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Abstract


A K-surface is a surface whose Gauss curvature K is equal to a positive constant. In this paper, we


will consider K-surfaces that are defined by a nonlinear boundary value problem. In this setting, existence


follows from some recent results on nonlinear second-order elliptic partial differential equations. The analytical


techniques used to establish these results motivate effective numerical methods for computing K-surfaces. In


theory, the solvability of the boundary value problem reduces to the existence of a subsolution. In an analogous


way, if an approximate numerical subsolution can be determined, then the corresponding K-surface can be


computed. We will consider two boundary value problems. In the first problem, the K-surface is a graph


over a plane. In the second problem, the K-surface is a radial graph over a sphere. From certain geometrical


considerations, it follows that there is a maximum allowable Gauss curvature Kmax for these problems. The


principal results in this paper are numerical estimates of Kmax for a variety of geometries and boundary data.


Using a continuation method, we determine numerically the unique one-parameter family of K-surfaces that


exist for K ∈ (0,Kmax). We can compare our numerical estimates for Kmax to the true value when the K-


surface is a subset of a hyperbolic spherical surface of revolution. In this case, we find that our numerical


estimates for Kmax are in close agreement with the expected values.
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1. Introduction


A K-surface is a surface whose Gauss curvature K is equal to a positive constant. In this paper, we will


consider K-surfaces in R3 with boundary. The study of K-surfaces of this type can be reduced to the study


of certain Dirichlet problems. The existence of a K-surface with a given boundary can be reduced to the


solvability of a nonlinear second-order elliptic partial differential equation of the Monge-Amperé type. These


problems have received considerable attention in recent years (see, e.g., [3], [4], [7], [8], [9], [11], [14], [15],


[16]). In this paper, we are concerned with the computation of numerical solutions of two nonlinear boundary


value problems involving K-surfaces. In the first problem, the boundary of the K-surface is a curve in R3 that


projects to a rectangle in the plane. In the second problem, the boundary of the K-surface consists of two


disjoint closed curves over the sphere.


In Section 2, we formulate the problem of determining a K-surface in R3 that can be expressed as a


graph over a rectangle in the plane. The problem is equivalent to finding a solution u that solves the boundary


value problem: Given a positive constant K and a smooth function Φ, find u satisfying,


(P1)
det(uαβ) = K(1 + |∇u|2)2, on Ω ⊂ R2,


u = Φ, on Γ = ∂Ω.


The existence of a solution of (P1) is a consequence of a more general result by Caffarelli, Nirenberg, and


Spruck [3] and Krylov [14]. For a smooth and strictly convex boundary, the existence of a solution of (P1) can


be reduced to the existence of a convex subsolution u ∈ C∞(Ω̄). Problem (P1) is replaced by its discretization


(see Eqn. (2.5)) which is solved numerically in a way that parallels the analytic techniques used to prove the


solvability of (P1). In particular, a continuity method is used to determine the solutions of (2.5) for a fixed


K. A continuation method is used to determine the range of K for which a solution of (2.5) exists. Equation


(2.5) is derived in Appendix A.


One question of interest is to determine the maximal interval for which a K-surface with fixed boundary


conditions can exist. We illustrate this with a simple example. Let Ω be a disk of radius R in the plane and


let Φ = 0 on Γ. Suppose we wish to find the largest interval (0,Kmax) for which (P1) has a solution. Since


a solution of (P1) is a graph, it follows from simple geometrical considerations that (P1) has a solution for


every K ∈ (0, 1/R2). A solution is a spherical cap of radius r, where K = 1/r2 and r > R. Besides a few


simple geometries (as the previous example), there are no theoretical estimates on Kmax for arbitrary domains.


However, we can compute numerical estimates for Kmax for each boundary value problem considered here.


Numerical results for solutions of (P1) are presented in Section 3.
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In Section 4, we formulate the problem of determining a K-surface that is expressible as a radial graph


over the sphere S2. This problem is equivalent to the following boundary value problem: Given a positive


constant K and a smooth function Φ, find u satisfying,


(P2)
a−1 det(uαβ) = K(1 + |∇u|2)2, on Ω ⊂ S2,


u = Φ, on Γ = ∂Ω.


Guan and Spruck [9] proved a result on the existence of K-surfaces that are expressible as radial graphs. The


main theorem in [9] states: if Ω does not contain a hemisphere and Γ = radial-graph∂Ω(Φ) bounds a locally


strictly convex radial graph M over Ω, then for any K < K(M), Γ bounds a K-surface that is a radial graph.


The discretization of (P2) is discussed in Section 4 and Appendix A.


In Section 5, we present numerical results for K-surfaces expressible as radial graphs. For the examples


presented in Section 5, the boundary Γ consists of two disconnected components Γ = Γ1 ∪ Γ2. We consider a


number of different cases, including Case 5.3 where Γ1 is a circle and Γ2 is a “saw-tooth” curve that lies in


the sphere.


It should be noted that a rectangular domain, does not satisfy the smoothness properties that are assumed


in the analytical work of [3]. However, if one considered (P1) on a domain Ω′ ⊂ Ω, where Ω′ is obtained by


smoothing the corners of Ω, one would expect to find results similar to those presented in Section 3. Although


boundaries for the examples in Case 5.1 - 5.2 are smooth, the sawtooth boundary in Case 5.3 is not smooth.


A result for K > 1 presented in Case 5.3 should be applied to a K-surface that is the radial graph for some


Ω′ ⊂ Ω, where Ω′ is obtained by smoothing the corners of the sawtooth boundary. See Section 6 for a further


discussion of these surfaces.


For each boundary value problem considered, there corresponds a one-parameter family of K-surfaces,


(K, u(K; Φ)), for K ∈ (0,Kmax).


To determine the interval (0,Kmax), we first determine some solution (K1, u(K1; Φ)) where K1 > 0. Theoreti-


cally, once (K1, u(K1; Φ)) is known, K-surfaces also must exist for every K ∈ (0,K1), because u(K1; Φ) can be


used as a subsolution for any K ∈ (0,K1). These K-surfaces are found by using the solution (K1, u(K1; Φ)) as


an initial approximation to the solution u(K0; Φ) where K1 − K0 = ∆K > 0 is sufficiently small. Typically,


∆K was on the order of 10−2. Using a continuation method, we are able to march from K = K1 to K = 0,


and determine the curve (K, u(K; Φ)) for 0 < K ≤ K1. While a K-surface by definition is one with positive
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Gauss curvature, in Case 5.1 we are able to compute solutions of (P2) for K < 0 (see Case 5.1). This was the


only case where we found surfaces with K < 0.


We found that we were able to continue solutions for increasing values of K, enabling us to estimate


Kmax. In particular, the known solution (K1, u(K1; Φ)) could be used to compute the solution (K2, u(K2; Φ))


where 0 < K1 < K2. This worked for most values of K in Problems (P1) and (P2). However, near the maximal


value Kmax, we found it useful to introduce a small positive perturbation ε and use u(K1; Φ) + ε as an initial


guess for the solution (K2, u(K2; Φ)) for solutions of (P1). By adding this slight perturbation, we were able to


approach Kmax more closely. For solutions of (P2), the positive perturbation is added to ρ (see Eqn. (4.1)),


resulting in a decrease in the corresponding u, since u = 1/ρ.


For a number of cases, we are able to compare our numerical solutions to a known solution, a subset of


a sphere of radius 1. For Cases 3.1, 5.1, and 5.3, with K = 1.00, we find that the corresponding residuals are


on the order of 10−10 in absolute value.


