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Introduction


In this paper we investigate the interplay between spin structures on a Riemann surface M and immer-
sions of M into three-space. Here, a spin structure is a complex line bundle S over M such that S⊗S is
the holomorphic (co)tangent bundle T (M) of M . Thus we may view a section of a S as a “square root”
of a holomorphic 1-form on M . Using this notion of spin structure, in the first part of this paper we
develop the notion of the spinor representation of a surface in space, based on an observation of Dennis
Sullivan [27]. The classical Weierstrass representation is


(g, η) −→ Re


∫
(1− g2, i(1 + g2), 2g)η,


where g and η are respectively a meromorphic function and one-form on the underlying compact Riemann
surface. The spinor representation (Theorem 5) is


(s1, s2) −→ Re


∫
(s21 − s22, i(s21 + s22), 2s1s2),


where s1 and s2 are meromorphic sections of a spin structure S. Either representation gives a (weakly)
conformal harmonic map M → R3, which therefore parametrizes a (branched) minimal surface.


One feature of the spinor representation is that fundamental topological information, such as the
regular homotopy class of the immersion, can be read off directly from the analytic data (Theorem
6). In fact, for the special case where the Riemann surface M is hyperelliptic, we are able to give an
explicit calculation of the Arf invariant for the immersion (Theorem 8). We also consider in Part I the
spinor representation for nonorientable minimal surfaces in terms of a lifting to the orientation double
cover (Theorem 11). This is sufficient for constructing examples later in the paper, but is less satisfying
theoretically. In a future paper, we plan to consider the general case from the perspective of “pin”
structures, and also give a more direct differential geometric treatment of the Arf invariant.


The second part of this paper focuses on general properties of minimal surfaces with embedded
planar ends from the viewpoint of the spinor representation. It is well-known (see [2], [13], [14]) that such
surfaces conformally compactify to give extrema for the squared mean curvature integral W =


∫
H2dA


popularized by Willmore. Conversely, for genus zero, all W -critical surfaces arise this way [2].
Using the spinor representation to study these special minimal surfaces has the computational


advantage of converting certain quadratic conditions to linear ones. This is carried out in Part II, where
we refine the tools we need. In fact, associated to a spin structure S on a closed orientable Riemann
surfaceM is a vector space K of sections of S such that pairs of independent sections (s1, s2) from K form
the spinor representations of all the minimal immersions of M with embedded planar ends (Theorem
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13). Thus the problem of finding all these immersions is reduced to an algebraic problem (Theorem 15).
In order to better understand K, a skew-symmetric bilinear form Ω is defined from whose kernel K is
computable (Theorem 17).


The third and (final part) of this paper is devoted to the construction of examples and to classifi-
cation results. Specifically, for a given finite topological type of surface, we want to explore the moduli
space M of immersed minimal surfaces of this type with embedded planar ends: the dimension and
topology ofM, convergence to degenerate cases (that is, the natural closure ofM), and examples inM
with special symmetry. The tools mentioned above permit the broad outline of a solution, but require
ingenuity to apply in particular cases. For example, the form Ω allows the moduli space to be expressed
as a determinantal variety which determines how the location of the ends can vary along the Riemann
surface M . However, this determinantal variety is only computable when the number of ends is small.
Furthermore, the basic tools, being algebraic geometrical, ignore the real analytic problems of removing
periods and branch points. The latter require much subtler and often ad hoc methods.


Previously known results concerning genus zero minimal surfaces with embedded planar ends in-
clude the following:
• examples have been found for 4, 6, and every n ≥ 8 ends [2], [14], [23];
• there are no immersed examples with 3, 5, and 7 ends [3];
• the moduli spaces for immersed spheres with 4 and 6 ends, and projective planes with 3 ends have


been determined [3].
In Part III our new theorems include the following:
• a new proof of the non-existence of examples with 3, 5 and 7 ends is given using the skew-symmetric


form Ω (Theorem 18);
• the moduli space for 2p ends (2 ≤ p ≤ 7) is shown to be 4(p− 1)-dimensional (Theorem 21);
• the point which compactifies the moduli space of projective planes with 3 ends is proved to be a


Möbius strip, and all symmetries of these surfaces are found (Theorem 25).
A recent result concerning genus one is the construction in [5] of examples with four embedded


planar ends, assuming a rectangular lattice. We give further results:
• there are no three-ended tori (Theorem 26);
• there is a real two-dimensional family of four-ended immersed examples on each conformal type of


torus (Theorem 27);
• there exists an immersed Klein bottle with four ends (Theorem 29).
For higher genus, the general methods we have developed here also yield (branched) minimal


immersions with embedded planar ends, but it becomes more and more difficult to determine precisely
when branch points are absent or periods vanish: we again postpone this case to a future paper.


Most of the theorems presented here were worked out while we visited the Institute for Advanced
Study during the 1992 Fall term, and were first recorded in [26]. It is a pleasure to thank the School
of Mathematics at the Institute for its hospitality, as well as Sasha Bobenko, Peter Norman and Dennis
Sullivan for their comments and interest. In particular, we should mention that Bobenko has recently
announced some related results for constant mean curvature surfaces (Surfaces in terms of 2 by 2 matri-
ces: Old and new integrable cases, in: A. Fordy and J. Wood, Harmonic Maps and Integrable Systems:
Vieweg, 1994).


Part I


Spinors, Regular Homotopy Classes and the Arf Invariant


1 The spinor representation


The notion of a spin structure is developed and used to describe the spinor representation of a surface in
space. Section 3 defines a “quadratic form” which can be used to completely classify the spin structures
on a manifold, and section 4 computes coordinates for the unique spin structure on the Riemann sphere.
In the next two sections, the spinor representation of a surface is explained and related to the regular
homotopy class of the surface. Section 7 shows equivalent characterizations of spin structures, the
most useful of which will be that of representing spin structures by holomorphic differentials. These
differentials are computed on hyperelliptic Riemann surfaces. Section 9 takes up the question of group
action on spinors, and computes the group which performs Euclidean similarity transformations. Two
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surfaces which are transforms of each other under the action of this group are considered to be the same.
The final two sections discuss briefly the technicalities of periods and nonorientable surfaces.


2 Spin structures and spin manifolds


A spin structure on an n-dimensional (spin) manifold M is a certain two-sheeted covering map of the
SO(n)-frame-bundle onM to a Spin(n)-bundle (see [20], [17]). When n = 2, this notion of spin structure
may easily be reduced to the following definition in terms of complex line bundles.


Definition 1. A spin structure on a Riemann surface M is a complex line bundle S over M together
with a smooth surjective fiber-preserving map µ : S −→ T (M) to the holomorphic (co)tangent bundle
T (M) satisfying


µ(λs) = λ2µ(s)(2.1)


for any section s of S.


The figure below depicts a spin structure S on M as quadratic map of line bundles:


-


?


@
@
@
@R


M


S T (M)
µ


Figure 1: Spin structure


Two spin structures (S, µ) and (S ′, µ′) on a Riemann surface M are isomorphic if there is a vector
bundle isomorphism δ : S −→ S ′ for which µ = µ′δ. Hence two spin structures may be isomorphic
as vector bundles and yet not be isomorphic as spin structures. The number of nonisomorphic spin
structures on a Riemann surface M is equal to the cardinality of H1(M, � 2). (This count remains true
for spin manifolds in general: see [20].) In particular, if M is a closed Riemann surface of genus g, there
are 22g = #H1(M, � 2) such structures on M .


On an annulus A = {r1 < z < r2} there are exactly two nonisomorphic spin structures, which can
be given explicitly as follows. The tangent bundle T (A) may be identified with A× � by means of the
global trivialization


a
∂


∂z


∣∣∣∣
p


7→ (p, a).


Let S0 = S1 = A× � and define maps µk : Sk −→ T (A) for k = 0, 1 by


µ0(z, w) = (z, w2),
µ1(z, w) = (z, zw2).


Then (Sk, µk) are spin structures on A since µk satisfies the condition (2.1). Though S0 and S1 are
isomorphic vector bundles over A, they are nonisomorphic spin structures. For if S0 and S1 were
isomorphic spin structures with bundle isomorphism δ : S0 −→ S1 satisfying µ0 = µ1ϕ, then δ would be
of the form (z, w) 7→ (z, f(z, w)). Then w2 = zf2, implying that z has a consistent square root on �


∗
,


which is impossible.


3 The quadratic form associated to a spin structure


In this section, the Riemann surface M , its holomorphic (co)tangent bundle, and the spin structure are
replaced with the corresponding real manifold and real vector bundles. In particular, all vector fields in
this section are real vector fields.


To each spin structure S on the Riemann surface M we associate a � 2-valued quadratic form


q : H1(M, � 2) −→ � 2.
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To say that q is quadratic means that for all α1, α2 ∈ H1(M, � 2) we have


q(c1 + c2) = q(c1) + q(c2) + c1 · c2.


where c1 · c2 denotes the mod 2 intersection number of c1 with c2.
To define q(c), let α : S1 −→ M be a smooth embedded representative of c (the existence of such


an α follows from results in [19]). Let v be a smooth vector field along α which lifts to a section of the
spin structure along α, and let w(α, v) denote the total turning number, mod 2, of the derivative vector
α′ against v along α. Define q(c) = wv(c) + 1.


To show that q is quadratic, the following technical lemma is stated without proof. (A Jordan trail
is a closed tracing along a curve which tracing does not cross itself. The existence of the Jordan trail is
assured in [12].)


Lemma 2.


(i) Let α : S1 −→ M be an immersion, and let a be the number of self-crossing points of α. Let v be
a smooth non-zero vector field along α(S1) on M . Let β be a Jordan trail for α. Then


wv(β) = wv(α) + a.


(ii) Let α1 and α2 : S1 −→ M be immersions, with a common base point α1(t) = α2(t). Let α1 ∗ α2 :
S1 −→ M denote the closed curve consisting of α1 followed by α2. Let v be a smooth non-zero
vector field along α1(S


1) ∪ α2(S
1). Then


wv(α1 ∗ α2) = wv(α1) + wv(α2).


Lemma 3. If α : S1 −→ M is an embedded curve on a spin surface M with spin structure S, and v1,
v2 are smooth nonzero vector fields along α, then the following are equivalent:
(i) w(α, v1) = w(α, v2)
(ii) v1 and v2 alike lift or do not lift along α to smooth sections of S.


Proof. We may assume M is an annulus containing α(S1) as the unit circle, with spin structure Sk


(k = 0 or 1) as in section 2. Any vector field S1 −→ � is of the form t 7→ tp[f(t)]2, where f is smooth
and


p =


{
k if v lifts,
1− k if v does not lift.


Then, with wα(h1, h2) defined as the mod 2 winding number of h1 against h2 (or equivalently, of h2/h1)
along α,


wα(v1, v2) = wα(t
p[f1(t)]


2, tq[f2(t)]
2) = wα(t


p, tq) ≡ p+ q (mod 2)


=


{
0 if v1, v2 alike lift or do not lift,
1 otherwise.


But wα(v1, v2) = w(α, v1) + w(α, v2), and the result follows. 2


Theorem 4. The form q : H1(M, � 2) −→ � 2 defined above is well-defined, that is, independent of the
choice of the vector field v and the choice of embedded representative α. Moreover, q satisfies


q(c1 + c2) = q(c1) + q(c2) + c1 · c2.


Proof. Let α0, α1 : S1 −→ M be embedded representatives of c ∈ H1(M, � 2). Let v0, v1 be smooth


nonzero vector fields which lift along α0, α1 respectively to sections of the spin structure S. Let αt


(t ∈ [0, 1]) be a homotopy of α0 and α1. Extend v0 to a smooth nonzero vector field in an annulus
containing the image of αt.


Then w(αt, v) is a continuous function of t, and an integer, hence it is constant. In particular,


w(α0, v0) = w(α1, v).
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But v = v0 lifts along α0 to a smooth section of S. So v must also lift along α1. But since v1 also lifts
along α1,


w(α1, v) = w(α1, v1).


Thus
w(α0, v0) = w(α1, v1),


showing that q is well-defined.
Now, to show q is quadratic, let α1, α2 be embedded representatives of c1, c2 ∈ H1(M, � 2), and let


a = # of self-crossing points of α1 ∗ α2 ≡ α1 · α2 − 1 (mod 2).


Let β be a Jordan trail for α1 ∗ α2. Then


w(β, v) = w(α1 ∗ α2, v) + a = w(α1, v) + w(α2, v) + α1 · α2 + 1


by Lemma 2(i). Hence


q(c1 + c2) = w(β, v) + 1 = (w(α1, v) + 1) + (w(α2, v) + 1) + α1 · α2


= q(c1) + q(c2) + c1 · c2.
2


A well-known result (see, for example, [24]) is that the equivalence class of the quadratic form
q : H1(M, � 2) −→ � 2 under linear changes of bases of H1(M, � 2) is determined by its Arf invariant


Arf q =
1√
#H


∑


α∈H


(−1)q(α),(3.2)


where H = H1(M, � 2). The quadraticity of q insures that this invariant has values in {+1,−1}. For a
compact surface of genus g, there are 22g−1 + 2g−1 spin structures for which the Arf invariant of the
corresponding quadratic form is +1, and 22g−1 − 2g−1 spin structures for which it is −1 (see section 8).


4 The spin structure on the Riemann sphere


The following description of the unique spin structure on S2, as well as the spinor representation of a
surface in the next section, are adapted from [27]. Identify


S2 ∼= [Q] = {[z1, z2, z3] ∈ CP 2 | z2
1 + z2


2 + z2
3 = 0},


where Q the null quadric


Q = {(z1, z2, z3) ∈ �


3 | z2
1 + z2


2 + z2
3 = 0}.


