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Introduction

At the heart of the modern theory of harmonic maps from a Riemann surface to a Riemannian
symmetric space is the observation that, in this setting, the harmonic map equations have a zero
curvature representation [19, 24, 28] and so correspond to loops of flat connections. This fact was
first exploited in the mathematical literature by Uhlenbeck in her study [24] of harmonic maps
R2 → G into a compact Lie group G. Uhlenbeck discovered that harmonic maps correspond to
certain holomorphic maps, the extended solutions, into the based loop group ΩG and used this
to define an action of a certain loop group on the space of harmonic maps. However, the main
focus of [24] was on harmonic maps of a 2-sphere and for these maps the action reduces to an
action of a finite-dimensional quotient group (see also [1, 9]).

In another direction, the zero curvature representation has been central to recent progress in the
understanding of the harmonic map equations as soliton equations, i.e. as completely integrable
Hamiltonian PDE . By solving certain Lax flows on loop algebras a rather complete description
of all harmonic tori in symmetric spaces and Lie groups has been obtained. Of particular impor-
tance in this approach are the harmonic maps of finite type: these arise from Lax flows on finite
dimensional subspaces of loop algebras and correspond to linear flows on Jacobians of certain
algebraic curves [2, 3, 4, 8, 10, 18]. Among these harmonic maps, we further distinguish those of
semisimple finite type (see Section 1.3 below) which are characterised by a semisimplicity con-
dition on their derivative. Semisimple finite type harmonic maps account for all non-conformal
harmonic tori in rank one symmetric spaces of compact type [4], all non-isotropic harmonic tori
in spheres and complex projective spaces [3], and all doubly periodic solutions to the abelian
affine Toda field equations for simple Lie groups [2].

The purpose of this paper is to describe some interactions between these two approaches. Our
starting point is the fact that underlying all of the above results is the existence of Iwasawa type
decompositions of the loop groups and algebras concerned. On the one hand, the Lax equations
mentioned above arise from an Iwasawa decomposition of certain twisted loop algebras via the
Adler–Kostant–Symes scheme [5]. On the other hand, the loop group action of Uhlenbeck is
essentially the dressing action arising from the Iwasawa decompositions of the corresponding loop
groups [9]. Moreover, a bridge beween these constructions is provided by Symes’s formula for the
solution of the Lax equations: in this construction, first applied by Symes [21] to solve the open
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Toda lattice, projection of certain complex geodesics on a factor in the Iwasawa decomposition
yields (extended framings of) harmonic maps. This provides a map from a certain subspace
of the loop algebra to the space of harmonic maps which intertwines the dressing and adjoint
actions.

This set-up is very familiar in soliton theory where the dressing method was first developed.
Here the idea is to use the dressing action to construct new solutions from old and in many
cases the dressing orbits through trivial or vacuum solutions account for all the solutions one is
interested in. It is this theme that we develop in the present paper.

We treat (primitive) harmonic maps R2 → G/K where G/K is a (k-)symmetric space. In this
context, our vacuum solutions are the maps fA : R2 → G/K defined by

fA(z) = exp(zA+ zA)K,

where A is an element of the Lie algebra of G satisfying [A,A] = 0. These maps (the geometry
of which has recently been studied by Jensen–Liao [11] in the case G/K = CP n) are equivariant
with respect to actions of the abelian group generated by A and A.

Our main results concern the orbit OA of fA under the dressing action. This orbit is infinite-
dimensional in contrast to those studied by Uhlenbeck and we show that every harmonic map
of semisimple finite type lies in some OA. As a special case, we deduce that every non-isotropic
harmonic torus in a sphere or complex projective space is dressing equivalent to a vacuum
solution.

A distinctive feature of the orbits OA is that they admit a hierarchy of commuting flows (con-
servation laws). We show that this hierarchy can be used to characterise the harmonic maps of
finite type: a harmonic map in OA is of finite type if and only if its orbit under the hierarchy is
finite-dimensional.

In all these results, just as in those of [3, 4], essential use is made of the semisimplicity assumption
on the derivative of the harmonic maps. In an appendix, we examine the situation when this
assumption is dropped and discover intriguing relationships between this case and harmonic
maps of finite uniton number in the sense of Uhlenbeck.

Special cases and partial versions of some of our results already exist in the literature: non-
conformal harmonic tori in S2—the Gauss maps of contant mean curvature tori—were studied by
Dorfmeister–Wu [7] and a similar analysis of non-superminimal minimal tori in S4 was performed
by Wu [27]. However, even in these cases, our methods are different and we believe them to be
more transparent.

Most of this research was carried out while both authors visited the SFB 288 at TU-Berlin and
the first author visited GANG at the University of Massachusetts, Amherst. We would like to
thank the members of both institutions for their support and hospitality.

Finally, the first author’s understanding of the matters treated herein was enhanced by con-
versations with Ian McIntosh and Martin Guest for which he takes this opportunity to thank
them.

Notation Throughout this work, when a Lie group is denoted by an upper case letter, its Lie
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algebra will be denoted by the corresponding lower case gothic letter. Thus G is a Lie group
with Lie algebra g.

1 Primitive harmonic maps and their extended framings

We are going to study primitive harmonic maps of a Riemann surface into a k-symmetric space.
Such maps (or, rather, their framings) have a zero-curvature representation and so give rise to
maps into a loop group. This construction is fundamental for everything that follows so we
begin by reviewing this circle of ideas to establish notation and to give a context for our results.

1.1 Primitive harmonic maps

Let G be a compact semisimple Lie group. A (regular) k-symmetric G-space [14] is a coset space
N = G/K where (Gτ )0 ⊂ K ⊂ Gτ for some automorphism τ : G→ G of finite order k ≥ 2.

Example A 2-symmetric space is just a Riemannian symmetric space of compact type.

In general, the k-symmetric spaces form a large class of reductive homogeneous spaces which
include the generalised flag manifolds (that is, G/K where K is the centraliser of a torus).

The automorphism τ induces a Zk-grading of gC :

gC =
∑

`∈Zk
g`, (1.1)

where, setting ω = e2πi/k, g` is the ω`-eigenspace of (the derivative of) τ . We have g0 = kC ,
g` = g−` and

[gj, g`] = gj+`,

where all arithmetic is modulo k. In particular, defining m ⊂ g by mC =
∑

`∈Zk\{0} g`, we have a
reductive decomposition:

g = k⊕m. (1.2)

Example When k = 2, g1 = g−1 = mC so that [m,m] ⊂ k and (1.2) is the familiar symmetric
decomposition.

The decomposition (1.1) induces a G-invariant decomposition of the tangent bundle of N which
is non-trivial when k > 2. Indeed, set o = eK ∈ N and let p = g · o ∈ N . Then the map
g→ TpN given by

ξ 7→ d

dt

∣∣∣∣
t=0

exp tξ · p

is a surjection with kernel Ad g k and so gives an isomorphism between Ad gm ⊂ g and TpN .

Notation If l ⊂ g is an AdK-invariant subspace, we denote by [l] the sub-bundle of N × g

with fibres given by
[l]g·o = Ad g l.
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With this notation, we identify [m] with TN and have a decomposition

TNC =
∑

`∈Zk\{0}
[g`].

Definition [3] A map f :M → N of a Riemann surface into a k-symmetric space is primitive
if df(T 1,0M) ⊂ [g−1].

Note that when k = 2, [g−1] = TNC and the primitivity condition is vacuous.

