

Re

(

dg

g
· dh
)

,

we see that dh · dg/g is real on the expected planar symmetry lines (resp. imag-
inary on the expected straight lines). These geodesics are therefore curvature
(resp. asymptote) lines. That is, we have realized them as planar (resp. straight)
symmetry lines on the minimal surface defined by the chosen data.

4.2.3. The period problem. The Weierstrass data do not have periods if
the horizontal generator of the square torus is mapped to a closed planar curve
in IR3 (and, because of the diagonal symmetry, the same is then automatically
true of the other generator). As noted at the end of Section 3, ℘

g
is real on this

horizontal generator. This means we have to find R0 such that:

℘g=1
∫

℘g=0

(
1

ρ · J
D

− ρ · J
D
) · ( ℘g

R0

− R0

℘
g

)−1 d℘g
℘
g

= 0.

Parametrizing along half the generator: ℘
g
= tan(ϕ), (0 ≤ ϕ ≤ π/4), we have

d℘
g

℘
g

=
2 · dϕ
sin 2ϕ

, J
D
=
√

tan 2ϕ .

Hence, we need R = R0 such that

π/4
∫

0

[

(

√

1

2
(R− 1

R
) tan 2ϕ

)

−1

−
√

1

2
(R− 1

R
) tan 2ϕ

]

·

·( R

tanϕ
− tanϕ

R
)−1 · 2dϕ

sin 2ϕ
= 0.

It is easy to check that the integral is positive for R close to 1 and negative for R
very large, i.e. R0 exists because of the intermediate value theorem. This is one
of the simpler examples, among those cases where the period problem cannot be
solved by symmetry arguments alone.
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4.3 The genus one helicoid with translational symmetry.

The next development profited from the fact that Hoffman has been interested
in the (frequently degenerate) limit surfaces in all families of embedded minimal
surfaces that he came across [HW]. Previously, these limit surfaces were always
simpler than the rest of the family and also already known. This was the first
occasion where something new was found.

Figure 5

Perturbed Scherk’s surface (left),
Perturbed Scherk’s surface with handle (right)

Conceptually, it is easy to ask oneself whether the handle added to Scherk’s sur-
face in the previous section can survive a deformation similar to that of Scherk’s
doubly-periodic surface. In the same way as on Scherk’s surface, we know that
the vertical planar symmetry curves must disappear, but one could hope that
the diagonal straight lines would persist. With the knowledge of the previous
example, one is lead to generalize the Ansatz (4.2.1) to rhombic tori. One hopes
that for each such torus - or at least for those close to the square torus - the com-
plex parameter for the position of the puncture can be chosen so that it solves
a period problem that is now two-dimensional. Very few such period problems
have been solved to date. However, in this case Hoffman and Wei knew that the
deformation of Scherk’s doubly-periodic surface could be scaled in such a way
that the limit surface was the helicoid. If the new deformation family did not
degenerate too much, one could hope for a limit surface that would not be among
those already known. This reward was worth the trouble and Wei succeeded in
working out the family. Computer pictures showed that the convergence to the
limit resembled that of the Scherk case. Thus a new limit surface appeared:
a helicoid with one additional handle in each fundamental piece for the period
translations!
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Figure 6

Genus one helicoid with translational symmetry

Once again, we are looking at a “qualitatively correct picture,” and therefore can
deduce from it the Weierstrass data of this limit surface. The problem simplifies
further since these data have only a one-dimensional period problem. Here is the
argument.

4.3.1. First we use the symmetries to specify the domain. The limit–
surface, modulo translations, is a torus with two punctures. It carries a vertical
straight line and 1800 rotation around this line fixes no other points; therefore
the torus is rhombic (3.3.1). The surface also contains (modulo translations) two
parallel horizontal straight lines; on the torus these are given as one symmetry
line separated into two components by two punctures. We choose the rhombic
fundamental domain such that the straight lines correspond to the diagonals,
and we call them the “vertical” and “horizontal”diagonal (corresponding to the
vertical and horizontal lines on the surface). The 1800 rotation around the surface
normal at a point where the straight lines on the surface intersect (called a
“symmetry” normal) maps the minimal surface to itself; on the quotient torus this
is an orientation preserving involution with four fixed points, the 1800 rotation
r
P

of section (3.1.4). Therefore, we view the quotient map T 2 → T 2/ r
P

as in
(3.1.4) as the geometrically normalized Weierstrass ℘ -function, ℘

g
. We use this

function to describe the torus analytically. We note the important fact that the
two fixed points of r

P
that are not on the vertical diagonal (i.e. the branch points

of ℘
g
with finite branch values) are those points on the minimal surface where a

symmetry normal intersects off the vertical line.
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4.3.2. Next we determine the Gauss map from our qualitatively correct

picture. It suggests that the Gauss map is of degree two. One zero and
one pole are at the punctures on the horizontal diagonal (symmetric, of course,
with respect to the midpoint). The other zero and pole also have to be on a
symmetry line — because otherwise there would be more zeros and poles. This
is only possible on the horizontal diagonal, since the Gauss map is unitary on the
vertical diagonal. The branch points of the Gauss map are midpoints between
the zeros (likewise between the poles). Therefore two branch points are on the
horizontal diagonal. The four branch points of the degree two Gauss map are
a half–period set which is invariant under the rotation r

P
(since symmetries of

a minimal surface permute the branch points of its Gauss map). The branch
points of the Gauss map are therefore the quarter–points on the two diagonals
of the rhombus. Looking back at (3.1.4) this implies that the Gauss map is a
Möbius transformation of our function J

D
. This Möbius transformation, together

with the Gauss map, is determined up to one real parameter, since we want the
zeros and poles to be on the horizontal diagonal. We will see shortly that the
differential is determined by the Gauss map up to an irrelevant scaling factor.
We have deduced on each rhombic torus a 1–parameter family of Weierstrass
data candidates.

4.4 Details for the genus one helicoid with translational symmetry.

4.4.1. The rhombic tori. Recall, from Section 3.3.3, that the branch values
of J

D
for a rhombic torus are ±D±1, D = R · eiπ/4, R > 0 and that the branch

value P of ℘
g
is unitary, P = eiρ. We recall from (3.3.3) the equation of our

rhombic torus as
2 cos ρ

J
D

2
= −(℘

g
−℘

g

−1−2i sin ρ).