Then T (S2) may be identified with the restriction to [Q] of the tautological line bundle


Taut(CP 2) = {(Λ, x) ∈ CP 2 × �


3 | x ∈ Λ}


(here, CP 2 is thought of as the lines in �


3
), so


T (S2) ∼= Taut(CP 2)|[Q] = {(Λ, x) ∈ [Q]×Q | x = 0 or π(x) ∈ Λ},(4.3)


where π : Q −→ [Q] is the canonical projection. Given this, the unique spin structure Spin(S2) on S2


may then be identified with the tautological line bundle


Spin(S2) ∼= Taut(CP 1) ∼= {(Λ, x) ∈ CP 1 × �


2 | x ∈ Λ},(4.4)


with the associated mapping µ given by


µ([z1, z2], (s1, s2)) = ([σ(z1, z2)], σ(s1, s2)),


where σ : �


2 −→ Q is the map defined by


σ(z1, z2) = (z2
1 − z2


2 , i(z
2
1 + z2


2), 2z1z2).(4.5)
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As may be checked, the map µ satisfies the conditions of Definition 1.
When T (S2) and Spin(S2) are restricted respectively to their nonzero vectors and nonzero spin-


vectors, they have single coordinate charts


{
nonzero vectors in T (S2)


}
−→ Q \ {0}{


nonzero spin-vectors in Spin(S2)
}
−→ �


2 \ {0}


defined by taking the second component in each of (4.3) and (4.4) respectively. In this case, µ may be


thought of as the two-to-one covering map σ : �


2 \ {0} −→ Q \ {0}.


5 The spinor representation of a surface


To describe the spinor representation, let M be a Riemann surface with a local complex coordinate z,
and X : M −→ R3 a conformal (but not necessarily minimal) immersion of M into space. Since X is


conformal, its z-derivative ∂X = ω can be viewed as a null vector in �


3
, or via (4.3), as a map into the


(co)tangent bundle T (S2); so with the (not necessarily meromorphic) Gauss map g associated to X, we
get the bundle map (ω, g) as in Figure 2.


-


-


? ?
M S2


T (M) T (S2)


g


ω


Figure 2: Immersion into space


The Weierstrass representation is determined by (g, η) where η is the (not necessarily meromorphic)
differential form defined by


ω = (1− g2, i(1 + g2), 2g) η.


Conversely, given a bundle map (ω, g) of T (M) into T (S2), if ω satisfies the integrability condition
Re dω = 0, then


X = Re


∫
ω :M −→ R3


is a (possibly periodic) immersion with Gauss map g.
The spinor representation of the immersion, shown in Figure 3, is obtained by lifting ω to the spin


structures on M and S2.


Theorem 5. Let M be a connected surface, and (ω, g) a bundle map of T (M) into T (S2). Then
(i) there is a unique spin structure S on M such that ω lifts to a bundle map ω̂ : S −→ Spin(S2);
(ii) there are exactly two such lifts ω̂, and these differ only by sign.


-


-


-


? ?


? ?


M S2


T (M) T (S2)


S Spin(S2)


g


ω


ω̂


µ σ


Figure 3: Spinor representation of a surface
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Proof of (i): Considering Spin(S2) as a � 2-bundle on T (S
2) when restricted to nonzero spin-vectors


and vectors respectively, let S be the (unique) pullback bundle of Spin(S2) under ω, and µ, ω̂ as shown.
Extend S, ω̂, and µ to include the zero spin-vectors.


Proof of (ii): If ι : Spin(S2) −→ Spin(S2) is the order-two deck transformation for the cover
Spin(S2) −→ T (S2), then ι ◦ ω̂ is another map which in place of ω̂ makes the diagram commute.
Conversely, if η : S −→ Spin(S2) is such a map, then for x ∈ S, η(x) is ω̂(x) or ι ◦ ω̂(x) and continuity
implies that η = ω̂ or ιω̂. 2


The spinor representation is determined by the pair of sections ω̂ = (s1, s2) of S related to ω by
the equation


ω = (s21 − s22, i(s21 + s22), 2s1s2).


Thus the Weierstrass representation and the spinor representation are related by the equations


η = s21 and g = s2/s1.


The case of a nonorientable M is dealt with in section 11 by the taking of the spin structure on
the oriented two-sheeted cover of M .


6 Regular homotopy classes and spin structures


Let X1, X2 :M −→ R3 be two immersions of a surface into space. Recall the distinction between regular
homotopy equivalence of the immersions X1, X2, and regular homotopy equivalence of the corresponding
immersed surfaces — these immersed surfaces are regularly homotopic if there is a diffeomorphism ϕ of
M such that X2 is regularly homotopic to X1 ◦ ϕ — so this latter equivalence relation is coarser.


Theorem 6. Let X1, X2 : M −→ R3 be two immersions of a surface into space, let S1, S2 the spin
structures induced as in Theorem 5, and let q1, q2 be the associated quadratic forms as in Theorem 4.
Then
(i) X1 and X2 are regularly homotopic if and only if q1 ≡ q2(mod 2).
(ii) The surfaces X1(M) and X2(M) are regularly homotopic if and only if Arf q1 = Arf q2.


Sketch of proof. Define q̃(α) as the linking number (mod 2) of the boundary curves of the image of a
tubular neighborhood of α in R3. Then


q(α) = 0 ⇐⇒ the Darboux frame along α is non-
trivial as an element of π1(SO(3))


⇐⇒ q̃(α) = 0.


Hence q ≡ q̃(mod 2). But X1, X2 are regularly homotopic if and only if q̃1 ≡ q̃2(mod 2), and the
corresponding immersed surfaces are regularly homotopic if and only if Arf q̃1 = Arf q̃2 (see [24]). 2


7 Theta characteristics and spin structures


Theorem 7 ties the notion of spin structure with other concepts from algebraic geometry. Recall that a
theta characteristic on a Riemann surface is a divisor D such that 2D is the canonical divisor.


Theorem 7. Given a Riemann surface M , there are natural bijections between the following sets of
objects:
(i) the spin structures on M ;
(ii) the complex line bundles S on M satisfying S ⊗ S ∼= T (M);
(iii) the theta characteristics on M ;
(iv) the classes of non-identically-zero meromorphic differentials on M whose zeros and poles have even


orders, under the equivalence


ϕ1 ∼ ϕ2 ⇐⇒ ϕ1/ϕ2 = h2 for some meromorphic


function h on M .
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Proof. (i) ⇐⇒ (ii): Given a line bundle S on M satisfying S ⊗ S ∼= T (M), S is a spin structure with
mapping µ : S −→ S ⊗ S defined by µ(s) = s⊗ s. Conversely, given a spin structure S on M , the map
µ(s) 7→ s⊗ s is well-defined and a vector-bundle isomorphism, so T (M) is isomorphic to S ⊗ S.


(ii) ⇐⇒ (iii): Via the natural correspondence between the line bundles on M with the divisor
classes, this set of line bundles is bijective with with the theta characteristics.


(iii)⇐⇒ (iv): Again, there is a natural bijection between the meromorphic differentials with zeros
and poles of even orders and the theta characteristics. Given such a differential ϕ, the corresponding
theta characteristic is 1


2 (ϕ). Moreover, two such differentials correspond to theta characteristics in the
same linear equivalence class if and only if their ratio is the square of a meromorphic function on M .
For


ϕ1/ϕ2 = h2 ⇐⇒ 1
2 (ϕ1)− 1


2 (ϕ2) = (h).


2


The spin structures on a compact Riemann surface are also bijective with the various translates
ϑ[a0


b0
] of the theta functions on the surface (see [21] for the definition of ϑ[ a0


b0
]).


8 Spin structures on hyperelliptic Riemann surfaces


In the special case of a hyperelliptic Riemann surface, the spin structures and their corresponding
quadratic forms are computed explicitly.


Theorem 8. Let


M =
{
[x1, x2, x3] ∈ CP 2


∣∣∣ x2
2x


2g−1
3 =


∏2g+1
i=1 (x1 − aix3)


}


be a hyperelliptic Riemann surface of genus g, where A = {a1, . . . , a2g+1} ⊂ � is a set of 2g+1 distinct
points. Let z = x1/x3 and w = x2/x3. For each subset B ⊆ A, define


fB(z) =
∏


b∈B


(z − b) and ηB = fB(z)dz/w.


Then
(i) Any differential ηB represents a spin structure in the sense of Theorem 7.
(ii) The set of 22g meromorphic differentials


{ηB | B ⊆ A,#B ≤ g}


represent the 22g distinct spin structures on M .
(iii) With q the quadratic form corresponding to ηB, let γ be a curve in M whose projection to the


z-plane is a Jordan curve which avoids ∞ and A, and let C ⊆ A be the set of branch points which
lie in the region enclosed by γ (so #C is even). Then


q([γ]) = #(B ∩ C) + 1
2#C (mod 2).


(iv) With ηB and q as in (iii),


Arf q =


{
+1 if 2g − 2#B + 1 ≡ ±1 (mod 8),
−1 if 2g − 2#B + 1 ≡ ±3 (mod 8).


Proof of (i). Let Pi = Pai
= [ai, 0, 1] and P∞ = [0, 1, 0] be the branch points of the two-sheeted cover


z :M −→ CP 1. Then the divisor of ηB is


2


(
(g −#B − 1)P∞ +


∑


b∈B


Pb


)
.


Since this divisor is even, the differential represents a spin structure by Theorem 7.
Proof of (ii). Note that there are


(
2g+1
r


)
differentials in the (r+1)th row, totaling


∑g
r=0


(
2g+1
r


)
=


22g. All but those in the last row are holomorphic.
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In order to prove that these differentials represent distinct spin structures, we first compute the
relations on the divisors of the form


∑
kiPi + k∞P∞. Two such divisors are equivalent if and only if


there is a meromorphic function M whose divisor is their difference. Since the functions w and z − ai
have respective divisors


(w) = P1 + · · ·+ P2g+1 − (2g + 1)P∞,
(z − ai) = 2Pi − 2P∞,


we have the independent relations


P1 + · · ·+ P2g+1 ≡ (2g + 1)P∞,
2Pi ≡ 2P∞ (i = 1, . . . , 2g + 1).


To show that there are no other relations independent of these, let
∑
kiPi + k∞P∞ ≡ 0 be a relation.


Then
∑
ki = k∞, and by the relations above, we may assume each ki is 0 or 1. Hence the general


relation may be assumed to be of the form D − dP∞ ≡ 0, where D is a sum of distinct Pi ∈ A, and
d = #D. Let h be a function with divisor D−dP∞. Since the only pole of h is at P∞, h is a polynomial
in z and w, so there are polynomial functions f1 and f2 of z such that


h(z, w) = f1(z) + wf2(z).


Then
2g + 1 ≥ d = − ordP∞ h = − ordP∞ (f1 + wf2) ≥ − ordP∞ wf2 = deg f2 + 2g + 1.


Thus d = 2g + 1, and D = P1 + · · ·+ P2g+1, so no new relation can exist.
We want to show that ηB1


and ηB2
represent identical spin structures if and only if B1 = B2 or


B1 = B′2, where the prime notation C ′ designates the complement A \ C in A. If B1 = B2, then this is
clear; if B1 = B′2, then ηB2


/ηB1
= (f2/w)


2 is a square of a meromorphic function on M , and so ηB1
and


ηB2
represent the same spin structure by Theorem 7.
Conversely, suppose that ηB1


and ηB2
represent the same spin structure. Then by Theorem 7,


ηB2
/ηB1


= h2 for some meromorpic function h on M . But


2(h) = (h2) = (ηB2
/ηB1


) = 2((d2 − d1)P∞ +D2 −D1),


where D1 =
∑


b∈B1
Pb, D2 =


∑
b∈B2


Pb, d1 = #B1, and d2 = #B2. So (d2 − d1)P∞ + D2 − D1 ≡ 0.
By the relations (8), this divisor is equivalent to


∑
b∈B1◦B2


Pb − #(B1 ◦ B2)P∞, where B1 ◦ B2 is the
symmetric difference (B1 ∪B2) \ (B1 ∩B2). Since the relations (8) generate all such relations, it follows
that B1 ◦B2 is either ∅ or A, that is that B1 = B2 or B1 = B′2.


Proof of (iii). It follows from the definition of q that q([γ]) is the degree (mod 2) of the map f(z)/w
thought of as a map from the curve γ on M to � \ {0}. Let h = (f/w)2. Then


deg h =
∑


h(p)=0


ordp h+
∑


h(p)=∞


ordp h,


the sums being restricted to points within γ. This computes to


deg h = #(B ∩ C)−#(B ∪ C) = 2(#(B ∩ C)− 1
2#C),


which shows that
q([γ]) = #(B ∩ C) + 1


2#C (mod 2).


Proof of (iv). In order to compute Arf q, we first compute
∑
q(α), where α ranges over H1(M, � 2).


Correspondingly, the set of points branch points C in the region enclosed by α range over the subsets of
A of even cardinality. Hence


∑
q(α) is the number of such subsets for which q(α) = 1, that is, for which


#(B ∩ C)−#(B′ ∩ C) ≡ 2 (mod 4).


The set of such subsets is


{R ∪ S | R ⊆ B,S ⊆ B′,#R−#S ≡ 2 (mod 4)}.
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The cardinality of this set is
∑


q(α) =
∑


i−j≡2


(
b


i


)(
b′


j


)
,


where b = #B, b′ = #B′, and the sum is over i and j with i− j ≡ 2 (mod 4).
To compute this sum, define


ξ(c, k) =
∑


i≡k


(c
i


)
.