The study of primitive maps can be motivated by the following considerations: firstly, they arise
naturally as twistor lifts (prolongations) of certain harmonic maps into Riemannian symmetric
spaces [3, 5]. Secondly, there is a close relationship between primitive maps and solutions of the
affine Toda field equations, both abelian and non-abelian. In particular, there is an essentially
bijective correspondence between certain primitive maps into the full flag manifold G/T (modulo
the left action of G) and solutions to the abelian affine Toda field equations [2, 5] (in this case,
τ is the Coxeter–Killing automorphism).

In [5], it is shown that primitive maps are harmonic with respect to suitable invariant metrics
on G/K. Moreover, it is shown that the structure equations for such maps have the same form
as those for harmonic maps into 2-symmetric spaces. This motivates the following definition:

Definition [5] A map f :M → N of a Riemann surface into a k-symmetric space is primitive
harmonic if k = 2 and f is harmonic or k > 2 and f is primitive.

1.2 Extended framings

Henceforth, we assume that the Riemann surfaceM is contractible (in our applications, we shall
take M = R2). As a consequence, all maps M → G/K have global framings g : M → G. We
will study primitive harmonic maps via their framings.

Let π : G → G/K be the coset projection and f : M → G/K a primitive harmonic map with
framing g :M → G, thus f = π ◦ g. Let α = g−1dg be the pull-back by g of the Maurer–Cartan
form of G. We have a decomposition of α according to the eigenspace decomposition (1.1) of
gC :

α =
∑

`∈Zk
α`

which, for a primitive harmonic map, reduces to

α = α′−1 + α0 + α′′1 ,

where α′−1 is a g−1-valued (1, 0)-form and α′′1 = α′−1 [5]. Moreover, the condition that f be
primitive harmonic amounts to demanding that the Maurer–Cartan equation for α

dα+ 1
2
[α ∧ α] = 0 (1.3)

decouples into three equations:

dα′−1 + [α0 ∧ α′−1] = 0 (1.4′m)

dα0 +
1
2
[α0 ∧ α0] + [α′−1 ∧ α′′1 ] = 0 (1.4k)

dα′′1 + [α0 ∧ α′′1 ] = 0. (1.4′′m)
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(For k = 2, the equations (1.4′m) and (1.4′′m) are the harmonic map equations while, for k > 2,
they are the projections of (1.3) onto g−1 and g1.)

For λ ∈ C ∗, define a gC -valued 1-form by

αλ = λ−1α′−1 + α0 + λα′′1 .

By construction, αλ enjoys the following properties:

1. αλ=1 = α.

2. For all λ ∈ C ∗, ταλ = αωλ.

3. For all λ ∈ C ∗, αλ = α1/λ̄ so that αλ is g-valued when λ ∈ S1.

The crucial observation is that α satisfies the equations (1.4) if and only if

dαλ +
1
2
[αλ ∧ αλ] = 0,

for all λ ∈ C ∗. Thus, for each λ, we can integrate the Maurer–Cartan equations to obtain a map
Fλ : M → GC , unique up to left translation by a constant, satisfying F−1λ dFλ = αλ. Moreover,
in view of the properties of αλ listed above, we may choose the constants of integration to ensure

1. F1 = g.

2. For all λ ∈ C ∗, τFλ = Fωλ.

3. For all λ ∈ C ∗, Fλ = F1/λ̄ where conjugation is the Cartan involution of GC fixing G. In
particular, Fλ :M → G when λ ∈ S1.

4. For each p ∈M , λ 7→ Fλ(p) is holomorphic on C ∗.

Otherwise said, we have defined a map F from M into the group ΛholGτ given by

ΛholGτ = {g : C ∗ → GC : g is holomorphic and g(λ) = g(1/λ̄), g(ωλ) = τg(λ)}.

This prompts the following definition:

Definition A map F :M → ΛholGτ is an extended framing if

F−1dF = λ−1α′−1 + α0 + λα′′1 ,

with α′−1 a (1, 0)-form on M , or equivalently, if λF−1∂F is holomorphic at λ = 0 (here F−1∂F
is the (1, 0)-part of F−1dF ).

We have seen that any primitive harmonic map f admits an extended framing F such that F1

is a framing of f . Conversely, it is clear that when F is an extended framing then F1 frames a
primitive harmonic map. (In fact, Fλ frames a primitive harmonic map for each λ ∈ S1).
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This correspondence between primitive harmonic maps and extended framings can be made
bijective modulo gauge transformations by imposing base-point conditions. Fix p0 ∈M and let

H = {f :M → G/K : f is primitive harmonic with f(p0) = o}

be the space of based primitive harmonic maps. Similarly, let

E = {F :M → ΛholGτ : F is an extended framing with F (p0) ∈ K}

be the space of based extended framings (here we identify K with the constant elements of
ΛholGτ ). It is then straightforward to see that we have a bijective correspondence

H ∼= E/K

where the gauge group K = C∞(M,K) acts by point-wise multiplication on the right.

With all this in place, our constructions involving primitive harmonic maps will be made at
the level of the corresponding extended framings. Before turning to this, however, we pause to
briefly describe a class of primitive harmonic maps which will be important in the sequel.

1.3 Primitive harmonic maps of finite type

In [5], building on earlier work of several authors [2, 3, 4, 8, 18], we described a method for
constructing primitive harmonic maps R2 → G/K from commuting Hamiltonian flows on loop
algebras.

The loop algebra in question is Λgτ given by

Λgτ = {ξ : S1 → g : τξ(λ) = ξ(ωλ)}.

Any ξ ∈ Λgτ has a Fourier decomposition

ξ =
∑

n∈Z
λnξn

and we distinguish the finite-dimensional subspaces Λd ⊂ Λgτ given by

Λd = {ξ ∈ Λgτ : ξn = 0 for |n| > d}.

Now fix d ≡ 1 mod k. A polynomial Killing field is a map ξ : R2 → Λd satisfying the Lax
equation

dξ = [ξ, (λ−1ξ−d + r(ξ1−d)) dz + (λξd + r(ξ1−d)) dz̄]. (1.4)

Here z is the usual holomorphic co-ordinate on R2 and r : g0 → g0 is a certain linear map
constructed from an Iwasawa decomposition of g0 (see [5] for more details).

Polynomial Killing fields simultaneously integrate a pair of commuting Hamiltonian vector fields
on Λd and so there is a unique such having any prescribed value at z = 0. A polynomial Killing
field gives rise to a primitive harmonic map because αλ defined by

αλ = (λ−1ξ−d + r(ξ1−d)) dz + (λξd + r(ξ1−d)) dz̄ (1.5)
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satisfies the Maurer–Cartan equations. We may therefore integrate to get an extended framing
F with F−1λ dFλ = αλ and so a primitive harmonic map. The primitive harmonic maps that
arise in this way are said to be of finite type.

There is a necessary condition for a primitive harmonic map f to be of finite type: the Lax
equation (1.4) implies that ξ−d : R2 → g−1 must take values in a single AdKC -orbit so that,
from (1.5), we see that, for some, and hence every, framing of f , α′−1(∂/∂z) must take values in
a single orbit also. For doubly periodic primitive harmonic maps (that is, those which cover a
map of a torus), this condition is almost sufficient:

Theorem 1.1 [5] A doubly periodic primitive harmonic map R2 → G/K is of finite type if, for
any framing, α′−1(∂/∂z) takes values in an AdKC -orbit of semisimple elements of g−1.

In view of this, we make the following definition:

Definition A primitive harmonic map R2 → G/K is of semisimple finite type if it admits a
polynomial Killing field ξ with ξ−d semisimple.