4.4.2. The Gauss map. The following Möbius transformation of J
D

restates
what we just said about the Gauss map; r is the real parameter which specifies
the position of zeros and poles of g on the horizontal diagonal:

g =
J
D
−r · eiπ/4

J
D
+r · eiπ/4 .
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4.4.3. The punctures. Next we state the properties of the differential dh;
they determine it uniquely (depending on the parameters ρ, r of course). The
differential has to have simple zeros at the two vertical points of g that are
not the punctures and no other zeros; thus it has two poles, which have to
be at the punctures. This already shows that dh is symmetric with respect to
0 ∈ T . Finally dh has to be imaginary on the horizontal (sic!) diagonal (the
Weierstrass representation shows: otherwise it could not be a level line). Recall
that ℘

g
is imaginary on both diagonals and symmetric with respect to 0 ∈ T .

So we can write down dh in terms of ℘
g
if we denote the value of ℘

g
at the

non-puncture points where J
D
= ±reiπ/4 by (℘

g
=)iλ; at the punctures we then

have ℘
g
= −1/(iλ) because we showed in section 3 that ℘

g
has the symmetry

℘
g
→ −1/℘

g
with respect to the branch points of J

D
. Of course we can express r

in terms of λ or vice versa by using the equation of our torus:

2 cos ρ

r2
= λ+ λ−1 − 2 sin ρ.

4.4.4. The differential. We denote by du the standard holomorphic form
on the torus T = C/Γ. We assume the normalization du(1) = 1, and therefore
du = d℘

g
/℘

g

′. The Ansatz for dh can then be written as follows:

dh = eiπ/4
℘
g
−iλ

℘
g
−iλ−1

du.

Again, we have deduced explicit Weierstrass data that define a two-parameter
(ρ, λ)-family of minimal surfaces. For all of them, reflections in the diagonals are
Riemannian isometries, i.e. these diagonals are geodesics. (They are also straight
lines, namely geodesic asymptote lines, because the quadratic differential, whose
real part is the second fundamental form, dg/g · dh, is imaginary on the tangent
vectors of the two diagonals.)

4.4.5. The period problem. Next let us formulate the period problem in a
convenient way. 1800 degree rotation around a symmetry normal of the minimal
surface (namely the normal at the intersection of the vertical and a horizontal
straight line) descends to the torus as an orientation-preserving involution, with
four fixed points. With our choices, this is rotation around 0 ∈ T and the
fixed points are the midpoint, “the” vertex of our fundamental rhombus, and the
other two half-period points, i.e. the midpoints of the edges. Therefore, without
computation, we have identified on the domain torus the two points where the
normal symmetry line at height 0 meets the surface again. This identification
allows a simple formulation of the period problem. Let I and II be the line
segments in T connecting the half-period points as in (5.3.3).

4.4.6. The period condition for dh:

Re

∫

I

dh = 0.

Symmetry then implies Re
∫

II

dh = 0.

For each conformal parameter value R2 = 1/ tan(π/4 − ρ/2) this is a condition
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from which the parameter λ(ρ) for the position of the punctures can be computed.
(Computationally, it is in fact simpler to integrate the paths I+ II and −I+ II,
since ℘

g
has unitary values along these curves.)

4.4.7. Second period condition. Assume that the minimal surface is trans-
lated and rotated so that the symmetry normal which intersects the surface again
(see 4.4.5) is the x1-axis (g = 1 at the midpoint of the rhombus). Then (4.4.6)
says that the other symmetry points (the half-period points on the torus) have
x3 = 0. The remaining period condition is that the x2-coordinate also vanishes.
Therefore we have from (2.2.1):

Re

∫

I

i(
1

g
+ g)dh = 0.

Because λ(ρ) is determined by the period condition (4.4.6) for dh (4.4.4), this is
a condition on the conformal parameter ρ that can readily be solved numerically.
It is accessible to an intermediate value argument, albeit an argument more
complicated than that in Section 4.2.3. We expect that the genus one helicoid
with translational symmetry lies in a one parameter family of minimal surfaces,
each one invariant under a screw-motion. Those that are translation-invariant
can be expected to be limits of Scherk surfaces with fewer handles (the existence
of which has not been proved).

4.4.8. Embeddedness. We should also mention that the Weierstrass repre-
sentation cannot easily be used to decide whether a surface is merely immersed
or in fact embedded. Sometimes a fundamental piece for the symmetry group
can be shown to be a graph and this embedded piece is extended analytically by
symmetries (rotations and reflections) to a complete embedded surface. Indeed,
the most symmetric Scherk surface with a handle has fundamental pieces that
are graphs, and its boundary curves are in pairwise orthogonal vertical symme-
try planes, so that this surface is embedded. The Hoffman-Wei family includes
this embedded surface and the ends (looking in IR3 like parallel halfplanes) re-
main controlled under the deformation. Therefore —with more details to be
published— all surfaces in the family, including the limit, are embedded.

5. The genus one helicoid.

5.1 Harold’s challenge.

The final chapter starts with an amusing conversation. H. Rosenberg was visiting
Bonn in the Spring of 1992. He was preparing a talk on embedded minimal sur-
faces with infinite isometry group, and he was also optimistic about approaching
embedded minimal surfaces with at least two topological ends. But his ideas
would not say anything about embedded minimal surfaces of finite topology with
just one end. He said: “Hermann, I don’t like this question to hang around. Why
don’t David and you sit down and construct such an example?”
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— “Suggestions where to start looking?”

— “It is so easy for the helicoid, you just take the exponential map as Gauss
map.”

—“How many functions do you know with just one essential singularity on a
torus?”

—“I think you are just lazy, you haven’t even started to work on such an exam-
ple.”

—“How about taking the Hoffman-Wei example, fix one hole and slide the others
to infinity?”

— “Do you really think you can do that and control the limit surface?”

— “Not now.”

After this conversation things happened quickly. Two months later, with trans-
Atlantic cooperation the new example was found.

Figure 7

Genus one helicoid

5.2 The qualitatively correct picture.

5.2.1. The helicoid. The Weierstrass representation of the helicoid just
alluded to is

g(z) := exp(z) , dh :=
dg

g
= dz , z ∈ C.
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The Mittag-Leffler theorem suggests to move the singularity to the origin as a first
step in the construction of a doubly-periodic function, a Gauss map candidate.
We get the helicoid in this form:

g(z) := exp

(

1

z

)

, dh =
dg

g
= −dz

z2
, z ∈ C ∪ {∞} \ {0}.

Observe that the logarithmic differential dg/g becomes meromorphic with a dou-
ble pole, just one order worse than the simple poles of logarithmic differentials of
meromorphic functions. A strategy evolved: Do not go for the Gauss map imme-
diately, work with the generalized Weierstrass representation where the differen-
tials dg/g, dh are considered as the data, hope that these data are meromorphic
for the desired example and deduce them under this meromorphicity assumption.

