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1 Introduction

Over the past five years substantial progress has been made in the understanding of har-
monic maps f :M → G/K of a compact Riemann surfaceM into a compact symmetric space
G/K [29, 30, 12, 14, 17, 22, 5, 7, 10, 31]. When M is the Riemann sphere all such maps
may be obtained from holomorphic curves into some associated twistor space [11, 29, 14].
In contrast, if M is a 2-torus, then every harmonic map φ:M → G/K (satisfying specific
nondegeneracy assumptions) may be obtained from a solution to a certain family of com-
pletely integrable finite dimensional systems of Hamiltonian ODE in Lax form on a loop
algebra [5, 7, 17]. Such harmonic maps are called harmonic maps of finite type and, e.g.,
all harmonic 2-tori in Sn,CPn are accounted for in this way [4]. So far there is no compa-
rable systematic theory when M has higher genus. Nevertheless there are examples: the
harmonic maps f :M → S2 arising as Gauss maps of Kapouleas’ [18, 19] constant mean
curvature surfaces of genus g ≥ 2 and the minimal (and hence harmonic) maps f :M → S3

given by Lawson’s [20] minimal surfaces of genus g ≥ 2.

The objective of the present paper is to develop a systematic scheme for the construction
of all harmonic maps f :M → G/K when M is simply connected. Since the case where M
is the Riemann sphere has been accounted for completely in the work of Uhlenbeck [29],
we think of M as the universal cover of some compact Riemann surface of genus ≥ 1. Our
method has its origins in what is known as the Symes formula for integrating Lax pair
equations [28]. Analogs of this formula have been used to construct (extended solutions
of) harmonic 2-spheres in Lie groups [14] and to construct (extended lifts of) finite type

∗Partially supported by NSF grant DMS-9205293 and SFB 288 at Technische Universität Berlin.
†Partially supported by KITCS grant OSR-9255223.
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harmonic maps in compact symmetric spaces G/K [10, 7]. The harmonic maps so obtained
have the property that the (1, 0)-part of the derivative, ∂f , takes values in a single adjoint
orbit.

A standard holomorphic differential argument, namely Ad-invariant polynomials on the Lie
algebra g of G evaluated on ∂f provide holomorphic differentials on M , together with a
nondegeneracy assumption, ensure this orbit condition when M is the 2-sphere or a 2-torus.
This is the starting point for the analysis of harmonic 2-tori in symmetric spaces in [5].

Since on a genus ≥ 2 Riemann surface M these holomorphic differentials may have isolated
zeros, the derivative ∂f no longer stays in a fixed level set of Ad-invariant polynomials and
thus such a harmonic map f :M → G/K cannot, in general, be of finite type. In the simplest
case where G/K = SU(2)/S1 is the 2-sphere the Killing form ( , ) is (up to scale) the only
invariant polynomial. Thus, for a harmonic map f :M → S2, either (∂f, ∂f) ≡ 0, in which
case f is ± holomorphic (this is always the case if M has genus 0) and ∂f is nilpotent, or
(∂f, ∂f) has isolated zeros and away from these zeros ∂f is regular semisimple. If M has
genus one (∂f, ∂f) is nowhere zero, i.e., f is nowhere conformal, ∂f is regular semisimple
and thus of finite type by the results in [5]. Over a genus ≥ 2 Riemann surface ∂f will
change orbit type at isolated points.

To account for such a behavior we use a Weierstrass-type representation for harmonic maps
f :M → G/K which results from a variation of the Symes formula. We start with a
holomorphic 1-form µ =

∑
i≥−1 λ

iµi taking values in a subspace of a twisted loop algebra.
Integrating g−1dg = µ over the (simply connected) Riemann surface M gives a map g with
values in a corresponding twisted loop group. Such loop groups allow decompositions of
Iwasawa type into real loops and loops extending holomorphically to the interior of the
λ-disc. Factorization of g according to this decomposition,

g = Fb,

yields an (extended) frame of the harmonic map f = π ◦F|λ=1
:M → G/K whose derivative

is given by
∂f = AdF|λ=1

(µ−1) .

Conversely we prove that, if M is not the Riemann sphere S2, every harmonic map f :M →
G/K is obtained from some holomorphic 1-form µ =

∑
i≥−1 λ

iµi on the universal covering.

If µ = ηdz for some suitable constant η =
∑

k≥−1 λ
kηk we recover the finite type harmonic

maps of [5]. Finally, using a Riemann-Hilbert splitting we show that any harmonic map
f :M → G/K may be obtained by the above construction from a meromorphic 1-form

µ = λ−1η where η takes values in the finite dimensional Lie algebra gC. The set of poles of
η is given as the locus where the Riemann-Hilbert factorization fails to exist. In a certain
way this justifies to view the meromorphic 1-forms µ as Weierstrass-type data for harmonic
maps.

We now give a brief description of the contents of the various sections in this paper: we
start in section 2 by introducing the necessary loop groups of maps g:S1 → G where G is
a compact semisimple Lie group. Using existing factorization theorems [23] we adopt these
results to the twisted setting, i.e., spaces of loops g:S1 → G which have g(e2πi/kλ) = σg(λ)
for some order k automorphism σ of G. Further, we review the Grassmannian model, the
determinant line bundle and its relation to the loop group factorizations. This section, con-
taining mostly extensions to the twisted setting of material well documented, has more the
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flavor of an appendix. Since it also contains some basic setups and notations used through-
out the paper we decided to leave it as an initial section. Crucial for the understanding of
the paper is mainly the material up to theorem 2.3 and lemma 2.6. We suggest that the
Reader, after familiarizing himself with the basic notational conventions, skips this section
altogether and only goes back to it when prompted in the paper. The technicalities in this
section are well-known to the expert and non-experts on this subject do not need to go into
them to understand the geometrical constructions carried out in the paper.

In section 3 we reformulate the harmonic map equations for maps f :M → G/K of a
Riemann surface M into a compact symmetric space G/K as the flatness of a certain loop
algebra valued 1-form. The zero curvature equations in this case are the Yang-Mills-Higgs
equations [16, 7]. Integrating this loop of 1-forms gives a loop of frames Fλ:M → G of
harmonic maps fλ:M → G/K, i.e., fλ = π ◦ Fλ, π:G → G/K the coset projection, with
f = f1, which we call, following Uhlenbeck [29], an extended frame (or lift).

Section 4 deals with the construction of extended frames using the loop group factorizations
discussed in section 2 together with a version of the Symes method as described above. We
relate our approach to the construction of finite type harmonic maps [5], the Adler-Kostant-
Symes scheme [1, 7] and the r-matrix scheme. Our construction, assigning an extended
frame to a holomorphic 1-form µ =

∑
i≥−1 λ

iµi is equivariant with respect to natural loop
group actions by dressing on the extended frames and by gauge transformations on the
1-forms µ. We briefly discuss how this can be used to study dressing orbits of harmonic
maps [6] in the spirit of Segal-Wilson’s study of the KdV equation [26]. We conclude the
paper by applying the general theory to the special case of harmonic maps f :M → S2, the
Gauss maps of constant mean curvature surfaces in R3.
Parts of this work were done while various of the authors visited the SFB 288 at Technische
Universität Berlin and the KITCS at the University of Kansas. We thank the members
of both institutions for their interest and support in this project. We also wish to thank
Fran Burstall for his many discussions and suggestions of improvements while the paper
was written. The pictures at the end of the paper were produced using the “Mr. Bubble”
module written by Charlie Gunn at SFB-288 TU-Berlin.