The primitive harmonic maps of semisimple type include:

(i) All doubly periodic non-conformal harmonic maps of R2 into a rank one symmetric
space [4].

(ii) Twistor lifts of any doubly periodic non-isotropic harmonic map of R2 into a sphere
or complex projective space [3] (see also [2, 8]). Here G/K is a flag manifold in most
cases.

(iii) Twistor lifts of certain doubly periodic harmonic maps of R2 into low dimensional
complex Grassmannians and quaternionic projective spaces [22, 23].

2 Dressing actions of loop groups

We have seen that primitive harmonic maps correspond to extended framings M → ΛholGτ .
Various loop groups have non-trivial actions on ΛholGτ which induce actions on extended fram-
ings. In this section we define these groups and collect some elementary facts concerning their
generalised Birkhoff factorisations. Using these facts, we will be able to define these actions on
extended framings as well as provide a simple construction of extended framings via an analogue
of the Symes formula for solutions of the Toda lattice [21].

2.1 Decompositions of loop groups

A k-symmetric space is defined by the following ingredients, which we fix once and for all:

1. A compact semisimple group G.
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2. An automorphism τ : G→ G of finite order k ≥ 2 with fixed set K.

3. The primitive k-th root of unity ω = e2πi/k.

Moreover, we fix an Iwasawa decomposition of the reductive group KC :

KC = KB

where B is a solvable subgroup of KC . Thus any element k ∈ KC can be uniquely written as a
product

k = kKkB

with kK ∈ K, kB ∈ B.

The loop groups of interest to us are spaces of smooth maps from a pair of circles in C to GC

which are equivariant with respect to τ and satisfy a reality condition. To define them, we fix
0 < ε < 1 and partition the Riemann sphere P1 = C ∪ {∞} as follows: let Cε and C1/ε denote
the circles of radius ε and 1/ε about 0 ∈ C and define open sets by

Iε = {λ ∈ P1 : |λ| < ε}, I1/ε = {λ ∈ P1 : |λ| > 1/ε}, E(ε) = {λ ∈ P1 : ε < |λ| < 1/ε}.

Now put I(ε) = Iε ∪ I1/ε and C(ε) = Cε ∪ C1/ε so that P1 = I(ε) ∪ C(ε) ∪ E(ε).

We define the group of smooth maps ΛεGτ by

ΛεGτ = {g : C(ε) → GC : g(ωλ) = τg(λ), g(λ) = g(1/λ̄), for all λ ∈ C(ε)}.

Here, again, the conjugation is the Cartan involution of GC which fixes G.

Remark Observe that the reality condition g(λ) = g(1/λ̄) implies that g ∈ ΛεGτ is completely
determined by its values on Cε so that we have an isomorphism between ΛεGτ and the group of
τ -equivariant maps Cε → GC . In particular, ΛεGτ becomes in this way a complex Lie group. In
what follows, we shall use this isomorphism to identify elements of ΛεGτ with their restrictions
to Cε.

We now define some subgroups of G:

Λε
EGτ = {g ∈ ΛεGτ : g extends holomorphically to g : E(ε) → GC },
Λε

IGτ = {g ∈ ΛεGτ : g extends holomorphically to g : I (ε) → GC }.

By unique continuation, any element g of these subgroups satisfies the reality and equivariance
conditions

g(λ) = g(1/λ̄), g(ωλ) = τg(λ),

for all λ in its domain of definition. In particular, g ∈ Λε
IGτ has g(0) ∈ KC and we distinguish

the subgroup
Λε

I,BGτ = {g ∈ Λε
IGτ : g(0) ∈ B}.

The main tool in all our constructions is the following Iwasawa type decomposition for the
complex loop groups ΛεGτ which is due to McIntosh [16].
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Theorem 2.1 Multiplication Λε
EGτ × Λε

I,BGτ → ΛεGτ is a diffeomorphism onto.

Remark The important fact here is the surjectivity of the multiplication which amounts to
the assertion that a certain Riemann–Hilbert problem is always solvable. That this is indeed
the case is a consequence of the reality conditions we have imposed on our loops.

Remark The limiting case of Theorem 2.1 as ε→ 1 is the more familiar assertion that a loop
S1 → GC can be factorised as a product of a loop S1 → G and a loop which has a holomorphic
extension to {|λ| < 1}. This result is due to Pressley–Segal [20] and was extended to the twisted
setting by Dorfmeister–Pedit–Wu [6].

As a consequence of Theorem 2.1, we have a diffeomorphism

Λε
EGτ

∼= ΛεGτ/Λ
ε
I,BGτ

so that ΛεGτ and, particularly, Λε
IGτ acts on Λε

EGτ . To describe this action explicitly, note that
any g ∈ ΛεGτ has a unique factorisation

g = gEgI

with gE ∈ Λε
EGτ and gI ∈ Λε

I,BGτ . The action of Λε
IGτ on Λε

EGτ is now given by

g#εh = (gh)E, (2.1)

for g ∈ Λε
IGτ , h ∈ Λε

EGτ . We call this action the dressing action on Λε
EGτ .

Remark These ideas fit into the general framework of dressing actions on Poisson–Lie groups
described by Lu–Weinstein [15]: there is a Poisson–Lie structure on Λε

EGτ for which ΛεGτ is the
double group and Λε

I,BGτ is the dual group. In this context, our dressing action is precisely the
right dressing action of the dual group in the sense of Lu–Weinstein made into a left action in
the usual way. We shall return to these matters elsewhere.

In our applications to harmonic maps, we need to factor out the constant loops K in Λε
EGτ .

This is compatible with the dressing action:

Lemma 2.2 The dressing action (2.1) descends to an action on Λε
EGτ/K.

Proof First observe that K is stable under the dressing action: if g ∈ Λε
IGτ with g0 = g(0)

and k ∈ K, we use the Iwasawa decomposition of KC to write

gk = (g0k)K
(
(g0k)B(k

−1g−10 gk)
)

so that
g#εk = (g0k)K ∈ K.

Now, for h ∈ Λε
EGτ , we have

g#ε(hk) = (ghk)E =
(
(gh)E(gh)Ik

)
E
= (g#εh)

(
(gh)I#εk

)

and (gh)I#εk =
(
(gh)I(0)k

)
K
∈ K. ¤
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To see how these constructions vary with ε, note that, for 0 < ε < ε′ < 1, restriction of the
holomorphic extensions provides injections

Λε′

I G
C
τ ⊂ Λε

IGτ , Λε
EGτ ⊂ Λε′

EG
C
τ

and similarly, for 0 < ε < 1, we have

ΛholGτ ⊂ Λε
EGτ .

Indeed, it is easy to see that

ΛholGτ =
⋂

0<ε<1

Λε
EGτ . (2.2)

The dressing actions are compatible with these inclusions because the following generalisation
of a result of Guest–Ohnita [9]:

Proposition 2.3 For 0 < ε < ε′ < 1, g ∈ Λε′

I G
C
τ ⊂ Λε

IGτ and h ∈ Λε
EGτ ⊂ Λε′

EG
C
τ , we have

g#ε′h = g#εh ∈ Λε
EGτ .