5.2.2. The initial strategy. How can one start to follow such a vague
strategy? The helicoid suggests that dg/g and dh should have double poles at
the puncture. The Riemannian metric ds = (|g| + 1/|g|)|dh| shows that |dh|
cannot have other poles; so dh must have two simple zeros (resp., one double
zero) and these have to be at simple (resp. double) vertical points of the Gauss
map. The Hoffman-Wei helicoid suggests it is reasonable to assume one vertical
and one horizontal straight line on the surface. This makes the underlying torus
rhombic (3.3.1) because the fixed point set of the rotation about each of these
lines has only one fixed point component. The two zeros of dh have to be on
symmetry lines (because otherwise the symmetries would force four zeros) and
they cannot be on the vertical line because the Gauss map needs to be vertical at
the zeros of dh. Next, dg/g should have, as suggested by the helicoid, a double
pole at the puncture. It should also have two simple poles with residues ±1 at
the two simple zeros of dh — so that g would have simple vertical points there
to cancel the zeros of dh in the Riemannian metric. Because of the Riemannian
metric, any further vertical point of g, not being compensated by a zero of dh,
would lead to another puncture; therefore dg/g has no other poles. Hence there
are four zeros, and it remains to place them symmetrically with respect to the
diagonals. The Hoffman-Wei helicoid suggests, once more, placing two zeros on
one diagonal (between the finite vertical points and the puncture) and the other
two on the other diagonal.
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5.3 First details for the genus one helicoid.

5.3.1. The rhombic tori. To get into more details we first decide to describe
the family of rhombic tori by the differential equation of their geometrically
normalized Weierstrass ℘ -function ℘

g
with branch values 0, eiρ,∞,−e−iρ:

(

℘
g

′

℘
g

)2

=
−2
cos ρ

·
(

℘
g
− 1

℘
g

− 2i sin ρ

)

.

5.3.2. The complex height differential. In terms of the function ℘
g
and

the standard holomorphic differential form du, du(1) = 1 we can write down a
differential form dh with:
• a double pole at the vertex of the rhombic fundamental domain;
• two simple zeros on one diagonal (we chose the +450 direction);
• and imaginary values on this diagonal, making it a level line of the third

coordinate of the integral (2.1.1);

dh = e−iπ/4 · (℘
g
−iε) · du = e−iπ/4 · (℘

g
−iε) · (℘g

′

℘
g

)−1 · d℘g
℘
g

.

Notice that the third condition, that the +450 diagonal is a level line, is
satisfied since ℘

g
is imaginary on the diagonals of the rhombus (3.3.3).
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5.3.3. The first period condition. Next we fix the parameter ε in the same
way as we determined λ in (4.4.6) for the Hoffman-Wei helicoid: The rotation of
the surface around the normal at the intersection of the two straight lines is an
orientation-preserving involution of the torus, hence has four fixed points. On
the torus, these are the half-period points, including the puncture. Therefore
the normal rotation must fix two other points of the minimal surface. Obviously
the normal has to intersect the surface in two more points, in addition to the
intersection point of the straight lines. These points must be the images of the
midpoints of the edges of the rhombic fundamental domain. Now let I and II
be the segments from the midpoint of the rhombus to the labeled midpoints of
its edges, as indicated in the diagram below. Then ε has to be chosen such that

Re

∫

I

dh = 0 , and by symmetry then also Re

∫

II

dh = 0.

Values of ℘
g
are indicated in the diagram; ℘

g
is unitary on dotted

lines connecting midpoints of edges.

This period condition simplifies if we observe that ℘
g
has unitary values on the

straight segments between its branch points with values eiρ,−e−iρ. First, Re
∫

dh
is 0 on the segment that cuts across the diagonal destined to be the vertical
line, since the real part of ℘

g
is odd with respect to the midpoint ℘

g
= −i

of this segment. Second, on the segment across the other, the “horizontal”,
diagonal we change variables to the unitary range of ℘

g
. With ℘

g
= eiϕ we have

d℘
g
/℘

g
= i · dϕ; with this and the differential equation (5.3.1) the above period

conditon reduces to an explicit equation for ε(ρ), which we still call the

“period condition for dh ”:

π/2
∫

ρ

sinϕ− ε
√

(sinϕ− sin ρ)
dϕ = 0 .

It can be written as:

ε(ρ) = sin ρ+

π/2
∫

ρ

√

(sinϕ− sin ρ)dϕ

/

π/2
∫

ρ

dϕ
√

(sinϕ− sin ρ)
.

5.3.4. The control of ε. We will need a little information about ε to even
write down the Ansatz for dg/g. Some more precise information is required to
show that the period conditions for dg/g can always be satisfied (with parameter
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values in the Ansatz that are compatible with our qualitative picture). For the
final intermediate value proof we will need:
• quite precise information about ε = ε(ρ) as ρ approaches +π/2;
• the existence of a ρ+ < 0 such that ε(ρ) > 0 for ρ ∈ (ρ+, π/2);
• the existence of a ρ− > −π/2 such that ε(ρ−) < 0.

All this is supplied by the following

Lemma.

(i) For −π/6 ≤ ρ < π/2, the following equivalent estimates (<∗) hold, while
for 0 ≤ ρ < π/2, the other equivalent estimates (<) hold:

1

3
(1− sin ρ) <∗ ε(ρ)− sin ρ <

2

3
(1− sin ρ),

1

3
(1− sin ρ) < 1− ε(ρ) <∗

2

3
(1− sin ρ),

0 ≤ 1

3
(2 sin ρ+ 1) <∗ ε(ρ) <

1

3
(sin ρ+ 2) < 1.

(ii) For −π/2 < ρ < π/2, we have:

ε(ρ) < sin ρ+
1

3
· (π/2− ρ);

consequently,

cos ρ− =
1

3
, ε(ρ−) ≤ −0.008 < 0.

Proof. We estimate the quotient of the integrals in (5.3.3). The trivial bound
sinϕ− sin ρ ≤ ϕ− ρ

can be used in the numerator and denominator to get part (ii):

π/2
∫

ρ

√

(sinϕ− sin ρ)dϕ ≤
π/2
∫

ρ

√

(ϕ− ρ)dϕ =
2

3
(π/2− ρ)3/2

π/2
∫

ρ

dϕ
√

(sinϕ− sin ρ)
≥

π/2
∫

ρ

dϕ
√

(ϕ− ρ)
= 2(π/2− ρ)1/2.

The minimum of sin ρ+ 1
3
(π/2− ρ) in (−π/2, 0) is obtained when cos ρ = 1/3,

sin ρ = −
√

8/9 ; the value of ε at this ρ is ≤ −0.008 < 0.
In order to establish estimate(i) we use the following bounds:
For 0 ≤ ρ < π/2, sinϕ is below its tangent in ρ < ϕ < π/2:

sinϕ− sin ρ < cos ρ · (ϕ− ρ);

for −π/6 ≤ ρ < π/2, then sinϕ is above its secant in ρ < ϕ < π/2:

(1− sin ρ) · ϕ− ρ

π/2− ρ
<∗ sinϕ− sin ρ.