When the boundary of the radial graph consists of two parallel circles on a sphere, the K-surface is a


hyperbolic spherical surface of revolution (see [13, p. 153]). Its defining equation is an ordinary differential


equation that can be solved exactly (see Eqn. (B.4)) and the true value of Kmax can be computed. In order


to determine the reliability of the computed value of Kmax, we compared our computed values with the true


values for Case 5.1. In Case 5.1a, we find that the computed value of Kmax is 2.63, while the true value is


2.608. In Case 5.1b, the computed value of Kmax is 1.15, while the true value is 1.147. These results give us


confidence that our computed values of Kmax are accurate to 0.03 and that our procedure for the computation


of (K, u(K; Φ)) with increasing values of K is valid.
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2. K-Surfaces that are graphs


In the following section, partial derivatives of a function will be indicated by a subscript, i.e., u1 =


ux, u2 = uy, u11 = uxx, u12 = uxy, u22 = uyy. A general partial derivative of a function will be denoted by a


Greek subscript. For a surface parametrized as a graph,


S = {(x, y, u(x, y)) | (x, y) ∈ Ω ⊂ R2},


the Gauss curvature is given by


(2.1) K =
det(uαβ)


(1 + |∇u|2)2 ,


where det(uαβ) = u11u22 − u12u21 and |∇u|2 = u21 + u22.


We are led to the following nonlinear boundary value problem for a K-surface. Given a positive constant


K and a smooth function Φ, find the function u(x, y) satisfying


(P1)
det(uαβ) = K(1 + |∇u|2)2, (x, y) ∈ Ω,


u = Φ, (x, y) ∈ Γ = ∂Ω.


The existence of a solution of (P1) is equivalent to the existence of a strictly convex, strict subsolution (see


[3]). We say that u is a strictly convex, strict subsolution of (P1) if


(2.2)
det(uαβ) ≥ K(1 + |∇u|2)2 + δ0, (x, y) ∈ Ω,


u = Φ, (x, y) ∈ Γ = ∂Ω,


for some δ0 > 0. If δ0 = 0 in (2.2), then ū is called a strictly convex subsolution.


If u satisfies (2.2) and the boundary is smooth, it follows from the implicit function theorem that there


exists a function u0 with the properties,


(2.3)
det(uαβ) ≥ det(u0αβ) + ε0, (x, y) ∈ Ω,


u0 = Φ, (x, y) ∈ Γ = ∂Ω,


where 0 < ε0 < δ0 (see [11]).


An existence proof for (P1) requires establishing an apriori bound and the application of the continuity


method. In the continuity method, one considers the following problem: find ut such that


(2.4)
det(utαβ) = tK(1 + |∇ut|2)2 + (1− t) det(u0αβ), (x, y) ∈ Ω,


ut = Φ, (x, y) ∈ Γ = ∂Ω,
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where 0 ≤ t ≤ 1. By applying the implicit function theorem and classical Schauder theory, one can show that


the set of t for which (2.4) is solvable is open. If one can establish an apriori estimate ||ut||2+α ≤ C, then the


set of such t is also closed and therefore the whole interval. The solution of (P1) is obtained by setting t = 1.


The reader is referred to [7] for a more thorough discussion of apriori bounds and the continuity method.


The continuity method suggests a numerical approach to solving (P1). The numerical method by which


we approximate a solution of (P1) parallels the steps we have just outlined. First, we discretize (P1), replacing


partial derivatives by finite difference approximations, Ω by Ωh, and Φ by Φh (see Appendix A). We are lead


to the following discrete analogue of (P1),


(2.5)
det(uhαβ) = K(1 + |∇uh|2)2, (xi, yj) ∈ Ωh,


uh = Φh, (xi, yj) ∈ ∂Ωh,


where i = 2, . . . , nx − 1 and j = 2, . . . , ny − 1 (see Eqn. (A.2)). A solution of Eqn. (2.5) is a set of uhi,j ’s,


where uhi,j denotes the value of uh at the grid point (xi, yj). Ω
h is the set of interior grid points,


Ωh = {(xi, yj) | i = 2, . . . , nx − 1, j = 2, . . . , ny − 1},


∂Ωh = {(xi, yj) | i ∈ {1, nx} and 1 ≤ j ≤ ny or 1 ≤ i ≤ nx and j ∈ {1, ny}}.


We follow the convention that uh denotes a numerical solution whose accuracy depends on the grid size h (see


Appendix A). See Appendix A for a further discussion of the discretization.


The second step in determining a numerical solution is to find uh, an approximate subsolution satisfying


det(uhαβ) ≥ K(1 + |∇uh|2)2 + δ0, (xi, yj) ∈ Ωh,


uh = Φh, (xi, yj) ∈ ∂Ωh,


i = 2, . . . , nx − 1 and j = 2, . . . , ny − 1. Then, we determine u0,h such that


(2.6)
det(uhαβ) ≥ det(u0,hαβ ) + ε0, (xi, yj) ∈ Ωh,


u0,h = Φh, (xi, yj) ∈ ∂Ωh.


In practice, u0,h = uh for our computations. While in theory δ0 is strictly positive, numerically δ0 was allowed


to be negative, but on the order of 10−10 in magnitude. When K was not near the maximum value, we


found that we were able to compute an accurate K-surface even if we started with a nonconvex approximate


subsolution. See Section 6 for a further discussion.
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After u0,h is determined, we solve the system


(2.7)
det(uh,tαβ) = tK(1 + |∇uh,t|2)2 + (1− t) det(u0,hαβ ), (xi, yj) ∈ Ωh,


uh,t = Φh, (xi, yj) ∈ ∂Ωh,


for a sequence t = tn, where 0 = t0 < t1 < t2 < · · · < tn = 1. The desired solution corresponds to tn = 1.


Eqn. (2.7) reduces to Eqn. (2.5) when t = 1. It was found that n = 5 was sufficient for calculating K-surfaces


that were graphs.


We require that the numerical solution uh,t satisfies Eqns. (2.7) at each of the internal grid points in


Ωh. Eqn. (2.7) is a system of polynomial equations of degree 4 in the unknowns uh,ti,j . We used nx = 25 and


ny = 25 for the computations presented in Section 3. At each stage, we solve a system of 529 polynomial


equations.


The actual method used to solve (2.7) was a Levenberg–Marquardt algorithm, a variation of Newton’s


method (see IMSL subroutine DNEQNJ [12, p. 776]). Subroutine DNEQNJ requires the analytic Jacobian of


(2.7). The solution process requires an initial guess for a solution of (2.7) and u0,h was used for this purpose.


It took approximately one minute of CPU time on a Silicon Graphics Indigo workstation with an R4000


processor to compute one solution of Eqn. (2.7) for some t = tk, when (nx, ny) = (25, 25).


In practice, it was not very difficult to determine a subsolution. This was done by extending Φ to the


interior of Ω. The boundary data Φ was chosen so that this could always be easily done. If u0 is a subsolution


for K = K0 > 0, then it is also a subsolution for all K ∈ (0,K0). It follows that we could compute a solution


of (2.5) for K = K0 (call it uhK0
) and then use uhK0


as the initial subsolution for K = K0 −∆K. Continuing in


this fashion, we generate a solution curve (K, uhK) for K ∈ (0,K0).