Proof On C(ε′), we have
g#ε′h = gh(gh)−1

I(ε′)

where the left hand side has a holomorphic extension to E(ε′) while, since h ∈ Λε
EGτ , the right

hand side has a holomorphic extension to I (ε
′) ∩E(ε). It now follows from a theorem of Painlevé

that g#ε′h has a holomorphic extension to E(ε′)∪C(ε′)∪(I(ε′)∩E(ε)) = E(ε). Thus g#ε′h ∈ Λε
EGτ

while (gh)I(ε′) ∈ Λε
I,BGτ and the proposition follows from the uniqueness of the factorisation of

ΛεGτ . ¤

In particular, the action of Λε′

I G
C
τ preserves each Λε

EGτ for 0 < ε < ε′ < 1 and so, taking (2.2)
into account, we conclude

Corollary 2.4 The action of each Λε
EGτ preserves ΛholGτ and, for 0 < ε < ε′ < 1, g ∈ Λε′

I G
C
τ ∈

Λε
IGτ and h ∈ ΛholGτ , we have

g#ε′h = g#εh.

Notation Henceforth, we simply write g#h for the action on ΛholGτ .

Remark It follows from Corollary 2.4 that we can take a direct limit as ε → 0 and so obtain
an action on ΛholGτ of the group of germs at zero of τ -equivariant maps C → GC . This action
is very similar to the one discussed by Uhlenbeck [24] although she considers only the subgroup
of rational maps P1 → GC which satisfy the reality conditions and are holomorphic at zero.

Finally, we note that, by virtue of Lemma 2.2, we have

Corollary 2.5 The dressing action of each Λε
IGτ descends to an action on ΛholGτ/K.
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2.2 Symes formula: point-wise version

In [21], Symes gave a formula for solutions of the Toda lattice in terms of the projection of a
one-parameter subgroup onto one of the factors in an Iwasawa decomposition. We shall see that
a similar formula holds for extended framings. We begin by describing the space of generators
for these one-parameter subgroups.

The Lie algebras of the loop groups of the previous section are simply the corresponding algebras
of τ -equivariant maps C(ε) → gC and are denoted Λεgτ , Λ

ε
Egτ and so on. Throughout this section,

we use the reality condition to identify elements of Λεgτ and its subalgebras with maps Cε → gC .

Define the subspace Λε
−1,∞ ⊂ Λεgτ by

Λε
−1,∞ = {ξ ∈ Λεgτ : λξ has a holomorphic extension to Iε}.

Thus Λε
−1,∞ consists of those elements of Λεgτ which extend meromorphically to I (ε) with at

most simple poles at 0 and ∞.

Observe that Λε
−1,∞ is stable under the adjoint action of Λε

IGτ on Λεgτ : if g ∈ Λε
IGτ and

ξ ∈ Λε
−1,∞ then λξ extends holomorphically to Iε whence

λAd g(ξ) = Ad g(λξ)

does also.

Now define Φε : Λ
ε
−1,∞ → Λε

EGτ by

Φε(ξ) = (exp ξ)E,

where the exponential map is defined point-wise: (exp ξ)(λ) = expGC ξ(λ).

Arguing as in Proposition 2.3, one proves

Proposition 2.6 For 0 < ε < ε′ < 1 and ξ ∈ Λε′

−1,∞ ⊂ Λε
−1,∞, we have

Φε′(ξ) = Φε(ξ) ∈ Λε
EGτ .

In particular, Φε′ has image in
⋂

ε<ε′ Λ
ε
EGτ = ΛholGτ .

Notation In view of this, we shall henceforth simply write Φ for Φε.

A useful property of Φ is that it essentially intertwines the adjoint and dressing actions of Λε
IGτ :

Proposition 2.7 Let g ∈ Λε
IGτ and ξ ∈ Λε

−1,∞. Then

Φ(Ad g ξ) = g#
(
Φ(ξ)k

)
,

where k =
(
(exp ξ)I(0)g(0)

−1
)
K
∈ K.

Note that when g(0) ∈ B, k = 1 so that Φ truly intertwines the actions of Λε
I,BGτ .
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Proof Using expAd g ξ = g exp(ξ)g−1, we have

Φ(Ad g ξ) = (expAd g ξ)E = (g exp(ξ)g−1)E

=
(
gΦ(ξ)(exp ξ)Ig

−1
)
E
= (gΦ(ξ)kg̃)E

= g#(Φ(ξ)k)

where g̃ ∈ Λε
I,BGτ and k = ((exp ξ)I(0)g(0)

−1)K so that exp(ξ)Ig
−1 = kg̃. ¤

In particular, denoting by Φ : Λε
−1,∞ → ΛholGτ/K the composition of Φ with the coset projection,

we conclude from Proposition 2.7 together with Corollary 2.5:

Corollary 2.8 Φ intertwines the adjoint and (descended) dressing actions of Λε
IGτ :

Φ(Ad g ξ) = g#Φ(ξ),

for ξ ∈ Λε
−1,∞, g ∈ Λε

IGτ .

2.3 Dressing action on extended framings

The relevance of the results of Section 2.1 to primitive harmonic maps is that the point-wise
dressing action of Λε

IGτ on ΛholGτ induces an action on extended framings that preserves gauge
orbits and the base-point condition. We therefore arrive at an action of Λε

IGτ on H:

Proposition 2.9 Let g ∈ Λε
IGτ and F : M → ΛholGτ be an extended framing. Define g#F :

M → ΛholGτ by
(g#F )(p) = g#(F (p)),

for p ∈M . Then

(i) g#F is also an extended solution.

(ii) If F is based (that is, F ∈ E) then so is g#F .

(iii) If k ∈ K then

g#(Fk) = (g#F )k̃ (2.3)

with k̃ ∈ K.

Thus Λε
IGτ acts on H = E/K.

Proof To see that g#F is an extended frame, write

gF = ab

where a = g#F and b :M → Λε
I,BGτ . Then

a−1da = Ad b(F−1dF − b−1db)
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so that

λa−1∂a = Ad b(λF−1∂F − λb−1∂b).
Now all ingredients on the right hand side are holomorphic in λ on Iε so that λa−1∂a is also
whence a is an extended framing.

Now suppose that F ∈ E so that F (p0) ∈ K. In the proof of Lemma 2.2 we saw that the action
of Λε

IGτ preserves K so that (g#F )(p0) = g#(F (p0)) ∈ K as required.

Finally, (2.3) is an immediate consequence of Lemma 2.2. ¤

Remark Proposition 2.9 is a simple generalisation to our setting of results of Uhlenbeck [24]
and Bergveldt–Guest [1] for harmonic maps into Lie groups.

2.4 Symes formula for extended framings

We now use the map Φ of Section 2.2 to construct based extended solutions R2 → ΛholGτ from
complex lines in Λε

−1,∞. (In all that follows, we base maps of R2 at 0.)

For η ∈ Λε
−1,∞, define F η : R2 → ΛholGτ by

F η(z) = Φ(zη) = (exp zη)E.

Proposition 2.10 F η is a based extended framing.

Proof We have
exp(zη) = F ηb,

with b : R2 → Λε
I,BGτ so that

λ(F η)−1∂F η = Ad b(λη dz − λb−1∂b). (2.4)

Again all ingredients on the right hand side are holomorphic near λ = 0 (since η ∈ Λε
−1,∞) so

that λ(F η)−1∂F η is also whence F η is an extended framing. Finally, F η(0) = 1 ∈ K so that
F η ∈ E . ¤

Observe that primitive harmonic maps that arise from Proposition 2.10 in this way have the
same restriction on their framings as the maps of finite type: indeed, let η−1 = (λη)(0) and put
b0 = b|λ=0 : R2 → B. Now set λ = 0 in (2.4) to conclude that

(F η)−1dF η = λ−1α′−1 + α0 + λα′′1

with

α′−1 = Ad b0(η−1) dz. (2.5)

Otherwise said, α′−1(∂/∂z) takes values in a single B-orbit.