2 Loop groups, Grassmannians and the τ-function

The main technical tool for our study of harmonic maps will be the existence of various loop
group factorizations. We will give a self-contained overview of the basic results, referring
the reader to [23] for details and derive the factorization theorems we need from there. So
let us fix the following ingredients:

(i) a compact (connected) semisimple Lie group G with Lie algebra g,

(ii) an automorphism σ:G→ G of order k and fixed point set Gσ = K. We denote
the induced automorphism on g again by σ, so that gσ = k is the Lie algebra of
K,

(iii) the primitive k-th root of unity ω = e2πi/k,
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(iv) an Iwasawa decomposition KC = K · B, K ∩ B = {e} where B ⊂ KC is a

solvable subgroup, with corresponding decomposition kC = k⊕ b.

With this at hand, we define

ΛGC
σ = {g:S1 → GC; g(ωλ) = σg(λ), λ ∈ S1}

and equip it with some Hs-topology for s > 1/2. Then ΛGC
σ becomes a complex Banach

Lie group with Lie algebra

ΛgC
σ = {ξ:S1 → gC; ξ(ωλ) = σξ(λ), ξ is Hs −smooth}.

ΛGC
σ has several closed Lie subgroups of importance to us: the real form

ΛGσ = {g ∈ ΛGC
σ ; g(λ) ∈ G, λ ∈ S1} ,

the loops extending holomorphically to the interior of the unit disc D = {λ ∈ C; |λ| < 1}

taking values in a fixed subgroup H ⊂ KC at λ = 0,

Λ+HG
C
σ = {g ∈ ΛGC

σ ; g extends holomorphically to D, g(0) ∈ H}

and the loops extending holomorphically to the exterior of the unit disc E = {λ ∈ C;λ > 1}

taking values in a fixed subgroup H ⊂ KC at λ =∞,

Λ−HG
C
σ = {g ∈ ΛGC

σ ; g extends holomorphically the E, g(∞) ∈ H}.

In case H = KC we omit the subscript H and we use the subscript ∗ for H = {e}, in which
case we deal with based loops.

Denote the ωi-eigenspace of σ on gC by gi. Clearly, g0 = kC, g−i = gi and [gi, gj ] ⊆ gi+j
(with arithmetic modulo k), where conjugation is always with respect to the real form g.

Then, if ξ ∈ ΛgC
σ , its Fourier decomposition is

ξ =
∑

i∈Z
λiξi , ξi ∈ gi

and the (closed) Lie subalgebras of ΛgC
σ corresponding to the subgroups ΛGσ,Λ

+
HG

C
σ ,

Λ−HG
C
σ are

Λgσ = {ξ ∈ ΛgC
σ ; ξ−i = ξi} ,

Λ+h gC
σ = {ξ ∈ ΛgC

σ ; ξi = 0 for i < 0, ξ0 ∈ h} ,

Λ−h gC
σ = {ξ ∈ ΛgC

σ ; ξi = 0 for i > 0, ξ0 ∈ h} ,

where h is the Lie algebra of H. If ξ ∈ ΛgC
σ then ξ = ξ− + ξ0 + ξ+ where

ξ− =
∑

i<0

λiξi, ξ0 = ξ0 ∈ kC and ξ+ =
∑

i>0

λiξi .

4



For η ∈ kC let ηk and ηb denote the projections along kC = k⊕ b. Then we have

ξ = (ξ− + ξ− + (ξ0)k) + (ξ+ − ξ− + (ξ0)b)

= ξ− + (ξ0 + ξ+)

= (ξ− + ξ0) + ξ+

where conjugation is with respect to the real form Λgσ, i.e., ξ =
∑
λiξ−i. From this we

immediately obtain

Lemma 2.1.

(i) ΛgC
σ = Λgσ ⊕ Λ+b gC

σ ,

(ii) ΛgC
σ = Λ−∗ gC

σ ⊕ Λ+gC
σ = Λ−gC

σ ⊕ Λ+∗ gC
σ .

In what follows we will need global analogs of the above decompositions.

Let us denote by ΛGC,Λ+HGC,Λ−HGC and ΛG the groups ΛGC
σ etc. for σ= id and let

GC = G · B̃ be an Iwasawa decomposition of GC. Then Pressley-Segal [23] prove the
following factorization results (Pressley and Segal consider smooth loops but remark that
the result holds for Hs-loops, s > 1

2 , as well):

Theorem 2.2.

(i) Multiplication ΛG×Λ+
B̃
GC → ΛGC is a diffeomorphism onto. In particular,

every g ∈ ΛGC has a unique decomposition

g = ab,

where a ∈ ΛG, b ∈ Λ+
B̃
GC.

(ii) Multiplication Λ−∗ G
C × Λ+GC → ΛGC is a diffeomorphism onto the open

and dense subset Λ−∗ G
C ·Λ+GC, called the “big cell”. In particular, if g ∈ ΛGC

is contained in the big cell then g has a unique decomposition

g = g−g+,

where g− ∈ Λ−∗ G and g+ ∈ Λ+GC. The analogous result holds for the multipli-
cation map Λ−GC × Λ+∗ G

C → ΛGC.

From this we can relatively easily deduce the twisted loop group factorizations corresponding
to the Lie algebra decompositions in Lemma 2.1.

Theorem 2.3.

(i) Multiplication ΛGσ × Λ+BG
C
σ → ΛGC

σ is a diffeomorphism onto.
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(ii) Multiplication Λ−∗ G
C
σ × Λ+GC

σ → ΛGC
σ is a diffeomorphism onto the open

and dense set Λ−∗ G
C
σ · Λ

+GC
σ , again called the big cell. The analogous result

holds for the multiplication map Λ−GC
σ × Λ+∗ G

C
σ → ΛGC

σ .

Proof. (i) Since the multiplication map of Theorem 2.2 (i) restricts to a diffeomorphism

ΛGσ×Λ
+GC

σ → ΛGC
σ into, it remains to verify the surjectivity of this map. If g ∈ ΛGC

σ then

by Theorem 2.2 (i) g = ab with a ∈ ΛG and b ∈ Λ+
B̃
GC. Thus, letting (σg)(λ) = σ(g(ω−1λ)),

ab = g = σ(g) = σ(a)σ(b)

and, since σ(ΛG) ⊆ ΛG, σ(Λ+GC) ⊆ Λ+GC and ΛG ∩ Λ+GC = G, we obtain

a−1σ(a) = bσ(b)−1 = u ∈ G

so that
σ(a) = au, σ(b) = u−1b . (2.1)

Using the unique decomposition Λ+GC = GC · Λ+∗ GC we write

b = b0h

and get from (2.1)
σ(b) = σ(b0)σ(h) = u−1b = (u−1b0)h

and thus, since σ(Λ+∗ G
C) ⊆ Λ+∗ G

C,

σ(b0) = u−1b0, σ(h) = h . (2.2)

Now we express b0 ∈ GC in its polar decomposition [15] b0 = r exp(ix), where r ∈ G and
x ∈ g. Applying σ we get

σ(b0) = u−1b0 = σ(r) exp(iσ(x)) = (u−1r) exp(ix)

which implies
σ(r) = u−1r, exp(iσ(x)) = exp(ix) . (2.3)

Now let KC = K ·B be the Iwasawa decomposition for KC and decompose

exp(ix) = kv ∈ K ·B .

Define
ã = ark, b̃ = vh

then, by (2.1), (2.2), (2.3) and the fact that KC = (GC)σ,

σ(ã) = σ(a)σ(r)σ(k) = (au)(u−1r)k = ark = ã,

σ(b̃) = σ(v)σ(h) = vh = b̃,

which shows that ã ∈ ΛGσ and, since v ∈ B, h ∈ Λ+∗ G
C, that b̃ ∈ Λ+BG

C
σ . Moreover

ãb̃ = (ark)(vh) = ar exp(ix)h = a(b0h) = ab = g,
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which proves surjectivity of the multiplication map ΛGσ × Λ+BG
C
σ → ΛGC

σ .

