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1. Introduction

In recent years mathematical physicists have been studying discrete (in space and time) analogs

of integrable non-linear field models motivated by questions arising in statistical mechanics (spin

models) and quantum field theory [10]. Perhaps it is necessary to explain what we mean by

integrable. We call a non-linear field equation integrable if it arises as the flatness (zero-curvature)

condition of a connection with values in a loop Lie algebra. A standard example for this is the

non-linear σ-model, i.e., the harmonic map equation for maps of a surface into a symmetric space

[14, 19, 18, 7].

Many problems in classical surface geometry (minimal surfaces, constant curvature surfaces, Will-

more surfaces) give rise to well known field equations: the Liouville euqation, sine- and sinh-Gordon

equations and more generally the Toda field equations [6, 4], all of which are harmonic map equa-

tions. The essential requirement for a discrete version of such equations is that the discretization is

also integrable. By this we clearly mean that the discretized equation is the zero curvature equation

of a loop Lie group valued connection over discretized space-time (the lattice Z2 in the simplest

case) where the dependence on the loop parameter (“spectral parameter”) should be the same as in

the smooth case. Whether, given a certain integrable field equation, such a discretization exists and

whether it is unique is by no means clear. Thus, rather than deriving integrable discrete analogs

from first principles, they are found by ad hoc considerations.

In this note we focus on the sine- and sinh-Gordon equations which arise as the integrability

conditions for constant negative Gauss curvature (K-surfaces) and constant mean curvature (CMC)

surfaces. The unit normal map of either surface is a harmonic map into the 2-sphere S2 and

thus gives rise to an extended frame (c.f. section 2) into an appropriate loop group of SU(2).

This exhibits the sine- and sinh-Gordon equations naturally as integrable equations in the above

mentioned sense. The past few years have seen substantial progress in understanding such equations

from a differential geometric viewpoint: the methods suggested by mathematical physicists to

construct solutions, the R-matrix and A-K-S scheme, loop group factorizations and dressing action,

have successfully been applied to classify and parametrize a large class of surfaces [6]. In many cases
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the dressing orbit though a trivial or vacuum solution accounts for all solutions one is interested

in (e.g. doubly periodic solutions) [9, 5]. It is precisely this construction which we will use to find

discrete versions of the sine- and sinh-Gordon equations. Since the vacuum solution, a 2-parameter

subgroup, can be easily discretized (c.f. sections 3 and 4) we obtain via dressing discrete extended

frames, i.e., maps from the lattice Z2 into a suitable loop group of SU(2), for discrete analogs of K-

and CMC-surfaces. The compatibility equations for the existence of such a map, i.e., the products

of the values of the extended frame evaluated along any given quadrilateral equals the identity, give

integrable discretized versions of the sine- and sinh-Gordon equations. Geometrically the extended

frame describes the unit normal map of the constant curvature surface so that we obtain natural

definitions of discrete harmonic maps from the lattice Z2 into the 2-sphere for both, Lorentzian and

Euclidean discrete space-time. This is carried out in some detail for K-surfaces (c.f. section 3) and

we make contact to the work of Bobenko-Pinkall [2]. The case of CMC-surfaces is more involved

and the reader is referred to [2] for an exhaustive treatment, including explicit parametrizations

of solutions in terms of theta functions. The investigation of discrete analogs of minimal surfaces

in R3 (Liouville equation), Willmore surfaces (Toda field equations for SO(5)) and more generally

harmonic surfaces in a compact symmetric space will be forthcoming.

Finally, from a practical point of view the existence of exact discrete analogs of certain surface

classes also is advantageous when performing computer experiments: to run an alogrithm based

on an exact discrete theory avoids most of the problems arising when smooth theories are put into

algorithms.

The authors appreciated the hospitality of the SFB 288 at Technische Universität Berlin where

some of this research was initiated. In particular, we would like to thank Sasha Bobenko and

Ulrich Pinkall for discussing their yet unpublished work [2] with us.

2. Loop Group Factorization and Dressing Action

In this section we recall the basic ideas how to apply loop group factorizations and the corresponding

dressing actions to obtain solutions to soliton equations. In particular, this approach applies to the

sine-Gordon equation and sinh-Gordon equation which describe constant negative Gauss curvature

surfaces (K-surfaces) and constant mean curvature surfaces (CMC-surfaces). Using these methods

we will derive integrable discrete versions of the sine- and sinh-Gordon equations, which will give

rise to discrete K-surfaces and discrete CMC-surfaces.