In fact, all primitive harmonic maps of finite type arise from this construction: let f : R2 → G/K
be a based primitive harmonic map of finite type with polynomial Killing field ξ : R2 → Λd and
let η = λd−1ξ(0) ∈ Λε

−1,∞. The arguments of [5, Section 4.2] carry over directly to our setting
to prove:

13



1. F η is an extended framing for f .

2. ξ = Ad(F η)−1ξ(0).

To summarise:

Proposition 2.11 f : R2 → G/K is of finite type if and only if it admits an extended framing
of the form F η where, for some d ≡ 1 mod k, η ∈ λd−1Λd ⊂ Λε

−1,∞

Finally, we note the following useful fact: viewing the Symes formula as a map

Λε
−1,∞ → H,

we see that this map intertwines the adjoint and dressing actions of Λε
IGτ . Indeed, denoting by

[F η] the gauge equivalence class of F η, Corollary 2.8 gives

Lemma 2.12 For g ∈ Λε
IGτ and η ∈ Λε

−1,∞,

[FAd g η] = g#[F η].

3 Dressing orbits of vacuum solutions

The main philosophy of the dressing construction [26, 28] is to construct non-trivial solutions of
partial differential equations by applying a dressing action of a suitable loop group to a trivial or
vacuum solution. In this section, we define vacuum solutions for our problem and show that any
primitive harmonic map of semisimple finite type lies in the dressing orbit of such a solution.

Some care must be exercised when developing the notion of a vacuum solution of the primitive
harmonic map equations: the simplest harmonic maps are the constant maps but we learn from
Lemma 2.2 that the constant element of H is preserved by the action of Λε

IGτ so that dressing
will give us nothing new. (Similar remarks apply to the harmonic maps of finite uniton number
in the sense of Uhlenbeck [24], see the appendix.) However, if one is guided by the relationship
between primitive harmonic maps and Toda fields, one is led to the following class of solutions
which correspond to constant solutions of the appropriate Toda field equations.

Definition A vacuum solution is an extended framing of the form F ηA where ηA = λ−1A with
A ∈ g−1 and [A,A] = 0.

Notice that it follows from the vanishing of [A,A] that A is semisimple.

In this simple case, we can perform the Iwasawa decomposition explicitly:

exp(zηA) = exp(zλ−1A+ z̄λA) exp(−z̄λA),

on Cε so that
F ηA(z) = exp(zλ−1A+ z̄λA)

14



and the corresponding primitive harmonic map f : R2 → G/K

f(z) = exp(zλ−1A+ z̄λA)o

is equivariant for actions of the abelian group generated by A and A.

Denote by OA ⊂ H the Λε
I,BGτ -orbit of [F

ηA ] so that

OA
∼= Λε

I,BGτ/Γ
ε
I,B

where Γε
I,B is the stabiliser of [F ηA ]:

Γε
I,B = {g ∈ Λε

I,BGτ : g#[F ηA ] = [F ηA ]}.

Remark Let us pause to justify our decision to study OA rather than the slightly larger Λε
IGτ -

orbit of [F ηA ]. We shall see in Section 4 that OA admits a hierarchy of commuting flows which
can be used to characterise the primitive harmonic maps of finite type. These flows do not
extend to the Λε

IGτ -orbit. Moreover, since Λε
IGτ = KΛε

I,BGτ and the dressing action on H of
K is merely that induced by the action of K on G/K, we see that we lose nothing essential by
adopting this approach.

We will study OA by using the equivariance of the map η → [F η] : Λε
−1,∞ → H to replace the

dressing action of Λε
I,BGτ on H by the easier adjoint action on Λε

−1,∞. To accomplish this, we
must describe the fibres of this map. We begin with the following observation:

Lemma 3.1 Let ζ, η ∈ Λε
−1,∞. Then [F ζ ] = [F η] if and only if (λζ)(0) = (λη)(0) and

(ad η)nζ ∈ Λε
Igτ , (3.1)

for all n ≥ 1.

Proof [F ζ ] = [F η] if and only if F ζ = F ηk, for some k ∈ K, and, using the definitions of F ζ

and F η, it is straight-forward to see that this is the case precisely when

e(z) := exp(−zζ) exp(zη) ∈ Λε
IGτ ,

for z ∈ R2. This, in turn, is the same as demanding that

e−1de = (−Ad exp(−zη) ζ + η) dz

be Λε
Igτ -valued, that is,

e− ad zηζ − η ∈ Λε
Igτ ,

for all z ∈ R2. Expanding this last in powers of z and comparing coefficients proves the lemma.
¤

Applying this to the case where η = ηA gives:

Proposition 3.2 [F ζ ] = [F ηA ] if and only if (λζ)(0) = A and [ζ, A] = 0.
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Proof Write ζ =
∑

n≥−1 λ
nζn on Cε. Comparing coefficients of λ in (3.1) gives

(adA)nζn−1 = 0,

for all n ≥ 1. However, since A is semisimple, ker(adA)n = ker adA whence [ζ, A] = 0 as
required. ¤

Taking Lemma 2.12 into account, we obtain the following characterisation of the fibres of
Λε
−1,∞ → H over OA:

Proposition 3.3 For ζ ∈ Λε
−1,∞, g ∈ Λε

I,BGτ , [F
ζ ] = g#[F ηA ] ∈ OA if and only if (λζ)(0) =

Ad g(0)A and
[ζ,Ad g A] = 0.

Proof By Lemma 2.12, [F ζ ] = g#[F ηA ] if and only if [FAd g−1ζ ] = [F ηA ]. From Proposition 3.2,
we see that this is the case precisely when

(λAd g−1ζ)(0) = A

and

[Ad g−1ζ, A] = 0,

whence the result. ¤

As an immediate corollary to this result and Proposition 2.11, we characterise the maps of finite
type in OA:

Corollary 3.4 g#[F ηA ] is of finite type if and only if, for some d ≡ 1 mod k, there is ξ ∈ Λd

such that ξ−d = Ad g(0)A and
[ξ,Ad g A] = 0.

For example, the vacuum solutions are themselves of finite type: take ξ = λ−1A + λA ∈ Λ1.
These solutions have constant polynomial Killing fields and so correspond to fixed points of the
Hamiltonian flows on Λ1.

On the other hand, it is a surprisingly simple matter to construct solutions in OA which are not
of finite type as the following example shows:

Example Consider the Riemann sphere as a 2-symmetric space so that G = SU(2), K = S1

and B consists of diagonal matrices in SL(2,C ) of the form

(
r 0
0 r−1

)
,

where r > 0. In this case, g0 consists of trace zero diagonal matrices and g1 = g−1 of off-diagonal
matrices. We take

A =

(
0 1
−1 0

)
∈ g1

16



so that A = A and consider the dressing action of B ⊂ Λε
I,BGτ on the vacuum solution [F ηA ].

For b ∈ B, we know from Corollary 3.4 that b#[F ηA ] is of finite type if and only if we can find
d ≡ 1 mod k and ξ ∈ Λd such that ξ−d = Ad bA and

[ξ,Ad bA] = 0.

Writing ξ =
∑
|n|≤d λ

nξn, this would force each [ξn,Ad bA] to vanish and, in particular, since

ξ−d = ξd,

we must have
[Ad bA,Ad bA] = 0.