(ii) This follows from Theorem 2.2.(ii) and the fact that

Λ−∗ G
C
σ · Λ

+GC
σ = (Λ−∗ G

C · Λ+GC) ∩ ΛGC
σ .

2

Another ingredient necessary for our studies of harmonic maps is the Grassmannian model
for the loop group and its determinant line bundle [23], [26] which we review briefly in
a language suitable for our developments. Since a compact semi-simple Lie group can be
represented as a subgroup of the unitary group via the adjoint representation we begin with
the loop groups ΛU(n) and its complexification ΛGL(n,C). Let H = L2(S1,C) with the
“polarization”

H = H+ ⊕H− , (2.4)

where H+ is the subspace generated by {λk; k ≥ 0} and H− is generated by {λk; k < 0}.
Note that ΛGL(n,C) acts on L2(S1,Cn) by bounded linear operators so that, using an
appropriate isometry between L2(S1,Cn) and H, we obtain an injective holomorphic group
homomorphism

ΛGL(n,C) ↪→ GL(H): g 7→ Ag (2.5)

of the loop group into the space of bounded linear operators on H. In terms of the natural
basis . . . , λ2, λ, 1, λ−1, λ−2, . . . of H+ ⊕H− this inclusion is expressed by infinite matrices:
let

g =
∑

k∈Z
gkλ

k

be the Fourier decomposition of g ∈ ΛGL(n,C), where gk ∈ Mn(C), then the (i, j)-th
n× n-block in Ag is given by

(Ag)i,j = gi−j . (2.6)

Writing elements A ∈ GL(H) in block form with respect to the polarization H = H+⊕H−,

A =

(
a b
c d

)
, (2.7)

it follows from [23], [26] that the inclusion (2.5) takes values in

GLres(H) = {A ∈ GL(H); a, d Fredholm , b, c Hilbert-Schmidt} . (2.8)

The identity component of ΛGL(n,C) is mapped into the identity component of GLres(H)
characterized by the condition that the Fredholm operators a, d have index zero. Without
further mentioning, we will work in these connected components. The Grassmannian of
subspaces of H, comparable to H+, is the orbit

Gr(H) = GLres(H) ·H+ , (2.9)

which is a complex homogeneous space on which GLres(H) acts holomorphically. One
can make sense of the “top exterior power” of W ∈ Gr(H) [23], [26] and thus obtain a
holomorphic line bundle

Det→ Gr(H) ,
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the determinant line bundle. Its dual Det∗ → Gr(H) has a non-trivial canonical holomor-
phic section

τ :Gr(H)→ Det∗

given by
τ(W ) = (w, detw+) (2.10)

where

w =

(
w+
w−

)
:H+ → H (2.11)

is the Z × N-matrix consisting of the columns of an admissible basis [26] for W . Consider
the composition of holomorphic maps

ΛGL(n,C) ↪→ GLres(H)→ Gr(H): g 7→ Ag ·H+ .

Lemma 2.4. τ(Ag ·H+) 6= 0 if and only if g ∈ ΛGL(n,C) is contained in the big cell (c.f.
Theorem 2.2(ii)), i.e., g = g−g+ with g− ∈ Λ−∗ GL(n,C), g+ ∈ Λ+GL(n,C).

Proof. From Birkhoff’s factorization theorem [23] we know that

g = g−dg+

with g− ∈ Λ−∗ GL(n,C) and d = diag(λa1 , . . . , λan), where ai ∈ Z satisfy a1 ≥ · · · ≥ an and∑n
i=1 ai = 0. Then,

τ(Ag ·H+) = τ(Ag−AdAg+ ·H+) = τ(Ag−Ad ·H+),

since Ag+ ·H+ = H+. Because g− ∈ Λ−∗ GL(n,C) we have by (2.6), (2.7)

Ag− =

(
a− 0
b− c−

)
,

where a−, c− are lower diagonal with In-blocks in the diagonal. Let w =

(
w+
w−

)
be an

admissible basis for Ad ·H+. Then

v = g−

(
w+
w−

)
a− =

(
a−w+a

−1
−

∗

)

is an admissible basis [26] of Ag−AdH+ so that by (2.10)

τ(Ag ·H+) = (v, det(a−w+a
−1
− )) = (v, detw+) .

Since d = λa1Ea1
+ · · ·+λanEan , where Eak = diag(0, . . . , 1, . . . 0) with 1 in the ak-th place,

we get from (2.6) that the (i, j)-th block in Ad is given by

(Ad)i,j =

{
Eak for i− j = ak
0 else .

(2.12)
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Writing

Ad =

(
α β
γ δ

)

according to (2.7) we see that detw+ 6= 0 if and only if α is invertible. Assuming an < 0
we see that α is not invertible so that detw+ = 0. Conversely, if d = In, then w+ = Id for
the natural choice of w, and so detw+ 6= 0. 2

If G is a semisimple compact Lie group then G ↪→ U(n) and hence GC ↪→ GL(n,C), so

that we obtain a holomorphic inclusion ΛGC
σ ↪→ ΛGL(n,C).

Corollary 2.5. Let g ∈ ΛGC
σ . Then g = g−g+ is in the big cell (c.f. Theorem 2.3(ii)) if

and only if τ(AgH+) 6= 0.

As a further application, which will be needed in section 4, we show a certain meromorphic

behavior in the factorization of a holomorphic ΛGC
σ -valued curve across the boundary of

the big cell. Let D ⊂ C be some domain containing 0 ∈ C and

g:D → ΛGC
σ

a holomorphic (i.e., ∂g = 0) curve with g(0) = e.

Since τ : ΛGC
σ → Det∗ and g:D → ΛGC

σ are holomorphic, we obtain from Corollary 2.5 that
the set

S = (τ ◦ g)−1(0) = {p ∈ D; g(p) not contained in the big cell} ⊂ D

is discrete. Let p0 ∈ S and U ⊂ D be a neighborhood of p0 so that (c.f. Theorem 2.3(ii))

g(p) = g−(p)g+(p)

for p ∈ U \ {p0} where g±:U \ {p0} → Λ±GC
σ are holomorphic. Then we have

Lemma 2.6. g− extends meromorphically into p0, i.e., g−(λ):U \{p0} → GC has a pole of
at most order N independent of λ ∈ S1 at p0. Since g is holomorphic the same statement
holds for g+.

Proof. Throughout the proof we will not distinguish between operators on H = H− ⊕
H+ and their representation as infinite matrices with respect to the standard basis . . .,

λ2, λ, 1, λ−1, λ−2, . . .. The map g:D → ΛGC
σ gives rise (2.9), (2.5) to a holomorphic map

W = g ·H+:D → Gr(H) ,

which, on U \ {p0}, is given by
W = g− ·H+ .