Then


∑
q(α) =


∑


i


(
b


i


) ∑


j≡i+2


(
b′


j


)
=
∑


k


(
b


i


)
ξ(b′, j + 2)


=


3∑


p=0


∑


n


(
b


4n+ p


)
ξ(b′, p+ 2) =


3∑


p=0


ξ(b, p)ξ(b′, p+ 2).


Using a fact about Pascal’s triangle


ξ(a, k) = 2(a−2)/2
(
2(a−2)/2 + cos π


4 (a− 2k)
)
,


we have


∑
q(α) = 2(2g−3)/2


3∑


p=0


(
2(a−2)/2 + cos π


4 (a− 2p)
)(


2(a′−2)/2 + cos π
4 (a


′ − 2p)
)


= 2g−1


(
2g − 1√


2


3∑


p=0


cos π
4 (a− 2p) cos π


4 (a
′ − 2p)


)


= 2g−1
(
2g −


√
2 cos π


4 (2g − 2a+ 1)
)


=


{
2g−1(2g − 1) if 2g − 2a+ 1 ≡ ±1 (mod 8),
2g−1(2g + 1) if 2g − 2a+ 1 ≡ ±3 (mod 8).


Since (−1)t = 1− 2t for t = 0 or 1,


Arf q =
1


2g


∑
(−1)q(α) =


1


2g
(22g − 2


∑
q(α))


is +1 or −1 according as 2g − 2a+ 1 is ±1 or ±3 (mod 8). 2


As an example, we compute the values of q for the four spin structures on a Riemann torus T .
Let � /{2ω1, 2ω3} = Jac (T ) be the Jacobian for T , and let ei = ℘(ωi), ω2 = ω1 + ω3. Then ϕ(u) =
(℘(u), ℘′(u)) maps the Jacobian to the Riemann surface M defined by w2 = 4(z − e1)(z − e2)(z − e3).
The differentials as in (ii) of the above theorem pull back to


du = ϕ∗(dz/w),
(℘(u)− ei)du = ϕ∗((z − ei)dz/w).


With αi the generator of H1(T, � 2) defined by


αi : [0, 1] −→ Jac(T), αi(t) = 2tωi,


the values of q and Arf q are tabulated.
An immersion corresponding to q for which Arf q = +1 is regularly homotopic to the torus stan-


dardly embedded in R3. The value Arf q = −1 corresponds to the twisted torus, which can be realized
as the “diagonal” double covering of the standardly embedded torus as shown.
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Table 1: Values of q and Arf q for spin structures on tori
η qη(0) qη(α1) qη(α2) qη(α3) Arf qη
du 0 1 1 1 −1


(℘(u)− e1)du 0 1 0 0 +1
(℘(u)− e2)du 0 0 1 0 +1
(℘(u)− e3)du 0 0 0 1 +1


@
@


@
@@


@
@


@
@@


¡
¡
¡
¡¡


¡
¡
¡
¡¡


©©©©¼


standard torus


Figure 4: The twisted torus


9 Group action on spinors


The largest linear group acting on Q is the “linear conformal group”


�


∗ × SO(3, � ).


The orbit of an immersion into Q under this action is an 8-real-dimensional family of immersions (which
action, however, will not respect the vanishing of periods — see section 10). The subgroup


R+ × SO(3, R)


is the group of similarity transformations of Euclidean 3-space. Hence the homogeneous space


(
�


∗ × SO(3, � )
)
/(R+ × SO(3, R)) ∼= S1 ×


(
SO(3, � )/SO(3, R)


)
.(9.6)


is the 4-real-dimensional parameter space of non-similar surfaces in the above orbit.
The S1 factor gives rise to the well-known “associate family” of minimal surfaces, which are locally


isometric and share a common Gauss map. The other factor has a simple (though apparantly less known)
geometric interpretation as well. The Gauss map is the ratio of two spinors, so SO(3, � ) ∼= PSL(2, � )
acts on the Gauss map via post-composition with a fractional linear transformation of S2; indeed, the
quotient by SO(3, R) ∼= PSU(2) leaves the hyperbolic three-spaceH3, so the second factor can be thought
of as the non-rigid Möbius deformations of the Gauss map.


The above observations are justified by the following well-known fact (see, for example, [8], [25]).


Theorem 9. There is a unique two-fold covering homomorphism


T : GL(2, � ) −→ �


∗ × SO(3, � )


such that for any A ∈ GL(2, � ),
T (A)σ = σA,(9.7)


where σ : �


2 −→ Q is as in equation (4.5), and A and T (A) act by left multiplication on C2 and Q
respectively. Moreover, T is a two-fold covering homomorphism when restricted to the following groups:


T : GL(2, � ) −→ �


∗ × SO(3, � ),
T : SL(2, � ) −→ SO(3, � ),
T : R∗ × SU(2) −→ R+ × SO(3, R),
T : SU(2) −→ SO(3, R).
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Proof. We define T and omit many of the calculations. �


3
may be identified with the set Γ of traceless


2× 2 complex matrices via


(x1, x2, x3)←→
(


x3 −x1 + ix2


−x1 − ix2 −x3


)
= X,


with the subset R3 ⊂ �


3
identified with ΓR = {X ∈ Γ | X = X


t} The inner product on �


3
becomes


〈X,Y 〉 =∑3
1 xiyi =


1
2 trXY ,


and


〈X,X〉 = 1


2
trX2 = −detX,


so Q ⊂ �


3
is identified with


ΓQ = {X ∈ Γ | detX = 0}.


Similarly, �


2
may be identified with the set ∆ of matrices of the form


(
x1 x1


x2 x2


)
.


The map σ : �


2 −→ Q becomes under these identifications σ : ∆ −→ ΓQ given by σ(X) = XKX ′,


where K =


(
0 −1
1 0


)
, and X ′ denotes the classical adjoint


(
a b
c d


)′
=


(
d −b
−c a


)


satisfying XX ′ = X ′X = (detX)I and (XY )′ = Y ′X ′.
Then in order to satisfy equation (9.7), T must be defined, for X ∈ Γ, by


T (A)X = AXA′.


It follows that T (A) is linear and maps Γ to itself, and that T : GL(2, � ) −→ GL(3, � ) is a homomor-
phism with kernel {±I}. That T maps into the four groups listed follows from the equation


〈T (A)X,T (A)Y 〉 = (detA)2〈X,Y 〉


and the fact that T (A)(ΓR) = ΓR for A ∈ R∗ × SU(2). 2


Lifting the group action on Q to an action on �


2 \ {0} via T , the homogeneous space in equation
(9.6) can also be written


(
GL(2, � )


)
/ (R∗ × SU(2)) ∼= S1 ×


(
SL(2, � )/SU(2)


) ∼= S1 ×H3,(9.8)


where H3 is hyperbolic three-space.


10 Periods


Given an immersion X :M −→ R3, the period around a simple closed curve γ ⊂M is the vector in �


3


∫


γ


∂X.


If the real part of a period is not (0, 0, 0), the resulting surface is periodic and does not have finite total
curvature. It is a considerable problem to “kill the periods” — that is, choose parameters so that the
integrals around every simple closed curve in M generates purely imaginary period vectors. Non-zero
periods can arise along two kinds of simple closed curves:
• a simple closed curve around an end p ∈M ,
• a non-trivial simple closed curve in H1(M, � ).
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For a simple closed curve γ around an end p ∈M ,
∫


γ


∂X = 2πi resp ∂X.


This integral is zero at embedded planar ends.
Using the spinor representation, the condition that a period along a closed curve γ ⊂ M be pure


imaginary can be expressed by
∫


γ


(
s21 − s22, i(s21 + s22), 2s1s2


)
∈ R3,


equivalent to ∫


γ


s21 =


∫


γ


s22
∫


γ


s1s2 ∈ iR.
(10.9)


These equations are preserved by the group R∗ × SU(2) of homotheties.


11 Spin structures and nonorientable surfaces


To deal with immersions of a nonorientable manifold M into space, we pass to the oriented two-fold
cover of M . The following rather technical results are required in Part III. Without proof we state:


Lemma 10. Let


A : S2 −→ S2 be the antipodal map,
A∗ : T (S


2) −→ T (S2) the derivative of A,


Â∗ : Spin(S
2) −→ Spin(S2) one of the lifts of A∗ to Spin(S2).


Then in the coordinates of section 5 we have


A = Conj,
A∗ = Conj,


Â∗ = ±
(


0 i
−i 0


)
◦ Conj.


The lifts of the antipodal maps are shown in Figure 5.


-


-


-


? ?


? ?


S2 S2


T (S2) T (S2)


Spin(S2) Spin(S2)


A


A∗


Â∗


σ


Figure 5: Lifts of the antipodal map


Theorem 11. Let M be a nonorientable Riemann surface, and X : M −→ R3 a conformal minimal
immersion of M into space.


Let π : M̃ −→M be an oriented double cover of M , and X̃ = X ◦ π the lift of X to this cover. Let
I : M̃ −→ M̃ the order-two deck transformation for the cover. With ω = ∂X̃, and in the notation of
Lemma 10, we have
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(i) gI = Ag,
(ii) ωI∗ = A∗ω,
(iii) ω̂Î∗ = ±Â∗ω̂.


Proof. Since X̃ is the lift of X, we have that X̃ = X̃I. Hence Re ω = Re ∂X̃ = dX̃ = dX̃I∗ = Re ωI∗.
Since X is a conformal minimal immersion, ω is holomorphic. Hence ω and ωI∗ are either equal or
conjugate. But I∗ is orientation reversing, so they are conjugate and ωI∗ = ω = A∗ω, proving (ii).


From
gIπ1 = gπ1I∗ = π3ωI∗ = π3A∗ω = Aπ3ω = Agπ1


and the surjectivity of π1, (ii) follows. Similarly, from


σω̂Î∗ = ωπ2Î∗ = ωI∗π2 = A∗ωπ2 = A∗σω̂ = σÂ∗ω̂


(iii) follows. 2


We remark that the proper treatment of nonorientable surfaces should really be via “pin” structures
(Pin(n) being the corresponding two-sheeted covering group of O(n)), and that in this case we should
have an analytic formula for the full � 8 Arf invariant of the associated � 4-valued quadratic form on
H1(M, � 2).


Part II


Minimal Immersions with Embedded Planar Ends


12 Embedded planar ends


The first section of this part of our paper discusses the behavior of a minimal immersion at an embedded
planar end. Lemma 12 translates this geometric behavior to a necessary and sufficient algebraic condition
on the order and residue of the immersion at the end. Arising naturally from this algebraic condition
is a certain vector subspace K of holomorphic spin-vector fields (sections of a spin structure) which
generates all minimal surfaces with embedded planar ends (Theorem 15). More precisely, two sections
chosen from K form the spinor representation of a minimal surface, and conversely, any such surface
must arise this way. However, such a surface is usually periodic, and possibly a branched immersion. In
order to compute K explicitly, a skew-symmetric bilinear form Ω is next defined (Definition 16) whose
kernel is closely related to the space K. In Part III, this form is used to prove existence and non-existence
theorems for a variety of examples.


13 Algebraic characterization of embedded planar ends


The geometric condition that an end of a minimal immersion be embedded and planar can be translated
to algebraic conditions (see for example [4]). Let X : D \ {p} −→ R3 be a conformal minimal immersion
of an open disk D punctured at p such that limq→p |X(q)| = ∞. The image under X of a small
neighborhood of p (and by association, p itself) is what we shall refer to as an end. The behavior of the
end is determined by the residues and the orders of the poles of ∂X at p as follows.


Let ψ1, ψ2, ψ3 be defined by


∂X = (ψ1 − ψ2, i(ψ1 + ψ2), 2ψ3).


The Gauss map for this immersion (see [22]) is


g = ψ3/ψ1 = ψ2/ψ3.


First note that for X to be well-defined, we must have for a closed curve γ ⊂ D \ {p},


0 = Re


∫


γ


∂X = Re (2πi resp ∂X),
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and so resp ∂X must be real. Assume this, and assume initially that the limiting normal to the end is
upward (that is g(p) =∞). In this case,


ordp ψ2 < ordp ψ3 < ordp ψ1,


so the first two coordinates of X(q) grow faster than does the third as q → p.
It follows that ordp ψ2 cannot be −1, because if it were then


resp ∂X = (− resp ψ2, i resp ψ2, 0)


would not be real. Hence ordp ψ2 ≤ −2. The image under X of a small closed curve around p is
a large curve which winds around the end | ordp ψ2| − 1 times. The end is embedded precisely when
ordp ψ2 = −2.


If an end is embedded, its behavior is determined by the vanishing or non-vanishing of the residues
of ∂X. For an embedded end, −2 = ordp ψ2 < ordp ψ3, so ψ3 has either a simple pole or no pole. If
ψ3 has a simple pole (and hence also a residue), the end grows logarithmically relative to its horizontal
radius and is a catenoid end. If ψ3 has no pole, the end is asymptotic to a horizontal plane and is called
a planar end. Moreover, in this latter case, resp ψ2 must vanish (again, if it did not, resp ∂X would not
be real), and so resp ∂X = (0, 0, 0).


For an end in general position the same conclusions hold, because a real rotation affects neither
ordp ∂X nor the reality or vanishing of resp ∂X. In summary, we have


Lemma 12. Let X : D \ {p} −→ R3 be a conformal minimal immersion of a punctured disk. Then p is
an embedded planar end if and only if


ordp ∂X = −2 and resp ∂X = 0,


where ordp ∂X denotes the minimum order at p of the three coordinates of ∂X.