Let f : D ⊂ R2 → R3 be a K-surface or CMC-surface, where D is a simply connected region

containing the origin. Then its Gauss map N : D → S2 is harmonic if D is given the appropriate

metric: for CMC-surfaces this is the induced metric of f , and for K-surfaces it is the metric given

by the 2nd fundamental form of f (which is a Lorentz metric since K < 0, see [13]).

For a K = −1 surface f : D → R3, let ω : D → (0, π) be the angle between the asymptotic curves
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on the surface. Then there exists a unique frame

F : D → SU(2)

of the Gauss map N : D → S2 (i.e., N = π ◦ F , where π : SU(2)→ S2 = SU(2)/S1 is the natural

projection) satisfying

∂xF = F · i
2

(−∂xω 1
1 ∂xω

)
= F · (∂xΩ+B) ,

∂yF = F · i
2

(
0 −e−iω
−eiω 0

)
= F · e−Ω(−B)eΩ ,

F (0) = I ,

(2.1)

where x, y are coordinates on the surface consisting of arc-length parameters of the asymptotic

curves, Ω = i
2

(
−ω 0
0 ω

)
and B = i

2

(
0 1
1 0

)
. The integrability condition

∂y(∂xΩ+B) + ∂x(e
−ΩBeΩ) = [∂xΩ+B,−e−ΩBeΩ](2.2)

for the existence of F (i.e., the Gauss equation for the surface) is the sine-Gordon equation

∂x∂yω = sinω .(2.3)

It is easy to check that (2.2) is invariant if we insert a spectral parameter λ ∈ R∗ into (2.1) in the

following way:

∂xΦ = Φ · (∂xΩ+Bλ) ,

∂yΦ = Φ · e−Ω(−B)eΩλ−1 ,

Φ(0,−) = I .

(2.4)

Thus, Φ: D × R∗ → SU(2) is a family of frames Fλ = Φ(−, λ) : D → SU(2) for the harmonic

maps Nλ = π ◦ Fλ : D → S2. In the sequel we shall call such Φ an extended frame (of N). The

corresponding family of K-surfaces is given by Sym’s formula [16, 13]

fλ =

(
d

dλ
Φ

)
Φ−1 : D → su(2) = R3 .(2.5)

Constructing solutions to the sine-Gordon equation is equivalent to finding extended frames Φ

solving (2.4) for some Ω = i
2

(
ω 0
0 −ω

)
with ω : D → [0, π). Notice that the sine-Gordon equation has

the vacuum solution ω ≡ 0 with corresponding extended frame

ΦB = exp
(
(xλ− yλ−1)B

)
.(2.6)

To obtain other solutions we apply the dressing action, for which we introduce the following loop

spaces:

LSU(2) =
{
g : R∗ → SU(2) ; g(−λ) =

(
1 0
0 −1

)
g(λ)

(
1 0
0 −1

)}

is an infinite dimensional Lie group with Lie algebra

Lsu(2) =
{
ξ : R∗ → su(2) ; ξ(−λ) = Ad

(
1 0
0 −1

)
ξ(λ)

}
.
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The symmetry condition in the definition of LSU(2) is equivalent to the following: if g(λ) =
∑

k∈Z gkλ
k ∈ LSU(2) is the Fourier series expansion then even coefficents are diagonal whereas

odd coefficents are off-diagonal. LSU(2) has two Lie subalgebras

L+su(2) = {ξ ∈ Lsu(2) ; ξ(λ) =
∑

k≥0

ξkλ
k} ,

L−su(2) = {ξ ∈ Lsu(2) ; ξ(λ) =
∑

k<0

ξkλ
k} ,

whose direct sum is Lsu(2). The corresponding Lie subgroups of LSU(2) are

L+SU(2) = {g ∈ LSU(2) ; g(λ) =
∑

k≥0

gkλ
k} ,

L−SU(2) = {g ∈ LSU(2) ; g(λ) = I +
∑

k<0

gkλ
k} .

The following result is proven in [8].

Theorem 2.1. Multiplication L−SU(2)×L+SU(2)→ LSU(2) is a diffeomorphism onto the open

and dense Lie subgroup L−SU(2) · L+SU(2) ⊂ LSU(2).