If g− = e+
∑

k≤−1(g−)kλ
k then (2.7), (2.6)

Ag− =

(
a− 0
c− d−

)
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with a− lower diagonal and (a−)ii = In. In particular, a−:H+ → H+ is invertible. Thus,

W (p) =

[
a−(p)
c−(p)

]
=

[
Id

c−(p)a
−1
− (p)

]
, (2.13)

where [ ] denotes the subspace generated by the columns. Using (2.6) and the special form
of a− we obtain

(c−a
−1
− )0,k = (c−)0,k = (g−)k, k ≤ −1 . (2.14)

We now choose a chart around W0 = Ag(p0) ·H+: since by assumption τ(W0) = 0, a chart
is given by [9]

{

[
Id− yx
−x

]
; x:H+ → H− Hilbert-Schmidt},

where y:H− → H+ is a “finite” matrix, i.e.,

y =

(
0 0
f 0

)

for some f ∈Mm(C), m ∈ N. In this chart we express W as

W (p) = Ag−(p) ·H+ =

[
Id− yx(p)
−x(p)

]

=

[
Id
−x(p)(Id− yx(p))−1

]
, p ∈ U \ {p0} ,

(2.15)

where x depends holomorphically on p ∈ U . Since y is a finite matrix we have

Id− yx(p) =

(
Id 0

α(p) β(p)

)
:H+ → H+

with β:U → GL(m,C) holomorphic and thus

(Id− yx(p))−1 =

(
Id 0

−β−1(p)α(p) β−1(p)

)
.

Comparing (2.13) with (2.15) and using (2.14) we obtain

(g−)k = (−x(Id− yx)−1)0,k, k ≤ −1 ,

whose pole behavior at p0 is determined by the behavior of β−1 at p0. But β
−1:U \ {p0} →

GL(m,C) is holomorphic with pole at p0 given by 1
detβ . 2

3 Loop group formulation of harmonic maps into symmetric

spaces

In this section we review what may be called the “Yang-Mills-Higgs” formulation of har-
monic maps into a symmetric space [16, 7], which will lead to a loop group formulation
similar to Uhlenbeck’s [29] for harmonic maps into a Lie group.
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Let N = G/K be a Riemannian symmetric space with symmetric involution σ:G → G so
that Gσ ⊃ K ⊃ (Gσ)0. We denote by g and k the Lie algebras of G and K respectively. The
decomposition of g into ±1-eigenspaces of the derivative of σ gives the Cartan decomposition

g = k⊕ p (3.1)

with the familiar commutation relations [k, k] ⊆ k, [k, p] ⊆ p and [p, p] ⊆ k. Recall that there
is a canonical identification of the tangent bundle TN of N with a subbundle of the trivial
bundle N × g: for x = gK ∈ N the map g → TxN given by η 7−→ d

dt |t=0
exp(tη)x is a

linear isomorphism on px = Adg(p). Inverting this at each point x ∈ N gives a g-valued
1-form β:TN → g which identifies TN with the adjoint bundle [p] ⊂ N × g whose fibre
over x = gK ∈ N is px. Under this identification the Levi-Civita connection of N is just
flat differentiation in N × g followed by projection along [k] (defined in the same way as [p])
onto [p], [8], i.e.,

β(
N
∇X Y ) = (dXβ(Y ))[p] . (3.2)

Let π:G → G/K be the canonical projection and denote by θ:TG → g the (left) Maurer-
Cartan form of G. Then, according to (3.1),

θ = θ0 + θ1 (3.3)

decomposes into a k-valued 1-form θ0 and a p-valued 1-form θ1. θ0 is the canonical connection
of the principal K-bundle G→ G/K and θ1 is related to β by

(π∗β)g = Adg(θ1)g . (3.4)

Now let M be a Riemann surface and f :M → G/K a smooth map with lift F :M → G so
that π ◦ F = f . Then the pullback

α = F−1dF = F ∗θ = F ∗θ0 + F ∗θ1 = α0 + α1 (3.5)

splits into a k resp. p-valued 1-form on M and so does the Maurer-Cartan equation
dα+ 1/2[α ∧ α] = 0:

dα0 + 1/2[α0 ∧ α0] = −1/2[α1 ∧ α1] , (3.6a)

dα1 + [α0 ∧ α1] = 0 . (3.6b)

Conversely, every pair of k resp. p-valued 1-forms α0, α1 solving (3.6) integrate, if M is
simply connected, to a map F :M → G which is unique up to left translation by G.

Recall that f :M → G/K = N is harmonic if and only if

∇′′∂f = 0 , (3.7)

where TMC = T ′M ⊕ T ′′M is the decomposition into (1, 0) and (0, 1) tangent spaces,

d = ∂ + ∂ and
N
∇= ∇′ +∇′′. Using (3.2) this becomes

(∂β′)[p] = 0 (3.8)

and thus, for a lift F :M → G of f , we obtain due to (3.4), (3.5)

(∂(AdFα′1))
[p] = 0 , (3.9)

11



which unravels to
∂α′1 + [α′′0 ∧ α

′
1] = ∂α′1 + [α0 ∧ α

′
1] = 0 . (3.10)

Since the sum of (3.10) and its complex conjugate give (3.6b) we arrive at the following
characterization of a harmonic map f :M → G/K in terms of a lift F :M → G.

Lemma 3.1. Let f :M → G/K be a smooth map with lift F :M → G and induced Maurer-
Cartan form α = F−1dF = α0 + α1. Then f is harmonic iff

dα0 + 1/2[α0 ∧ α0] = −[α
′
1 ∧ α

′′
1 ] ,

∂α′1 + [α0 ∧ α
′
1] = 0 .

(3.11)

Conversely, if α0:TM → k and α1:TM → p are k-resp. p-valued 1-forms solving (3.11)
and M is simply connected, then there exists a unique (up to G-translation) harmonic map
f = π ◦ F :M → G/K where F :M → G integrates F−1dF = α0 + α1.

Remark 3.2. Equations (3.11) are sometimes referred to as the Yang-Mills-Higgs equations
for the K-connection α0 and the Higgs-field α′1. They are clearly invariant under the action
of the Gauge group C∞(M,K).

Similar to [29] we introduce a spectral parameter and associate to a harmonic map f :M →
G/K an extended harmonic map into a certain loop space. Let α0:TM → k and α1:TM → p

be k resp. p-valued 1-forms on M . Then we have the following equivalent statements which
follow immediately from a comparison of coefficients at like powers of λ:

(i) α0 and α1 solve (3.11).

(ii) α0 and λ
−1α′1 + λα′′1 solve (3.11) for any λ ∈ S1.

(iii) The Λgσ-valued 1-form (3.12)

A = λ−1α′1 + α0 + λα′′1

solves the Maurer-Cartan equation dA+ 1
2 [A ∧A] = 0.

In case M is simply connected, (3.12 (iii)) can be integrated to a map

F̃ :M → ΛGσ, F̃−1dF̃ = A (3.13)

and Lemma 3.1 and (3.12 (ii)) imply that

fλ = π ◦ F̃λ:M → G/K (3.14)

is harmonic for every λ ∈ S1. Here F̃λ denotes the composition evλ ◦ F̃ of F̃ with the
evaluation map evλ: ΛGσ → G, evλ(g) = g(λ). This yields the following characterization of
harmonic maps f :M → G/K when M is simply connected.

Proposition 3.3. Assume that M is a simply connected Riemann surface. Then a map
f :M → G/K is harmonic if and only if there exists a map F̃ :M → ΛGσ with F̃−1dF̃ =
λ−1α′1+α0+ λα′′1 and π ◦ F̃1 = f , where α0:TM → k and α1:TM → p are k resp. p-valued
1-forms on M .
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Definition 3.4. Let f :M → G/K be harmonic with f(p0) = eK and let F :M → G be a
lift of f with F−1dF = α0+α1. Then F̃ :M → ΛGσ integrating F̃−1dF̃ = λ−1α′1+α0+λα′′1
with initial condition F̃ (p0) = k ∈ K is called an extended lift of f .

