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0. Introduction.

In this paper we consider the mesoscopic and macroscopic behavior of stochastic Ising

models with long range interactions and general spin flip dynamics. We derive a mean field

equation as the interaction range tends to infinity (mesoscopic limit–grain coarsening), we

study its asymptotic behavior and we show that it yields a front moving with normal

velocity which is an anisotropic function of the principal curvatures. This function is

actually described by a Kubo-Green-type formula which also specifies the relationship

between the mobility and the surface tension of the moving interface. Finally we study

macroscopic limits for the particle system. We show that, for a continuum of appropriate

scalings, the particle system yields in the limit a front moving with the same normal

velocity as the one governing the asymptotics of the mean field equation.

Our asymptotic results are stated and proved in this paper up to first time the un-

derlying motion develops singularities. They can, however, be extended to hold globally

in time, i.e., past the first time the evolving front develops singularities. This is done in

a forthcoming paper by Barles and Souganidis(1). The results of our paper allow for the

better understanding of the relationship between the phenomenological and microscopic

theories of phase transition in the general setting where anisotropies are present. They

may also be thought as providing a theoretical justification for the Monte-Carlo simulations

performed by physicists to compute moving fronts.

The paper is organized as follows: In Section 1 we briefly discuss the phenomenological

and microscopic theories to model phase transitions, we recall some recent results about

them and set the ground for the results of this paper, which we present and discuss in

Section 2. Section 3 is devoted to the proofs.

1. Phenomenological and Microscopic Theories of phase transitions.

Distinct thermodynamic phases in disequilibrium are in general separated by sharp

transition regions (interfaces), where an order parameter changes rapidly from one phase

to another. The modelling of phase transitions is mainly approached by either phenomeno-

logical or microscopic theories. Below we briefly describe these two types of modelling for

non-conservative, isothermal, two-phase systems, in the presence of anisotropies.
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In the phenomenological approach models are divided roughly in two categories. The

first one is about macroscopic, sharp interface models, derived by continuum mechan-

ics arguments (see Gurtin(2) and references therein), where interfaces are represented as

(N − 1) dimensional hypersurfaces in RN evolving with a prescribed normal velocity V

given by

(1.1) V = v(n, κ1, . . . , κN−1).

Here n is the normal vector and κ1, . . . , κN−1 are the principal curvatures of the evolving

interface Γt. The function v in (1.1) is specified by a set of constitutive relations. An

example arising in the isotropic case, which captures many important features of this class

of hypersurface evolutions, is the motion by mean curvature, where the normal velocity V

of Γt is proportional to its mean curvature, i.e.,

(1.2) V = −µσ

N−1
∑

i=1

κi,

the constants σ and µ is related to the interfacial energy and the mobility of the interface

respectively.

The hypersurfaces {Γt}t≥0 may develop singularities, change topological type and

exhibit various other pathologies even when the initial set Γ0 is smooth. A great deal

of work has been done in order to interpret (1.1) past singularities. A rather general

approach to provide a weak formulation for the motion past singularities, known as the

level-set approach, was introduced for numerical computations by Osher and Sethian(3)

and was developed rigorously by Evans and Spruck(4) for (1.2) and by Chen, Giga and

Goto(5) for more general geometric evolutions including (1.1) – see also Barles, Soner,

Souganidis(6), Goto(7) and Ishii and Souganidis(8).

In the level-set approach the evolving set Γt is represented as the zero-level set of an

auxiliary function u, i.e., Γt = {x : u(x, t) = 0}, which solves the geometric pde

(1.3) ut = F (Du,D2u) in RN × (0,∞),

where, for X ∈ SN , the set of N ×N symmetric matrices, and p ∈ RN\{0}, F is related

to v in (1.1) by

F (p,X) = −|p|−1v(p,X(I − p⊗ p)),
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with

p = |p|−1p.

In the special case of (1.2), the geometric pde has the form

ut = µσ tr((I −Du⊗Du)D2u) in RN × (0,∞).