As before, these inequalities are inserted in the integrals and explicit integration
gives us estimates which we will need again, the following
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5.3.5. Integral bounds:

√

1− sin ρ · 2
3
(π/2− ρ) <∗

π/2
∫

ρ

√

(sinϕ− sin ρ)dϕ

<
√
cos ρ · 2

3
(π/2− ρ)3/2;

2 ≤ 2√
cos ρ

· (π/2− ρ)1/2 <

π/2
∫

ρ

dϕ
√

(sinϕ− sin ρ)

<∗
2√

1− sin ρ
· (π/2− ρ) ≤ 4.

These imply the inequalities (<∗) in the Lemma, the others follow from the
simplification

1

3
cos ρ · (π/2− ρ) =

4

3
sin

π/2− ρ

2
· cos π/2− ρ

2
· π/2− ρ

2

≤4

3
(sin

π/2− ρ

2
)2 =

2

3
(1− sin ρ).

5.3.6. The Ansatz for dg/g. So far, we have a unique candidate for dh on
each rhombic torus, but we are not interested in those tori for which ε(ρ) ≤ 0.
Next we make an Ansatz for dg/g which expresses in formulas what we explained
in (5.2.2). Namely we want dg/g to have:
• two simple poles with residues ±1 where ℘

g
= iε (these will give us the

vertical points of g on the horizontal line);
• a double pole at the vertex of the rhombic fundamental domain (which will

give us an essential singularity of g very much like that of exp(1/z) );
• four zeros (forced by the four poles) at the points where ℘

g
= i · r, ℘

g
= i · E

(which will give us two branch points of g on each straight line).
As before, we want to make use of the symmetries of ℘

g
and therefore express

the holomorphic differential du as in (4.4.4):

du =

(

℘
g

′

℘
g

)−1

· d℘g
℘
g

, du(1) = 1.

Recall that in a holomorphic coordinate system, tangent vectors are complex
numbers; therefore du(1) = 1 means that the holomorphic differential on the
torus is normalized to have the value 1 on the unit tangent vector of the real
axis. With this in mind we are able to write:

dg

g
=

eiπ/4 · (℘g −ir)
ε− r

· (℘g −iE)

ε− E
· ε
℘
g

·
[
√

2

cos ρ
(ε+

1

ε
− 2 sin ρ)

](

℘
g

′

℘
g

)−1

· d℘
g

℘
g
−iε .
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We recall that ℘
g
is imaginary on the diagonals of the rhombus, which have

the ±450 directions, and eiπ/4du(e±iπ/4) = i resp., 1. Therefore, we see that the
phase factor eiπ/4 in the Ansatz is adjusted to make dg/g real on the tangent
vector of the “horizontal” diagonal (the one which corresponds to the horizontal
line on the surface and which has the vertical points at ℘

g
= iε) and imaginary on

the other, the “vertical” diagonal, where we wish the Gauss map to be unitary.
The square-root factor makes the residue at ℘

g
= iε equal to ±1. Observe that

this is very close to the data of the Hoffman-Wei helicoid: One only has to move
the two simple poles of dg/g which correspond to their punctures so that they
merge to our double pole at the vertex of the rhombic fundamental domain. Of
course, even a deformation in that direction is impossible with a meromorphic
Gauss map, but on the level of differential forms we gain this flexibility.
Technically we will find it convenient to rewrite dg/g in terms of

X := (E − ε) + (r − ε), Y := (E − ε) · (ε− r)

as follows:

dg

g
=

− ε

[
√

2

cos ρ
(ε+

1

ε
− 2 sin ρ)

]

·
(

1

℘
g
−iε −

(℘
g
−i(X + ε))

Y

)

eiπ/4
(

℘
g

′

℘
g

)−1
d℘

g

℘
g

.

5.3.7. The period condition for dg/g. The next step is the determi-
nation of the parameters r, E, or more conveniently X,Y in such a way that
g = exp(

∫

dg/g) is a well-defined function on the torus. We translate the min-

imal surface so that the intersection point of the straight lines is 0 ∈ IR3 and
rotate so that the Gauss map has the value g = 1 there, at the midpoint of
the rhombic fundamental domain. We have already explained that 1800 rotation
around this (g = 1)-normal (the x1-axis) is an isometry of the minimal surface;
it induces an orientation-preserving involution of the torus. Its fixed points are
the half-period points, the branch points of ℘

g
. Therefore this symmetry normal

must intersect the minimal surface in two more points, which are, on the torus,
the points where ℘

g
is equal to P = eiρ or to −1/P = −e−iρ. Again we denote

the straight segments from the midpoint of the rhombus to the midpoints of the
edges I, II, see diagram (5.3.3). The integrals of dg/g along these paths are
(because of the rotational symmetry around the straight lines) equal up to sign;
by joining the endpoints of I, II we get two pairs of isosceles triangles. The ones
with a point where ℘

g
= +i on their baseline contain one of the points where

℘
g
= iε, i.e., where the residue of dg/g is ±1, in their interior (since ε < 1); the

other triangles (baseline orthogonal to the “vertical”diagonal) contain no singu-
larity of dg/g inside. This leaves only the possibility that the integral of dg/g
along the paths I, II is ±iπ. In particular, the Gauss map has the opposite
value g = −1 at the other intersections with the x1-axis—in agreement with the
qualitative picture suggested by the Hoffman-Wei helicoid. So we arrived at a
convenient formulation of the

“period condition for dg/g ”:

∫

I,II

dg

g
= ±πi, or

∫

I±II

dg

g
= 0.
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Again it is helpful to use the fact that ℘
g
is unitary on the straight seg-

ments I ± II between the branch points, where ℘
g
= eiρ,−e−iρ. Along the path

orthogonal to the “vertical diagonal,” eiπ/4du is imaginary on tangent vectors
and—as follows from (3.3.3)—, Re℘

g
is odd and Im℘

g
is even with respect to

the midpoint (where ℘
g
= −i). It follows that the integral of the proposed dg/g

is real along this path; along the other path, ℘
g
has the same symmetries, but

eiπ/4du gives real values, making the integral of dg/g imaginary. This shows that
the symmetries help us to satisfy two complex period conditions by adjusting two
real parameters. As before, we use ℘

g
as coordinate map and do the integration

in the range of this chart. That is, we substitute ℘
g
= eiϕ, d ℘

g
/℘

g
= i · dϕ in

our Ansatz for dg/g, use the differential equation (5.3.1) to express ℘
g

′ /℘
g
and

then plug the result into the last version of the period condition above (integra-
tion along I ± II). Finally, we take the real (resp. imaginary) part, which is not
automatically zero, and end up with the following linear system for X, Y , which
expresses our period conditions for dg/g. The zero in the first equation is nothing
but the definition of ε.