With this at hand, let

G = LSU(2)× LSU(2) ,

G1 = diag G ,

G2 = L−SU(2)× L+SU(2)

with Lie algebras G,G1, and G2, respectively. Theorem 2.1 implies [17] that multiplication

G1 ×G2 → G(2.7)

is a diffeomorphism onto the open and dense Lie subgroup G1 ·G2. For g ∈ G1 ·G2 we denote its

component in Gi by gGi
. On the Lie algebra level this decomposition is explicitly given by

G = G1 ⊕ G2, (ξ, η) = (ξ+ + η−, ξ+ + η−) + (ξ− − η−, η+ − ξ+) ,

where ξ = ξ−+ ξ+ ∈ L−su(2)⊕L+su(2). Now let Φ: D×R∗ → SU(2) be an extended frame. Due

to the specific form of the coefficient matrices in (2.4) we can view Φ: D → LSU(2). Proofs of the

following lemma in similar contexts can be found in [11, 5, 9]

Lemma 2.1. Let h = (h−, h+) ∈ G2 and Φ: D → LSU(2) be an extended frame. Then Ψ: D̃ →
LSU(2) defined by

(Ψ,Ψ) = (h−Φ, h+Φ)G1

is also an extended frame on some D̃ ⊆ D. Moreover,

h#Φ: = Ψ

defines an action, the so called dressing action, on extended frames.
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Applying this construction to the vacuum solution ΦB given by (2.6) yields the dressing orbit

G2#ΦB

through ΦB, which provides an infinite-dimensional space of (local) solutions to the sine-Gordon

equation (2.3).

We now turn to the case of CMC-surfaces. The extended frame Φ of a harmonic Gauss map

N : R2 → S2 satisfies

∂xΦ = Φ · 1
2

(
i∂yω e−ωλ+ eωλ−1

−eωλ− e−ωλ−1 −i∂yω

)
,

∂yΦ = Φ · i
2

( −∂xω e−ωλ− eωλ−1

−eωλ+ e−ωλ−1 ∂xω

)
,

Φ(0,−) = I ,

(2.8)

where x, y are the principal curvature coordinates on the CMC-surface (we allow no umbilic points),

e−2ω is the conformal factor of the induced metric ds2 = e−2ω(dx2+dy2) and the spectral parameter

λ ∈ S1 ⊂ C [9, 3, 4]. The integrability condition for the system (2.8) is the (elliptic) sinh-Gordon

equation

∂2xω + ∂2yω + 2 sinh 2ω = 0 .(2.9)

As before, Fλ = Φ(−, λ) : R2 → SU(2) is a family of frames of the harmonic mapsNλ = π◦Fλ : R2 →
S2. Sym’s formula [3, 13] retrieves (a family of) two CMC-surfaces (parallel to each other) of mean

curvature H = 1
2
via

f±λ =

(
∂

∂λ
Φ

)
Φ−1 ±Nλ : R2 → su(2) = R3 .

The following loop spaces will be relevant for the dressing procedure: the loop group

ΛSL(2,C) =
{
g : S1 → SL(2,C) ; g(−λ) =

(
1 0
0 −1

)
g(λ)

(
1 0
0 −1

)}

with Lie algebra

Λs`(2,C) =
{
ξ : S1 → s`(2,C) ; ξ(−λ) = Ad

(
1 0
0 −1

)
ξ(λ)

}
.

ΛSL(2,C) has two Lie subgroups

ΛSU(2) =
{
g ∈ ΛSL(2,C) ; g(λ) ∈ SU(2) for λ ∈ S1

}
,

Λ+ASL(2,C) = {g ∈ ΛSL(2,C) ; g extends holomorphically to |λ| < 1 and g(0) ∈ A}

where A = {
( ρ 0

0 1
ρ

)
; ρ ∈ R+} ⊂ SL(2,C) is the imaginary torus. The following global factorization

result is proven in [15].