Nonlinear, singular, degenerate parabolic equations like (1.3) typically have only weak

solutions, known as viscosity solutions. This nevertheless allows to define a unique weakly

propagating interface Γt as the zero level set of the viscosity solution of (1.3), globally in

time, past possible singularities.

Another way to define a weakly propagating front using the properties of the signed

distance function was introduced by Soner(9) for motion governed by (1.1) and later ex-

tended by Barles, Soner and Souganidis(6).

Finally, recently Barles and Souganidis(1) put forward yet another equivalent way

to describe the weak front propagation. This new approach, which is based on defining

maximal and minimal evolutions using smooth surfaces evolving by approximately the

same law as test surfaces (barriers) from inside and outside (see Ref. 1 for the details), is

fundamental in understanding and justifying the appearance of moving interfaces globally

in time in anisotropic regimes like in this paper.

A second class of phenomenological models is about the long time behavior of order

parameters, which solve Ginzburg-Landau type equations and vary continuously between

two distinct phases of the material. In such models there is a narrow transition region

separating the two different phases instead of sharp interfaces. In this framework Allen

and Cahn(10) proposed the asymptotic limit of the rescaled reaction-diffusion equation

(1.4) vεt − µσ∆vε + ε−2f(vε) = 0 in RN × (0,∞),

where f(r) = 2µr(r2 − r), as a model for the motion of antiphase boundaries in polycrys-

talline materials. Formal results (see for example, Ref. 10, 11) have indicated that these

interfaces move with prescribed normal velocity proportional to their mean curvature.

Evans, Soner and Souganidis(12) proved rigorously this conjecture by showing that, in the
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asymptotic limit ε→ 0, the solutions of (1.4) develop interfaces moving by mean curvature

in the viscosity sense with the result being valid globally in time, i.e., past singularities.

(See also Ref. 1 and 6 for more general results and Souganidis(13),(14) for a general survey

of the subject.)

Non-equilibrium statistical mechanics theories provide a microscocpic approach to the

modelling of phase transitions using Interacting Particle Systems, IPS for short, which are

Markov processes set on the lattice ZN . One distinguishes between stochastic Ginzburg-

Landau models where the order parameter takes continuous values and Ising spin systems

with either (+) or (−) spins at each lattice site. Here we only consider the latter type of

models with general spin flip dynamics. Stochastic Ising systems, which describe phase

transitions, (+)’s being converted to (−)’s and vice versa, starting from an initial state of

disequilibrium, are jump Markov processes {σt}t≥0 taking values in the configuration space

X = {−1, 1}ZN

. A configuration σ = {σ(x) ∈ {−1, 1}, x ∈ ZN} is updated by a sequence

of spin flips, i.e., when a spin changes sign at a site x with a rate c(x, σ) depending on an

interaction potential J . (See the next Section for the detailed description of the model.)

For the stochastic Ising models there exists a mesoscopic space scaling (grain coars-

ening), giving rise, through the respective BBGKY hierarchies, to deterministic equations.

Such mesoscopic (mean field) equations describe the limiting evolution of the average mag-

netization Eσt(x). In the case of Glauber dynamics with radially symmetric potentials J ,

De Masi, Orlandi, Presutti and Triolo(15) obtained, in the mean field limit as the interac-

tion range tends to infinity, the fully nonlinear nonlocal equation

(1.5) mt +m− tanhβ(J ∗m) = 0 in RN × [0,∞)

where J ∗m denotes the usual convolution in RN .

The Allen-Cahn equation (1.4) may be viewed as a mesoscopic equation for a suitable

IPS. Indeed, De Masi, Ferrari and Lebowitz(16) derived (1.4), with ε = 1, from an IPS

with Glauber-Kawasaki (G + K) dynamics, i.e., a stochastic system evolving under the

combined influence of slow spin flips (Glauber dynamics) and fast spin exchanges (Kawasaki

dynamics).
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Some aspects of the complex relations between the above micro-, meso- and macro-

scopic models for phase transitions were explored by the authors in Ref. 17 and 18, where

they rigorously derived phenomenological pde’s describing evolving phase boundaries, e.g.