However, when

b =

(
r 0
0 r−1

)

we have

[Ad bA,Ad bA] =

(
r4 − r−4 0

0 r−4 − r4
)
6= 0,

unless r = 1. Thus no b#[F ηA ] is of finite type unless b = 1. This illustrates the complexity of
even the simplest case of the dressing action.

We are now in a position to identify the stabiliser group Γε
I,B:

Theorem 3.5 Γε
I,B is the centraliser in Λε

I,BGτ of λ
−1A ∈ Λε

−1,∞:

Γε
I,B = {g ∈ Λε

I,BGτ : Ad g A = A}.

Proof By Proposition 3.3, g ∈ Γε
I,B if and only if Ad g(0)A = A and [Ad g A,A] vanishes.

Thus Ad g A takes values in AdGC A ∩ ker adA. On the other hand, since A is semisimple,

gC = ker adA⊕ [A, gC ]

from which it follows that AdGC A intersects ker adA transversely at A so that A is an isolated
point of AdGC A ∩ ker adA. The continuity of λ 7→ Ad g(λ)A on the connected set Iε now
guarantees that Ad g(λ)A = A for all λ ∈ Iε. ¤

We conclude from this theorem that OA is diffeomorphic to the adjoint orbit of λ−1A in Λε
−1,∞.

In Section 4 we shall make use of this fact to define a hierarchy of commuting flows on OA.

Let us now turn to the main theorem of this section and prove that all primitive harmonic maps
of semisimple finite type lie in some OA. We begin with a lemma which was proved in the
unpublished thesis of I. McIntosh. For completeness of exposition, we shall give a proof here.

Lemma 3.6 Let X ∈ g−1 be semisimple. Then there is A ∈ AdBX with [A,A] = 0.
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Proof We begin by finding an element in AdKC X with the desired property. For this, let ‖ . ‖
denote the norm on g−1 induced by the Killing inner product ( . ) on g. Since X is semisimple,
AdKC X is closed in g−1 [25] so that the restriction of ‖ . ‖2 to AdKC X attains a minimum at
some Y ∈ AdKC X. Now, for χ ∈

√
−1k, we have

0 =
d

dt

∣∣∣∣
t=0

‖Ad exp tχ Y ‖2 = ([χ, Y ], Y )− (Y, [χ, Y ]) = 2(χ, [Y, Y ]).

However, [Y, Y ] ∈
√
−1k and the Killing form is definite there so that [Y, Y ] vanishes as required.

Thus, for some k ∈ KC , we have Ad kX = Y . Now put A = Ad k−1K Y so that A = Ad kBX and
[A,A] = Ad k−1k [Y, Y ] = 0. ¤

With this in hand, we prove:

Theorem 3.7 Let η =
∑

n≥−1 λ
nηn ∈ Λε′

−1,∞ with η−1 semisimple. Then there is ε ≤ ε′, g ∈
Λε

I,BGτ and a vacuum solution F
ηA such that

g#[F η] = [F ηA ].

In particular, since λd−1Λd ⊂ Λε′

−1,∞ for all 0 < ε′ < 1, we have

Corollary 3.8 Any primitive harmonic map of semisimple finite type is in the Λε
I,BGτ -orbit of

a vacuum solution for some 0 < ε < 1.

Let us turn to the proof of Theorem 3.7: first, in view of Lemma 3.6, we can find A ∈ AdB η−1
such that [A,A] = 0 and after dressing by an element of B, we may assume that η−1 = A. By
Proposition 3.3, it now suffices to find g ∈ Λε

I,BGτ , some 0 < ε ≤ ε′, such that

Ad g(0)A = A, [A,Ad g η] = 0.

We shall construct g via the Inverse Function Theorem: since A is semisimple,

gC = ker adA⊕ [A, gC ]

and we define φ : ker adA⊕ [A, gC ]→ gC by

φ(x, y) = Ad exp(y)x.

Observe that φ is equivariant in the following sense:

ωτφ(x, y) = φ(ωτx, τy), (3.2)

for all (x, y) ∈ ker adA⊕ [A, gC ].

Differentiating φ at (A, 0) gives

d(A,0)φ(v, w) = v + [w,A],

for (v, w) ∈ ker adA ⊕ [A, gC ], so that d(A,0)φ is an isomorphism. By the holomorphic Inverse
Function Theorem, there are open neighbourhoods Ω1 of (A, 0) and Ω2 of A such that φ : Ω1 →
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Ω2 is a biholomorphism. Moreover, since (A, 0) is fixed by the order k linear automorphism
T : (x, y)→ (ωτx, τy), we may assume, shrinking Ω1 if necessary, that Ω1 is T -stable.

Let (ψ1, ψ2) = φ−1 : Ω2 → Ω1 so that, for χ ∈ Ω2,

χ = Ad(expψ2(χ))ψ1(χ),

or, equivalently,

Ad exp(−ψ2(χ))χ = ψ1(χ) ∈ ker adA. (3.3)

From (3.2) and the T -stability of Ω1 we deduce that ψ2 has the following equivariance property:

ψ2(ωτχ) = τψ2(χ), (3.4)

for all χ ∈ Ω2.

Since η ∈ Λε′

−1,∞, λη is holomorphic on Iε′ with (λη)(0) = A so we can find 0 < ε ≤ ε′ such that
Cε ∪ Iε ⊂ (λη)−1(Ω2). We may therefore define g : Cε ∪ Iε → GC by

g(λ) = exp(−ψ2(λη(λ))).

By construction g is holomorphic on Iε and g(0) = exp(−ψ2(A)) = 1 ∈ B so that

Ad g(0)A = A.

Moreover, from (3.3), for λ ∈ Cε, we have

Ad g(λ) η(λ) = λ−1Ad exp(−ψ2(λη(λ)))λη(λ) = λ−1ψ1(λη(λ)) ∈ ker adA

so that
[A,Ad g η] = 0

on Cε. Thus g will define our desired element of Λε
I,BGτ so long as it satisfies the equivariance

condition g(ωλ) = τg(λ). For this, recall that η(ωλ) = τη(λ) so that, using (3.4),

g(ωλ) = exp(−ψ2(ωλη(ωλ))) = exp(−ψ2(ωτλη(λ)))

= exp(−τψ2(λη(λ))) = τg(λ)

as required. This completes the proof of Theorem 3.7.

Remark Corollary 3.8 is an extension of results of Dorfmeister–Wu [7] and Wu [27]. In those
papers, a similar result was proved by different methods for G = SU(2) and G = SO(5), respec-
tively, with k-symmetric structure given by the Coxeter–Killing automorphism. Geometrically,
these cases correspond to non-conformal harmonic maps into S2 (i.e. Gauss maps of constant
mean curvature surfaces in R3) and (twistor lifts of) minimal non-superminimal maps into S4.
In view of [3, 4], the present result accounts for all harmonic non-isotropic 2-tori in any sphere
or complex projective space.
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To summarise: our results give a rather complete picture of the dressing orbits through primitive
harmonic maps [F η] with (λη)(0) semisimple. Any non-constant map of this type lies in some
OA and each such orbit is infinite-dimensional. Moreover, if A and A′ both generate vacuum
solutions and lie in the same AdB-orbit, we clearly have

OA = OA′ .

Finally, for w ∈ C ∗, we can scale the parameter z on R2 to identify OA and OwA. We therefore
conclude that the set of essentially different dressing orbits of vacuum solutions is parametrised
by the projective AdB-orbits of semisimple elements of g1. This is a finite-dimensional family.

We conclude this section with an application of Theorem 3.7 which provides a simplified version
of Lemma 3.1. Recall that a semisimple A ∈ gC is regular if its centraliser ker adA is abelian.