Theorem 2.2. The multiplication map

ΛSU(2)× Λ+ASL(2,C)→ ΛSL(2,C)

is a diffeomorphism. In particular, every g ∈ ΛSL(2,C) has a unique decomposition g = gug+

where gu ∈ ΛSU(2) and g+ ∈ Λ+ASL(2,C).
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Notice that an extended frame can be viewed as a map Φ: R2 → ΛSU(2). Now Theorem 2.2 gives

rise to the dressing action of Λ+ASL(2,C) on extended frames [11, 5]: for every h ∈ Λ+ASL(2,C),

h#Φ: = (hΦ)u(2.10)

is also an extended frame. As before, (2.8) has the vacuum solution

ΦB = exp
(
xB(λ+ λ−1) + iyB(λ− λ−1)

)
(2.11)

corresponding to ω ≡ 0, and the dressing orbit

Λ+ASL(2,C)#ΦB

through ΦB yields an infinite-dimensional space of solutions to the sinh-Gordon equation. In fact,

all finite-type solutions, in particular, all doubly periodic solutions, are contained in this orbit [9, 5].

3. Discrete Sine-Gordon Equation and Discrete K-Surfaces

In this section, we use the dressing action (cf. lemma 2.1) to derive an integrable discrete version

of the sine-Gordon equation. Using the Sym formula (2.5) we then give the discrete analog of a

K-surface, which coincides with the geometric definition given in [2].

We start deriving a discrete analogue of an extended frame Φ: R2 → LSU(2) using the dressing

action in lemma 2.1. For this it suffices to discretize the vacuum solution

ΦB = exp
(
(xλ− yλ−1)B

)
.

A natural discretization can be obtained by solving the following system over Z2 with meshsize

δ > 0:

Φn+1,m = Φn,m ·
1

∆+

(I + δBλ) ,

Φn,m+1 = Φn,m ·
1

∆−
(I − δBλ−1) ,

Φ0,0 = I ,

where ∆± =
√
det(I ± δBλ±1) =

√
1 + 1

4
δ2λ±2. This system is motivated by the naive discretiza-

tion of dΦ = Φ · (Bλdx−Bλ−1dy) scaled by the factors ∆−1
± to ensure that the solution

ΦB
n,m =

1

∆n
+∆

m
−

(I + δBλ)n(I − δBλ−1)m(3.1)

takes values in SU(2) for λ ∈ R∗. Moreover,

ΦB
n,m(−λ) =

(
1 0
0 −1

)
ΦB
n,m(λ)

(
1 0
0 −1

)

so that we have a map

ΦB : Z2 → LSU(2) .

Now let h = (h−, h+) ∈ G2 and consider

Φ: = h#ΦB : Z2 → LSU(2) ,
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where, as in the smooth case (cf. lemma 2.1), (h#ΦB)n,m =
(
(h, h)(ΦB

n,m,Φ
B
n,m)

)
G1
. Then, h(ΦB,ΦB) =

(Φ,Φ)g, with g = (g−, g+) : Z2 → G2, in particular,

g+(0) : Z2 → S1 ⊂ SU(2) .

Thus, there exists a unique function u : Z2 → [0, π) such that

g+(0) =

(
e
i
2
u 0

0 e−
i
2
u

)
.

Strictly speaking Φ and g may not be defined on all of Z2 since the loop group factorization (2.7)

is only defined on the open and dense subset G1 ·G2. However, it will be a consequence of the next

theorem that Φ and g are defined on Z2.

Theorem 3.1. Φ: Z2 → LSU(2) satisfies the equations

Φn+1,m = Φn,mΩn,m ,

Φn,m+1 = Φn,mΘn,m ,

Φ0,0 = I ,

(3.2)

where

Ωn,m(λ) =
1

∆+

(

(
e−

i
2
(un+1,m−un,m) 0

0 e
i
2
(un+1,m−un,m)

)
+ δBλ) ,(3.3)

Θn,m(λ) =
1

∆−
(I − δi

2

(
0 e

i
2
(un,m+1+un,m)

e−
i
2
(un,m+1+un,m) 0

)
λ−1).(3.4)

The compatibility equation

Θn,mΩn,m+1 = Ωn,mΘn+1,m(3.5)

unravels to

4

δ2
sin

un+1,m+1 − un+1,m − un,m+1 + un,m
4

= sin
un+1,m+1 + un+1,m + un,m+1 + un,m

4
,

(3.6)

which is a discrete version of the sine-Gordon equation.

Remark. (i) The system (3.2) is an exact discrete analogue of the continuous equations (2.4) for

an extended frame in the sense that it has similar λ-dependence.