(1.3), from interacting particle systems. In Ref. 17 we studied an IPS with Glauber-

Kawasaki dynamics proving that there is a continuum of suitable scaling of time and

space, such that in the limit the sites of the spin system separate in clusters of (+) and

(−), whose boundaries move towards equilibrium according to the mean curvature rule. In

Ref. 18 we investigated the macroscopic limit of an appropriately rescaled stochastic Ising

model with long range interactions evolving with Glauber dynamics as well as rescalings

of the corresponding mesoscopic equation (1.5). In both scales we obtained an interface

evolving with normal velocity µσκ, where κ is the mean curvature and θ = µσ is a trans-

port coefficient. The novelty of the results in Ref. 18, besides dealing with a fully nonlinear,

nonlocal mesoscopic equation, is the identification of θ, through a homogenization tech-

nique, yielding an effective Green-Kubo type formula. The transport coefficient appears

neither at the microscopic level, i.e., the particle system, nor at the level of the mesoscopic

equation and it is actually the outcome of an averaging effect taking place during the

limiting process. All the above results are again valid globally in time, the motion of the

interface being interpreted in the viscosity sense after the onset of the geometric singu-

larities. Moreover, the “propagation of chaos” property holds globally for both models.

In the case of the Glauber-Kawasaki dynamics we obtained in addition that the resulting

interfaces are varifolds evolving by their mean curvature in the Brakke sense, which elimi-

nates some of the nuisance due to the possible interface fattening (see, for example, Ref. 6

and 17). Concluding this discussion, we would like to underline the critical role played by

the mesoscopic equations (1.4) and (1.5), and their asymptotics, in the rigorous transition

from the IPS to the macroscopic equations.

Our objective in this work is to study how anisotropy is manifested in the transition

from microscopic to macroscopic models. To account for anisotropies in the Ising model we

replace the assumption of the radial symmetry of the interaction potential by the require-

ment that J is even. The continuum theory (see Ref. 2 and references therein) suggests
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that, in the absence of faceting phenomena and for stable (strictly convex) interfacial

energies H, the evolution of the phase boundaries {Γt}t≥0 is governed by the geometric

equation

(1.6) ut = µ(Du)tr[A(Du)D2u(I −Du⊗Du)] in RN × (0,∞),

with Γt = {r ∈ RN : u(r, t) = 0}, where A = D2H. The direction dependent scalar µ

is the mobility of the interface and H a positively homogeneous of degree one function.

Notice that in the isotropic case where H(e) = σ|e|, (1.6) simply reduces to motion by

mean curvature.

Our goal here is to derive rigorously such equations from Ising models with general

spin flip dynamics and at the same time provide a Green-Kubo formula for the direction-

and dynamics-dependent mobility µ(e) as well as the hessian of the interfacial energy H(e).

We conclude this section noting that Spohn(19) has also derived (formally) Green-Kubo

formulae for the mobility and the interfacial energy, using corresponding microscopic def-

initions, bypassing the issue of the macroscopic equation. Furthermore Butta(20) proved

the validity of an Einstein relation for the transport coefficient of the isotropic mean cur-

vature evolution. An approach similar to ours was taken in the physics literature by a

number of authors – see, for example, Vredensky et. al.(21), Krug et. al.(22) and the refer-

ences therein – where the macroscopic equation along with the Green-Kubo formulae are

directly derived from the microsocpic dynamics. These works primarily refer to conserva-

tive dynamics (spin exchange dynamics) where, in addition, surface diffusion may enter in

the macroscopic equations. Such questions have been addressed in a series of papers by

Giacomin and Lebowitz(23),(24),(25), who studied phase segregation dynamics in particle

systems with local mean field interactions and obtained, formally, interface evolution laws

similar to the ones obtained in the analogous limit for the Cahn-Hilliard equations.

Finally we note that the results of this paper were already announced in Souganidis(13),(14).

2. The main results.

We begin with a description of general ferromagnetic Ising models, i.e., spin systems

interacting by nonnegative symmetric (even) Kač potentials and evolving with general
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spin flip dynamics. For a much more detailed discussion, at least for Glauber dynamics,

we refer, for example, to the papers by De Masi et. al.(15), Comets(26) and the references

therein.