Remark 3.5. Given a harmonic map f :M → G/K an extended lift F̃ :M → ΛGσ is
determined only up to a gauge transformation H:M → K, that is to say, F̃H:M → ΛGσ

is also an extended lift. This freedom will be useful for the discussion in section 4. A gauge
invariant description may be obtained by considering the homogeneous space ΛGσ/K which
has a ΛGσ-invariant complex structure given by the decomposition of the complexified
tangent space at the base point o = eK

To(ΛGσ/K)C = ΛgC
σ /k

C = Λ−σ ⊕ Λ+σ ,

where Λ∓σ = {ξ ∈ ΛgC
σ | ξ =

∑
k<>0

λkξk}. Further we call the finite dimensional ΛGσ-
invariant subbundle defined by ΛGσ-translation of

{λ−1η + λη | η ∈ pC}

the horizontal distribution. Then Proposition 3.3 gives the following familiar twistorial
reformulation of the harmonicity condition.

Proposition 3.6. Assume that U is a simply connected Riemann surface. Then a map
f :M → G/K is harmonic if and only if there exists a holomorphic and horizontal map
f̃ :M → ΛGσ/K with f̃1 = f .

Note, that unlike in Uhlenbeck’s [29] setup for harmonic maps into Lie groups, f̃λ:M →
G/K is harmonic for any λ ∈ S1. Since any Lie group G can be considered as the symmetric
space (G×G)/∆G the present setup applies to this case as well. In analogy to the theory
of minimal surfaces, f̃ is usually called the associated family of harmonic maps to f .

4 Weierstrass-type representation of harmonic maps

In this section we will discuss how every harmonic map f :M → G/K of a simply connected
Riemann surface M may be obtained from Weierstrass-type data. More specifically, we
will show that f can be reconstructed from a certain holomorphic 1-form with values in an

infinite dimensional linear subspace of ΛgC
σ . Allowing certain singularities to occur we can

do better and reconstruct f from a pC-valued holomorphic 1-form. We also discuss how
the finite type harmonic maps of [5, 7] arise from our point of view and finally apply our
recipe to the construction of constant mean curvature surfaces with umbilic points.

Let M be either R2 or the unit disk with global complex coordinate z. It will become
clear below that our developments will not apply to M = S2 for which Uhlenbeck [29]
already provided a complete description. It follows from Proposition 3.4, Definition 3.5
and Remark 3.6 that the space of harmonic maps f :M → G/K with f(0) = eK can be
identified with the space of extended lifts F̃ :M → ΛGσ with F̃ (0) = k ∈ K modulo gauge
transformations H:M → K where f = π ◦ F̃1.
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Thus, if we denote the space of harmonic maps by

H = {f :M → G/K; f(0) = eK, f harmonic}, (4.1)

we have a bijective correspondence

H = {F̃ :M → ΛGσ; F̃ (0) = k ∈ K, F̃ extended lift}/ ∼ (4.2)

where F̃1 ∼ F̃2 if and only if F̃2 = F̃1H for a gauge H:M → K. This identification will be
used in the remainder of this section.

We now turn to the construction of harmonic maps in terms of holomorphic data. Recall
from section 2, Theorem 2.3, that there is a global decomposition of the complexified σ-
twisted loop group

ΛGC
σ = ΛGσ · Λ

+
BG

C
σ (4.3)

where KC = KB is an Iwasawa decomposition for KC. Correspondingly, the Lie algebra

ΛgC
σ splits into a direct sum of Lie subalgebras

ΛgC
σ = Λgσ ⊕ Λ+b gC

σ . (4.4)

We will need the following linear subspace of ΛgC
σ : for d ∈ N we let

Λd = {ξ ∈ Λgσ | ξ =
∑

|k|≤d

λkξk} (4.5)

be the finite dimensional subspace of Laurant polynomial loops of degree not larger than
d. Further we introduce the space of σ-twisted loops which extend holomorphically to the
interior of the λ-disc and have a simple pole at the origin

Λ−1,∞: = {ξ ∈ ΛgC
σ | λξ extends holomorphically to |λ| < 1} . (4.6)

As a Fourier series, ξ ∈ Λ−1,∞ if and only if

ξ =
∑

k≥−1

λkξk, ξeven ∈ kC, ξodd ∈ pC .

Notice that Λ−1,∞ is a closed subspace of ΛgC
σ which is stable under the adjoint action of

Λ+GC
σ and so in particular under Λ+BG

C
σ .

Definition 4.1. The vector space P of holomorphic 1-forms on M with values in the
Banach space Λ−1,∞ will be called the space of holomorphic potentials. Thus µ ∈ P is a

holomorphic potential if µ =
∑

k≥−1 λ
kµk, where µeven resp. µodd are holomorphic kC resp.

pC-valued 1-forms on M .

The construction outlined below shows why the space P serves as the space of “Weierstrass-
data” for the construction of harmonic maps: if µ ∈ P is a holomorphic potential, then

µ = ξdz (4.7)
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for some holomorphic function ξ =
∑

k≥−1 λ
kξk:M → Λ−1,∞. Thus

dµ+
1

2
[µ ∧ µ] = ∂µ = 0 ,

and we can integrate
g−1µ dgµ = µ, gµ(0) = e , (4.8)

to obtain a unique map

gµ:M → ΛGC
σ . (4.9)

Decomposing gµ according to (4.3),

gµ = Φµbµ , (4.10)

yields a map Φµ:M → ΛGσ with Φµ(0) = e.

Lemma 4.2. Φµ:M → ΛGσ is an extended harmonic lift.

Proof. According to Proposition 3.3 we have to verify that

Φ−1µ dΦµ = λ−1α′1 + α0 + λα′′1 .

Since Φµ = gb−1 (surpressing the subscript µ in g and b) we have

Φ−1µ dΦµ = Ad b(g−1dg)− dbb−1

= Ad b(µ)− dbb−1 .
(4.11)

But b takes values in Λ+BG
C
σ , so that dbb−1 takes values in Λ+b gC

σ , hence by (4.4)

Φ−1µ dΦµ = (Ad b(µ))Λgσ . (4.12)

Since µ =
∑

k≥−1 µkλ
k is Λ−1,∞-valued and AdΛ+BG

C
σ acts on Λ−1,∞ we obtain, by putting

b|λ=0
= b0:M → B,

(Ad b(µ))Λgσ = λ−1Ad b0(µ−1) + α0 + λAd b0(µ−1) (4.13)

for some k-valued 1-form α0:TM → k. Finally note that µ−1 = ξ−1dz is a pC-valued
holomorphic differential and thus Ad b0(µ−1) is a 1-form of type (1, 0). 2

If we recall the identification made in (4.2), the above proposition provides us with a map

Φ:P −→ H:µ 7−→ [Φµ] (4.14)

which we think of as a Weierstrass-type representation for harmonic maps.