We found that it was possible to compute solutions for increasing values of K, if the size of ∆K was not


too large. That is, if uK0
was a solution of (2.5) for K = K0, then uhK0


could be used as the initial guess to


solve (2.5) for K = K0+∆K. Continuing in this fashion, we are able to compute an estimate for Kmax. When


the maximal value of K was approached, we found that convergence was aided by adding a small positive


constant to the solution computed from the previous step. Typically, ∆K was on the order of 10−2. If the


solution process converged for some K′ and diverged for K′ +∆K, we defined Kmax = K′.


The initial subsolution uh,0 was chosen to be the natural extention of the boundary data Φ into the


interior of Ω. In order to evaluate the effectiveness of our computational scheme, we computed (K, uhK) for
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K = 1 and steadily decreased K. Reversing the process, we then computed a solution for K = 0.01 and


steadily increased K. We found that the solutions determined by starting at K = 0.01 and increasing K were


essentially identical to the corresponding solutions that were computed by starting at K = 1 and decreasing


K. For the results that are presented in Section 3, we began the continuation at K = 0.01 and then increased


K until we obtained an estimate for the maximum Gauss curvature.


While K-surfaces by definition have positive Gauss curvature, we found that we were able to compute a


solution of Eqn. (2.5) for K = 0 for the boundary data considered in Section 3. This is not surprising, since it


is not difficult to construct a ruled surface that matches the boundary data. We were unable numerically to


continue (K, uK) to negative values of K. In Section 5, we present an example of boundary data where it was


possible to use our solution process to compute solutions with K < 0 (see Case 5.1).
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3. Numerical Results for Graphs


In this section, we will consider (P1) for a number of different boundary conditions and rectangular


domains. The rectangular domain will be denoted by


(3.1) Ra,b = {(x, y) | − a ≤ x ≤ a,−b ≤ y ≤ b}.


Figure 3.1a: Rectangular domain - Ra,b


For Cases 3.1a, 3.2a, 3.3a, a = 0.57, b = 0.57, nx = 25, ny = 25, and (hx, hy) = (.0471, 0.0471). For Cases


3.1b, 3.2b, 3.3b, a = 0.72, b = 0.36, nx = 25, ny = 25, (hx, hy) = (0.0596, 0.0298). Sup-norms of the numerical


solutions will be computed as follows. For a solution uh on Ωh,


||uh||∞ = max
(xi,yj)∈Ωh


|uh(xi, yj)|.


Case 3.1a.


Let a = 0.57 and b = 0.57, Ω = R0.57,0.57 and


(3.2) Φ =
√


1− x2 − y2, (x, y) ∈ Γ = ∂R0.57,0.57.


In this case, we found that a K-surface exists for every K ∈ (0,Kmax) where Kmax = 2.10. To denote explicit


dependence on K and Φ, we write uh(x, y;K,Φ). However, to simplify notation, we will not always write out
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this dependence. In Figure 3.2, we present a graph of the curve (K, û(K)), where û(K) denotes the sup-norm


of a numerical solution for a particular value of K and Φ, i.e.,


(3.3) û(K) = ||uh(K,Φ)||∞, K ∈ (0,Kmax).


The C2-norm of uh(x, y) on Ωh is given by


(3.4) ||uh||2 = ||uh||∞ + ||uh1 ||∞ + ||uh2 ||∞ + ||uh11||∞ + ||uh12||∞ + ||uh22||∞.


The terms uh1 , u
h
2 , u


h
11, u


h
12, u


h
22 are defined in Appendix A. In Figure 3.3, we present a graph of (K, η̂(K)) where


(3.5) η̂(K) = ||uh(K,Φ)||2, K ∈ (0,Kmax).


In Figures 3.4a - 3.4d, we present the solutions uh(x, y;K,Φ) for K = 0.01, 0.70, 1.30, 2.10.


R0.57,0.57, Φ =
√


1− x2 − y2


Figure 3.2: (K, û(K)) Figure 3.3: (K, η̂(K))
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Figure 3.4a - 3.4d: K-surfaces, R0.57,0.57, Φ =
√


1− x2 − y2
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Case 3.1b.


Let a = 0.72 and b = 0.36, Ω = R0.72,0.36, and


Φ =
√


1− x2 − y2, (x, y) ∈ Γ = ∂R0.72,0.36.


Figures 3.5, 3.6, 3.7 show the results of Case 3.1b. We find that a K-surface exists for all K ∈ (0,Kmax)


where Kmax = 2.61. In Figures 3.7a - 3.7d, we present a graph of the solution u(x, y;K,Φ) for K =


0.01, 1.00, 2.00, 2.61.


R0.72,0.36, Φ =
√


1− x2 − y2


Figure 3.5: (K, û(K)) Figure 3.6: (K, η̂(K))
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Figure 3.7a - 3.7d: K-surfaces, R0.72,0.36, Φ =
√


1− x2 − y2
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Case 3.2a.


Let a = 0.57 and b = 0.57, Ω = R0.57,0.57, and


Φ = 1− x2 − y2, (x, y) ∈ Γ = ∂R0.57,0.57.


In this case, we found that a K-surfaces exists for every K ∈ (0,Kmax) where Kmax = 2.24. Figure 3.8 contains


a sketch of (K, û(K)) for K ∈ (0,Kmax) and Figure 3.9 contains a sketch of (K, η̂(K)) for K ∈ (0,Kmax). In


Figures 3.10a - 3.10d, we present a graph of the solution u(x, y;K,Φ) for K = 0.01, 0.80, 1.60, 2.24.


R0.57,0.57, Φ = 1− x2 − y2


Figure 3.8: (K, û(K)) Figure 3.9: (K, η̂(K))
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Figure 3.10a - 3.10d: K-surfaces - R0.57,0.57, Φ = 1− x2 − y2
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Case 3.2b.


Let a = 0.72, b = 0.36, Ω = R0.72,0.36, and


Φ = 1− x2 − y2, (x, y) ∈ Γ = ∂R0.72,0.36.


Figure 3.11 contains a sketch of (K, û(K)) for K ∈ (0,Kmax) and Figure 3.12 contains a sketch of (K, η̂(K))


for K ∈ (0,Kmax). We find that Kmax = 2.73. In Figures 3.13a - 3.13d, we present a graph of the solution


u(x, y;K,Φ) for K = 0.01, 1.00, 1.90, 2.73.


R0.72,0.36, Φ = 1− x2 − y2


Figure 3.11: (K, û(K)) Figure 3.12: (K, η̂(K))
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Figure 3.13a - 3.13d: K-surfaces - R0.72,0.36, Φ = 1− x2 − y2
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Case 3.3a


Let a = 0.57, b = 0.57, Ω = R0.57,0.57, and


Φ = 1− (x− 0.075)2 − (y − 0.15)2, (x, y) ∈ Γ = R0.57,0.57.


In this case, we found that a K-surface exists for every K ∈ (0,Kmax) where Kmax = 1.85. Figure 3.14 contains


a sketch of (K, û(K)) for K ∈ (0,Kmax) and Figure 3.15 contains a sketch of (K, η̂(K)) for K ∈ (0,Kmax). In


Figures 3.16a - 3.16d, we present a graph of the solution u(x, y;K,Φ) for K = 0.01, 0.58, 1.20, 1.85.