(ii) Equation (3.6) is known as the Hirota equation [12]. It recursively defines for each set of

prescribed Cauchy data a unique solution u : Z2 → [0, π) and hence, using (3.3) and (3.5), a unique

solution Φ: Z2 → LSU(2) by (3.2). This shows that Φ is indeed defined on Z2.
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Proof. Since

(Φ,Φ) = (h−, h+)(ΦB,ΦB)(g−, g+)−1

we obtain two expressions for Ωn,m:

Ωn,m = Φ−1n,mΦn+1,m = g−n,m(Φ
B
n,m)

−1(h−)−1h−ΦB
n+1,m(g

−
n+1,m)

−1

= g−n,m
1

∆+

(1 + δBλ)(g−n+1,m)
−1

= g+n,m
1

∆+

(1 + δBλ)(g+n+1,m)
−1 .

After cancelling 1
∆+

, the latter expression takes values in L+SU(2), while the former expression

has a simple pole at λ =∞ and thus

∆+Ωn,m = Ω(0)n,m +Ω(1)n,mλ .

Since g−(∞) = 1 and g+(0) =
(
e
i
2
u 0

0 e
− i

2
u

)
we conclude

Ω(1)n,m = δB

and

Ω(0)n,m =

(
e−

i
2
(un+1,m−un,m) 0

0 e
i
2
(un+1,m−un,m)

)
.

A similar calculation gives the expression for Θn,m. That the compatibility equation (3.5) is equiv-

alent to the discrete sine-Gordon equation follows by direct computation.

To give Theorem 3.1 geometric content, we define the discrete analogue of a K-surface using the

Sym formula (2.5) and derive the basic properties of such a surface. It turns out that these surfaces

are precisely the ones introduced and studied in [2]. Let

Φ: Z2 → LSU(2)

be a discrete extended frame, i.e., Φ satisfies (3.2) for some u : Z2 → [0, π), and define

f : Z2 → R3 = su(2) ,

f =
( d
dλ

∣∣∣∣
λ=1

Φ
)
Φ−1(1) .

(3.7)

We will call f : Z2 → R3 the discrete K-surface corresponding to the solution u : Z2 → [0, π) of the

discrete sine-Gordon equation (3.6). Then

fn+1,m − fn,m = AdΦn,m

4δ

4 + δ2

(
0 i

2
e−

i
2
(un+1,m−un,m)

i
2
e−

i
2
(un+1,m−un,m) 0

)
,(3.8)

fn,m+1 − fn,m = AdΦn,m

4δ

4 + δ2

(
0 i

2
e
i
2
(un,m+1+un,m)

i
2
e−

i
2
(un,m+1+un,m) 0

)
,(3.9)

where we have evaluated Φn,m at λ = 1. The following geometric properties [2] can now be easily

derived using the above formulas.
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Theorem 3.2. Let f : Z2 → R3 be a discrete K-surface.

(i) The edges have constant length, i.e.,

‖fn+1,m − fn,m‖ = ‖fn,m+1 − fn,m‖ =
4δ

4 + δ2
.

(ii) The angles between the edges eminating from a common vertex are given by

∠(fn+1,m − fn,m, fn,m+1 − fn,m) =
un+1,m + un,m+1

2
,

∠(fn,m+1 − fn,m, fn−1,m − fn,m) = π − un,m+1 + un−1,m
2

,

∠(fn−1,m − fn,m, fn,m−1 − fn,m) =
un−1,m + un,m−1

2
,

∠(fn,m−1 − fn,m, fn+1,m − fn,m) = π − un,m−1 + un,m
2

.

In particular, their sum is 2π and thus the four edges eminating from a common vertex are coplanar.

(iii) Let P (p, q, r) denote the plane spanned by the vertices p, q, r and denote by

α = ∠(P (fn,m, fn+1,m, fn,m−1), P (fn+1,m−1, fn+1,m, fn,m−1)) ,

α̃ = ∠(P (fn+1,m, fn,m, fn+1,m−1), P (fn,m−1, fn,m, fn+1,m−1)) ,

then

sin
α

2
sin

α̃

2
=

4− δ2

4 + δ2
,

which is an equivalent formulation of the discrete sine-Gordon equation ( 3.6).