Before we investigate the properties of this map, let us pause and discuss how this construc-
tion relates to the finite type harmonic maps in [5]. It is shown in [7] that a harmonic map
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f :R2 → G/K is of finite type if f is obtained from an extended lift Φµ:R2 → ΛGσ whose

holomorphic potential µ =
◦
ξ dz is constant of the form

◦
ξ= λd−1

◦
η,

◦
η∈ Λd , (4.15)

for some d ∈ N odd. Otherwise said, for d ∈ N odd, we have natural subspaces

λd−1Λddz ⊂ P , (4.16)

and the images of those subspaces under Φ comprise the finite type harmonic maps. The
importance of finite type harmonic maps lies in the fact that they can be constructed
by solving finite dimensional Hamiltonian ODE’s in Lax form. We briefly sketch these

developments: let d ∈ N be odd,
◦
η∈ Λd,

◦
ξ= λd−1

◦
η and µ =

◦
ξ dz. Then, by (4.8), (4.10),

gµ(z) = exp(λd−1
◦
η z) = Φµ(z)bµ(z) . (4.17)

Let
η: = AdΦ−1µ (

◦
η):M → Λgσ . (4.18)

Then, by (4.17),

η = Ad bµ(
◦
η) (4.19)

and thus
λdη = Adbµ(λ

d ◦η) ,

which, since bµ takes values in Λ+BG
C
σ , extends holomorphically to |λ| < 1. Hence η has a

pole of order d at λ = 0 and is real due to (4.18), so

η:M → Λd ⊂ Λgσ (4.20)

is Λd-valued. Moreover,
dη = [η,Φ−1µ dΦµ] (4.21)

and from (4.19), (4.12) we obtain

Φ−1µ dΦµ = (Ad bµ(µ))Λgσ = (Ad bµ(λ
d−1 ◦η dz))Λgσ = (λd−1η)Λgσ . (4.22)

Combining (4.21) and (4.22) we see that the Λd-valued map η satisfies the following system
of ODE’s in Lax-form:

dη = [η, (λd−1ηdz)Λgσ ], η(0) =
◦
η∈ Λd . (4.23)

Readers familiar with the Adler-Kostant-Symes integration scheme [1] will recognize (4.23)
as a special case of commuting Hamiltonian flows on Λgσ (cf.[7]). From this theory it follows
that (4.23) has a unique, globally defined solution

η:M → Λd

to any choice of initial condition η0 ∈ Λd. (That η is globally defined follows from the fact
that in our case the L2-inner product on Λgσ is positive definite and is preserved by the
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flows (4.23) which evolve on the finite dimensional subspace Λd.) Moreover, when d ∈ N is
odd,

A = (λd−1ηdz)Λgσ :TM → Λgσ (4.24)

is of the form
A = λ−1α′1 + α0 + λα′′1 , (4.25)

satisfies the Maurer-Cartan equation dA+ 1
2 [A,A] = 0 and can thus be integrated to a map

Φ:M → ΛGσ, Φ(0) = e .

Clearly, Φ = Φµ with µ = λd−1
◦
η dz, so that by solving (4.23) one finds all extended lifts

Φµ of finite type harmonic maps f :M → G/K. For a more detailed description of this and
also its relation to the r-matrix integration scheme see [7].

After this excursion into finite type harmonic maps, we return to the Weierstrass repre-
sentation Φ:P → H (4.14). First we observe that Φ is equivariant with respect to natural
group actions on P and H. The group decomposition (4.3)

ΛGC
σ = ΛGσ · Λ

+
BG

C
σ

defines a “dressing action” [32] of ΛGC
σ on ΛGσ: for h ∈ ΛGC

σ and g ∈ ΛGσ

h#g: = (hg)ΛGσ
. (4.26)

In particular, Λ+GC
σ acts via dressing on ΛGσ. Now let F :M → ΛGσ be an extended lift

and h ∈ Λ+GC
σ . Applying (4.26) pointwise, we obtain a new map

h#F :M → ΛGσ, (h#F )(z) = h#F (z), z ∈M . (4.27)

Similar to the case of harmonic maps into Lie groups [14] this defines an action on H.

Proposition 4.3 (i) h#F is an extended lift.

(ii) Let H:M → K be a gauge transformation. Then there exists H̃:M → K
with

h#(FH) = (h#F )H̃ ,

i.e., h#(FH) and h#F are extended lifts of the same harmonic map. Thus

(4.27) defines a left action of Λ+GC
σ on H given by

h#f = π ◦ ((h#F )|λ=1
) ,

where F :M → ΛGσ is an extended lift of the harmonic map f :M → G/K.

Proof. (i) This computation is analogous to the one given in [14]. Since F is an extended
lift there exists k and p-valued 1-forms α0, α1 on M with

F−1dF = λ−1α′1 + α0 + λα′′1 .
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Now let h ∈ Λ+GC
σ and decompose

hF = (h#F )b

according to (4.3) where b:M → Λ+BG
C
σ . Then

(h#F )−1d(h#F ) = bF−1h−1(hdFb−1 − hFb−1dbb−1)

= Adb(F−1dF )− dbb−1

and since dbb−1 takes values in Λ+b gC
σ we obtain

(h#F )−1d(h#F ) = Adb(F−1dF )Λgσ .

Recall that AdΛ+BG
C
σ preserves Λ−1,∞ so that, putting b|λ=0

= b0 ∈ B ⊂ KC,

(λAdb(F−1dF ))|λ=0
= Adb0(α

′
1)

and thus
(Adb(F−1dF ))Λgσ = λ−1α̃′1 + α̃0 + λα̃′′1 ,

where the p-valued 1-form α̃1 = α̃′1 + α̃′′1 is given by

α̃′1 = Adb0(α
′
1)

and α̃0 is some k-valued 1-form. Moreover, since F (0) = k ∈ K and ΛGσ ∩Λ+GC
σ = K, we

get
(h#F )(0) = h#F (0) = h#k = (hk)ΛGσ

∈ K .

Hence h#F is an extended lift.

(ii) Let H:M → K and h ∈ Λ+GC
σ . Then

hF = (h#F )b

hFH = (h#(FH))b̃ = (h#F )bH

for b, b̃:M → Λ+BG
C
σ . Thus

h#(FH) = (h#F )bHb̃−1

and we conclude that bHb̃−1 takes values in ΛGσ. But bHb̃−1 also takes values in Λ+GC
σ

so that
bHb̃−1 =: H̃

takes values in K. 2

The space P of holomorphic potentials admits a natural left action of the holomorphic gauge
group

G = {h:M → Λ+GC
σ ; hz = 0} (4.28)

by gauge transformations, i.e., for µ ∈ P and h ∈ G

h · µ = Adh(µ)− dhh−1 . (4.29)
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Lemma 4.4. The map Φ:P → H:µ→ [Φµ] is equivariant with respect to the gauge action

of G on P and the dressing action of Λ+GC
σ on H. More specifically, for h ∈ G

[Φh·µ] = h(0)#[Φµ] .

Proof. We have to show that for some H:M → K

Φh·µ = (h(0)#Φµ)H .

From (4.8) and (4.10) we see that Φµ = (gµ)ΛGσ
where gµ:M → ΛGC

σ solves g−1dg = µ
subject to g(0) = e. Since h(0)gµh

−1 solves g−1dg = h · µ subject to g(0) = e we conclude

gh·µ = h(0)gµh
−1 . (4.30)

Let bµ:M → Λ+BG
C
σ such that gµ = Φµbµ. Since Λ+GC

σ = K · Λ+BG
C
σ and h takes values in

Λ+GC
σ we have

Φh·µ = (gh·µ)ΛGσ
= (h(0)gµh

−1)ΛGσ

= (h(0)Φµbµh
−1)ΛGσ

= (h(0)ΦµH̃)ΛGσ

where bµh
−1 = H̃b̃ with H̃:M → K and b̃:M → Λ+BG

C
σ . But by (4.27), the latter is

h(0)#(ΦµH̃) and so proposition 4.3 (ii) gives

Φh·µ = h(0)#(ΦµH̃) = (h(0)#Φµ)H

for some H:M → K. 2

A crucial property of our construction is the fact that every harmonic map can be obtained
from some holomorphic potential. This reduces the harmonic map equation to a linear
ODE with holomorphic data similar to the classical Weierstrass representation for minimal
surfaces.

Lemma 4.5. The map Φ:P → H:µ→ [Φµ] is surjective and its fibres are the orbits of the
based holomorphic gauge group G0 = {h ∈ G ; 〈(′) = e}.