R0.57,0.57 Φ = 1− (x− 0.075)2 − (y − 0.15)2


Figure 3.14: (K, û(K)) Figure 3.15: (K, η̂(K))
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Figure 3.16a - 3.16d: K-surfaces, R0.57,0.57, Φ = 1− (x− 0.075)2 − (y − 0.15)2
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Case 3.3b


Let a = 0.72, b = 0.36, Ω = R0.72,0.36, and


Φ = 1− (x− 0.075)2 − (y − 0.15)2, (x, y) ∈ Γ = ∂R0.72,0.36.


In this case, we found that a K-surface exists for every K ∈ (0,Kmax) where Kmax = 2.27. Figure


3.17 contains a sketch of (K, û(K)) for K ∈ (0,Kmax) and Figure 3.18 contains a sketch of (K, η̂(K)) for K ∈


(0,Kmax). In Figures 3.19a - 3.19d, we present a graph of the solution u(x, y;K,Φ) for K = 0.01, 0.75, 1.50, 2.27.


R0.72,0.36, Φ = 1− (x− 0.075)2 − (y − 0.15)2


Figure 3.17: (K, û(K)) Figure 3.18: (K, η̂(K))
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Figure 3.19a - 3.19d: K-surfaces - R0.72,0.36, Φ = 1− (x− 0.075)2 − (y − 0.15)2
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In Table 3.1, we summarize the results of our numerical computations for K-surfaces that are expressible


as graphs. A solution is accepted if the relative error between two successive approximations is less than


5.0× 10−8. The residual of a solution of (2.5) is defined in Appendix A (see Eqn. (A.3)-(A.4)). The residuals


for solutions corresponding to Kmax are presented in Table 3.1.


Case Domain Boundary data Φ (0.0,Kmax) Residual Rh


3.1a R0.57,0.57 Φ =
√


1− x2 − y2 (0.00, 2.10) 0.6719× 10−10


3.1b R0.72,0.36 Φ =
√


1− x2 − y2 (0.00,2.61) 0.9656× 10−11


3.2a R0.57,0.57 Φ = 1− x2 − y2 (0.00, 2.24) 0.7883× 10−10


3.2b R0.72,0.36 Φ = 1− x2 − y2 (0.00, 2.73) 0.53433× 10−8


3.3a R0.57,0.57 Φ = 1− (x− 0.075)2 − (y − 0.15)2 (0.00, 1.85) 0.7883× 10−10


3.3b R0.72,0.36 Φ = 1− (x− 0.075)2 − (y − 0.15)2 (0.00, 2.27) 0.2311× 10−9


Table 3.1: Maximal Intervals for which a K-surface exists
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4. Radial Graphs


A surface S is said to be a radial graph over a sphere S2 if there is a mapping X : Ω→ S ⊂ R3 where


(4.1) X(x) = ρ(x)x, x ∈ Ω ⊂ S2.


Assuming ρ(x) > 0, we can let u(x) = 1/ρ(x) and it follows that the Gauss curvature of S is (see [7])


(4.2) K =
a−1 det(uαβ)


(1 + |∇u|2)2 ,


where


(4.3) uαβ = ∇αβu+ aαβu,


det(uαβ) = u11u22 − u12u21, and ∇α, ∇αβ are covariant derivatives on S2. The metric on S2 is denoted by


aαβ and the inverse of aαβ is denoted by aαβ ; a = det(aαβ), the surface gradient ∇u is calculated with respect


to the metric aαβ , and |∇u|2 = aαβ∇αu∇βu (repeated indices are summed).


Parametrizing the unit sphere in terms of the usual spherical coordinates, we find that a point x ∈ S2


can be represented in the form


(4.4) x = (cosφ sin θ, sinφ sin θ, cos θ), (θ, φ) ∈ Ω,


where


Ω = {(θ, φ) | 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π}.


The metric tensor on S2 relative to (4.4) is given by a11 = 1, a12 = a21 = 0, a22 = sin2 θ. Covariant derivatives


are given by ∇1u = uθ, ∇2u = uφ,


∇11u = uθθ,


∇12u = ∇21u = uθφ − cot θuφ,


∇22u = uφφ + sin θ cos θuθ,


and |∇u|2 = |uθ|2 + (sin θ)−2|uφ|2.


For K-surfaces given by radial graphs, we are led to the following boundary value problem. Given a


positive constant K and a smooth function Φ, find the function u(θ, φ) satisfying


(P2)
a−1 det(uαβ) = K(1 + |∇u|2)2, (θ, φ) ∈ Ω,


u = Φ, (θ, φ) ∈ Γ = ∂Ω.
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The discrete version of (P2) has the same form as Eqn. (2.5). In particular, we have


(4.6)
det(uhαβ) =K(1 + |∇uh|2)2, (θi, φj) ∈ Ωh,


uh =Φh, (θi, φj) ∈ Γh = ∂Ωh.


See Appendix A for the definitions of Ωh, uh, Φh, (θi, φj) and other terms introduced in (4.6). As in Section 3,


a solution of (4.6) is a set of uhi,j ’s, where u
h
i,j represents the value of the approximate solution at the interior


grid point (θi, φj).


The steps in the numerical solution process of (P2) are similar to those used to solve (P1). We first


determine an approximate subsolution and denote it by uh. Following the steps that are outlined in Section


2, we determine a function u0,h that satisfies


(4.7)
det(uhαβ) ≥ det(u0,hαβ ) + ε0, (θi, φj) ∈ Ωh,


u0,h = Φh, (θi, φj) ∈ Γh = ∂Ωh.


Finally, after introducing the continuation parameter t, we are led to


(4.8)
det(uh,tαβ) = tK(1 + |∇uh,t|2)2 + (1− t) det(u0,hαβ ), (θi, φj) ∈ Ωh,


uh,t = Φh, (θi, φj) = Γh ∈ ∂Ωh.


Eqn. (4.8) is solved for a sequence t = tn, where 0 = t0 < t1 < t2 < · · · < tn = 1, where tn = 1 corresponds


to the desired solution. Eqn. (4.8) reduces to (4.7) when t = 1. A summary of our numerical results, which


will be discussed below, is given in Table 6.1.


In the following, we will consider K-surfaces over domains in the sphere. In Cases 5.1 - 5.2, we will


consider domains in the form,


(4.9) Ωϑ1,ϑ2
= {(θ, φ) | ϑ1 ≤ θ ≤ ϑ2, 0 ≤ φ ≤ 2π}.


See Figure 4.1a for a sketch of Ωϑ1,ϑ2
in (θ, φ)-space. In order to define the sawtooth boundary, first we define


the following sets,


(4.10) Bk = {(θ, φ) | ϑ2 − δ ≤ θ ≤ ϑ2,
1
2πk − 1


8π ≤ φ ≤ 1
2πk +


1
8π}. k = 0, 1, 2, 3.


In Case 5.3, we consider radial graphs over sawtooth domains. The sawtooth domain Ωϑ1,ϑ2,δ is formed by


removing the Bk’s from Ωϑ1,ϑ2
, i.e.,


(4.11) Ωϑ1,ϑ2,δ = Ωϑ1,ϑ2
\


3
⋃


k=0


Bk.


For the sawtooth boundary, ϑ2 =
1
2π and δ = 1


4 (ϑ2 − ϑ1). A sketch of Ωϑ1,ϑ2,δ is presented in Figure 4.2.
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Figure 4.1a: Ωϑ1,ϑ2
Figure 4.1b Ωϑ1,ϑ2,δ Sawtooth domain


Remark. We found that for radial graphs, it was possible solve Eqn. (4.6) directly without using the contin-


uation parameter t. This is equivalent to solving Eqn. (4.8) with t = 1.