14 Embedded planar ends and spinors


The conditions in the lemma above can be translated into conditions on the spinor representation of the
minimal immersion. This leads to the definition of a space K of spin-vector fields, pairs of which form
the spinor representation satisfying the required conditions.


Throughout the rest of Part II, the following notation is fixed:


M is a compact Riemann surface,
S is a spin structure on M ,
P = [p1] + . . .+ [pn] is a divisor of n distinct points.


(14.10)


The points p1, . . . , pn will eventually be the ends of a minimal immersion of M whose spinor represen-
tation will be a pair of sections of S.


Let H0(M,O(S)) and H0(M,M(S)) denote respectively the vector spaces of holomorphic and
meromorphic sections of S. Define


F = FM,S,P = {s ∈ H0(M,M(S)) | (s) ≥ −P}
H = HM,S = H0(M,O(S))
K = KM,S,P = {s ∈ F | ordp s 6= 0 and resp s


2 = 0 for all p ∈ supp P}.
(14.11)


Theorem 13. Let X : M −→ R3 be a minimal immersion with spinor representation (s1, s2). Then
p ∈M is an embedded planar end if and only if s1, s2 ∈ K and at least one of s1, s2 has a pole at p.


Proof. By Lemma 12, p is an embedded planar end if and only if


ordp ∂X = −2 and resp ∂X = 0.


The first of these equations is equivalent to the condition


s1, s2 ∈ F , and at least one of s1, s2 has a pole at p.
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Given this, the conditions ordp s1 6= 0, ordp s2 6= 0 in the definition of K follow because if one were 0,
the other would be −1, giving s1s2 a nonvanishing residue.


It remains only to show that for s1, s2 ∈ F ,


resp s
2
1 = 0, resp s


2
2 = 0 =⇒ resp s1s2 = 0.


This is an application of the following lemma. 2


Lemma 14. Let S be a spin structure on a closed Riemann surface M , and let s1, s2 be meromorphic
sections of S with ordp s1 ≥ −1, ordp s2 ≥ −1 for some p ∈M . Then


2 resp s1s2 =


{ [
s2
s1


]
p
resp s


2
1 +


[
s1
s2


]
p
resp s


2
2 if ordp s1 = ordp s2,


0 if | ordp s1 − ordp s2| ≥ 2.


Proof. With z a complex coordinate near p satisfying z(p) = 0, let ϕ be a section of S satisfying ϕ2 = dz.
Also let


s1 =
(a−1


z
+ a0 + . . .


)
ϕ,


s2 =


(
b−1


z
+ b0 + . . .


)
ϕ


be the expansions of s1 and s2. Then


resp s
2
1 = 2a−1a0,


resp s
2
2 = 2b−1b0,


resp s1s2 = a−1b0 + a0b−1.


In case ordp s1 = ordp s2, then either a−1 6= 0, b−1 6= 0, so that


[
s2
s1


]


p


resp s
2
1 +


[
s1
s2


]


p


resp s
2
2 =


b−1


a−1
(2a−1a0) +


a−1


b−1
(2b−1b0)


= 2(b−1a0 + a−1b0)


= 2 resp s1s2,


or a−1 = b−1 = 0, and the three residues vanish.
In case | ordp s1 − ordp s2| ≥ 2, then a−1 = a0 = 0 or b−1 = b0 = 0, so again the three residues


vanish. So in each case the formula is verified. 2


15 F and K as vector spaces
The following theorem develops some of the properties of the spaces F and K. The most important of
these is that K is in fact a vector space. In this section we write K for the holomorphic cotangent bundle
(that is, the canonical line bundle) of M .


Theorem 15. With M , P , and S as in equation (14.10), and F , H, and K as in equation (14.11), let
g = genus (M) and n = degP . Then
(i) if n ≥ g, then dimF = n;
(ii) K and H are subspaces of F ;
(iii) if n ≥ g, then K ∩H = 0.
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Proof of (i): The dimension of F can be computed by means of the Riemann-Roch theorem (see, for
example, [10]) which states


dimH0(M,L)− dimH0(M,K ⊗ L∗) = degL− g + 1


for an arbitrary line bundle L. Let R be the line bundle corresponding to the divisor P , and let L = S⊗R.
Then:
• H0(M,L) ∼= F by the isomorphism s⊗ r 7→ s, where r is a section of R with divisor P ;
• H0(M,K ⊗ L∗) = 0, since deg(K ⊗ L∗) = g − 1− n, which is negative by hypothesis;
• degL− g + 1 = n;


from which it follows that
dimF = dimH0(M,L) = n.


Proof of (ii): H ⊆ F is a subspace by definition. To show that K ⊆ F is a subspace, let s ∈ K and
p ∈ P , let z be a conformal coordinate near p with z(p) = 0, and let ϕ be a section of S which satisfies
ϕ2 = dz. Let


s =
(a−1


z
+ a0 + . . .


)
ϕ


be the expansion of s. Then


s2 =


(
a2
−1


z2
+


2a−1a0


z
+ . . .


)
dz,


so that
resp s


2 = 0 ⇐⇒ a−1 = 0 or a0 = 0


and
ordp s


2 6= 0 ⇐⇒ a−1 6= 0 or a0 = 0.


Together, these two conditions are equivalent to the condition


a0 = 0.


Thus
s ∈ K ⇐⇒ the constant term in the expansion of s van-


ishes at each p ∈ P .
(15.12)


K is a vector space because if s1, s2 satisfy condition (15.12), then so does any � -linear combination of
s1 and s2.


Proof of (iii): Let s ∈ K ∩H be a section which is not identically zero. Since s ∈ K, we have that
ordp s 6= 0 for all p ∈ supp P — that is, at each such p, s has either a pole or a zero. But since s ∈ H,
s cannot have a pole at p, and hence has a zero, so (s) ≥ P . Conversely, if (s) ≥ P , then s ∈ K ∩H, so


K ∩H = {s ∈ F | (s) ≥ P}.


Thus for s ∈ K ∩H not identically zero,


n ≤ deg s = g − 1.


Hence if n ≥ g, then K ∩H = 0. 2


16 A bilinear form Ω which kills K
In order to understand the vector space K more explicitly, a skew-symmetric bilinear form Ω is defined
whose kernel contains K. This form may then be used in many cases to compute K, and thereby moduli
spaces of minimal surfaces with embedded planar ends.


Definition 16. With M , P , and S as in equation (14.10) define Ω = ΩM,P,S : F × F −→ � by


Ω(s1, s2) =
∑


p∈P


ξ(p; s1, s2),
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where


ξ(p; s1, s2) =







1


2


[
s2
s1


]


p


resp s
2
1 if


s2
s1


does not have a pole at p,


resp s1s2 if
s2
s1


has a pole at p.


The form Ω can be computed as follows: for p ∈ P , let z be a conformal coordinate near p with z(p) = 0,


let ϕ2 = dz, and let


s1 =
(a−1


z
+ a0 + . . .


)
ϕ,


s2 =


(
b−1


z
+ b0 + . . .


)
ϕ


be the expansions of s1 and s2. Then


ξ(p; s1, s2) = b−1a0.(16.13)


Theorem 17. With H, K as in equation (14.11), Ω satisfies the following:
(i) Ω is a skew-symmetric bilinear form on F ;
(ii) kerΩ ⊇ K +H;
(iii) if K ∩H = 0, then kerΩ = K ⊕H;
(iv) if n = degP ≥ genusM , then kerΩ = K ⊕H.


Proof of (i): For a given s1, s2 ∈ F , let


P0 = {zeros of s2/s1} ∩ P,
P∞ = {poles of s2/s1} ∩ P,
P1 = P \ (P0 ∪ P∞),


so that P0, P∞, P1 are disjoint and their union is P . Then


Ω(s1, s2) =
1


2


∑


p∈P1


[
s2
s1


]


p


resp s
2
1 +


∑


p∈P∞


resp s1s2,(16.14)


Ω(s2, s1) =
1


2


∑


p∈P1


[
s1
s2


]


p


resp s
2
2 +


∑


p∈P0


resp s1s2.


Adding the above two equations, and using the lemma in section 14 yields


Ω(s1, s2) + Ω(s2, s1) = 2
∑


p∈P


resp s1s2,


which vanishes by the residue theorem, since all poles of s1s2 are in P .
Proof of (ii): To show that that K ⊆ kerΩ, let s1 ∈ K, so that resp s


2
1 = 0 and ordp s1 6= 0 for


all p ∈ P . Let s2 ∈ F be arbitrary, so that ordp s2 ≥ −1. Referring to equation (16.14), the first sum
is zero because resp s


2
1 = 0 at each p ∈ P by hypothesis. To show that each term in the second sum is


zero, let p ∈ P∞ so that ordp s1/s2 ≥ 1. Then


ordp s1 = ordp s2 + ordp s1/s2 ≥ 0.


But ordp s1 6= 0, so ordp s1 ≥ 1. Then


ordp s1s2 = ordp s1 + ordp s2 ≥ 0,


so resp s1s2 = 0.
To show that H ⊆ kerΩ, let s1 ∈ H, so that s21 has no poles, and let s2 ∈ F be arbitrary. Then


the first sum in equation (16.14) is zero because s21 has no poles. The second sum is zero by the residue
theorem — to show that all poles of s1s2 are in P∞, note that


ordp s1s2 = ordp s1 + ordp s2 ≥ − ordp s1 + ordp s2 = ordp s2/s1.
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So if s1s2 has a pole at p, then so does s2/s1; this puts p ∈ P∞.
Proof of (iii): Ω can be “factored” as the composition of two maps as follows: near each point


in supp P = {p1, . . . , pn}, choose a conformal coordinate zi with zi(pi) = 0. Let ϕ be a section of S
satisfying ϕ2 = dz, and let


s =


(
bi
zi


+ ai + . . .


)
ϕ


be the expansion of s at pi. Define maps A, B : F −→ �


n
by


A(s) = (a1, . . . , an),


B(s) = (b1, . . . , bn).


By the local computation of equation (16.13), Ω = B∗A = −A∗B, or with a choice of basis for F ,
Ω = BtA = −AtB as matrices. (Note that while Ω is independent of the choice of coordinates, A and
B are not.) Moreover, we have


kerA = K and kerB = H;
the first is by equation (15.12), and the second is immediate from the definition of H. (This incidentally
provides another proof of (ii).)


Now let Â = A|kerB∗A and note that


ker Â = (kerA ∩ kerB∗A) = kerA


and
image Â = A(kerB∗A) = image A ∩ kerB∗.


Applying the rank-nullity theorem to Â,


dimkerΩ = dimkerB∗A


= dimker Â+ dim image Â


= dimkerA+ dim( image A ∩ kerB∗)


≤ dimkerA+ dimkerB.


So under the assumption that K ∩H = 0,


dimkerΩ ≤ dimkerA+ dimkerB = dimK + dimH = dimK ⊕H.


But kerΩ ⊇ K ⊕H, so kerΩ = K ⊕H, proving (iii).
Part (iv) follows directly from (iii) above and Theorem 15(iii). 2


Part III


Classification and Examples


17 Genus zero


In the first half of Part III, the skew-symmetric form Ω developed in Part II is used to investigate minimal
genus zero surfaces with embedded planar ends. The first two sections demonstrate the non-existence
of examples with 2, 3, 5, or 7 ends, and the dimension of the moduli space of examples with 4, 6, 8,
10, 12 and 14 ends is computed. The following three sections compute explicitly the moduli spaces for
the families with 4 and 6 ends, and in section 23, the moduli space of the three-ended projective planes
is investigated. The remaining sections (following the heading Genus one) of Part III are devoted to
constructing minimal tori and Klein bottles. All of these surfaces are found (or shown not to exist) by
the following general method: after computing Ω on a simple basis, its pfaffian, which is a function of the
ends, is set to zero. The resulting condition on the placement of the ends — that is, the determinantal
variety — together with further conditions arising from the demand that the immersion have no periods
and no branch points, forms a set of equations whose simultaneous solution (or impossibility of solution)
gives the desired result.
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18 Existence and non-existence of genus zero surfaces


The non-existence of genus zero minimal unbranched immersions with 3, 5 or 7 embedded planar ends
was first proved in a case-by-case manner in [3]. The following is a new proof, using the ideas of Section
12.


Theorem 18. There are no complete minimal branched or unbranched immersions of a punctured sphere
into space with finite total curvature and 2, 3, 5, or 7 embedded planar ends. There exist unbranched
examples with 4, 6, and any n ≥ 8 ends.


Proof. Examples with 2p ends (p ≥ 2) are given in [14], and with 2p + 1 ends (p ≥ 4) in [23]. For
the cases n = 3, 5, or 7, by the lemma below, 2 ≤ dimK ≤ [


√
n] ≤ 2 (“[q]” here denotes the greatest


integer less than or equal to q), so dimK = 2, which contradicts the other statement of the lemma that
n− dimK is even. The case n = 2 is proved in [14] (or is proved likewise by the lemma). 2


We remark that there is also a simple topological proof of the non-existence of genus zero examples
with 3 ends, using ideas in [13] and [15]. The trick is to exploit the SO(3, � )-action discussed in section
9 to deform the Gauss map — on a punctured sphere with planar ends there is no period obstruction
to doing this — so that the compactified S2 is transversally immersed with a unique triple-point, which
is impossible. (By carefully treating the periods introduced by this explicit SO(3, � ) deformation of the
Gauss map, the same kind of argument should generalize to exclude orientable minimal surfaces of any
genus with three embedded planar ends — see section 27 for a proof in the case of tori.)