0 = A1 ·X + B1 · Y, namely:

0 =

π/2
∫

ρ

dϕ
√

(sinϕ− sin ρ)
·X +

π/2
∫

ρ

sinϕ− ε

1 + ε2 − 2ε sinϕ
· dϕ
√

(sinϕ− sin ρ)
· Y

C2 = −A2 ·X + B2 · Y, namely:

+

π/2
∫

−ρ

sinϕ+ ε
√

(sinϕ+ sin ρ)
dϕ

= −
π/2
∫

−ρ

dϕ
√

(sinϕ+ sin ρ)
·X +

π/2
∫

−ρ

sinϕ+ ε

1 + ε2 + 2ε sinϕ
· dϕ
√

(sinϕ+ sin ρ)
· Y .

5.3.8. First consequences of the period condition for dg/g. Clearly we
have

0 < A1, C2, A2, B2.

Claim. We also have: 0 < B1.

Proof. By definition of ε we have first that the function

f(ϕ) :=
sinϕ− ε√
sinϕ− sin ρ

satisfies

π/2
∫

ρ

f(ϕ)dϕ = 0,

and f < 0 to the left, f > 0 to the right of its simple zero at ϕε, sinϕε = ε.
Second, the function

g(ϕ) := 1/(1 + ε2 − 2ε sinϕ)
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is positive and increasing in the interval (ρ, π/2). Together this proves the claim:

B1 =

π/2
∫

ρ

f(ϕ) · g(ϕ) · dϕ =

π/2
∫

ρ

(f(ϕ)− f(ϕε)) · (g(ϕ)− g(ϕε))dϕ > 0.

QED

An immediate consequence is that our linear system always has a solution and
that the values are in agreement with our qualitative picture:

Y > 0, X < 0.

Hence (solving t2 −X · t− Y = 0) we have established that

r − ε < 0 < E − ε < ε− r.

We draw one more immediate conclusion:
Let ρ decrease so that ε(ρ) → 0; because of (5.3.4) ρ stays bounded away from
−π/2. Therefore one can easily take the limit ε → 0 in the coefficients of our
linear system. We obtain B1 → 0, A2/C2 → 1, while A1 stays bounded away
from 0. So we get

ε→ 0 implies X → 0, Y → 1, r → −1, E → +1.

This surprising simplification is responsible for one half of the final intermediate
value argument.

5.3.9. The one-parameter family of candidates. We summarize what we
have achieved. The previous derivations lead us to define dh by (5.3.2) and dg/g
by (5.3.6); then the single period condition for dh and the two period conditions
for dg/g can, for all ρ ∈ (ρ0, π/2), be solved uniquely where ρ0 satisfies ε(ρ0) = 0,
and is estimated by (5.3.4) as −π

2
< ρ− < ρ0 < ρ+ < −π

6
. With these choices of

r, E or X,Y the definition

g := exp

∫

0

dg

g

gives a well-defined function on each of our rhombic tori (restricted by ε(ρ) > 0).
(These candidates for the Gauss map of the genus one helicoid are special choices
of Baker-Akhiezer functions, as we now know.) Hence, on each such torus we
have arrived at a unique Weierstrass data candidate {g, dh} for the surface we
wish to construct!
The minimal surface family defined by these Weierstrass data has, because of our
careful choice of parameters, the following properties:
• the diagonals of the rhombic fundamental domain are a horizontal and a

vertical straight line on the surface;
• the Gauss map has an essential singularity like that of exp(1/z) at the vertex

of the rhombus;
• the Gauss map has value g = +1 at the midpoint, and value g = −1 at the

remaining two half-period points (recall that the puncture is at the fourth
half-period point, the vertex of the rhombus);
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• these three half-period points are on the same level. x3 = 0, where x3 is the
height function x3 := Re

∫

0

dh;

• 1800 rotation around the normal at the origin (where g = 1) is a symmetry
of the surface for all ρ (with ε(ρ) > 0).

Therefore we have almost achieved our goal. For the existence part only one
problem remains: The two half-period points with g = −1 have to be points
that, as points on the minimal surface, lie not only on the same level as the
origin (which they do because of 5.3.3), but that in fact lie on the x1-axis (which
is the symmetry normal at the origin). We solve this problem with an intermedi-
ate value argument: The sign of the x2-coordinate of those half-period points is
different near the two limit situations (i) ε(ρ)→ 0, (ii) ρ→ π/2. To prove this
requires two things: precise estimates for Y ; a judicious choice of paths of inte-
gration to the half-period points on the torus, along which our other estimates
are sharp enough to help to determine the sign of the x2 coordinate in the limit
situations. Numerically, we could find the solution long before we could do the
estimates.
We would like to establish embeddedness by proving the existence of the contin-
uous family of minimal surfaces (mentioned earlier) that joins the new surface to
an embedded one. For this to work, we must control their behavior at infinity so
well that they all have to be embedded. This needs further study—at the mo-
ment only the pictures show that the new surface is embedded. We now return
to the existence proof.

5.4 Estimates for the linear system.

5.4.1. The aim.

At first the intermediate value proof attempt looked discouraging because it
seemed to require precise information about the parameters ε,X, Y of our Weier-
strass data in two different ranges of the conformal parameter ρ. We have already
explained in (5.3.8) that as ε→ 0, the other parameters converge to known values
and no further estimates will be needed for that part of the proof. The amount
of work we have to do is again reduced because we found a path on the torus
along which a good lower bound for Y is enough to finish the argument. The
aim of this section is to prove the sufficient lower bound:

π

4
≤ ρ <

π

2
implies

1

23
· (1− sin ρ)5/8 ≤ Y (ρ).

Our strategy will be to substitute the first equation (5.3.7), namely
−X = B1/A1 · Y , into the second equation and estimate towards lower bounds
for Y .

5.4.2. The first three estimates:

2 ≤ A1 ,
B2

A2

≤ 1

2ε
, 1 ≤ C2.

Proof. First, 2 ≤ A1 ≤ 4 has already been obtained in (5.3.5). Second, to
estimate 2ε ·B2/A2 it is enough to increase the numerator of the integrand of B2,
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using 0 < ε < 1, a little:
2ε · (sinϕ+ ε) ≤ 1 + ε2 + 2ε sinϕ

to get the same integrand as for A2. Hence 2ε ·B2/A2 ≤ 1.