The energy H of the particle system, evaluated at a configuration σ, is given by

H(σ) =
∑

x6=y

Jγ(x, y)σ(x)σ(y) + h
∑

σ(x),

where h is attributed to an external magnetization field and Jγ is the Kač potential defined

by

(2.1) Jγ(x, y) = γNJ(γ(x− y)) (x, y ∈ ZN ),

γ−1 > 0 being the interaction range. Here J : RN → R is assumed to be such that

(2.2) J ∈ C1(RN ), J(r) = J(−r) ≥ 0 and J(r) = 0 for |r| > R for some R > 0.

The assumption that J has compact support is made only to simplify the arguments below

and can be easily removed by specifying appropriate growth assumptions on J at infinity.

We leave this task to the interested reader. The assumption that J is nonnegative is an

important one from the physical point of view, since it implies that the Ising model is

ferromagnetic.

The dynamics of the model consist of a sequence of flips. If σ is the configuration

before a flip at x, then after the flip at x the configuration is

σx(y) =







−σ(x), if y = x,

σ(y), if y 6= x.

We assume that a flip occurs at x, when the configuration is σ, with a rate cγ(x, σ), given

by

(2.3) cγ(x, σ) = Ψ(−β(H(σx)−H(σ))),

where β > 0 is identified with the inverse temperature, H(σx)−H(σ) is the change in the

energy due to a spin flip at x and Ψ : R → (0,∞) is a locally Lipschitz continuous function

satisfying the detailed balance law (or reversibility condition)

(2.4) Ψ(r) = Ψ(−r)e−r (r ∈ R).
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Typical choices of Ψ’s are Ψ(r) = (1+er)−1 (Glauber dynamics), Ψ(r) = e−r/2 (Arrhenius

dynamics) or Ψ(r) = e−r
+

(Metropolis dynamics). Dynamics obeying (2.4) leave the

underlying Gibbs measures, which are associated with the Hamiltonian H and the inverse

temperature β, invariant.

The underlying process is a jump process on L∞(Σ;R) with generator given by

Lγf(σ) =
∑

x∈ZN

cγ(x, σ)[f(σ
(x))− f(σ)].

A very basic question in the theory of stochastic Ising models with Kač potentials

is the behavior of the system as the interaction range tends to infinity, i.e., in the limit

γ → 0. The passage in the limit γ → 0, which in the physics literature is identified with

grain coarsening, of quantities like the thermodynamical pressure, total magnetization,

etc., is known as the Lebowitz-Penrose limit (see for example, Ref. 27, 28, 29, etc.).

Along these lines we study the asymptotics, as γ → 0, of the averaged magnetization

(2.5) mγ(x, t) = Eµγσt(x) ((x, t) ∈ ZN × [0,∞))

of the system, where Eµγ denotes the expectation of the IPS starting from a measure µγ .

The relevant mesoscopic mean field equation is

(2.6) mt +Φ(β(J ∗m+ h))[m− tanhβ(J ∗m+ h)] = 0 in RN × [0,∞),

where

(2.7) Φ(r) = Ψ(−2r)(1 + e−2r).

Notice that for Glauber dynamics Φ(r) = 1 and (2.6) reduces to the equation (1.5), studied,

at least for radial potentials, in Ref. 15 and 18. In fact following the techniques of Ref. 15

we can prove the following Theorem:

Theorem 2.1: Assume that the IPS defined earlier has as initial measure a product

measure µγ such that, for x ∈ ZN , Eµγ (σ(x)) = m0(γx), where m0 is Lipschitz continuous,

and that (2.2) holds. Then, for each n ∈ Z+,

lim
γ→0

sup
x∈ZN

n

|Eµγ

(

n
∏

i=1

σt(xi)
)

−
n
∏

i=1

m(γxi, t)| = 0,
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where m is the unique solution of (2.6) with initial datum m0.

In the above statement and henceforth, for each n,

ZN
n = {x = (x1, . . . , xn) ∈ ZN : x1 6= · · · 6= xn}.