Lemma 19. Let P be a divisor on the Riemann sphere S2 as in equation (14.10) with n = degP ≥ 2,
and let K = KS2,S,P be as in equation (14.11). Then
(i) n− dimK is even;
(ii) If there exists a complete branched or unbranched minimal immersion of S2 into space with finite


total curvature and n embedded planar ends in supp P , then 2 ≤ dimK ≤ √n.


Proof of (i): By Theorem 17, kerΩ = K⊕H. But H = 0 because there are no holomorphic differentials
on the sphere, so kerΩ = K. Since Ω is skew-symmetric, rankΩ = n− dimK is even (see Appendix A).


Proof of (ii): The sections s1 and s2 in the spinor representation (s1, s2) of such a surface are
independent, showing the inequality 2 ≤ dimK. To show the other inequality, let z be the standard
conformal coordinate on S2 = � ∪{∞}, and let P =


∑
[ai] (where the ai ∈ � are distinct) be the divisor


of the n ends. Let let g1η, . . . , gmη be a basis for K, where η2 = dz. Define f : S2 = � �


1 −→ � �


m−1


by
f = (g1, . . . , gm).


Then f is well-defined and holomorphic even at the common zeros and the common poles of g1, . . . , gm.
Let


h(z) =
∏
(z − ai).


It follows from


(hgi) = (h) + (η) + (giη) ≥ (P − n[∞]) + [∞]− P = −(n− 1)[∞]


that
d0 = deg f ≤ n− 1.


To show that f ramifies at each a ∈ supp P , let hi(z) = (z− a)gi(z). Then hi does not have a pole
at a. Moreover, since by hypothesis there exists a minimal surface with ends at supp P , at least one of
the gi has a pole at a, so the hi cannot all be zero at a. Hence the appropriate condition that f ramify
at a is (


hih
′
j − h′ihj


)∣∣
a
= 0 for all i, j.


This is satisfied because of the condition (15.12) defining K: the expansion of gi at a is


gi =
ci


z − a + o(z − a),
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so the expansion of hi at a is
hi = ci + o(z − a)2,


and so h′i(a) = 0 for all i. Since f ramifies at each a ∈ supp P , we have


r0 = ramification index of f ≥ n.


Now let fk : �


1 −→ � (Λk+1
�


m
) defined by fk = f ∧ f ′ ∧ . . . ∧ f (k) in �


m
be the kth associated


curve of f , and use the Plücker formulas (an extension of the Riemann-Hurwitz formula — see [9]) which


on � �


1
are


−dk−1 + 2dk − dk+1 − 2 = rk,


where dk is the degree of fk, and rk is the ramification index of fk. In the table below, multiplying the
numbers on the left by the inequalities on the right and adding yields


d0 ≥ (m+ n)(m− 1)/m.


But n− 1 ≥ d0, so it follows that n ≥ m2. 2


Table 2: Values for the Plücker formulas


m− 1 2d0 − d1 − 2 = r0 ≥ n
m− 2 −d0 + 2d1 − d2 − 2 = r1 ≥ 0


...
...


...
...


2 −dm−4 + 2dm−3 − dm−2 − 2 = rm−3 ≥ 0
1 −dm−3 + 2dm−2 − 2 = rm−2 ≥ 0


19 Moduli spaces of genus zero surfaces


The following two theorems deal with the moduli spaces of genus zero examples.


Theorem 20. Let P be a divisor on S2 as in equation (14.10) and K = KS2,S,P as in equation (14.11)
with m = dimK ≥ 2. Then the space of complete minimal branched immersions of S2 into R3 with
finite total curvature and embedded planar ends at supp P is the complex 2(m − 1)-dimensional space
Grm,2( � )×


(
S1 ×H3


)
.


Proof. Each point of the Grassmanian Grm,2(� ) represents a two-dimensional subspace of K. Each
such subspace generates the space S1 ×H3 of branched immersions (equation (9.8)). 2


Theorem 21. For each p ≥ 2 there exists a real 4(p − 1)-dimensional family of minimal branched
immersions of spheres punctured at 2p points with finite total curvature and embedded planar ends. For
2 ≤ p ≤ 7, the moduli space of such immersions is exactly 4(p− 1)-dimensional.


Proof. Let P =
∑


[ai] be a divisor of degree 2p on S2, and S the unique spin structure on S2. Let
H and K be as in equation (14.11). Then pfaffianΩ = 0 (see Appendix A) if and only if dimK ≥ 2
if and only if there exists a surface with 2p ends at supp P . Counting real dimensions, the space
of 2p ends is 4p-dimensional; the Möbius transformations of S2 reduce the dimension by 6, and the
pfaffian condition on the ends reduce the dimension by another 2, so the space of ends which admit
surfaces is (4p−8)-dimensional. For each admissible choice of ends, by the above theorem there is a real
(4 dimK − 4)-dimensional space of surfaces. Altogether, this totals 4p+ 4dimK − 12, which is at least
4p− 4 since dimK ≥ 2.


In the case that 2 ≤ p ≤ 7, by Lemma 19, 2 ≤ dimK ≤ [
√
2p] ≤ [


√
14] = 3, so dimK, being even,


must be exactly 2. 2
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20 Ω on the Riemann sphere


For the examples in sections 21–23 we need to compute Ω on the Riemann sphere. Let z be the standard
conformal coordinate on S2 = � ∪ {∞}, and let ϕ2 = dz represent the unique spin structure on S2. Let
P = [a1] + . . .+ [an−1] + [∞] with the ai ∈ � distinct. We have H = 0 since there are no holomorphic
differentials on the sphere. A basis for F is


{t1, . . . , tn−1, tn} =
{


ϕ


z − a1
, . . . ,


ϕ


z − an−1
, ϕ


}
.


These sections are in F since
(tn) = −[∞], (ti) = −[ai],


and are independent because they have distinct poles, and so are a basis for F since dimF = n. By the
local calculation (16.13) for Ω,


Ω(ti, tj) =







1


aj − ai
(1 ≤ i ≤ n− 1; 1 ≤ j ≤ n− 1; i 6= j),


−1 (1 ≤ i ≤ n− 1; j = n),
1 (i = n; 1 ≤ j ≤ n− 1),
0 (i = j).


21 The family of minimal genus zero surfaces with four embed-


ded planar ends


The family of minimal genus zero surfaces with four embedded planar ends was computed first in [2]. A
different computation is included here for completeness.


Theorem 22. The space of complete minimal immersions of spheres punctured at four points into
space with finite total curvature and embedded planar ends is S1 ×H3.


Proof. Let z be the standard conformal coordinate on S1 = � ∪ {∞}. By a Möbius transformation of
the Riemann sphere S2, the ends can be normalized so that two of the ends are 0 and∞ and the product
of the other two is 1. Naming the normalized ends


{a1 = a, a2 = 1/a, 0,∞},


the matrix for Ω in the basis {
1


z − a1
,


1


z − a2
,
1


z
, 1


}


is


Ω =






0 1
a2−a1


− 1
a1
−1


1
a1−a2


0 − 1
a2
−1


1
a1


1
a2


0 −1


1 1 1 0






(see section 20). The pfaffian of Ω (see Appendix A) computes to a nonzero multiple of


(a2 −
√
3a+ 1)(a2 +


√
3a+ 1).


This pfaffian must be zero in order for kerΩ = K to be at least two-dimensional and hence to generate
surfaces. Setting this pfaffian to zero yields interchangeable solutions for a, one of which is


a = (
√
3 + i)/2.
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With ϕ2 = dz as usual, a basis for K is


t1 =


( √
3z − 1


z(z2 −
√
3z + 1)


)
ϕ and t2 =


(
z(z −


√
3)


z2 −
√
3z + 1


)
ϕ,


the family of immersions is then given by X = Re F , where


F =


∫
(s21 − s22, i(s21 + s22), 2s1s2)


and (
s1
s2


)
= Q


(
t1
t2


)
,


where Q ∈ �


∗ × SL(2, � ). The surfaces are identical (up to a rotation or dilation in space) when
Q ∈ R∗ × SU(2). Thus a parameter space for this family of surfaces is S1 ×H3 (see section 9). That
these surfaces are immersed is shown in the next section. 2


22 The family of minimal genus zero surfaces with six embed-


ded planar ends


Herein is computed the family of minimal genus zero surfaces with six embedded planar ends.


Theorem 23. The space of complete minimal immersions of spheres punctured at six points into space
with finite total curvature and embedded planar ends is V ×


(
S1 ×H3


)
, where V is an algebraic subvariety


of ( � �


1
)3 with codimension 1.


Proof. On the sphere S1 = � ∪ {∞} with standard conformal coordinate z, the ends can be normalized
so that two of the ends are at 0 and ∞, and the product of the remaining four ends is 1. With this
normalization, let the ends be {a1, a2, a3, a4, 0,∞}. Set


σ1 = a1 + a2 + a3 + a4,
σ2 = −(a1a2 + a1a3 + a1a4 + a2a3 + a2a4 + a3a4),
σ3 = a1a2a3 + a1a2a4 + a1a3a4 + a2a3a4.


The matrix for Ω in the basis
{


1


z − a1
,


1


z − a2
,


1


z − a3
,


1


z − a4
,
1


z
, 1


}


is


Ω =






0 1
a2−a1


1
a3−a1


1
a4−a1


− 1
a1
−1


1
a1−a2


0 1
a3−a2


1
a4−a2


− 1
a2
−1


1
a1−a3


1
a2−a3


0 1
a3−a4


− 1
a3
−1


1
a1−a4


1
a2−a4


1
a3−a4


0 − 1
a4
−1


1
a1


1
a2


1
a3


1
a4


0 −1


1 1 1 1 1 0






(see section 9). The pfaffian of Ω (see Appendix A) is


pfaffianΩ = τ1τ3 + σ1σ3 − 20,(22.15)


where
τ1 = σ2


1 + 3σ2 and τ3 = σ2
3 + 3σ2.
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The condition that the pfaffian be 0 defines the algebraic subvariety


V = {(σ1, σ2, σ3) ⊂ (� �


1
)3 | pfaffianΩ = 0}


of codimension 1. Assuming that the pfaffian is zero, and letting ϕ2 = dz, a basis for the kernel of Ω is
{t1, t2}, where


t1 =


(
b3z


3 + b2z
2 + b1z + b0


z(z4 − σ1z3 − σ2z2 − σ3z + 1)


)
ϕ,


t2 =


(
z(c3z


3 + c2z
2 + c1z + c0


z4 − σ1z3 − σ2z2 − σ3z + 1


)
ϕ,


and
b0 = σ2,
b1 = −σ2σ3,
b2 = σ2τ3 − 2σ1σ3 − 10,
b3 = σ1τ3 + 5σ3,


c0 = σ3τ1 + 5σ1,
c1 = σ2τ1 − 2σ1σ3 − 10,
c2 = −σ1σ2,
c3 = σ2


(the special case σ2 = 0 for which the above sections are linearly dependent is ignored here). The family
of immersions is then given by


X = Re


∫
(s21 − s22, i(s21 + s22), 2s1s2)


where (
s1
s2


)
= Q


(
t1
t2


)
,


and Q ∈ �


∗ × SL(2, � ) as in the previous section.
That the the four- and six-ended families are immersed follows from the lemma below. 2


Lemma 24. On the sphere with its unique spin structure S, let P1 =
∑


[pi] as in equation (14.10), and
P2 = P1 + [a], (a 6∈ supp P1). Let Fi = FS1,Pi,S and Ki = KS1,S,Pi


(i = 1, 2) as in equation (14.11).
Then K2 ∩ F1 = {s ∈ K1 | s(a) = 0}.


The lemma follows directly from the definitions of the spaces in equation (14.10).
Now, to complete the proof that the above examples are immersed, let P1 be the divisor of ends of


degree n = 4 or 6, and let (s1, s2) be the spinor representation of four- or six-ended branched immersion.
Supposing this surface is not immersed, let a be a branch point of the surface, and set P2 = P1 + [a].
Then s1 and s2 are independent sections in K1 and s1(a) = 0, s2(a) = 0, so by the lemma, s1, s2 ∈ K2.
Applying Lemma 19, we have that


2 ≤ dimK2 ≤ [
√
n] ≤ 2,


so dimK2 = 2. This contradicts the fact that n+ 1− dimK is even.


23 The family of minimal projective planes with three embed-


ded planar ends


It was shown in [14] that any minimal immersion of a punctured projective plane with embedded ends
has only planar ends, and has at least three of them. Hence those which are the subject of the following
theorem are the examples of minmal projective planes with the fewest number of embedded ends. One
method for determining the moduli space of finite total curvature minimally immersed projective planes
punctured at three points was given in [3]. Here we provide another description of this moduli space
using the spinor representation. Note that all these surfaces compactify to give surfaces minimizing
W =


∫
H2dA among all immersed real projective planes [13], with minimum energy W = 12π


Theorem 25. Let Π be the moduli space of complete minimal immersions of projective planes punctured
at three points with finite total curvature and embedded planar ends. Then
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(i) Π is homeomorphic to a closed disk with one point M0 removed from the boundary;
(ii) the point M0 represents the Möbius strip with total curvature −6π in the sense that if γ : R+ −→


Π is a curve with limt→∞ γ(t) = M0, then there is a one-parameter family of immersions Xt


parametrizing the surfaces γ(t) such that as t→∞, Xt converges uniformly on compact sets to a
parametrization of the Möbius strip;


(iii) the surfaces with non-trivial symmetry groups are represented by the boundary of the disk, which
represents a one-parameter family of surfaces which have a line of reflective symmetry; among
these, the only surfaces with larger symmetry groups (other than M0) are two surfaces which have,
respectively, the symmetry groups � 2 × � 2, and D3, the dihedral group of order 6.