From (ii) of theorem 3.2 we see that the discrete analogue of the angle ω between the asymptotic

curves on a K-surface, i.e., the angle ωn,m between the edges fn+1,m − fn,m and fn,m+1 − fn,m, is

given by

ωn,m =
un+1,m + un,m+1

2
.(3.10)

Notice that the angle ωn,m uniquely determines the remaining angles in the quadrilateral with

vertices fn,m, fn+1,m, fn,m+1, fn+1,m+1: from theorem 3.2(ii) we see that the angle at the vertex

fn+1,m+1 is also ωn,m and the angles at the vertices fn+1,m, fn,m+1 are equal, say ω̃n,m. But from

the discrete sine-Gordon equation (3.6) we obtain

q̃n,m =
qn,m − k

1− kqn,m

where q = eiω, q̃ = eiω̃, k = δ2

4
. Moreover, the four angles ωn,m, ω̃n−1,m, ωn−1,m−1, ω̃n,m−1 around the

vertex fn,m add up to 2π (c.f. theorem 2.3(ii)) so that we obtain the following geometric version of

the discrete sine-Gordon equation [12, 2, 1]:

qn,mqn−1,m−1 =
1− kqn−1,m
qn−1,m − k

· 1− kqn,m−1
qn,m−1 − k

.
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The Gauss map of a K-surface f : D → R3 with extended frame Φ: D → LSU(2) is given by [13, 3]

N = AdΦ(1)
( i

2
0

0 − i
2

)
: D → S2 ⊂ su(2) = R3 .

Thus, it is natural to define the discrete Gauss map N : Z2 → S2 by

Nn,m : = AdΦn,m(1)
( i

2
0

0 − i
2

)
.

From (3.8), (3.9) one sees that Nn,m is perpendicular to the plane spanned by the vertex star

eminating from fn,m (c.f. theorem 3.2(ii)). The harmonic map condition for N , namely

d(∗dN ×N) = 0

holds in the following precise sense for the discrete map Nn,m: the discrete 1-form

Np +Nq

2
× Np −Nq

2

where e = ~pq is an edge, is co-closed. For further discussions of these issues we refer the reader to

[2].

4. Discrete sinh-Gordon equation and discrete CMC-surfaces

Applying the same procedure as in the previous section we will derive an integrable discrete analog

of the sinh-Gordon equation, which will give rise to discrete CMC-surfaces.

We begin by deriving a discrete analog of an extended frame Φ: R2 → ΛSU(2) using the dressing

action (2.10). Again it suffices to discretize the vacuum solution (2.11)

ΦB(x, y, λ) = exp(xB(λ+ λ−1) + iyB(λ− λ−1)) ,

where B = 1
2

(
0 1
−1 0

)
. As before, we obtain

ΦB
n,m(λ) =

1

∆n
+∆

m
−

(I + δB(λ+ λ−1))n(I + iδB(λ− λ−1))m ∈ SU(2) ,(4.1)

where

∆+ =
√
det(I + δB(λ+ λ−1)) =

√
1 +

1

4
δ2(λ+ λ−1)2 =

√
1 + δ2 cos2 α ,

∆− =
√
det(I + iδB(λ− λ−1)) =

√
1− 1

4
δ2(λ− λ−1)2 =

√
1 + δ2 sin2 α ,

for λ = eiα. In addition we have

ΦB
n,m(−λ) =

(
1 0
0 −1

)
ΦB
n,m(λ)

(
1 0
0 −1

)
,

and hence (4.1) gives the discrete vacuum solution

ΦB : Z2 → ΛSU(2) .

Now let h ∈ Λ+ASL(2,C) and consider

Φ = h#ΦB : Z2 → ΛSU(2)
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where, as in the smooth case (2.10),

(h#ΦB)n,m = (hΦB
n,m)u .

Then hΦB = Φg with g : Z2 → Λ+ASL(2,C). In particular we have

g(0) : Z2 → A ,

where A = {
( ρ 0

0 ρ−1

)
; ρ ∈ R+} ⊂ SL(2,C) is the imaginary torus. Thus, there exists a unique map

ω : Z2 → R

such that

g(0) =
(
e

1
2
ωn,m 0

0 e
− 1

2
ωn,m

)
.