Proof. Let f :M → G/K be harmonic and let F :M → ΛGσ be an extended lift of f
which we may assume has F (0) = e. We have to find a holomorphic potential µ ∈ P with

[Φµ] = [F ]. The idea is to construct h:M → Λ+GC
σ with h(0) = e so that g = Fh has

gz = 0, or equivalently, that µ = g−1dg is a 1-form of type (1,0) which, due to the Maurer-
Cartan equation, is then holomorphic. Since F−1dF = λ−1α′1 + α0 + λα′′1 the holomorphic

1-form µ takes values in Λ−1,∞, i.e., µ ∈ P. Moreover, due to Λ+GC
σ = K ·Λ+BG

C
σ , we have

h = Hb with H:M → K and b:M → Λ+BG
C
σ so that

g = (FH)b .

Comparing with (4.10) and noting that g(0) = e we see that

Φµ = FH
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and thus [Φµ] = [F ]. As outlined above, we want to find h:M → Λ+GC
σ such that the

(0, 1)-part of µ vanishes, i.e., we need to solve the equation

µ(0,1) = 0 . (4.31)

But

g−1dg = Adh−1(F−1dF ) + h−1dh

= Adh−1(λ−1α′1 + α0 + λα′′1) + h−1dh

so that (4.31) becomes
∂hh−1 = −(α′′0 + λα′′1) (4.32)

subject to h(0) = e. This is a ∂-problem with right hand side in the Banach Lie algebra

Λ+gC
σ which can be solved over the simply connected domain M (see Appendix). Note

that solutions of (4.32) subject to h(0) = e are determined only up to right multiplication

by elements in G′. So let h:M → Λ+GC
σ be a solution of (4.32) with h(0) = e. Then, by

construction, g = Fh has

µ = g−1dg = Adh−1(λ−1α′1 + α′0) + h−1∂h

which is of type (1,0) and thus holomorphic. Moreover, since h takes values in Λ+GC
σ and

AdΛ+GC
σ leaves Λ−1,∞ invariant, µ takes values in Λ−1,∞ which is to say µ ∈ P. Thus

Φ:P → H is surjective. To determine the fibres of Φ, let µ, η ∈ P such that

[Φµ] = [Φη] . (4.33)

Then Φµ = ΦηH with H:M → K and since by (4.10) gµ = Φµbµ, gη = Φηbη we see that
(4.33) is equivalent with

gµ = gη(b
−1
η Hbµ) = gηh

−1 (4.34)

where h:M → Λ+GC
σ with h(0) = e. Thus

µ = g−1µ dgµ = Adh(g−1η dgη)− dhh−1 = h · η

and from (4.34) we see that h ∈ G0. Thus µ and η are gauge equivalent under G0. The
converse is obvious from Lemma 4.4. 2

Corollary 4.6. Every harmonic map f :M → G/K is obtained from a holomorphic poten-
tial µ ∈ P such that µ =

∑
k odd, k≥−1 λ

kµk, i.e., µ has only odd terms in λ, in particular, µ
has no constant term.

Proof. This follows at once from the previous lemma and the fact that every η ∈ P is
G0-equivalent to a µ ∈ P with no even terms: let η ∈ P and decompose

η = ηe + ηo
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into even and odd terms, i.e., ηe(−λ) = ηe(λ) and ηo(−λ) = −ηo(λ). In particular, ηe takes

values in Λ+GC
σ , so that there is a unique solution h ∈ G0 solving

h−1∂h = ηe, h(0) = e

and, as a consequence,
h(−λ) = h(λ) .

Thus
µ: = h · η = Adh(η)− dhh−1

= Adh(ηe)− dhh−1 +Adh(η0) = Adh(η0) ,

where
µ(−λ) = Adh(−λ)ηo(−λ) = −µ(λ) ,

so that
µ =

∑

k odd, k≥−1

λkµk .

2

We summarize the above results in the following:

Theorem 4.7. Let Φ:P → H be the Weierstrass representation of harmonic maps from
an open simply connected Riemann surface into a symmetric space. Then

(i) Φ is equivariant, i.e., if h ∈ G then

[Φh·µ] = h(0)#[Φµ] ,

(ii) Φ is surjective and

(iii) the fibres of Φ are the G0-gauge orbits in P.

Remark 4.8. The above equivariance statement is the starting point for an investigation
of the harmonic map equation along the lines of Segal and Wilson’s [26] approach to the
KdV -equation. The basic idea is that a sufficiently interesting class of solutions to the
equations at hand is comprised by the dressing orbit through a “vacuum” solution. In the
case of harmonic maps f :M → G/K into a symmetric space “vacuum” solutions are orbits
of 2-parameter subgroups

fC(z) = exp(Cz + Cz) · o

where C ∈ pC with [C,C] = 0 and o = eK. An extended lift is easily seen to be

FC(z) = exp(λ−1Cz + λCz) .

Since
exp(λ−1Cz) = FC · exp(−λCz)

and exp(−λCz) takes values in Λ+BG
C
σ we obtain by comparison to (4.10) that

FC = Φµ
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with the holomorphic potential µ = λ−1Cdz. Recall that a harmonic map is of finite type

(4.15) if it is of the form [Φµ] with µ = λd−1
◦
η,
◦
η∈ Λd, d ∈ N odd. It has been shown in [5], [7]

that every harmonic 2-torus f :T 2 → G/K whose derivative ∂f
∂z :T

2 → T (G/K)C is regular
semisimple at one point is of finite type. It is interesting to note that all such harmonic
2-tori are in fact contained in the dressing orbit of some fC . Without going too much into
details (one has to enlargen the loop groups involved slightly) we have the following more
general result which is proven in [6].

Theorem 4.9. Let µ =
∑

k≥−1 ξkλ
kdz ∈ Λ−1,∞ be a constant (holomorphic) potential, i.e.,

ξeven ∈ kC, ξodd ∈ pC, such that ξ−1 ∈ pC is semisimple. Then there exists h ∈ Λ+GC
σ

and C ∈ AdKC · ξ−1 with [C,C] = 0 so that

h#fC = [Φµ] .

Also in the general case (of not necessarily finite type harmonic maps) a natural class are
those harmonic maps [Φµ], which arise from holomorphic potentials

µ = λ−1η , (4.35)

where η is a pC-valued holomorphic 1-form on M . In particular, such harmonic maps [Φµ]
are given by finitely many holomorphic differentials. Interestingly enough, any harmonic
map f :M → G/K may be obtained from a potential of the form (4.35) if one allows η to
be meromorphic.

To see this let f :M → G/K be harmonic with holomorphic potential µ ∈ P. Then (4.10)

f = [Φµ] where g = Φµb and g:M → ΛGC
σ integrates

g−1∂g = µ, g(0) = e .

Since g:M → ΛGC
σ is holomorphic and τ : ΛGC

σ → Det∗ is holomorphic we know from
Corollary 2.5 that the zero locus of τ ◦ g,

S = {p ∈M ; g(p) not contained in the big cell } ⊂M ,

is discrete. But g = Φµb with b taking values in Λ+BG
C
σ , so that g(p) is in the big cell if and

only if Φµ(p) is, in particular

g− = (Φµ)−,

S = (τ ◦ Φµ)
−1(0) ,

(4.36)

and Lemma 2.6 implies that g− extends meromorphically across S. Notice that if F :M →
ΛGσ is another extended lift for f then (4.2) F̃ = kΦµH for some k ∈ K and H:M → K.
Thus the set S ⊂M depends only on the harmonic map f :M → G/K.