Proposition 3.9 Let ζ, η ∈ Λε
−1,∞ with (λζ)(0) = (λη)(0) regular semisimple. Then [F ζ ] =

[F η] if and only if [ζ, η] = 0.

Proof In view of Lemma 3.1, only the forward implication requires proof. So suppose that
[F ζ ] = [F η]. By Theorem 3.7, there is a vacuum solution [F ηA ] and g ∈ Λδ

IG
C
τ , for 0 < δ ≤ ε,

such that
[F ζ ] = [F η] = g#[F ηA ].

Thus, by Proposition 3.3, (λζ)(0) = Ad g(0)A, whence A is regular semisimple, and

[ζ,Ad g A] = [η,Ad g A] = 0.

Thus Ad g−1 ζ and Ad g−1 η take values in ker adA and so commute. Thus [ζ, η] = 0 as required.
¤

Example When τ is the Coxeter–Killing automorphism of a simple groupG, then any semisim-
ple element in g−1 is regular [12].

4 Higher flows

It is characteristic of “completely integrable” systems of partial differential equations that the
solution set admits a hierarchy of commuting flows. In this section, we shall define such a
hierarchy on each dressing orbit OA and characterise the primitive harmonic maps of finite type
in OA as precisely those whose orbit under these flows is finite-dimensional.

Notation We denote by [g] the coset of g in Λε
I,BGτ/Γ

ε
I,B.

Recall from Section 3 that we have a diffeomorphism Λε
I,BGτ/Γ

ε
I,B
∼= OA given by

[g] 7→ g#[F ηA ].

In view of the identification Λε
I,BGτ

∼= Λε
EGτ\ΛεGτ , we have a right action of ΛεGτ on Λε

I,BGτ

given by
(g, h) 7→ (gh)I .
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We now identify an abelian subgroup of ΛεGτ for which this action descends to one on OA. For
this, let zA ⊂ gC denote the centre of the centraliser of A and define Z ⊂ Λεgτ by

Z = {ζ ∈ Λεgτ : for some N ∈ N, ζ(λ) =
∑

n≥−N

λnζn, for λ ∈ Cε, with ζn ∈ zA for all n.}

Moreover, let Z ⊂ ΛεGτ be the abelian subgroup obtained by exponentiating Z.

Since A is semisimple, the centraliser of A in AdGC is connected [13, Lemma 5] from which it
follows that Z commutes with Γε

I,B. Thus, for exp ζ ∈ Z and [g] = [g′] ∈ OA, we have g = g′γ,
some γ ∈ Γε

I,B, so that

(g exp ζ)I = (g′γ exp ζ)I = (g′ exp(ζ)γ)I = (g′ exp ζ)Iγ

whence
[(g exp ζ)I ] = [(g′ exp ζ)I ]

and we have proved:

Proposition 4.1 Z acts on OA
∼= Λε

I,BGτ/Γ
ε
I,B by

exp ζ · [g] = [(g exp ζ)I ].

Remark It is easy to see that Z ∩ Γε
I,B = Z ∩Λε

I,BGτ acts trivially on OA. With a little more
work, one can also show that any z ∈ Z \ Λε

IGτ acts non-trivially on OA. In particular, when
zA ∩ g0 = {0} (which is the case, for instance, for abelian Toda fields), we deduce that there is
an effective action of Z/Z ∩ Λε

I,BGτ on OA.

Our main result concerning the action of Z is the following characterisation of the primitive
harmonic maps of finite type in OA:

Theorem 4.2 [F ] ∈ OA is of finite type if and only if the Z-orbit of [F ] is finite-dimensional.

Remark In their study of the sinh-Gordon equation, Dorfmeister–Wu prove this result by
different methods for the case G = SU(2) equipped with the Coxeter–Killing automorphism.

We break up our proof of Theorem 4.2 into a sequence of steps. We begin with a simple technical
lemma:

Lemma 4.3 Let d ≥ 1 ∈ N and suppose that ζ ∈ Λεgτ with λ
dζ holomorphic on Iε. Then

ζE ∈ Λd and
(ζE)−d = (λdζ)(0).

Proof On Cε, we can write ζ =
∑

n≥−d λ
nζn and it is easy to see that

ζE =
∑

−d≤n≤−1

λnζn + (ζ0)k+
∑

1≤n≤d

λnζ−n

from which the lemma follows immediately. ¤
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We can now prove one part of the theorem:

Proposition 4.4 If [F ] = g#[F ηA ] ∈ OA has finite-dimensional Z-orbit then [F ] is of finite
type.

Proof According to Corollary 3.4, it suffices to find d ≡ 1 mod k and ξ ∈ Λd such that
ξ−d = Ad g(0)A and

[ξ,Ad g A] = 0.

By hypothesis, the map Z → T[F ]OA given by

ζ 7→ d

dt

∣∣∣∣
t=0

exp tζ · [g]

has finite-dimensional image. We use left translation by g to identify T[F ]OA with T[FηA ]OA
∼=

Λε
I,bgτ/GI,B (here GI,B is the Lie algebra of Γε

I,B) and then an easy calculation shows that the
resulting map Z → Λε

I,bgτ/GI,B is given by

ζ 7→ Ad g−1 (Ad g ζ)I mod GI,B. (4.1)

Let N ⊂ Z denote the kernel of the linear map (4.1). Since N has finite codimension, there is
a monic polynomial p such that ζ = p(λ−k)λ−1A ∈ Z lies in N so that

Ad g−1 (Ad g ζ)I ∈ GI,B

or, equivalently,
[Ad g−1 (Ad g ζ)I , A] = 0.

We therefore see that [(Ad g ζ)I ,Ad g A] = 0. On the other hand, since ζ ∈ Z, we have [ζ, A] = 0
and we can conclude that

[(Ad g ζ)E,Ad g A] = 0. (4.2)

Now set d = k deg p + 1 ≡ 1 mod k and observe that λdζ is holomorphic (indeed polynomial)
on Iε with (λdζ)(0) = A. It follows that λd Ad g ζ is holomorphic on Iε with (λd Ad g ζ)(0) =
Ad g(0)A so that, from Lemma 4.3, we see that ξ = (Ad g ζ)E ∈ Λd with ξ−d = Ad g(0)A. This,
taken together with (4.2), establishes the proposition. ¤

Remark In case thatG = SO(5) equipped with the Coxeter–Killing automorphism, this propo-
sition was proved by Wu [27] using different methods.

It remains to prove the converse of Proposition 4.4. For this, we use an argument inspired by
ideas of McIntosh [17]. Fix d ≡ 1 mod k and let O(d)

A consist of those maps in OA which admit
a polynomial Killing field R2 → Λd. O(d)

A is the image under Λε
−1,∞ → H of a subvariety of

λd−1Λd and so is finite-dimensional. With this in mind, the proof of Theorem 4.2 is completed
by the following

Proposition 4.5 O(d)
A is Z-stable.
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Proof Let [g] ∈ O(d)
A so that there is ξ ∈ Λd such that (λdξ)(0) = Ad g(0)A and

[ξ,Ad g A] = 0.

Let ζ ∈ Z and set
ξ̂ = Ad(g exp ζ)I Ad g−1 ξ = Ad(expAd g ζ)I ξ.

Clearly we have
[ξ̂,Ad(g exp ζ)I A] = [Ad g−1 ξ, A] = 0.

It therefore suffices to show that ξ̂ ∈ Λd and that ξ̂−d = Ad(g exp ζ)I(0)A to conclude that
exp ζ · [g] ∈ O(d)

A .