Next we review some basic properties of (2.6). To this end, assume that

(2.8) βJ > 1,

where

J =

∫

J(r)dr.

In the sequel we refer to the value βcr = (J)−1 as the critical temperature.

It follows easily that there exists some h0 > 0 such that, if |h| < h0, then (2.6) has

three steady solutions mh,−
β < mh,0

β < mh,+
β , which are the solutions of the algebraic

equation x = tanh(β(Jx + h)). Note that the steady state solutions are independent of

Φ and, when h = 0, mh,±
β = ±mβ and mh,0

β = 0. It also turns out that (2.6) admits a

comparison principle stated in the following lemma, under an additional hypothesis, which

is, however, satisfied by the Arrhenius, Glauber and Metropolis dynamics. Its proof is

rather elementary and we will leave it as an exercise.

Lemma 2.2: (i) Assume (2.2) and let m be a solution of (2.6) with initial datum m0.

Then, for all t > 0, |m(·, t)| ≤ ‖m0‖ on RN .

(ii) Assume that Φ is locally Lipschitz continuous and that, for all m ∈ [mh,−
β ,mh,+

β ]

and r ∈ [βJmh,−
β , βJmh,+

β ],

(2.9) r 7→ Φ(r + βh)(m− tanh(r + βh)) is nonincreasing in r.

If m1, m2 are solutions of (2.6) and m1(·, 0) ≤ m2(·, 0) on RN , then

m1(·, t) ≤ m2(·, t) on RN

¤
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It also turns out – and this is crucial for our analysis below – that, for sufficiently

small |h|, (2.6) admits, for each e ∈ SN−1, the unit sphere in RN , special travelling wave

solutions in the direction e connecting mh,−
β and mh,+

β , with speed ch(e), i.e., solutions of

the form

m(r, t) = qh(r · e+ ch(e)t, e),

where qh solves the fully nonlinear integral – differential equation

(2.10) ch(e)q̇h(ξ, e) + Φ(β(J ∗ qh + h))
[

qh(ξ, e)− tanhβ(J ∗ qh(ξ, e) + h)
]

= 0.

Above and hencetoforth we write, for all

(ξ, e) ∈ RN × RN\{0},

J ∗ qh(ξ, e) =

∫

J(r′)qh(ξ + r′e, e)dr′.

In addition qh satisfies, for appropriate positive constants λh±(e) and ah±(e),

(2.11)



























qh(±∞, e) = mh,±
β , qh(0, e) = mh,0

β and q̇h(ξ, e) > 0

and

lim
ξ→±∞

exp(λh±(e)|ξ|)|q
h(ξ, e)− [mh,±

β ± ah±(e) exp(−λ
h
±(e)|ξ|)]| = 0.

It follows that the domain of qh can be extended from R× SN−1 to R× RN\{0} by

(2.12) qh(ξ, e) = qh(|e|−1ξ, ē).

It also turns out, as we explain below, that

(2.13) Deq
h(ξ, e) is continuous in R× RN\{0}.

Finally,

(2.14) if h = 0, then c0(e) = 0 and q0 is odd in ξ,

i.e., the travelling wave is a standing wave.
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The existence and stability of such qh’s, when J is isotropic, i.e., J(r) = J(|r|), was

studied by De Masi, Orlandi, Presutti and Triolo(30), when h = 0, and Bates, Fife, Ren

and Wang(31) in general. For a detailed study of travelling wave solutions of (2.6) in the

presence of an external field but always in the isotropic case, we also refer to the papers by

De Masi, Gobron and Presutti(32) and Orlandi and Triolo(33). As one can see immediately,

in the isotropic case the standing and travelling wave solutions are independent of the

direction e.

The anisotropic case is, however, dramatically different. The standing wave solutions

of (2.6) are expected to depend on the direction, as the next simple example indicates. Of

course, this is the novelty here!