Theorem 4.10. Let f :M → G/K be harmonic with f(0) = eK and S ⊂ M as defined

above. Then there exists a pC-valued meromorphic 1-form η on M with poles contained in
S so that

f = [Φλ−1η]

on M \ S.
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Proof. Let F̃ :M → ΛGσ be an extended lift of f with F̃ (0) = e. Then, on M \ S, we can
decompose

F̃ = F−F+

where F− takes values in Λ−∗ G
C
σ , F+ takes values in Λ+GC

σ and F− extends meromorphically
across S (4.36). But

F−1− dF− = AdF+(F̃
−1dF̃ )− dF+F

−1
+

= AdF+(λ
−1α′1 + α0 + λα′′1)− dF+F

−1
+

= λ−1Ad(F+)0(α
′
1) =:λ−1η ,

(4.37)

due to the direct sum decomposition ΛgC
σ = Λ−∗ gC

σ ⊕ Λ+gC
σ , where η:M → pC is mero-

morphic with poles contained in S. Moreover, F−(0) = e so that, together with (4.37),
(4.8)

F− = gλ−1η

on M \ S. If we let
F+ = b−1H−1 ,

with H:M \ S → K and b:M \ S → Λ+BG
C
σ , we obtain

gλ−1η = F− = F̃F−1+ = (F̃H)b , (4.38)

so that by (4.10)
Φλ−1η = F̃H

and thus
f = [Φλ−1η] .

2

We conclude this section with a discussion of how to apply the above theory to the construc-
tion of constant mean curvature surfaces with prescribed umbilic points. Let φ:M → R3

be a (simply connected) constant mean curvature surface and let f :M → S2 be its Gauss
map. Then [25] f is harmonic and the quadratic differential given by the (2, 0)-part of the
induced metric

Q = (df, df)(2,0) (4.39)

is holomorphic. The zeros of Q are the umbilic points of the constant mean curvature surface
φ:M → R3. Unless M is the Riemann sphere, in which case Q ≡ 0 and φ(M) ⊂ R3 is a
round sphere, f :M → S2 is nonconformal. We view S2 as the symmetric space SU(2)/S1

with symmetric involution σ(g) = sgs−1, s =

(
1 0
0 −1

)
, and Cartan decomposition g =

k⊕ p where

k =

{(
ia 0
0 −ia

)
; a ∈ R

}
,

p =

{(
0 b
−b 0

)
; b ∈ C

}
.
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If F :M → SU(2) is a frame of f then, (3.5),

F−1dF = α0 + α1

and by Definition 3.4, F̃ :M → ΛSU(2)σ solving

F̃−1dF̃ = λ−1α′1 + α0 + λα′′1 , (4.40)

is an extended lift. Notice that under the identification (3.2), (3.4)

df = AdF (α1)

so that
Q = (α′1, α

′
1) ,

where ( , ) denotes the Killing form on pC. From Lemma 4.5 we know that every harmonic
map f :M → S2 is obtained from an extended lift F̃ arising from a holomorphic potential
µ =

∑
k≥−1 λ

kµk via the decomposition (4.10)

gµ = F̃ b ,

where gµ integrates g−1dg = µ, g(0) = e. Moreover, (4.40) and (4.13) imply that

α′1 = Ad b0(µ−1) ,

where b0 = b|λ=0
:M → B. Thus, the holomorphic differential Q is given by the product of

the leading term µ−1 of the holomorphic potential µ,

Q = (µ−1, µ−1) . (4.41)

Note that by Theorem 4.10 one may assume that, away from a discrete set of points in

M,µ = λ−1η for a holomorphic pC-valued 1-form η. This suggests the following recipe to
construct special constant mean curvature surfaces with prescribed umbilics: choose two
holomorphic functions a1, a2:M → C and consider the holomorphic potential

µ = λ−1
(

0 a1
a2 0

)
dz . (4.42)

Then F̃ :M → ΛSU(2)σ, where gµ = F̃ b, is an extended lift of the harmonic map f =
π ◦ F̃1:M → SU(2)/S1. From Sym’s formula [2] we know that f is the Gauss map of the
constant mean curvature surface

φ =

(
d

dθ |θ=0
F̃

)
F̃−1 + f :M → su(2) ∼= R3

where λ = eiθ. Moreover, in view of (4.39), (4.41) and (4.42) one can show by computing
the differential of φ that the umbilic points of φ are given by the zeros of a2 and φ has
branch points at the zeros of a1. (The parallel constant mean curvature surface to φ is
given by φ−2f which has umbilics at the zeroes of a1 and branch points at the zeros of a2.)
Hence, by selecting a1, a2:M → C accordingly we can arrange for any prescribed umbilic
configuration. A detailed study of constant mean curvature surfaces so obtained will be
done elsewhere. We content ourselves here with some examples:
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(i) a1 ≡ 1, a2 ≡ 0,M = C, gives the round sphere minus a point;

(ii) a1 = −a2 ≡ 1,M = C, gives the cylinder;

(iii) a1 = 1, a2 ≡ zm,M = C, gives properly immersed constant mean curvature
planes with one umbilic of order m at the origin and rotational induced metric
initially constructed by B. Smyth [27], [13], [2] (see Picture 1);

(iv) a1 = 1, a2 = Πn
k=1(z−pk), pk ∈ C,M = C, gives the so called generalized Smyth

surfaces with umbilics at pk ∈ C (see Picture 2).

Picture 1: a2 = z5.

Picture 2: a2 = Π5k=1(z − e2πik/5).

For the construction of compact constant mean curvature surfaces one expects that in
general the holomorphic potential will have higher order terms in λ. Except for the leading
term µ−1 we have no geometrical interpretation of those higher order terms.
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APPENDIX: The ∂-problem.

Since we could not find a reference in the literature we give a brief outline how to solve
the ∂-problem in the setting of Lemma 4.5. Let M be either C or the unit disc and

A + λB:M → Λ+GC
σ so that A:M → kC and B:M → pC. Since A and B are the (0, 1)-

components of the derivative of a harmonic map they are real analytic on M . Consider the
∂-problem

gz = (A+ λB)g

g(0) = 1
(4.43)

where z is a global holomorphic coordinate on M .

Lemma 4.11. (4.43) has a (real analytic) solution g:M → Λ+GC
σ .

Proof. First we show that we have local solutions around every point p0 ∈M . Since A,B
are real analytic there exist holomorphic maps

Ã:Dε(p0)×Dε(p0) −→ kC

B̃:Dε(p0)×Dε(p0) −→ pC

where Dε(p) is the ε-disc around p ∈M , so that

Ã(z, z) = A(z, z), B̃(z, z) = B(z, z) .

Consider the equation
g̃w = (Ã+ λB̃)g̃

g̃(z, p0) = 1

which has a unique (holomorphic) solution

g̃:Dε(p0)×Dε(p0)→ Λ+GC
σ .

Then g:Dε(p0)→ Λ+GC
σ defined by

g(z, z): = g̃(z, z)

solves
gz = (A+ λB)g .

Thus we have an open cover (Uα) of M with (real analytic) solutions gα:Uα → Λ+GC
σ of

gz = (A+ λB)g .

On the overlap Uα ∩ Uβ the maps

hαβ = g−1α gβ :Uα ∩ Uβ → Λ+GC
σ

are holomorphic and satisfy the co-cycle condition

hαβhβγ = hαγ .
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But those are the data for a holomorphic Λ+GC
σ -principal fiber bundle P → M whose

(local) holomorphic sections are described by the ∂-equation (4.43). Since M is contractible
P admits a continuous global section. By a generalization of Grauert’s Theorem [3] there

exists a global holomorphic section g:M → Λ+GC
σ . To satisfy the initial condition take

g g(0)−1. 2
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