For this, first note that since Ad g−1 ξ centralises A,

[ζ,Ad g−1 ξ] = 0 whence

Ad(g exp ζ) Ad g−1 ξ = Ad g Ad g−1 ξ = ξ

so that
Ad(expAd g ζ)E Ad(expAd g ζ)I ξ = ξ

from which we conclude that

ξ̂ = Ad(expAd g ζ)I ξ = Ad(expAd g ζ)−1E ξ ∈ Λε
Egτ .

On the other hand,
λdξ̂ = Ad(g exp ζ)I Ad g−1 λdξ

which is holomorphic on Iε and

(λdξ̂)(0) = Ad(g exp ζ)I(0) Ad g−1(0) ξ−d = Ad(g exp ζ)I(0)A.

It now follows from Lemma 4.3 that ξ̂ has the required properties and the proof is complete. ¤

Appendix: nilpotency of η−1 and finite uniton number

In Section 3, we saw that the primitive harmonic maps [F η] with (λη)(0) semisimple comprise
a finite-dimensional family of infinite-dimensional dressing orbits. By contrast, we now consider
the case where (λη)(0) is nilpotent (which is necessarily the case if the harmonic map [F η] has
finite energy). Here our results are less complete and somewhat confused but examples and
partial results indicate that the picture is completely different.

Example Let η = λ−1η−1 ∈ Λε
−1,∞ with η−1 nilpotent so that (ad η−1)

` = 0, say. Comparing
coefficients in (3.1), we conclude from Lemma 3.1 that [F ζ ] = [F η] if and only if ζ−1 = η−1 and

(ad η−1)
nζn−1 = 0,

for n < `. From this it is easy to see that g#[F η] = [F η] for all g ∈ Λε
I,BGτ whose `-jet at zero

coincides with that of 1. Such g comprise a normal subgroup of Λε
I,BGτ of finite codimension so

that the action of Λε
I,BGτ on [F η] reduces to that of a finite-dimensional quotient group.
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This is reminiscent of the behaviour of harmonic maps with finite uniton number in the sense
of Uhlenbeck [24]. A primitive harmonic map has finite uniton number if it has an extended
framing F which can be written as a Laurent polynomial of fixed degree in λ:

F (z) =
∑

|n|≤d

λnFn(z),

where we fix a faithful representation of GC to make sense of the Laurent expansion. We call
the minimal such d the uniton number of [F ].

Concerning these maps, Uhlenbeck [24] and Bergveldt–Guest [1] prove

Proposition A.1 The action of Λε
IGτ preserves uniton number and the action on the space of

maps of fixed uniton number reduces to that of a finite dimensional quotient group.

Since the orbits OA are infinite-dimensional, we deduce the following result announced in [5]:

Theorem A.2 No [F η] with (λη)(0) non-zero semisimple and, in particular, no non-constant
primitive harmonic map of semisimple finite type, has finite uniton number.

By contrast, we have the following model result which we state for G = SU(2) for simplicity of
exposition.

Proposition A.3 Let [F η] : R2 → S2 be harmonic with η−1 nilpotent. Then [F η] has finite
uniton number.

Proof Set F = F η. In this setting the reality condition reads

F ∗1/λ̄ = F−1λ

from which it is easy to see that F is a Laurent polynomial precisely when, for some d, both
λdFλ and λdF−1λ are holomorphic (as matrix valued functions) at λ = 0. In view of the definition
of F , this amounts to demanding that λd exp(±zη) be holomorphic at zero.

To prove this, we first note that after dressing with a constant element of KC , we may assume
that

η−1 =

(
0 1
0 0

)
or

(
0 0
1 0

)
.

For definiteness, we assume

η−1 =

(
0 1
0 0

)

and write

η(λ) =

(
a(λ) λ−1 + b(λ)
c(λ) −a(λ)

)

where a, b, c are holomorphic on Iε. The equivariance condition on η means that a is an even
function while b and c are odd. In particular, c(0) = 0.
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Now set

γ(λ) =

(
1 0
0 λ−1

)

and observe that

Ad γ(λ) η(λ) =

(
a(λ) 1 + λb(λ)

λ−1c(λ) −a(λ)

)

is holomorphic at λ = 0 since λ−1c(λ) is. Thus

γ(λ) exp(±zη(λ))γ(λ)−1

is holomorphic at zero whence λ exp(±zη(λ)) is also. ¤

Remark The trick of conjugating with γ amounts to passing between the principal and stan-
dard realisations of ΛSL(2,C ) in the sense of Wilson [26].

It is not difficult to extend the above argument to numerous other cases which include that where
G/K is a full flag manifold with Coxeter–Killing automorphism and η−1 is principal nilpotent.
In view of this, one might feel tempted (as we were!) to conjecture that any primitive harmonic
map [F η] with η−1 nilpotent has finite uniton number. However, this is not the case as the
following analysis of harmonic maps R2 → SU(2) shows.

Set K = SU(2) and put G = K × K. We view K as the Riemannian symmetric space G/K
with involution τ : G → G given by (k1, k2) 7→ (k2, k1) and coset projection G → K given by
(k1, k2) 7→ k1k

−1
2 .

Define ΛholK by

ΛholK = {k : C ∗ → KC : k is holomorphic and k(λ) = k(1/λ̄)}.

It is easy to see that ΛholGτ is given by

ΛholGτ = {(k(−λ), k(λ)) : k ∈ ΛholK}

so that projection onto the second factor gives an isomorphism ΛholGτ
∼= ΛholK. Similarly, we

can define subgroups Λε
EK and so on, just by dropping the equivariance conditions on the loops

C(ε) → KC and thus obtain isomorphisms Λε
EGτ

∼= Λε
EK and so on. Under these isomorphisms,

the harmonic map φ :M → K corresponding to the extended framing F :M → ΛholK is given
by

φ = F−1F
−1
1

(and, indeed, the extended solution corresponding to φ in the sense of Uhlenbeck is the map into
the based loop group ΩK given by FλF

−1
1 :M → ΩK).

Having adopted this view-point, we may think of η ∈ Λε
−1,∞ as a holomorphic map η : Iε \{0} →

kC with at most a simple pole at zero. We now have

Proposition A.4 [F η] has finite uniton number if and only if det η is holomorphic on Iε.
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Proof Arguing as in Proposition A.3, we see that [F η] has finite uniton number if and only if,
for some d ∈ N, λd exp(zη) is holomorphic on Iε, for all z ∈ C .

For A ∈ sl(2,C ), one has
A2 = (− detA)I

from which we deduce, setting D =
√
− detA, that

expA = cosh(D)I +
sinh(D)

D
A.

Thus

exp(zη) = cosh(
√
− det zη)I +

sinh(
√− det zη)√− det zη

zη. (A.1)

If det η is holomorphic on Iε, we see that λ exp(zη) is also since, by hypothesis, λη is holomorphic
on Iε. Thus, in this case, [F η] has finite uniton number.

Conversely, if det η has a pole at zero, it is easy to see from (A.1) that at least one matrix entry
of exp(zη) has an essential singularity at zero so that [F η] has infinite uniton number. ¤

With this in hand, it is easy to find [F η] with η−1 nilpotent and infinite uniton number:

Example Define η ∈ Λε
−1,∞ by

η(λ) =

(
0 λ−1

1 0

)

so that

η−1 =

(
0 1
0 0

)

is nilpotent while det η = −λ−1 whence [F η] has infinite uniton number by Proposition A.3.
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