Proof of (i): The two-sheeted covering of the projective plane is the Riemann sphere S2 = � ∪ {∞},
with order-two orientation-reversing deck transformation I(z) = −1/z. By a motion in PSU(2) the six
preimages on the sphere of three points in the projective plane can be normalized as in section 22 to be


{a1, I(a1), a2, I(a2), 0,∞}


with the product of the first four equal to 1. With this choice, following the notation of section 22, we
have


σ2 ∈ R; σ3 = −σ1; τ3 = τ1.


For each choice of ends satisfying equation (22.15), up to dilations and isometries of space there is
a unique minimal immersion of the projective plane, whose spinor representation is given by


√
i(t1, t2),


with t1, t2 as in section 22. For if
√
i(t̂1, t̂2) is the spinor representation of another immersion with


the same ends, then a motion in �


∗ × PSL(2, � ) can make t̂1 = t1, and the compatibility condition in
Theorem 11 forces t̂2 = ±t1. Hence the moduli space Π can be parametrized as a quotient space of


Γ = {(σ1, σ2) ∈ � ×R | τ1τ3 + σ1σ3 − 20 = 0, σ3 = −σ1},


where σ1, σ2, σ3 are the symmetric polynomials of the ends defined in section 22. The desired moduli
space is a quotient space of Γ, since permutations of the ends give rise to the same surface.


Since the parameters σ1 and σ2 depend on the particular normalization of the ends made in section
22, new parameters should be chosen, namely the three direction cosines of the angles between the ends
0, a1 and a2, viewed as vectors in S2 ⊂ R3. To convert the equation (22.15) to these new parameters
let φ : � −→ S2 ⊂ R3 be inverse stereographic projection defined by


φ(a) =


(
2Re a


|a|2 + 1
,
2 Im a


|a|2 + 1
,
|a|2 − 1


|a|2 + 1


)
.


With the usual inner product 〈 , 〉 in R3, the direction cosines are


c1 = 〈φ(0), φ(a1)〉 =
1− |a1|2
1 + |a1|2


,


c2 = 〈φ(0), φ(a2)〉 =
1− |a2|2
1 + |a2|2


,


c3 = 〈φ(a1), φ(a2)〉 =
(1− |a1|2)(1− |a2|2)


(1 + |a1|2)(1 + |a2|2) + 4Re a1a2
.


The above three equations may be written


|a1|2 =
1− c1
1 + c1


,


|a2|2 =
1− c2
1 + c2


,


Re a1a2 =
c3 − c1c2


(1 + c1)(1 + c2)
.
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Using the normalization of the ends above, and writing a1 = γr1, a2 = βr2 (γ ∈ S1 ⊂ � ; r1,r2 ∈ � )
yields


r1 =


√
1− c1√
1 + c1


,


r2 =


√
1− c2√
1 + c2


,


γ2 =
c3 − c1c2 + ix√
1− c21


√
1− c22


,


where
x2 = 1− c21 − c22 − c23 + 2c1c2c3.


To convert the determinant of equation (22.15) from the variables σ1, σ2, σ3 to c1, c2, c3, compute


σ1 =
2γ(−c1 + 2c1c


2
2 − c2c3 + ic2x)√


1− c21(1− c22)
,


σ2 =
2(c3 − 3c1c2)


(1− c21)(1− c22)
,


σ3 = −σ1,


and the determinant becomes, up to a non-zero multiple,


(c21 + 3)(c22 + 3)(c23 + 3)− 32(c1c2c3 + 1).


The surface
Σ =


{
(c1, c2, c3) ∈ � | (c21 + 3)(c22 + 3)(c23 + 3)− 32(c1c2c3 + 1) = 0


}


in the cube
C =


{
(x, y, z) ∈ R3| − 1 < x, y, z < 1


}


is a tetrahedron-like object but with smoothed edges and (omitted) vertices at (1, 1, 1), (1,−1,−1),
(−1, 1,−1), and (−1,−1, 1).


The moduli space Π is a quotient of Σ which arises from permutations of the ends. A choice
c = (c1, c2, c3) determines a set of six ends on the double-covering sphere. The group of rotations of the
cube is the order-24 permutation group S4 generated by two kinds of elements:
• permuting the three numbers (c1, c2, c3),
• negating any two of the three numbers (c1, c2, c3).


Action under this group determines the same six ends. Hence Π = Σ/S4 is a representation of the
moduli space of minimal projective planes with three embedded planar ends.


Draw the two diagonals on each face of the cube C dividing each face into four triangles. Consider
the the 24 tetrahedra whose bases are these triangles, and whose common vertex is the origin. Each
of these tetrahedra is a fundamental domain under the action of S4 on the cube. This can also be
seen by noting that any (c′1, c


′
2, c


′
3) in the cube C has in its orbit under S4 a point (c1, c2, c3) satisfying


c1 ≥ c2 ≥ |c3| ≥ 0. Let
T = {(c1, c2, c3) ∈ C | c1 ≥ c2 ≥ |c3| ≥ 0}


be one of these tetrahedra. Then D = T ∩ Σ is a fundamental domain in Σ for the group S4, with
boundary


∂D = ∂T ∩ Σ = ({c1 = c2} ∪ {c2 = c3} ∪ {c2 = −c3}) ∩ (T ∩ Σ).


D can be shown to be topologically a closed disk with the point corresponding to the corner (1, 1, 1) of
the cube removed.


Proof of (ii): The minimal Möbius strip with total curvature −6π, found in [18], has spinor repre-
sentation


G(w)
√
dw =


√
i(−(w + 1)/w2, w − 1)


√
dw


Let (σ1(s), σ2(s)) : R
+ −→ Γ be a proper curve. It follows from the reality of σ2 that


lim
s→∞


1


σ1(s)
= lim


s→∞


1


σ2(s)
= lim


s→∞


σ1(s)


σ2(s)
= 0,
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and by a permutation of the ends we can assume


lim
s→∞


σ1(s)


σ1(s)
= 1.


Further,


lim
s→∞


∣∣∣∣
τ1(s)


σ1(s)


∣∣∣∣ = 1,


since ∣∣∣∣
τ1
σ1


∣∣∣∣
2


= − τ1τ3
σ1σ3


= 1− 20


|σ2
1 |
.


Now choose a function α : R+ −→ S1 ⊂ � such that


lim
s→∞


(
τ1(s)


σ1(s)
− α(s)


)
= 0,


and so


lim
s→∞


(
τ3(s)


σ1(s)
− α(s)


)
= 0.


Let X be defined by


X(z)
√
dz =


√
i


σ1
(t1, t2),


where t1, t2 are as in section 22. A careful reparametrization and rotation of the surface generated by
X(z)


√
dz converges uniformly in compact sets to the Möbius strip given above: Let z = αw, and


Aα =


(
a3/2 0
0 α−3/2


)
.


Then
AαX(z)


√
dz = Aα


√
αX(αw)


√
dw


is the appropriate reparametrization and rotation. This amounts to showing


lim
s→∞


Aα(s)


√
α(s)X(α(s)w) = G(w)


uniformly in compact sets not containing the ends, which follows by a calculation using the limits above.
Proof of (iii): To find the surfaces in Π which have non-trivial symmetry groups as surfaces in space,


let G = � 2 × PSU(2) be the group of conformal and anticonformal diffeomorphisms of S2 = � ∪ {∞}
with the property that any ξ ∈ G commutes with I. Via stereographic projection, G can be thought of
as the isometry group of S2 ⊂ R3, so ξ ∈ G satisfies 〈a, b〉 = 〈ξa, ξb〉. The group of symmetries of the
minimal surface in space induces a subgroup H ⊂ G acting on the domain S2. Moreover, the subgroup
H ⊂ G which permutes the ends is isomorphic to the subgroup K ⊆ S4 which fixes the point (c1, c2, c3)
representing the ends, since ξ ∈ H preserves the inner product defining the cosines c1, c2, c3.


The point of all this is that the symmetry group of a surface represented by (c1, c2, c3) ∈ Π can be
determined by finding the subgroup of S4 which fixes (c1, c2, c3). Using this method, the surfaces other
than (1, 1, 1) are
• elements of ∂D, each with a line of reflective symmetry,
• (
√
5/3, 0, 0) ∈ ∂D with symmetry group � 2 × � 2,


• (c, c,−c) ∈ ∂D with symmetry group S3 = D3


The last (and most symmetric) of these is a surface described in [14]. 2


24 Genus one


The remaining sections concern minimal immersions in the regular homotopy classes of tori and Klein
bottles with embedded planar ends. In sections 25 and 26, the skew-symmetric form Ω is computed
for the twisted and the untwisted tori. This computation is then used to show the nonexistence and
existence of various examples. In section 27 it is shown that no such tori exist with three ends, and in
section 28, is found a real two-dimensional family of immersions with four ends exists on each conformal
type of torus. After some general results about Klein bottles in section 29, a minimal Klein bottle with
embedded planar ends is constructed in section 30.
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25 Ω on the twisted torus


For the non-example in section 27, and for the example in section 28, it is necessary to compute a basis
for F for the twisted torus (see section 8), and the matrix for Ω in this basis. On the torus � /{2ω1, 2ω3}
with the standard coordinate u, let S be the spin structure corresponding to the twisted torus, that is,
represented by the holomorphic differential ϕ2


0 = du. Let P = [a1] + . . .+ [an].
To show that H = {cϕ0 | c ∈ � }, let t ∈ H. Then 0 ≤ (t) = (t/ϕ0) + (ϕ0) = (t/ϕ0). Hence t/ϕ0 is


a holomorphic function on the torus, so it is constant.
A basis for F is {t0, t1, . . . , tn−1}, where


t0 = ϕ0,


ti = (ζ(u− ai)− ζ(u) + ζ(ai))ϕ0,


=
1


2


(
℘′(u) + ℘′(ai)


℘(u)− ℘(ai)


)
ϕ0


(see equation (B.18)). These are in F because


(t0) = 0 ≥ −P,
(ti) = [xi] + [yi]− [ai]− [0] ≥ −P


where xi and yi are the zeros of ℘′(u) + ℘′(ai) other than −ai. These sections are independent because
they have distinct poles, and hence span F since dimF = n. To compute Ω in this basis, first compute
the expansions of ti at a0, . . . , an−1 (assume i, j 6= 0):


ti = (−u−1 + o(u))ϕ0,
ti = ((ti/ϕ0)(aj) + o(u))ϕ0 (i 6= j),
ti = (u− ai)−1ϕ0.


Using equation (16.13), we have


Ω(ti, tj) =







ti
ϕ0


∣∣∣∣
aj


(i 6= 0; j 6= 0; i 6= j),


0 (otherwise).


26 Ω on the untwisted tori


As above, it is also necessary to exhibit a basis for F on the untwisted tori (see section 8), as well as
the matrix for Ω in this basis. On the torus � /{2ω1, 2ω3} with the standard conformal coordinate u,
fix r ∈ {1, 2, 3} and choose the spin structure on the untwisted torus, represented by


ϕ2
r =


du


℘r(u)
,


where ℘r(u) = ℘(u)− ℘(ωr). Let P =
∑


[ai] with the ai ∈ T \ {0, ωr} distinct.
For this choice of spin structure, H = 0. To show this, first note first that (ϕr) = [0] − [ωr]. If


t ∈ H, then
0 ≤ (t) = (t/ϕr) + (ϕr) = (t/ϕr) + [0]− [ωr].


It follows that (t/ϕr) ≥ [ωr] − [0]. But since t/ϕr is a function, the degree of its divisor is 0. Hence
(t/ϕr) = [ωr]− [0]. But this is impossible by Abel’s theorem on the torus: for an elliptic function f , if
(f) =


∑
ni[pi] (as a formal sum) then


∑
nipi = 0 (as a sum in � ).


A basis for F is {t1, . . . , tn}, where


ti(u) = (ζ(u− ai)− ζ(u)− ζ(ωr − ai) + ζ(ωr))ϕr


=
1


2


(
℘r(u)℘


′
r(ai) + ℘′r(u)℘r(ai)


℘r(ai)(℘r(u)− ℘r(ai))


)
ϕr
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(see equation (B.18)). These are in F because (ϕr) = [0]− [ωr], so (ti) = [ai − ωr]− [ai] ≥ −P, and are
independent because their poles are distinct, so they span F since dimF = n. The expansions of ti at
a1, . . . , an are


ti = ((ti/ϕr)(aj) + o(u− aj))ϕr (i 6= j),
ti = ((u− ai)−1 + o(u− ai))ϕr.


Using the local expression (16.13) for Ω, we have


Ω(ti, tj) =







ti
ϕr


∣∣∣∣
aj


(i 6= j),


0 (i = i).


A particularly simple situation arises when the ends come in pairs a and −a. Assume n = 2m
and am+i = −ai (i = 1, . . . ,m). In this case, a simpler basis is {t̂1, . . . , t̂m, t̂m+1, . . . , t̂2m}, where for
1 ≤ i ≤ m,


t̂i =
℘r(ai)


℘′r(ai)
(ti − tm+i)ϕr =


(
℘r(u)


℘r(u)− ℘r(ai)


)
ϕr,


t̂m+i = (ti + tm+i)ϕr =


(
℘′r(u)


℘r(u)− ℘r(ai)


)
ϕr.