And to estimate C2 we first use sin ρ ≤ ε (5.3.4) and then estimate trivially
(assuming always in this section that π/4 ≤ ρ):

C2 :=

π/2
∫

−ρ

sinϕ+ ε√
sinϕ+ sin ρ

dϕ ≥
π/2
∫

−ρ

√

sinϕ+ sin ρdϕ ≥
π/2
∫

0

√

sin ρdϕ

≥ π

2

√

sinπ/4 ≥ 1.3

5.4.3. The upper bound:

A2 ≤ 2 + 5 · (cos ρ)−1/4.

Proof. The integral for positive ϕ is easy:

π/2
∫

0

dϕ√
sinϕ+ sin ρ

≤ π

2
√
sin ρ

< 2 .

For the other part we need the following estimate. For 0 ≤ α ≤ π/4 and all
x ∈ (α, π/2):

cosx ≤ cosα− sinα · (x− α)− cosα

6
· (x− α)2.

This is true at x = α and follows for all x ∈ (α, π/2) if we have for the derivative
− sinx ≤ − sinα− cosα(x− α)/3;

and indeed

sinx− sinα

x− α
≥ 1− sinα

π/2− α
≥ 1− sinα

sin(π/2− α) · π/2 =
cosα

(1 + sinα) · π/2 >
cosα

3
.

We will use this estimate in the following form:

π/4 ≤ ρ < π/2, −ρ ≤ ϕ ≤ 0 implies cos ρ·(ϕ+ρ)+ sin ρ

6
(ϕ+ρ)2 ≤ sinϕ+sin ρ.

Hence

0
∫

−ρ

dϕ√
sinϕ+ sin ρ

≤
ρ
∫

0

dt
√

t cos ρ+ t2 sin(ρ)/6
≤

ρ
∫

0

dt
√

2
√

t3 cos(ρ) sin(ρ)/6

=

√√
6

2
· 4

(cos ρ)1/4
·
( ρ

sin ρ

)1/4 ≤ 5(cos ρ)−1/4,

which gives the claimed bound for A2.
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5.4.4. The final estimate for Y . So far we have derived from the linear
system the following inequalities

0 < −2 ·X ≤ B1 · Y
(1− sin ρ)1/8

7
≤ (cos ρ)1/4

5 + 2(cos ρ)1/4
≤ −X +

1

2ε
· Y.

The missing information about B1 is supplied by the

Claim:
1

2
B1 ≤ 2.8 · (1− sin ρ)−1/2,

from which we conclude the aim of this section (5.4) as follows

(1− sin ρ)1/8

7
≤ (2.8 · (1− sin ρ)−1/2 +

1

2ε
) · Y ≤ 3.2 · (1− sin ρ)−1/2 · Y,

or
1

22.4
(1− sin ρ)5/8 ≤ Y.

Proof of the Claim. It is sufficient to estimate only the positive part of the
integrand of B1. First we get rid of some factors that do not matter, by using
bounds for ε derived in (5.3.4):

√

sinϕ− sin ρ ≤
√

1− sin ρ, sinϕ− ε ≤ 1− ε ≤ 2

3
(1− sin ρ),

2ε

1 + ε2 − 2ε sin ρ
≤ 1

1− sin ρ
.

Then, with sinϕε = ε, the integral simplifies to

1

2
B1 ≤

√
1− sin ρ

3
·
π/2
∫

ϕε

dϕ

1 + ε2 − 2ε sinϕ
.

Again we replace sinϕ by a Taylor expansion and use Schwarz inequality to get
an explicitly integrable term. Under the assumptions

π/4 ≤ ρ ≤ ϕε, ϕε ≤ ϕ ≤ π/2
we have (again using (5.3.4))

sinϕ ≤ 1− (π/2− ϕ)2/2.2 and 0.8 ≤ ε.
We insert this in the integrand and also use that 0 ≤ a, b implies 1/(a2 + b2) ≤
2/(a+ b)2 to get

1

(1− ε)2 + 2ε(1− sinϕ)
≤ 2.2

2.2(1− ε)2 + 2ε(π/2− ϕ)2
≤ 2.8

((1− ε) + (π/2− ϕ))2
,

π/2
∫

ϕε

dϕ

(1− ε+ π/2− ϕ)2
=

1

1− ε+ π/2− ϕ

∣

∣

∣

π/2

ϕε

≤ 1

1− ε
≤ 3

1− sin ρ
.

Insertion of these two lines in the last expression bounding B1 proves the claim.
QED
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5.5 The solution of the remaining period problem.

5.5.1. What can still go wrong?

The summary in (5.3.9) emphasized the fact that we have, at this point, pro-
duced a one-parameter family of possible candidates, parametrized by a con-
formal parameter ρ, where eiρ,−e−iρ are the branch values 6= 0,∞ of ℘

g
on a

rhombic torus. For each such torus we have a unique candidate for dh (5.3.2,
5.3.3) and g (5.3.6 - 5.3.8), which have the five properties listed in (5.3.9). These
candidates have symmetry normals at the three finite valued branch points of
℘
g
, ℘

g
= 0, eiρ,−e−iρ, i.e. 1800 rotation around the normals at these points is

a symmetry of the minimal surface (defined by our dh, g ). These points lie in
the (x1, x2)-plane by construction; but if they are not on one single normal line
(here the x1-axis), then composition of these normal rotations produces nontriv-
ial translational symmetries, the so called periods. Our computer calculations
showed that there is a choice of ρ, for which these periods vanish, so that the
Weierstrass integral (2.1.1) defines a well defined map from the punctured torus
(determined by ρ) into IR3. It remains to prove this fact.

5.5.2. Outline of the intermediate value argument.

We will show the existence of the desired ρ by applying the intermediate value
theorem to the second coordinate function of the minimal surface at the branch
point ℘

g
= eiρ, which is a continuous function of ρ. The one point ℘

g
= eiρ on the

torus has two representatives in the rhombic fundamental domain; to get a well
defined function we restrict the Weierstrass integral to a simply connected part
of the punctured torus. We take one half of the fundamental rhombus (without
the puncture), the half to the right of the “vertical” diagonal. Recall that the
vertical diagonal corresponds to the vertical line on the minimal surface; it has
the two points ℘

g
= −i on it. The “horizontal” diagonal has the points ℘

g
= i

on it. Now we have in the right half of the rhombus two paths from ℘
g
= 0 to

℘
g
= eiρ (and also two paths to ℘

g
= −e−iρ) which are distinguished because ℘

g

is first imaginary and then unitary along them:

a) For ρ near π/2 it is better to integrate first from ℘
g
= 0 to ℘

g
= i along the

horizontal diagonal and then from ℘
g
= i to ℘

g
= eiρ (or −e−iρ) along the −450

segment, because the following is proved in (5.6): The length of the horizontal
line from ℘

g
= 0 to ℘

g
= i stays bounded away from 0, while the length of the

segment from ℘
g
= i to ℘

g
= eiρ can be bounded by const·(π/2− ρ). This means

that the Weierstrass integral maps the branch points ℘
g
= eiρ,−e−iρ into the

(x1, x2)-plane on the same side of the x1-axis as the horizontal half-line (from
the right half of the rhombus), for ρ close to π/2.