Assume that h = 0, J = 1
411[−α−1,α−1]×[α,α], for some α > 0, where 11A is the charac-

teristic function of the set A. Substituting in (2.10) we immediately see that

q0(ξ, (1, 0)) = q(αξ) and q0(ξ, (0, 1)) = q(α−1ξ),

where q(ξ) = mβtanh(βmβξ) is the direction independent standing wave corresponding to

J = 1
211[−1,1]. (See Ref. 30 for this last statement.)

It should also be noted that the dependence on the direction is of nonlocal nature

and, hence, can not be removed a priori by some change of metric. This can be eas-

ily seen from the above example or by some elementary analysis of the behavior of the

qh’s as |ξ| → ∞. We would also like to point out that a similar phenomenon occurs,

i.e., the existence of travelling waves which depend nontrivially on the direction, in the

study of reaction-diffusion equations with oscillatory coefficients – see Xin(34),(35),(36) and

Barles and Souganidis(1) – or quasilinear reaction-diffusion equations with nonlinearities

depending on the direction of the gradient of the solutions.

The existence of qh’s satisfying (2.10), (2.11) and (2.13) has not been worked out

explicitely anywhere but it can be obtained, as we sketch below for the convenience of the

reader, by a more or less straightforward adaptation of the results of De Masi et al.(30),

De Masi et al.(32) and Bates et. al.(31).

For simplicity, below we only discuss the case h = 0. When h 6= 0, one argues

using the Implicit Function Theorem as in Theorem 3.1 of Ref. 32, with the appropriate
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modifications to deal with explicit dependence on the direction e. Finally to simplify the

notation in what follows, we write q and λ instead of q0 and λ0 respectively.

To this end observe that we can apply the analysis of Ref. 30 and 31, for each fixed

direction e, to the corresponding one dimensional potentials

Ĵ(ρ, e) =

∫

Ne

J(ρe+ y)dy, (ρ ∈ R)

where Ne = {y ∈ RN : y · e = 0}. We thus obtain a standing wave q(·, e) satisfying (2.10)

and (2.11) with λ(e) the unique positive solution of the algebraic equation

β[1−m2
β ]

∫

J(r) exp(−λ(e)e · r)dr = 1.

To study the regularity of q in e asserted in (2.13), we need to consider, for each

e ∈ RN\{0}, the unbounded, self adjoint operator L(e) : L2(R)∩C0(R)→ L2(R)∩C0(R),

C0(R) being the space of bounded continuous functions on R vanishing at infinity, defined

by

(2.15) L(e)p(ξ) = β

∫

J(r)p(ξ + r · e)dr − [1− q(ξ, e)2]−1p(ξ),

which is obtained by linearizing the standing wave equation (2.10) around q(·, e). It follows

from Ref. 30 and 31 that, for each e ∈ RN\{0},

(2.16) ker L∗(e) = ker L(e) = q̇(·, e)R ,

and that L(e)−1 : L2(R) ∩ C0(R) ∩ ker L(e)⊥ → L2(R) ∩ C0(R) is a bounded operator,

the last claim being a consequence of Fredholm’s alternative.

Next, for each e ∈ RN\{0} and each i = 1, ..., N , we consider the solution pi(·, e) ∈

L2(R) ∩ C0(R) of

(2.17) L(e)pi(ξ, e) = −β

∫

J(r)q̇(ξ + r · e, e)ridr.

Since J is even and q is odd (recall (2.2) and (2.14)), the existence of pi follows from the

discussion above, since

∫ ∫

J(r)q̇(ξ + r · e, e)q̇(ξ, e)ridrdξ = 0 .
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It also follows that pi is continuous with respect to e. Indeed observe that, since (2.10)

can be rewritten as

q = tanhβ(Ĵ(·, e) ∗ q) ,

if q1 and q2 are the solutions of (2.10) corresponding to e1 and e2, then

||q1 − q2||∞ ≤ C|e1 − e2| ,

with the constant C depending on ±mβ and the C1-norm of J . An elementary integration

by parts with respect to r of the right hand side of (2.17) together with the fact L(e)−1

is continuous with respect to e, following from the continuity of q in e, yield the above

asserted regularity on pi.