Theorem 4.1. The extended frame Φ: Z2 → ΛSU(2) satisfies the following equations:

Φn+1,m = Φn,mΩn,m

Φn,m+1 = Φn,mΘn,m

Φ0,0 = I

(4.2)

where

Ωn,m =
1

∆+

(δ
2

(
0 e

1
2
(ωn+1,m+ωn,m)

−e− 1
2
(ωn+1,m+ωn,m) 0

)
λ−1 +

(
αn,m 0
0 αn,m

)

+
δ

2

(
0 e−

1
2
(ωn+1,m+ωn,m)

−e 1
2
(ωn+1,m+ωn,m) 0

)
λ
)

Θn,m =
1

∆−

(
− iδ

2

(
0 e

1
2
(ωn,m+1+ωn,m)

−e− 1
2
(ωn,m+1+ωn,m) 0

)
λ−1 +

(
βn,m 0
0 βn,m

)

− iδ

2

(
0 −e− 1

2
(ωn,m+1+ωn,m)

e
1
2
(ωn,m+1+ωn,m) 0

)
λ
)

and

|αn,m|2 = 1− δ2 sinh2
(ωn+1,m + ωn,m

2

)
,

|βn,m|2 = 1− δ2 sinh2
(ωn,m+1 + ωn,m

2

)
.

The compatibility condition

Ωn+1,mΘn,m = Θn+1,mΩn,m(4.3)

unravels to

αn,m+1 =
αn,m

∆
cosh

ωn+1,m+1 − ωn,m

2
+ i

βn,m
∆

sinh
ωn+1,m+1 − ωn+1,m + ωn,m+1 − ωn,m

2
,

iβn+1,m =
αn,m

∆
sinh

ωn+1,m+1 + ωn+1,m − ωn,m+1 − ωn,m

2
+
βn,m
∆

cosh
ωn+1,m+1 − ωn,m

2
,

where

∆ = cosh
ωn+1,m − ωn,m+1

2
,
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and

i(αn,m+1βn,m − αn,mβn+1,m) =
1

2
sinh

ωn+1,m+1 + 2ωn+1,m + ωn,m

2

+
1

2
sinh

ωn+1,m+1 + 2ωn,m+1 + ωn,m

2
,

which is a discretized version of the elliptic sinh-Gordon equation.

Proof. By construction we have

hΦB = Φg

for h ∈ Λ+ASL(2,C) and g : Z2 → Λ+ASL(2,C). Thus, using (4.1), we obtain

Ωn,m = Φ−1n,mΦn+1,m = gn,m(Φ
B
n,m)

−1ΦB
n+1,mg

−1
n+1,m

= gn,m
1 + δB(λ+ λ−1)

∆+

g−1n+1,m .

For g ∈ ΛSU(2,C) let

g(λ) : = (g(1/λ)∗)−1

be the conjugation with regard to the real form ΛSU(2). Note that g ∈ Λ+ASL(2,C) if and only if

g ∈ Λ−ASL(2,C) = {g ∈ ΛSL(2,C)|g extends holomorphically to |λ| > 1, g(∞) ∈ A}. Then

Ωn,m = Ωn,m = gn,m
1 + δB(λ+ λ−1)

∆+

g−1n+1,m

so that we have

gn,m(1 + δB(λ+ λ−1))g−1n+1,m = gn,m(1 + δB(λ+ λ−1))g−1n+1,m .

The left hand side has a simple pole at λ = 0 with residue

Ω(−1)n,m = gn,m(0)δBg
−1
n+1,m(0) =

δ

2

(
0 e

1
2
(ωn+1,m+ωn,m)

−e− 1
2
(ωn+1,m+ωn,m) 0

)
,

whereas the right hand side has a simple pole at λ =∞ with residue

Ω(1)n,m = gn,m(0)δBg
−1
n+1,m(0) =

δ

2

(
0 e−

1
2
(ωn+1,m+ωn,m)

−e 1
2
(ωn+1,m+ωn,m) 0

)
.

Hence

Ωn,m =
1

∆+

(Ω(−1)n,m λ−1 +Ω(0)n,m +Ω(1)n,mλ)

with

Ω(0)n,m =

(
αn,m 0
0 αn,m

)

for some α : Z2 → C. From detΩn,m = 1 we obtain

|αn,m|2 = 1− δ2 sinh2(
ωn+1,m + ωn,m

2
) .

Similarly one shows the corresponding statements for Θn,m. The compatibility equations follow by

equating coefficients at powers of λ in (4.3).
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One can now proceed as in section 3 and describe the discrete analogues of CMC surfaces obtained

from the above formulas. This would go beyond the intention of the present note. We refer the

interested reader to [2] where a detailed discussion of this aspect can be found.
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