b) For ρ in a range where ε(ρ) > 0 is very small it is better to integrate first
along the vertical diagonal from ℘

g
= 0 to ℘

g
= −i and then from ℘

g
= −i to

℘
g
= eiρ (always to the right of the vertical diagonal). Along the vertical line the

x2-coordinate remains zero. We prove in (5.7) that near the limit ε(ρ) → 0 the
Weierstrass integral maps the +450 segment to a curve that is on the other side
of the plane x2 = 0 as the horizontal half-line.
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With our choices, the horizontal half-line is always the positive x2-axis (see 5.3.2,
2.1.1), but it is a fixed half of the x2-axis, i.e. independent of ρ, also under other
sign conventions. Therefore our remaining proof will show

x2(℘g = eiρ) > 0 for ρ near π/2 ,

x2(℘g = eiρ) < 0 for very small ε(ρ) > 0.

5.6 Details if ρ is near π/2.

5.6.1. Summary.

In this section it is convenient to scale the minimal surface by multiplying the
dh in (5.3.2) by the real factor (2/ cos ρ)1/2. Then we prove in (5.6.2):

(i) The length of each of the two horizontal segments from (℘
g
= 0) to (℘

g
= i)

is ≥ 0.19 (if π/4 ≤ ρ < π/2).

We also prove in (5.6.4), after estimating the Gauss map in (5.6.3):

(ii) The segments from (℘
g
= i) to the branch points (℘

g
= eiρ) or (℘

g
= −e−iρ)

have length ≤ const · (π/2− ρ).

For ρ close enough to π/2 this shows:

(iii) If we use the Weierstrass integral to map one half of the fundamental rhom-
bus, say the one to the right of the vertical diagonal, then the branchpoints
(℘

g
= eiρ) and (℘

g
= −e−iρ) are mapped to points in the x1-x2-plane which

are on the same side of the x1-axis as the initial segment of the horizontal
diagonal.

5.6.2. The length estimate from below.

We use ℘
g
as coordinate function; i.e., the initial segment of the horizontal diag-

onal is given by

℘
g
= i · t, 0 ≤ t ≤ 1,

d ℘
g

℘
g

= dt.

With this we express dh from (5.3.2) (recall that we rescaled by (2/ cos ρ)1/2) as
follows:

|dh| = |t− ε| · (t+ 1

t
− 2 sin ρ)−1/2.

We do not use detailed information about the Gauss map, only that

|g|+ 1

|g| ≥ 2.
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Then:
Length(segment from (℘

g
= 0) to (℘

g
= i))

≥ 2

∫

|dh|

= 2

∫ 1

0

|t− ε|(t+ 1

t
− 2 sin ρ)−1/2dt

≥ 2

∫ ε

0

(ε− t)t(t3 + t− 2t2 sin ρ)−1/2 dt

≥ 2(ε+ ε2(ε− 2 sin ρ))−1/2

∫ ε

0

(ε− t)t dt

≥ 1

3
ε(ρ)2.5

≥ 0.19 (use π/4 ≤ ρ and (5.3.4)).

5.6.3. The Gauss map estimate.

Again we use ℘
g
as coordinate map. The segment from the quarter-point on the

horizontal diagonal (℘
g
= i) to the half-period point (℘

g
= eiρ) is then given by:

℘
g
= eiϕ, ρ ≤ ϕ ≤ π/2,

d ℘
g

℘
g

= i · dϕ.

Along this segment we prove the
Lemma

max(|g|, 1

|g| )(ϕ) ≤ exp(46(1− sin ρ)3/8 + 1)

√

1 + ε2 − 2ε sin ρ

1 + ε2 − 2ε sinϕ
.

Proof. We have:

log |g|(t) =
∫ t

ρ

Re
dg

g
, ρ ≤ t ≤ π/2.

We observe eiπ/4du(e−iπ/4) ∈ IR, therefore we can take the real part in the
second formula for dg/g in (5.3.6). We leave the sign undetermined so that all
four segments from ℘

g
= i perpendicular to the horizontal diagonal are included.

We obtain

Re(
dg

g
) =

± ε

√

ε+
1

ε
− 2 sin ρ

(

Re
1

eiϕ − iε
+Re

eiϕ − i(X + ε)

Y

) dϕ√
2 sinϕ− 2 sin ρ

.

It is convenient that the real part gets rid of (X + ε) since Y is real. We will
estimate the integrals involving the terms

Re(
1

eiϕ − iε
) =

cosϕ

cos2 ϕ+ (ε− sinϕ)2
and

cosϕ

Y
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separately and thereby get a bound for max(|g|, 1/|g|).
The term involving Y can be integrated:

∫ t

ρ

cosϕdϕ√
2 sinϕ− 2 sin ρ

=
√

2 sin t− 2 sin ρ.

From sin ρ < ε < 1 (5.3.4) it follows that

2ε(1− sin ρ) < ε2 + 1− 2ε sin ρ < 2(1− sin ρ).

In (5.4) we proved
1

23
(1− sin ρ)5/8 ≤ Y.

This bounds the integral of the summand (of Re dg/g) involving Y as follows:

√

ε(ε2 + 1− 2ε sin ρ)

Y

∫ t

ρ

cosϕdϕ√
2 sinϕ− 2 sin ρ

≤ 46(1− sin ρ)3/8

√

sin t− sin ρ

1− sin ρ

≤ 46(1− sin ρ)3/8.

We now turn our attention to the other integral. Because it has a bad denomi-
nator coming from Re 1/(℘

g
−iε) if ρ is near π/2 we split this integral as follows:

∫ t

ρ

cosϕdϕ

(1 + ε2 − 2ε sinϕ)
√
2 sinϕ− 2 sin ρ

=

∫ t

ρ

cosϕdϕ

(1 + ε2 − 2ε sin ρ)
√
2 sinϕ− 2 sin ρ

+

∫ t

ρ

2ε(sinϕ− sin ρ) cosϕdϕ

(1 + ε2 − 2ε sin ρ)(1 + ε2 − 2ε sinϕ)
√
2 sinϕ− 2 sin ρ

=:

∫ t

ρ

f1(ϕ)dϕ+

∫ t

ρ

f2(ϕ)dϕ.