To solve Eqn. (4.6) (or equivalently, Eqn. (4.8) with t = 1), we used a variation of Newton’s method.


We define the residual Rh
i,j of the approximate solution uh at (θi, φj) by subtracting the right hand side of


(4.6) from the left hand side of (4.6), .i.e.,


(4.12) Rh
i,j = det(uhαβ)−K(1 + |∇uh|2)2, (θi, φj) ∈ Ωh.


The goal is to find a uh such that


(4.13) Rh
i,j = 0, (θi, φj) ∈ Ωh.


Eqn. (4.13) is a system of polynomial equations of degree four. The system is linearized about an approximate


subsolution, uh,0 and the Jacobian matrix is approximated by finite differences. At each Newton step, the


solution of this linear system is approximated using a conjugate gradient method for the least squares problem


(see, [10, p. 295]). The iterative conjugate gradient method is very fast since our matrix is sparse. We use


typically 200 iterations of the conjugate gradient method to approximate the solution to the linear system.


Newton’s method typically converges in less than 15 iterations. Our convergence criteria is that the absolute


value of the residual be less than 10−10.
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5. Numerical Results


In this section, Ω is a subset of the sphere with boundary Γ = ∂Ω = Γ1 ∪ Γ2, where Γ1 ∩ Γ2 = ∅. Γ1 is a


circle parallel to the xy-plane. Γ2 is either a circle parallel to the xy-plane (see Case 5.1-2) or a “sawtooth”


curve (see Case 5.3).


Case 5.1


In Case 5.1, we consider domains in the form Ωϑ1,ϑ2
, with (ϑ1, ϑ2) = ( 13π,


1
2π) and (ϑ1, ϑ2) = ( 18π,


1
2π)


where
Φ = 1, (θ, φ) ∈ Γ = Γ1 ∪ Γ2,


Γi = {(θ, φ) | θ = ϑi, 0 ≤ φ ≤ 2π}, i = 1, 2.


In Figure 5.1a, we present a graph of the curve (K, ρ̂(K)) where ρ̂(K) is the sup-norm of ρh = 1/uh, uh is a


solution of (4.6), and ρ is defined in (4.1). In particular,


(5.1) ρ̂(K) = max
(θi,φj)∈Ωh


ϑ1,ϑ2


|ρh(θi, φj ;K,Φ)| = max
(θi,φj)∈Ωh


ϑ1,ϑ2


1


|uh(θi, φj ;K,Φ)|
.


In Figure 5.1b, we present a graph of (K, η̂(K)) where


(5.2) η̂(K) = ||uh(K,Φ)||2, K ∈ (0,Kmax),


and uh is a solution of Eqn. (4.6). Figures 5.1 - 5.3 correspond to Case 5.1a where (ϑ1, ϑ2) = ( 13π,
1
2π).


Figures 5.4 - 5.6 correspond to Case 5.1b where (ϑ1, ϑ2) = ( 18π,
1
2π).
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Figure 5.1: (K, ρ̂(K)) - Ω 1
3π,


1
2π


Figure 5.2: (K, η̂(K)) - Ω 1
3π,


1
2π


Figure 5.3a: Radial graphs - Ω 1
3π,


1
2π


, K = −2.99
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Figure 5.3b: Radial graphs - Ω 1
3π,


1
2π


, Kmax = 2.63
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Figure 5.4: (K, ρ̂(K)) - Ω 1
8π,


1
2π


Figure 5.5: (K, η̂(K)) - Ω 1
8π,


1
2π


Figure 5.6a: Radial graph - Ω 1
8π,


1
2π


, K = −1.27
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Figure 5.6b: Radial graph - Ω 1
8π,


1
2π


, Kmax = 1.15







31


Case 5.2


In Case 5.2, the boundary of the K-surface consists of two disjoint components formed by taking two


small circles and mapping them into curves in R3. In order to define the boundary in this case, let


Φ(θ, φ) = r(φ)x(θ, φ), (θ, φ) ∈ Γ = Γ1 ∪ Γ2,


where
Γ1 = {(θ, φ) | θ = ϑ1, 0 ≤ φ ≤ 2π},


Γ2 = {(θ, φ) | ϑ2 = π − ϑ1, 0 ≤ φ ≤ 2π},


r(φ) =


√


a2 cos2 φ+ b2 sin2 φ,


and a = 1.0, and b = 1.3. Note, the image of Γ under Φ lies inside Vϑ1
∪Vπ−ϑ1


, where Vϑ is a cone with vertex


angle ϑ, i.e., in spherical coordinates Vϑ = {(r, θ, φ) | 0 < r <∞, θ = ϑ, 0 ≤ φ ≤ 2π}.


Case 5.2a corresponds to (ϑ1, ϑ2) = ( 512π,
7
12π) and the results are presented in Figures 5.7 - 5.9. In


Figures 5.10 - 5.12, we present the results of Case 5.2b, (ϑ1, ϑ2) = ( 13π,
2
3π). In Figures 5.13 - 5.15, we present


the results of Case 5.2c, (ϑ1, ϑ2) = ( 16π,
5
6π).


Figure 5.7: (K, ρ̂(K)) - Ω 5
12π,


7
12π


Figure 5.8: (K, η̂(K)) - Ω 5
12π,


7
12π
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Figure 5.9a Radial graph - Ω 5
12π,


7
12π


, K = 0.00
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Figure 5.9b Radial graph - Ω 5
12π,


7
12π


, Kmax = 1.48
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Figure 5.10: (K, ρ̂(K)) - Ω 1
3π,


2
3π


Figure 5.11: (K, η̂(K)) - Ω 1
3π,


2
3π


Figure 5.12a: Radial graph - Ω 1
3π,


2
3π


, K = 0.00
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Figure 5.12b: Radial graph - Ω 1
3π,


2
3π


, Kmax = 0.62
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Figure 5.13: (K, ρ̂(K)) - Ω 1
6π,


5
6π


Figure 5.14: (K, η̂(K)) - Ω 1
6π,


5
6π


Figure 5.15a: Radial graph - Ω 1
6π,


5
6π


, K = 0.00
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Figure 5.15b: Radial graph - Ω 1
6π,


5
6π


, Kmax = 0.14
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Case 5.3


The boundary Γ for Case 5.3 consists of two disconnected components, Γ1 and Γ2. Γ1 is a small circle


in the unit sphere that is parallel to the xy-plane, Γ2 is the “sawtooth” component shown in Figure 4.2, and


Φ = 1, (θ, φ) ∈ Γ = ∂Ωϑ1,ϑ2,δ.


In Case 5.3a, (ϑ1, ϑ2) = ( 18π,
1
2π), δ = 1


4 (
1
2π − 1


8π) = 3
32π, and Ω = Ωϑ1,ϑ2,


3
32
π. The numerical results are


presented in Figures 5.16 - 5.18. The appropriate modifications need to made in the definitions of ρ̂ and û


to take into account the sawtooth domain. In Case 5.3b, (ϑ1, ϑ2) = ( 13π,
1
2π), δ = 1


4 (
1
2π − 1


3π) = 1
24π, and


Ω = Ωϑ1,ϑ2,
1
24
π. The numerical results for Case 5.3b are presented in Figures 5.19 - 5.21.