In this basis, the matrix for Ω becomes


(
0 A


−At 0


)
,


where A is given by


Aij =







4


℘r(ai)− ℘r(aj)
(i < j),


4


℘r(aj)− ℘r(ai)
(i > j),


℘r(ai)
2 − cpcq


℘r(ai)(℘r(ai)− cp)(℘r(ai)− cq)
(i = j)


and cp = ep − er, cq = eq − er, {p, q, r} = {1, 2, 3}. Note that the entries of A are entirely free of ℘′r.
A useful property of the basis above is as follows: let L :M −→M be defined as L(u) = −u; then


for i ≤ m and j ≥ m+ 1,
L∗(t̂it̂j) = t̂it̂j ,


so ∫


γk


t̂it̂j =


∫


γk


L∗(t̂it̂j) =


∫


L(γk)


t̂it̂j = −
∫


γk


t̂it̂j .


and so ∫


γk


t̂it̂j = 0 (i ≤ m; j ≥ m+ 1; k = 1, 3).


27 Non-existence of minimal tori with three embedded planar


ends.


An outline of the proof of the non-existence of three-ended tori, twisted or untwisted, is given.


Theorem 26. There does not exist a complete minimal branched immersion of a torus into space with
finite total curvature and three embedded planar ends.


Sketch of proof: The proof is divided into two cases: for the twisted torus there exist immersions with
periods, but the periods cannot be made purely imaginary; for the untwisted torus, there are not even
periodic examples.
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First consider the more difficult case of of the twisted torus. With everything as in section 25, let
{0, a1, a2} be the set of ends, and let pi = ℘(ai), p


′
i = ℘′(ai). The condition dimK ≥ 2 puts the following


condition on the placement of the ends:


g2 = 4(p2
1 + p1p2 + p2


2),


where g2 is the constant in the differential equation (℘′)2 = 4℘3 − g2℘− g3. To see this, first note that
kerΩ = K ⊕H and dimH = 1. Hence if dimK = 2 then Ω ≡ 0. Assume first that a1 + a2 6= 0. Then
p1 − p2 6= 0, and the entries of Ω indicate that p′1 + p′2 = 0 Hence


(p′1)
2 = 4p3


1 − g2p1 − g3


and
(p′2)


2 = 4p3
2 − g2p2 − g3


are equal, and the desired condition follows. The condition also obtains in the case that a1 + a2 = 0;
this can be shown as a limiting case of the above.


Changing basis now to simplify the period equations, let


t̂1 = t1 + εt2,


t̂2 = t1 + ε2t2,


where ε = (−1 +
√
3)/2. With γ1, γ3 the closed curves parallel to ω1, ω3 respectively (as in Theorem


28), the integrals relevant to the periods are (for k = 1, 3)


∫


γk


t̂21 = −6q1ωk,
∫


γk


t̂1t̂2 = −6ηk,
∫


γk


t̂22 = −6q2ωk,


where


q1 = −((ε− ε2)p1 + (ε− 1)p2)/3,


q2 = −((ε2 − ε)p1 + (ε2 − 1)p2)/3,


q1q2 = (p2
1 + p1p2 + p2


2)/3 = g2/12.


A choice of a pair of independent sections from K can be normalized by the action of R∗ × SU(2) to be


s1 = z1t̂1 + t̂2,


s2 = z2t̂1,


with z1, z2 ∈ � . Then the period equations (10.9) can be written


(
2z1


z2
1q1 + q2


)
−B


(
0


q1z
2
2


)
= 0,


(
z2


q1z1z2


)
+B


(
z2


q1z1z
2
2


)
= 0,


where


B = A−1A =


(
a b
c d


)
; A =


(
η1 ω1


η3 ω3


)
.


Changing from the variables (z1, z2) to (w, z2, this system is equivalent to the system


w2 + b2q1q2 − d2 = 0,


2w + 2d− b2q1q1z2
2 = 0,


wz2 + z2 = 0.
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From these it follows that


ww − 1 = 0,


aw2 − a = 0,


−a− ab2q1q2 + ad2 = 0.


This last condition, depending only on the conformal type of the torus and not on w, z1, and z2,
is a degeneracy condition for the period equations. It also follows, by an examination of the sign of
a(w − a) ∈ R, that


|a| > 1.


A delicate argument, which is omitted here, using the expansions [16]


g2 =
π4


12ω4
1


(
1 + 240


∞∑


n=1


σ3(n)q
n


)
,


η1 =
π2


12ω1


(
1− 24


∞∑


n=1


σ1(n)q
n


)
,


where
σk(n) =


∑


d|n


dk; q = e2iπτ ; τ = ω3/ω1


shows that the degeneracy condition is not satisfied under the constraint |a| > 1 over the whole moduli
space of Riemann tori. Hence no examples with three ends can be found in the case of the twisted tori.


The case of the untwisted tori is much easier. Fix r ∈ {1, 2, 3} and let ϕr be as in section 26. Let
{a1, a2, a3} be the ends, translated so that they avoid {0, ωr}, and let {t1, t2, t3} be the basis for F given
in the same section. The condition that dimK = dimkerΩ ≤ 2 forces Ω to be zero. This means, for
example, that t1/ϕr have zeros at a2 and a3. But the zeros of t1/ϕr are ωr and a1 − ωr, so one of a2,
a3 has to be ωr, contrary to the assumption. 2


28 Minimal tori with four embedded planar ends


Here the existence of families of four-ended tori is established.


Theorem 27. For each conformal type of torus there exists a real two-dimensional family of complete
minimal immersions of the torus punctured at four points into space with finite total curvature and
embedded planar ends.


Proof. To exhibit the family, it is first necessary to determine the placement of the four ends. The
ends in fact must be, up to a translation, at the four half-lattice points. To show this, on the torus
� /{2ω1, 2ω3}, assume the four ends are {0, a1, a2, a3}, where a1, a2, a3 are distinct points in the torus
to be determined. With ϕ2


0 = du, the matrix for Ω in the basis {1, t1, t2, t3} = {ϕ, f1ϕ0, f2ϕ0, f3ϕ0} of
section 25 is


Ω =






0 0 0 0
0 0 f1(a2) f1(a3)
0 f2(a1) 0 f2(a3)
0 f3(a1) f3(a2) 0



 .


If kerΩ = H⊕K is two-dimensional, then dimK = 1, since dimH = 1, so K is not big enough to
generate a minimal surface. Hence to produce surfaces, rankΩ, being even, must be zero. In this case,
all the entries of the above matrix are zero; a look at ti shows that ℘


′(ai) + ℘′(aj) = 0 for all i 6= j. It
follows that ℘′(a1) = ℘′(a2) = ℘′(a3) = 0, so {a1, a2, a3} = {ω1, ω2, ω3}.


With the ends fixed at {0, ω1, ω2, ω3}, F = kerΩ = H ⊕ K, so {t1, t2, t3} is a basis for K. The
simple zeros and poles of t1, t2, and t3 are illustrated below.
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Figure 6: Zeros and poles of t1, t2, and t3


To solve the period problem outlined in section 10 it is convenient to choose a new basis {t̂1, t̂2, t̂3}
for K which “diagonalizes” the period equations. Let






t̂1
t̂2
t̂3



 =






1 −1 −1
−1 1 −1
−1 −1 1








t1
t2
t3



 ,


or


t̂1(u) = (ζ(u) + ζ(u− ω1)− ζ(u− ω2)− ζ(u− ω3) + 2ζ(ω1))ϕ0,


t̂2(u) = (ζ(u)− ζ(u− ω1) + ζ(u− ω2)− ζ(u− ω3) + 2ζ(ω2))ϕ0,


t̂3(u) = (ζ(u)− ζ(u− ω1)− ζ(u− ω2) + ζ(u− ω3) + 2ζ(ω3))ϕ0.


The simple zeros and poles of t̂1, t̂2, and t̂3 are illustrated below. To compute the periods, use equation
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Figure 7: Zeros and poles of t̂1, t̂2, and t̂3


(B.19) to write


t̂2i (u) = (℘(u) + ℘(u− ω1) + ℘(u− ω2) + ℘(u− ω3)− 4℘(ωi)) du,


(t̂1t̂2)(u) = (℘(u)− ℘(u− ω1)− ℘(u− ω2) + ℘(u− ω3)) du,


(t̂1t̂3)(u) = (℘(u)− ℘(u− ω1) + ℘(u− ω2)− ℘(u− ω3)) du,


(t̂2t̂3)(u) = (℘(u) + ℘(u− ω1)− ℘(u− ω2)− ℘(u− ω3)) du.


With γ1, γ3 the closed curves on the torus respectively parallel to ω1, ω3, the periods are


P ij
k =


∫


γk


t̂it̂jdu =


{
−8(ηk + ωkei) if i = j


0 if i 6= j
(k = 1, 3),


where ei = ℘(ωi) and ηk = ζ(ωk) (see appendix B). In general, with


t1 = x1t̂1 + x2t̂2 + x3t̂3


t2 = y1t̂1 + y2t̂2 + y3t̂3
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the period equations (10.9) are


∑


1≤i,j≤3


P ij
k xixj =


∑


1≤i,j≤3


P ij
k yiyj (k = 1, 3)


∑


1≤i,j≤3


P ij
k xiyj ∈ iR (k = 1, 3).


Now let (i, j, k) be a permutation of (1, 2, 3) and make the particular choice


s1 = xit̂i + xj t̂j ,


s2 = t̂k.


The second period equation above is satisfied for all xi, xj , and the first period equation can be written
in the form (


x2
i


x2
j


)
=


(
1 1
ei ej


)−1


B


(
1
ek


)


where ηi = ζ(ωi) and ei = ℘(ωi) and B is defined in section 27. The condition that the surface be
immersed is that s1 and s2 have no common zeros. The zeros of s2 are at {ωk/2, ωk/2 + ω1, ωk/2 +
ω2, ωk/2 + ω3}, and


t̂2m(ωk/2) = t̂2m(ωk/2 + ωl) = 4(ek − ei) (m = i, j; l = 1, 2, 3).


A necessary condition that the surface branch is that


(ek − ei)x2
i − (ek − ej)x2


j = 0,


or (
g2/2− 3e2k −3ek


)
B


(
1
ek


)
= 0.


With the choice {i, j, k} = {1, 2, 3} it can be shown that this condition is not satisfied in the standard
fundamental region of the moduli space of tori. The proof uses the q-expansion for g2 and η given in
section 27, as well as the expansion


e1 =
π2


6ω2
1


(
1 + 24


∞∑


n=1


τ(n)qn


)
,


where
τ(n) =


∑


d|n
d odd


d.


Thus we have found a single immersion of every conformal type of torus punctured at the half-
lattice points. Since the period conditions amount to at most six real conditions on 12 variables, there
is a real 6-parameter family of surfaces, which modulo the action of the group in equation (9.8) leaves
a 2-parameter family. The existence of the real two-dimensional family follows from the fact that the
condition of being immersed is an open analytic condition. 2


29 The Klein bottle: conformal types, spin structures, and pe-


riods


Theorem 28 shows that the torus underlying a Klein bottle must have the conformal type of the complex
plane modulo a rectangular lattice, and it computes the order-two deck transformation for the covering
of the Klein bottle by the torus. The theorem further shows that the torus which doubly covers the
immersed Klein bottle must be untwisted. (This can also be seen from purely topological considerations.)


Theorem 28. Let X : K ′ −→ R3 be a complete minimal immersion of a punctured Klein bottle with
finite total curvature, π : T −→ K = K ′ the oriented two-sheeted covering by a torus T , and I : T −→ T
the order-two orientation-reversing deck transformation for this cover. Then we have the following.
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(i) T is conformally equivalent to � /Λ, where Λ is a rectangular lattice with generators 2ω1 ∈ R and
2ω3 ∈ iR.


(ii) On this torus, the deck transformation I may be chosen to be I(u) = ū+ ω1.
(iii) With this choice, the admissible spin structures are those represented by (℘(u) − ℘(ω2))du and


(℘(u)− ℘(ω3))du.
(iv) If (s1, s2) is the spin representative of X ◦ π on T , the period conditions reduce to the conditions∫


γ1
s21 = 0 and


∫
γ1
s1s2 = 0 along a closed curve γ1 parallel to ω1.


Proof of (i) and (ii): Let Λ0 be a lattice such that T = � /Λ0. Since every conformal map from T to T
must be linear in the standard coordinate u on � and since I is anticonformal, I(u) = αū+ β for some
α, β ∈ � . The periodicity of I and I−1 implies that αΛ0 ⊆ Λ0 and α−1Λ0 ⊆ Λ0. These together imply
that αΛ0 = Λ0. Choose γ ∈ � satisfying |γ| = 1 and γ/γ = α; the rotated lattice Λ = γΛ0 satisfies
Λ = Λ (a so-called real lattice). Hence Λ is either rectangular with generators 2ω1 ∈ R, 2ω3 ∈ iR, or
Λ is rhombic with generators 2ω1 and 2ω3 = 2ω1. On � /Λ we have I(u) = αū + β for some new α,
β ∈ � . As before, αΛ = Λ, but Λ = Λ, so α = ±1. If α = −1, replacing Λ by iΛ preserves its reality,
and changes α to 1.