The first term can be integrated as before and gives the contribution:

√

ε(ε2 + 1− 2ε sin ρ)

∫ t

ρ

f1(ϕ)dϕ

=

√

2ε(sin t− sin ρ)

1 + ε2 − 2ε sin ρ

≤ 1

In the second term we bound in the numerator

√

sinϕ− sin ρ ≤
√

sin t− sin ρ
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to get an explicitly integrable integrand:

∫ t

ρ

2ε cosϕ dϕ

1 + ε2 − 2ε sin ρ
= log

1 + ε2 − 2ε sin ρ

1 + ε2 − 2ε sin t
.

With this the contribution of the second term to the bound of the integral of
Re dg/g is:

√

ε(ε2 + 1− 2ε sin ρ)

∫ t

ρ

f2(ϕ)dϕ

≤ 1

2

√

2ε(sin t− sin ρ)

1 + ε2 − 2ε sin ρ
· log 1 + ε2 − 2ε sin ρ

1 + ε2 − 2ε sin t

≤ 1

2
log

1 + ε2 − 2ε sin ρ

1 + ε2 − 2ε sin t
.

Taking our three contributions together we get the bound of the lemma:

max(|g|, 1

|g| )(t) ≤ exp(46(1− sin ρ)3/8 + 1)

√

1 + ε2 − 2ε sin ρ

1 + ε2 − 2ε sin t
.

QED

Note that the proof really gives the better bound 1 at t = ρ, but the more
complicated expression distracts from what we need.

5.6.4. The remaining length estimate.

Along the segment from (℘
g
= eiρ) to (℘

g
= i) we introduced ℘

g
as coordinate,

i.e. we have

℘
g
= eiϕ, ρ ≤ ϕ ≤ π/2,

d ℘
g

℘
g

= i · dϕ.

With this we express |dh| from (5.3.2) (scaled as in (5.6.2) by (2/ cos ρ)1/2 ) as
follows

|dh| =
√

1 + ε2 − 2ε sinϕ

2(sinϕ− sin ρ)
dϕ

≤
√

1 + ε2 − 2ε sinϕ

2(1− sin ρ)

√

π/2− ρ

ϕ− ρ
dϕ.

This bound for |dh| and the preceding Gauss map estimate (5.6.3) imply the
length estimate for our segment which was claimed in (5.6.1):

∫ π/2

ρ

(|g|+ 1

|g| )|dh|

≤ 2 exp(1 + 46(1− sin ρ)3/8)

∫ π/2

ρ

√

π/2− ρ

ϕ− ρ
dϕ

≤ 4 exp(1 + 46(1− sin ρ)3/8)(π/2− ρ).
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5.7 The behavior as ε(ρ)→ 0.

To complete the intermediate value argument we will now show that, for small
ε > 0, the images of the branch points ℘

g
= eiρ, −e−iρ lie in the (x1, x2)-plane

on the opposite side of the x1-axis as they do for ρ near π/2, discussed in (5.6).
It is important to recall that we restrict the Weierstrass integral (2.1.1) to a
simply connected portion of the punctured torus, to that half of the fundamental
rhombus which is to the right of the vertical diagonal, because the 1800 symmetry
around the vertical line interchanges the sides of the x1-axis. We also recall from
(5.3.4) and (5.3.8):

There exists ρ+, −π/2 < ρ+ < −π/6 such that
ε(ρ+) = 0, and ε(ρ) > 0 for ρ ∈ (ρ+, π/2);
if ρ→ ρ+ then

X → 0, Y → 1, r → −1, E → 1.

Our Weierstrass data become degenerate if ε = 0 because the Gauss map cannot
be unitary and vertical at the same point ℘

g
= 0 = iε. But we can discuss the

surfaces for ε close to 0. Using the definition of dg/g in (5.3.6) we conclude that

lim
ρ→ρ+

1√
ε

dg

g
= −(℘

g
+

1

℘
g

)

√

2

cos ρ+

(e+iπ/4du).

This shows that dg/g converges uniformly to 0 outside a neighbourhood of the
horizontal diagonal (with its poles of dg/g); in particular this uniform convergence
holds along those +450 segments which join the branch points of ℘

g
where g = −1

with the points ℘
g
= −i on the vertical diagonal. Without further estimates we

thus have that along these segments the Gauss map converges uniformly,

g → −1 as ρ→ ρ+.

From (5.3.2) we have

dh = (℘
g
−iε)(e−iπ/4du).

Again we choose ℘
g
as coordinate map; along the +450 segments from ℘

g
= −i

we have

℘
g
= eiϕ, | − π/2− ϕ| ≤ | − π/2− ρ|, e−iπ/4du(e+iπ/4) = 1.

Now this controls the second coordinate differential of the Weierstrass integral:

dx2 = Re i(g +
1

g
)dh→ 2(sinϕ− ε)(e−iπ/4du),

error ≤ |g + 1

g
− 2||dh|,

where we used the fact that (e−iπ/4du) is real on the tangent vectors of the
segments. We may assume ρ < −π/6; then sinϕ < −0.5 and the limit for
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dx2 shows that the second coordinate function of the minimal surface is strictly
monotone along the segments considered (for ρ close enough to ρ+). Finally,
why does x2 have opposite signs a) along these segments and b) on the horizontal
half-line from ℘

g
= 0, assuming that we integrate to the right of the vertical

diagonal? The reason is that the x2-coordinate remains zero along the vertical
diagonal from ℘

g
= 0 to ℘

g
= −i, but the tangent plane rotates by approximately

an odd multiple of π because g = +1 at ℘
g
= 0 and g → −1 at ℘

g
= −i. This

means that the initial tangent vector to the image of the +450 segment that starts
at ℘

g
= −i points approximately in the opposite direction as the initial tangent

of the horizontal half-line. The horizontal half-line and the Weierstrass image
of the segment have to stay on opposite sides of the coordinate plane x2 = 0
because of the monotonicity property that we have already established.
We proved: The x2-coordinate of the Weierstrass image of the branch point,
where ℘

g
= eiρ, which is a continuous function of the conformal parameter

ρ ∈ (ρ+, π/2) of the rhombic tori, has opposite signs if ρ is near the endpoints
of (ρ+, π/2). Therefore, some ρ exists for which this function is zero; this says
that the images of the branch points of ℘

g
are on the x1-axis, i.e. on the common

symmetry normal of these three points. Therefore the period condition is satis-
fied; we have found the Weierstrass data for which the Weierstrass integral is a
well-defined map of the punctured torus into IR3. The genus one helicoid exists.
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