Figure 5.16: (K, ρ̂(K)) - Ωϑ1,ϑ2,
3
32
π Figure 5.17: (K, η̂(K)) - Ωϑ1,ϑ2,


3
32
π
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Figure 5.18a: Radial graph - Ωϑ1,ϑ2,
3
32
π, K = 0.00
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Figure 5.18b: Radial graph - Ωϑ1,ϑ2,
3
32
π, Kmax = 1.23
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Figure 5.19: (K, ρ̂(K)) - Ωϑ1,ϑ2,
1
24
π Figure 5.20: (K, η̂(K)) - Ωϑ1,ϑ2,


1
24
π


Figure 5.21a: Radial graph - Ωϑ1,ϑ2,
1
24
π, K = 0.00
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Figure 5.21b: Radial graph - Ωϑ1,ϑ2,
1
24
π, Kmax = 2.90
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In Case 5.1, we choose nθ = 30 and nφ = 30. In Case 5.2, we choose nθ = 24 and nφ = 48. The grid


size (hθ, hφ) for each case is presented in Table 5.1. All residuals Rh are less than 10−10 in absolute value. A


summary of the results of the radial graph K-surface computations is presented in Table 5.1.


Case Boundary Data (hθ, hφ) (0.0,Kmax)


5.1a Ω 1
3π,


1
2π


(0.017, 0.210) (0.00, 2.63)


5.1b Ω 1
8π,


1
2π


(0.039, 0.210) (0.00, 1.15)


5.2a Ω 5
12π,


7
12π


(0.017, 0.210) (0.00, 1.48)


5.2b Ω 1
3π,


2
3π


(0.035, 0.210) (0.00, 0.62)


5.2c Ω 1
6π,


5
6π


(0.070, 0.210) (0.00, 0.14)


5.3a Ω 1
8π,


1
2π,


3
32π


(0.049, 0.131) (0.00, 1.23)∗


5.3b Ω 1
3π,


1
2π,


1
24π


(0.022, 0.131) (0.00, 2.90)∗


Table 5.1: Maximal Intervals for which a radial graph K-surface exists


* The values of Kmax for these cases applicable to sawtooth-like domains Ω′ ⊂ Ω where Ω′ is obtained by


smoothing the corners of Ω. We found that by using a finer grid (hθ, hφ) = (0.011, 0.0655), the maximum


Gauss curvature in Case 5.3b was reduced from 2.9 to 1.9. We conjecture that in the limit as (hθ, hφ)→ (0, 0),


Kmax → 1. See the discussion in section 6.


Remark. Although the analytical theory is concerned only with surfaces of positive Gauss curvature, we were


able to compute solutions of negative Gauss curvature in Case 5.1a, where we found a minimum value of the


Gauss curvature to be −2.99. In Case 5.1b, we found a minimum value of the Gauss curvature to be −1.27.


Our algorithm seemed to work well for these cases. For Cases 5.2 and 5.3, we tried to compute surfaces of


negative curvature, but the algorithm failed to converge in these cases.
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6. Concluding Remarks


The continuity method is a fundamental tool that is used to prove the solvability of a certain class of


Dirichlet problems (see, e.g., [3] and [9]). The continuity method can be adapted to a scheme that can be used


to compute K-surfaces. The solvability of Problems (P1) and (P2) essentially reduce to the existence of a


subsolution. Computationally, if we can find an approximate subsolution, we can compute the corresponding


K-surface. This suggests the possibility of establishing a rigorous convergence proof for numerical boundary


value problems for K-surfaces.


When computing K-surfaces for values of K that were not close to Kmax, our algorithm was robust. The


initial subsolution did not need to be “close” to the K-surface in order for the numerical scheme to converge.


However, the algorithm was sensitive to the initial guess when K was near Kmax. This was not a serious


problem, because we were able to compute K-surfaces for increasing values of K without any difficulty as long


as the step size for ∆K was not too large. When K = 1 and the K-surface is a subset of the unit sphere (see


Case 3.1, Case 5.1, Case 5.3), we find that the residuals are on the order of 10−10 in absolute value.


Given a solution (K1, u(K1)), the natural way to compute a family of K-surfaces is to use u(K1) as


the subsolution for the continuity method for every 0 < K < K1. However, we also found that we were


able to compute a sequence of solutions for increasing values of K. In particular, we were able to compute


(Kk+1, uh(Kk+1)) for Kk+1 > Kk by using uh(Kk) as the initial guess for the Newton iterations for Kk+1 =


Kk +∆K. This could be done if the step size ∆K = Kk+1 − Kk was not too large. For our applications, we


chose ∆K = 0.01.


We are able to determine the accuracy of our computed values of Kmax in Case 5.1, because the cor-


responding boundary value problem can be solved exactly and the true value of Kmax can be computed. In


Case 5.1, the problem of determining a K-surface reduces to solving an ordinary differential equation (see,


Eqn. (B.4)). Kmax can be computed by solving a system of scalar equations (see Eqn. (B.8) − (B.11)).


The derivation of Kmax for Case 5.1 is outlined in Appendix B and the results are summarized in Table 6.1,


indicating that the computed values of Kmax are within 0.03 of the true solution.
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Case Boundary data Computed Kmax True Kmax


5.1a Ω 1
3π,


1
2π


2.63 2.608


5.1b Ω 1
8π,


1
2π


1.15 1.147


Table 6.1: Computed Kmax vs. true Kmax


As was pointed out earlier, convergence of our algorithm hinged on the existence of a numerical subsolu-


tion. We carried out a number of numerical experiments to investigate what happens when uh,0 is not convex.


Under certain conditions in Problem (P1), we were able to compute a K-surface starting with a nonconvex


uh,0. For these cases K was not near Kmax. We formed a nonconvex uh,0(xi, yj) by adding a perturbation to


the approximate subsolution uh, i.e.,


uh,0(xi, yj) = uhi,j +
∑


i,j∈I


ci,j ,


where I is a collection of indices for a number of internal grid points and |ci,j | ≤ 0.025. Under these circum-


stances, the numerical continuity method would smooth out the perturbations, so that the resulting solution


uh was convex. We emphasize that the conditions K << Kmax and |ci,j | << 1 were important. If these


conditions were violated, spurious solution could appear.


When K is large, we observed that the algorithm at times could converge to a spurious solution. That


is, the residual for the solution is small, yet the surface is clearly not convex. In Figure 6.1, we present a


K-surface that was computed using Case 5.1 boundary conditions and K = 1.03. The residual for this solution


is 10−10. However, the close-up of the K-surface presented in Figure 6.2 shows a dimple near the boundary Γ1,


illustrating that the solution is not convex. This happened when the initial guess for the Newton iteration was


too far away from the solution. Initially, the residual increased, but did not diverge. Then we observed the


residuals become smaller than our prescribed residual. Thus, even though the residuals were small, dimples


such as the one shown in Figure 6.2 can develop in the solution.
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Remark. The dimpling effect we have just described need not be localized near the boundary. We have observed


also dimpling of numerical solutions over the interior of Ωh. We should point out that the appearance of a


dimple in a solution was atypical. If a solution exists for a certain value of K, then the algorithm would


converge rapidly to that solution and the K-surface was convex. Only with a poor choice of an approximate


subsolution were we able to produce these spurious solutions.