With α = 1, the condition that I involutive is that β + β ∈ Λ. By the change of coordinate
u 7→ u− i Im β, it can be assumed that β ∈ R. Then the involutive condition is that 2β ∈ Λ. If β ∈ Λ
then 0 is a fixed point of I. Hence β ≡ ω1 (rectangle) or β = ω1 + ω3 (rhombus). In the latter case, ω1


is a fixed point of I, so the only admissible case is the rectangle, with I(u) = u+ ω1.
Proof of (iii): The compatibility condition in Theorem 11 demands that I∗I∗(s) = −s for any


section s of the spin structure. A computation shows that this condition is met only for the two spin
structures named.


Proof of (iv): Let γ1 and γ3 be respectively the closed curves t 7→ ω1t/|ω1|+c1 and t 7→ ω3t/|ω3|+c2,
(0 ≤ t ≤ 2), where c1, c2 ∈ � are chosen so that the curves do not pass through any ends. Then
I(γ1) = γ1, I(γ3) = −γ3. The periods conditions are


∫


γ1


s21 =


∫


γ1


s22 (k = 1, 3),


∫


γ1


s1s2 ∈ iR (k = 1, 3).


With I as above, under the double-cover assumption


(s1, s2) = ±(iI∗s2,−iI∗s1),
we have ∫


γ3


s21 =


∫


γ3


−I∗s22 = −
∫


I(γ3)


s22 =


∫


γ1


s22


∫


γ3


s1s2 =


∫


γ3


I∗s1s2 =


∫


I(γ3)


s22 = −
∫


γ1


s22,


so the period conditions are automatically satisfied for k = 3. Moreover, we also have
∫


γ1


s21 =


∫


γ1


−I∗s22 = −
∫


I(γ1)


s22 = −
∫


γ1


s22


∫


γ1


s1s2 =


∫


γ1


I∗s1s2 =


∫


I(γ1)


s22 =


∫


γ1


s22


and the first two period conditions (10.9) become
∫


γ1


s21 = 0


∫


γ1


s1s2 = 0


(this amounts to three real conditions because under the above assumption, the second integral is
automatically real). 2
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30 Minimal Klein bottles with embedded planar ends


A minimal Klein bottle is constructed in this section. Its compactification is a W -critical surface with
energy W = 16π.


Theorem 29. There exists a minimal immersion of the Klein bottle with four embedded planar ends.


To work out this example, let T = � /{2ω1, 2ω3} be a square lattice with ω3 = iω1 and ℘(ω1) = 1,
and let I be the deck transformation as in Theorem 28(i). Let S be the spin structure determined by
ϕ2 = du/℘(u). Let a ∈ T be a point (yet to be determined) such that I(a) = −a, and let r = ℘(a),
r′ = ℘′(a). (The condition on a implies r̄ = (r + 1)/(r − 1).) Fix the eight ends to be the numbers in
the left column of the following table. Let t̂1, . . . , t̂8 be the basis for F as in section 26. The matrix for


Table 3: Values of ℘ and ℘′ at ends of Klein bottle
u ℘(u) ℘′(u) I(u)
a1 = a r r′ a5


a2 = a+ ω2 −1/r r′/r2 a6


a3 = −ia −r −ir′ a4


a4 = −ia+ ω2 1/r −ir′/r2 a3


a5 = −a1 r −r′ a1


a6 = −a2 −1/r −r′/r2 a2


a7 = −a3 −r ir′ a8


a8 = −a4 1/r ir′/r2 a7


Ω in this basis is (
0 A


−At 0


)
,


where A is given by


A =






r2 + 1


r(r2 − 1)


4r


r2 + 1


2


r


4r


r2 − 1


−4r
r2 + 1


r(r2 + 1)


r2 − 1


4r


r2 − 1
−2r


−2
r


−4r
r2 − 1


−(r2 + 1)


r(r2 − 1)


−4r
r2 + 1


−4r
r2 − 1


2r
4r


r2 + 1


−r(r2 + 1)


r2 − 1






.


We want to choose r (and therefore a) by setting


detA =
(3r8 − 4r6 + 50r4 − 4r2 + 3)2


(r4 − 1)2
= 0.


The square root of the numerator factors into


3(r4 +mr2 + 1)(r4 +mr2 + 1),


where m = −2(1− 4
√
2i)/3. The roots of the first factor are of the form r, −1/r, −r, and 1/r with one


in each quadrant; r is chosen to be in the fourth. With this choice, the eight ends are pictured below.
With such a choice of r, rankΩ drops to 4. Two independent vectors in kerA are






2(r2 − 1)2


(r2 + 1)(r2 − 3)
(r2 + 1)(3r2 − 1)


−2(r2 − 1)2


0
0
0
0






and






(r2 + 1)(3r2 − 1)
−2(r2 − 1)2


2(r2 − 1)2


(r2 + 1)(r2 − 3)
0
0
0
0






.
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Figure 8: The eight ends in the double cover of the Klein bottle


With J defined by J(u) = iu, the sections t1 and t2 corresponding to these vectors satisfy


t1 =
√
iJ∗t2 and t2 =


√
iJ∗t1.


Let


t3 = iI∗t1,


t4 = iI∗t2;


t3 and t4 are also in K = kerΩ since I∗ respects the conditions defining K. In fact, the four sections t1,
t2, t3, t4 form basis for the kernel.


Let


t1 = x1t1 + x2t2


t2 = iI∗t1 = x1t3 + x2t4.


With this choice, the period equations in section 29 reduce to the single equation


∫


γ1


t21 = x2
1P


11
1 + 2x1x2P


12
1 + x2P


22
1 = 0,


where


P ij
1 =


∫


γ1


titj


and γ1 is a closed curve parallel to ω1 as in Theorem 28. The solution to this homogeneous equation
gives rise to a Klein bottle.


To show that the Klein bottle is immersed, it is necessary to compute the integrals P 11
1 , P 12


1 , P 22
1 .


Let


t21 =
1


2


(
−


4∑


i=1


Ai℘(u− ai) +B


)
du, A =


∑
Ai,


t1t2 =
1


2


(
−


4∑


i=1


Ci℘(u− ai) +D


)
du, C =


∑
Ci


as in equation (B.19). Then


P 11
1 = Aη1 +Bω1,


P 12
1 = Cη1 +Dω1,


P 11
3 = Aη3 +Bω3 = i(−Aη1 +Bω1).
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J induces relations among these periods:


P 22
1 =


∫


γ1


t22 =


∫


γ1


iJ∗t21 = i


∫


J(γ3)


t21 = i


∫


γ1


t22 = iP 11
3


P 12
3 =


∫


γ3


t1t2 =


∫


γ3


iJ∗(t1t2) = i


∫


J(γ3)


t1t2 = −i
∫


γ1


t1t2 = −iP 12
1 .


It follows that D = 0 and
P 22


1 = Aη1 −Bω1.


Finally, by section 26,


P ij
1 =


∫


γ1


titj = 0 (1 ≤ i ≤ 2; 3 ≤ j ≤ 4).


Having computed the integrals P ij
1 , it remains to compute the numbers A, B, and C by expanding


titj/du in two ways and equating the coefficients of (u−ai)−2 . With the vectors in kerΩ above written
as


(d1, d2, d3, d4, 0, 0, 0, 0) and (e1, e2, e3, e4, 0, 0, 0, 0)


respectively,


t21/du =
∑


ij


diej℘(u)


(℘(u)− ℘(ai))(℘(u)− ℘(aj))
.


Using the formula (for ℘′(u0) finite and non-zero)


1


℘(u)− ℘(u0)
=


1/℘′(u0)


u− u0
+ . . . ,


we get the expansion


t21/du =
x2
i℘(ai)/℘


′(ai)


(u− ai)2
+ . . .


at ai. On the other hand,


t21 =
1


2


(
−


4∑


i=1


Ai℘(u− ai) +B


)
du,


so we get the expansion


t21du =
−Ai/2


(u− ai)2
+ . . .


at ai. Equating the coefficients,
Ai = −2d2


i℘(ai)/(℘
′(ai))


2.


Similarly,
Ci = −2diei℘(ai)/(℘′(ai))2.


To compute B, note that t1 has a zero at 0 to get


B =
∑


Ai℘(ai).


Using this method, we find


A = 16r2(r4 + 4r2 + 1)/3


B = −2r(r2 + 1)3


C = (r4 − 1)2.


That the Klein bottle is immersed is the condition that t1 and t2 = iI∗t1 have no common zeros. This
amounts to the condition that if u0 is a zero of t1, then I(u0) is not. By using the identity


I∗℘ =
℘+ 1


℘− 1
,


this can be checked by setting t1 to zero, and solving numerically the cubic in ℘ which results.
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31 Appendix


A The pfaffian


The pfaffian is a function on skew-symmetric matrices whose square is the determinant.


Definition. A bilinear form A on a vector space V is skew-symmetric if


A(v1, v2) +A(v2, v1) = 0 for all v1, v2 ∈ V ,


or alternatively, if the matrix A for A satisfies


A+At = 0.


The space of skew-symmetric bilinear forms is
∧2


(V ∗).


Definition. For A ∈ ∧2
(V ∗), the pfaffian of A is


pf(A) =







1
n!


n times︷ ︸︸ ︷
(A ∧ . . . ∧A) if m = 2n is even,


0 if m is odd.


For a matrix (aij) of A ∈
∧2


(V ∗) in the basis {e1, . . . , en} the pfaffians for n = 2, n = 4, and n = 6
are respectively


a12,
a12a34 − a13a24 + a14a23,


a12a34a56 − a12a35a46 + a12a36a45 − a13a24a56 + a13a25a46−
a13a26a45 + a14a23a56 − a14a25a36 + a14a26a35 − a15a23a46+
a15a24a36 − a15a26a34 + a16a23a45 − a16a24a35 + a16a25a34.


The general pfaffian of a 2n× 2n matrix has (2n)!/(2n!) = 1 · 3 · 5 · · · · · (2n− 1) terms.


Lemma. The rank of a skew-symmetric matrix is even.


Proof. Let A be an n × n skew-symmetric matrix with rank r. The proof is by induction on n. In
the case n = 1, then A = (0) with even rank 0. Assume for some n that the lemma is true for all
skew-symmetric matrices smaller than A. If n is odd, then


detA = detAt = det(−A) = (−1)n detA = −detA,


so detA = 0 and A has a non-zero kernel. If n is even, then A also has a non-zero kernel unless it has
full — hence even — rank r = n. So in either case we may assume A has a non-zero kernel.


Let v1, . . . , vn−r be a basis for kerA, and extend to a basis v1, . . . , vn−r, w1, . . . , wr for �


n
. Let P


be the n× n matrix with these vectors as columns. Then P tAP is of the form


P tAP =


(
0 0
0 A0


)
,


where A0 is an r × r matrix of rank r < n. Moreover,


(P tAP )t = P tAtP = −(P tAP ),


so P tAP , and hence A0 is skew-symmetric. By the induction hypothesis, r = rank A is even, since it is
the rank of the smaller skew-symmetric matrix A0. 2
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B Elliptic functions


For reference, here are some standard notations and facts about elliptic functions used in this paper (see
for example [6], [7]).


Lattices. A non-degenerate lattice Λ is real if Λ = Λ. There are two kinds of real lattices:
(i) rectangular: generators ω1 ∈ R and ω3 ∈ iR can be chosen for Λ.
(ii) rhombic: generators ω1 and ω3 = ω1 can be chosen for Λ.


For any lattice with generators ω1, ω3, let ω2 = −ω1 − ω3.


The Weierstrass ℘ function: Given a lattice Λ generated by ω1 and ω3, the elliptic function ℘ on
� /Λ satisfies the differential equation


(℘′)2 = 4℘3 − g2℘− g3 = 4(℘− e1)(℘− e2)(℘− e3),


where
ei = ℘(ωi) (i = 1, 2, 3),
e1 + e2 + e3 = 0,
g2 = −4(e1e2 + e1e3 + e2e3),
g3 = 4e1e2e3.


The function ℘ has a double pole at 0 and two simple zeros which come together only on the square
lattice; ℘′ has a triple pole at 0 and three simple poles at ω1, ω2, ω3.


The function ℘ is even; ℘′ is odd. On a horizontal rectangular lattice, ℘(u) = ℘(u); on a horizontal
square lattice, ℘(iu) = −℘(u).


The expansion for ℘ at 0 is


℘(u) =
1


u2
+
g2
20
u2 + . . . .


A useful property of ℘ is the following special case of the addition formula ({i, j, k} is any permu-
tation of {1, 2, 3}):


℘(u± ωi) = ei +
(ei − ej)(ei − ek)


℘(u)− ei
.(B.16)


The Weierstrass ζ function: The ζ function is defined by


ζ(u) = −
∫
℘(u)du,


with the constant of integration chosen so that limu→0 ζ(u) − u−1 = 0. With ηi = ζ(ωi) (i = 1, 2, 3),
properties of ζ include:


η1 + η2 + η3 = 0,
ζ(u+ 2ωi) = ζ(u) + 2ηi (i = 1, 2, 3),
ζ is an odd function.


Legendre’s relation is that
η1ω3 − η3ω1 = iπ/2.(B.17)


A form of the quasi-addition formula for ζ is


ζ(u− v)− ζ(u) + ζ(v) =
1


2


(
℘′(u) + ℘′(v)


℘(u)− ℘(v)


)
.(B.18)


A useful property of elliptic functions which can also be stated in more generality is the following:
Let f be an elliptic function with poles of order at most 2, with no residues, and with principal parts


a1


(u− α1)2
, . . . ,


an
(u− αn)2


.


Then
f(u) = b+


∑
ai℘(u− ai)(B.19)


for some b, because the difference f(u)−∑αi℘(u− αi) has no poles and hence is constant.
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