Figure 6.1: A spurious solution Figure 6.2: A close-up of the dimple in Figure 6.1


In an effort to accelerate the method by which we numerically tracked solution curves, we considered


employing a pseudo-arc-length continuation method (PCM) (see [1] and [2]). In this method, the nonlinear


equations are supplemented by a pseudo-arc-length condition, and the solution curve is tracked by first taking


an Euler step in the direction of the tangent, and then solving the supplemented nonlinear system. For a


variety of problems, it offers the advantages of being able to track solution curves around turning points and


allows one to take larger step sizes. For the applications that we considered here, the capability of tracking


curves around turning points is not necessary, because if a K-surface exists for K = K′, then it is the unique


K-surface for that value of K′. This means there are no turning points. However, when the PCM is applied


to an equation in the form (2.7) and an Euler step is taken, there is no assurance that the resulting guess will


yield a good subsolution, unless the step size is small. If the step size is small, then there is no advantage to
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introducing the pseudo-arc-length parameter. If one compares the solution curve (K, η̂(K)) such as in Figure


3.2 with one generated by using a pseudo-arc-length continuation method (with a large step size), one notices


that the solution curve generated by pseudo-arc-length continuation gradually drifts away from the curve


(K, η̂(K)) and in fact turns around! These are not true solutions even though they have small residuals. We


should point out that if the step size is sufficiently small, the turn-around exhibited by the PCM does not


occur.


As K → Kmax for a family of solutions K-surfaces (K, uK), the corresponding K-surfaces are characterized


by the behavior of their tangent planes near the boundary Γ. For a K-surface parametrized as a graph over a


rectangle, the tangent planes become nearly vertical (see, e.g., Figures 3.4d, 3.7d, 3.10d, 3.13d, 3.16d, 3.19d).


This behavior cannot be attributed to the sharp corners in the rectangle, since this is observed along the


smooth components of the boundary. A very similar behavior is observed for radial graphs. In Figures 5.3b


and 5.6b, one can see that tangent planes near the boundary Γ1 become nearly parallel to the xy-plane. In


fact, this conditions is used in Appendix B to compute the true value of Kmax (see Eqn. (B.11)). For the


boundaries used in Case 5.2 (see Figures 5.9b and 5.12b), we see that there are four areas near the boundary


Γ where the tangent plane becomes nearly parallel to the xy-plane (two of the regions on Γ2 cannot be seen).


Because the mesh size in Figure 5.15b is larger than those in Figures 5.9b and 5.12b, one would expect to see


small regions with horizontal tangent planes on a finer grid. This suggests the possiblity of establishing an


estimate of Kmax based on the boundary data (Γ,Φ).


Certain boundary conditions in Sections 3 and 5 did not satsify the smoothness properties that are


assumed in the analytical work. However, this is not a serious problem. In particular, if one considered (P1)


on a domain Ω′ ⊂ Ω, where Ω′ is obtained by smoothing the corners of Ω, one would expect to find results


similar to those presented in Section 3. We feel that the results of Section 3 are reasonable estimates of Kmax


for K-surfaces over such domains. The numerical results for Case 5.1 and Case 5.2 can be applied directly


to problem (P2) because the boundaries are smooth. The case of the sawtooth boundary is a more delicate


one, because of the corner points. We should interpret the results for Kmax as applicable to problem (P2) for


domains Ω′ ⊂ Ω that are obtained by smoothing the corners of Ω.
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We graphed all the K-surfaces in Sections 3 and 5 over Ωh ∪ ∂Ωh. In doing so, the K-surfaces appear to


have a singular behavior near the boundary. In Figure 6.3a, we present a K-surface with boundary conditions


similar to those used in Case 5.3b (a finer grid was used also). The solution uh on Ωh with boundary data


Φ = 1 on Γ = ∂Ωh are plotted. One notices that the K-surface appears to be nonconvex in a band adjacent to


the boundary Γ2 (See Figure 6.3a). This becomes more apparent when we focus on the area near a corner of


the sawtooth boundary (see Figure 6.3b). On closer examination one observes that if we restrict our attention


to the surface defined by uh on Ωh, then the corresponding K-surface appears convex (See Figure 6.4). This is


not entirely unexpected given that the analytical problem defines K on Ω, and the approximate problem (4.6)


defines K on Ωh. On the other hand, the width of the band can be made smaller by refining the grid size.


In the limit, one would expect to obtain a more accurate estimate of Kmax. However, based on the


computations in Case 5.3, we cannot exclude the possibility that Kmax = 1 for the actual nonsmooth sawtooth


boundary.


However, refining the mesh size reduces the corresponding computed value of Kmax. In particular, we


found that be reducing (hθ, hφ) from () to (0.011, 0.0655), the maximum Gauss curvature changed from 2.9


to 1.9. We conjecture that as (hθ, hφ) approaches (0, 0), Kmax approaches 1.
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Figures 6.3a: Radial graph over Ωh ∪ ∂Ωh


Figures 6.3b: Magnification of corner region of Figure 6.3a.
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Figures 6.4: Radial graph over Ωh
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Appendix A. Discrete Approximations


In this section, we present the discrete versions of (P1) and (P2), respectively. The discrete problems


are obtained by replacing partial derivatives by their finite difference approximations and discretizing the


domains.


First, we consider the approximation for a K-surface that is a graph over a rectangle Ω = Ra,b. Let


xi = −a+(i−1)hx for i = 1, . . . , nx and let yj = −b+(j−1)hy for j = 1, . . . , ny. The grid size is characterized


by h = (hx, hy) where the size of a typical rectangle in the grid is hx× hy and (hx, hy) = (2a/nx, 2b/ny). The


domain Ωh is given by


Ωh = {(xi, yj) | i = 2, . . . , nx − 1, j = 2, . . . , ny − 1} .


The boundary ∂Ωh is the set


∂Ωh = {(xi, yj) | i ∈ {1, nx} and 1 ≤ j ≤ ny or 1 ≤ i ≤ nx and j ∈ {1, ny}} .


If u(xi, yj) denotes the value of the true solution at (xi, yj), the value of its approximation is given by


uhi,j or uh(xi, yj), i.e.,


u(xi, yi) =̇ uhi,j(xi, yj) = uhi,j


The finite difference approximations are as follows:


(A.1a)


uhx(xi, yj) =
uhi+1,j − uhi−1,j


2hx
,


uhy(xi, yj) =
uhi,j+1 − uhi,j−1


2hy
,


uhxx(xi, yj) =
uhi+1,j − 2uhi,j + uhi−1,j


h2x
,


uhyy(xi, yj) =
uhi,j+1 − 2uhi,j + uhi,j−1


h2y
,


uhxy(xi, yj) = uhyx(xi, yj) =
uhi+1,j − uhi−1,j+1 − uhi+1,j−1 + uhi−1,j−1


4hxhy
.


It follows that


(A.1b) det(uhαβ) = uhxx(xi, yj)u
h
yy(xi, yj)− (uhxy(xi, yj))


2,


and


(A.1c) |∇uhi,j(xi, yj)|2 = |uhx(xi, yj)|2 + |uhy(xi, yj)|2.
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The finite difference approximation to (P1) is given by


(A.2) uhxx(xi, yj)u
h
yy(xi, yj)− (uhxy(xi, yj))


2 = K(1 + |uhx(xi, yj)|2 + |uhy(xi, yj)|2)2,


for i = 2, . . . , nx − 1, j = 2, . . . , ny − 1. Eqn. (A.2) is equivalent to Eqn. (2.5). Equations (A.2) are a system


of (nx − 2) × (ny − 2) fourth-order polynomial equations in the unknowns uhi,j . For the cases discussed in


Sections 2-3, we chose nx = 25 and ny = 25. The total number of equations is 529.


In order to describe how well the numerical solution satisfies the discrete equations, we define the residual


Rh
i,j of a solution uh at (xi, yj) as follows,


(A.3) Rh
i,j = uhxx(xi, yj)u


h
yy(xi, yj)− (uhxy(xi, yj))


2 −K(1 + |uhx(xi, yj)|2 + |uhy(xi, yj)|2)2,


where 2 ≤ i ≤ nx − 1, 2 ≤ j ≤ ny − 1. Note, Rh
i,j depends on the value of the numerical solution at the 8 grid


points that surround (xi, yj) through the relations (A.1). The residual of the solution is denoted by


(A.4) Rh = max
(i,j)∈J


|Ri,j |.


where J = {(i, j) | 2 ≤ i ≤ nx − 1, 2 ≤ j ≤ ny − 1}.


For surfaces that are expressible as radial graphs, we can derive a similar finite difference approximation.


We begin by describing the regions considered in Cases 5.1 - 5.2. Let h = (hθ, hφ). Let θi = ϑ1+ (i− 1)hθ for


i = 1, 2, . . . , nθ where hθ = (ϑ2 − ϑ1)/(nθ − 1). Let φj = (j − 1)hφ for j = 1, 2, . . . , nφ − 1 where hφ = 2π/nφ.


For a domain that is a subset of the sphere, Ωh consists of all (θi, φj),


Ωh = {(θi, φj) | i = 2, . . . , nθ − 1, j = 1, . . . , nφ − 1}.


The boundary ∂Ωh is the set


∂Ωh = {(θi, φj) | i ∈ {1, nθ} and 1 ≤ j ≤ nφ − 1} .


The approximate solution at the points (θi, φj) is denoted by uhi,j , i.e.,


u(θi, φi) =̇ uhi,j(θi, φj) = uhi,j .
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The finite difference approximations of the derivatives are given by


(A.5a)


uhθ (θi, φj) =
uhi+1,j − uhi−1,j


2hθ
,


uhφ(θi, φj) =
uhi,j+1 − uhi,j−1


2hφ
,


∇11uh(θi, φj) =
uhi+1,j − 2uhi,j + uhi−1,j


h2θ
,


∇12uh(θi, φj) = ∇21uh(θi, φj) =
uhi+1,j − uhi−1,j+1 − uhi+1,j−1 + uhi−1,j−1


4hθhφ
− cot θiu


h
φ(θi, φj),


∇22uh(θi, φj) =
uhi,j+1 − 2uhi,j + uhi,j−1


h2φ
+ sin θi cos θiu


h
θ (θi, φj),


respectively. The approximations to the quantities u11, u12, u21, u22 are given by


(A.5b)


uh11(θi, φj) = ∇11uh(θi, φj) + uhi,j ,


uh12(θi, φj) = uh21(θi, φj) = ∇12uh(θi, φj),


uh22(θi, φj) = ∇22uh(θi, φj) + sin2θiu
h
i,j ,


respectively. The above definitions hold for all i = 2, . . . , nθ − 1 and j = 1, . . . , nφ − 1 with the obvious


modifications to ensure periodicity in φ.


The finite difference approximation to (P2) for Cases 5.1 and 5.2 is given by


(A.6) (sin θi)
−2(uh11(θi, φj)u


h
22(θi, φj)− (uh12(θi, φj))


2) = K(1 + |uhθ (θi, φj)|2 + (sin θi)
−2|uhφ(θi, φj)|2)2,


where i = 2, . . . , nθ − 1 and j = 1, . . . , nφ − 1. Equations (A.6) and (4.6) are equivalent.


The sawtooth domain and its boundary (see Case 5.3) is cumbersome to write out explicitly. To form


Ωhϑ1,ϑ2,δ
, the domain points (θi, φj) that fall inside any of the Bk’s are removed according to the definitions in


Eqn. (4.11) (see Figure 4.1b).







54


Appendix B. Hyperbolic spherical surfaces of revolution


Surfaces of revolution with constant Gauss curvature can be determined by solving an ordinary differential


equation. Depending on the values of certain parameters, these surfaces are called hyperbolic spherical, elliptic


spherical, or pseudo-spherical surfaces of revolution (see [13]). The examples in Case 5.1 turn out to be


hyperbolic spherical surfaces of revolution and so we can compute the true value of Kmax in these cases.


For a surface of revolution,


(B.1) X(u, v) = (φ(v) cosu, φ(v) sinu, ψ(v)), 0 < u < 2π, v1 < v < v2,


it follows that the Gauss curvature is given by (see [6])


(B.2) K = −φ
′′(v)


φ(v)
,


where v is arc length, i.e.,


(B.3) |φ′(v)|2 + |ψ′(v)|2 = 1.


When K is a constant, we see that Eqn. (B.2) yields the ordinary differential equation,


(B.4) φ′′ +Kφ = 0,


whose general solution is


(B.5) φ(v) = A cos
√
Kv +B sin


√
Kv.


From Eqn. (B.3), it follows that


(B.6) ψ(v)− ψ(v1) =
∫ v


v1


√


1− |φ′(v)|2dv.


For the examples considered in Case 5.1, the radius of the circle Γ2 is 1. Let r
∗ denote the radius of the circle


Γ1 and let z∗ denote the distance from Γ1 to the xy-plane. It follows that


(B.7)
r∗ =cos( 12π − ϑ1),


z∗ =sin( 12π − ϑ1).


The parameters A and B introduced in Eqn. (B.5) are determined by the conditions (B.7). In particular,


v1 = 0 and φ(0) = 1 implies that B = 1. At v = v2, we have


(B.8) r∗ = A sin
√
Kv2 + cos


√
Kv2.
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Solving for A, we find


(B.9) A =
r∗ − cos


√
Kv2


sin
√
Kv2


.


Finally, ψ(v1) = 0 and ψ(v2) = z∗, so that


(B.10) z∗ =


∫ v2


0


√


1−K(A cos
√
Kv − sin


√
Kv)2dv.


Eqn. (B.10) defines a one-parameter family of K-surfaces. For every K ∈ (0,Kmax), one can solve Eqn. (B.9)


-(B.10) and determine the arc length of the corresponding generating curve, i.e., v2 = v2(K). To determine


the maximum allowable Gauss curvature Kmax, we observe that if ψ′(v2) < 0, the corresponding surface of


revolution would have a band of negative curvature. Thus, Kmax occurs when ψ′(v2) = 0. It follows from


(B.5)− (B.6) and (B.8)− (B.9) that we need to find v2 such that


(B.11) 1−K(A cos
√
Kv2 − sin


√
Kv2)2 = 0.


Solving Equations (B.9)−(B.11), uniquely determines K = Kmax and the corresponding arc length v2 = vmax.


For Case 5.1a, we find that the computed value of Kmax is 2.63, compared to the true value of 2.608. For Case


5.1b, we find that the computed value of Kmax is 1.15, compared to the true value of 1.147. These results


are summarized in Table 6.1. The case of a pseudo-spherical surface of revolution can be handled in a similar


manner, with the condition ψ′(v2) replaced by ψ′(0) = 0.
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equations, Comm. Pure Appl. Math 37 (1984), 369–402.


[4] L. Caffarelli, J.J. Kohn, L. Nirenberg, & J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations II:
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