Fix now a unit vector ei ∈ RN and consider for ρ 6= 0 the finite difference

Qρ
i (ξ) = ρ−1[q(ξ, e+ ρei)− q(ξ, e)] ,

which solves, as an elementary computation reveals, for a suitable P ρ
i , the equation

L(e)Qρ
i = P ρ

i .

It follows from the symmetry properties of J and q that P ρ
i ∈ L2(R)∩C0(R)∩ ker L(e)⊥.

Moreover, it is also immediate that, as ρ→ 0,

P ρ
i → −β

∫

J(r)q̇(·+ r · e, e)ridr in L2 ∩ C0 .

The boundedness of L(e)−1 now gives in the limit ρ→ 0,

Qρ
i → Deiq = pi in L2 ∩ C0 .

The above yield that

L(e)Deiq(ξ, e) = −β

∫

J(r)q̇(ξ + r · e, e)ridr ,

as well as the regularity of q in e asserted in (2.13).
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As mentioned earlier the existence of qh’s satisfying (2.10), (2.11) and (2.13) is a very

important technical tool for our analysis. It is by no means, however, what creates the

curvature effects in the asymptotic limits, although the latter are expressed quantitatively

in terms of expressions which depend on qh. Moreover, it is worth remarking that it is only

(2.10), (2.11) and (2.13) that play a role in our analysis and not the stability properties of

q, which require in addition to (2.16), a spectral estimate on L(e). We refer the reader to

the related analysis for reaction-diffusion equations – see, for example, Ref. 1, 6, 12 – and

for (1.5) – see Ref. 18. Although spectral estimates played a crucial role in the analysis

performed for short times by a number of authors, it turns out that they play no role

whatsoever in the approach we are using here. We refer the reader to Ref. 1, 6, 12, 17, 18

etc. for further discussion of this point.

We continue now with the presentation of our main results which are about the long

time asymptotics of (2.6) and the IPS. For the former it is convenient to rescale (2.6)

using the parabolic scaling (r, t)→ (ε−1r, ε−2t). The effect of scaling space and time is, of

course, to reproduce in bounded space regions and for finite times the long time behavior

of (2.6).

For any α ∈ R, let mε be the solution of (2.6) with h = αε and define, for (r, t) ∈

RN × (0,∞),

mε(r, t) = mε(ε
−1r, ε−2t).

It follows that mε solves the rescaled equation

(2.18) mε
t + ε−2Φ(β(Jε ∗mε + αε))[mε − tanhβ(J ε ∗mε + αε)] = 0 in RN × (0,∞),

where

Jε(r) = ε−NJ(ε−1r) (r ∈ RN ).

To state the results we also need to introduce the scalar µ : SN−1 → R identified with

the mobility of the interface and the matrix A(e) : SN−1 → SN related to the surface

tension given by

(2.19) µ(e) = β
[

∫

(q̇(ξ, e))2

Φ(βJ ∗ q(ξ, e)dr)(1− q2(ξ, e))
dξ
]−1
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and

A(e) = 1
2

∫∫

J(r)q̇(ξ, e)[q̇(ξ + r · e, e)(r ⊗ r) +Deq(ξ + r · e, e)⊗ r

(2.20)

+ r ⊗Deq(ξ + r · e, e)]drdξ.

Notice that if J is radially symmetric then A(e) reduces to θI, with

θ = 1
2

∫ ∫

J(r)q̇(ξ)q̇(ξ + r · e)(r ⊗ r)drdξ.

Next define the matrix Ã : RN\{0} × SN → SN by

(2.21) Ã(e,X) = A(ē)X(I − ē⊗ ē),

and consider the function F : RN\{0} × SN → R given by

F (e,X) = µ(ē)
[

tr Ã(ē, X) + 2αmβ |e|
]

.

It follows from the general theory developed in Barles and Souganidis(1) that F is degen-

erate elliptic, i.e., for all e ∈ RN\{0} and X,Y ∈ SN ,

(2.22) if X ≤ Y then F (e,X) ≤ F (e, Y ).

This last fact is crucial for the analysis below. It is worth remarking that in principle one

should be able to check (2.22) by a direct computation without using Ref. 1, as it is the

case for a number of other examples. This, however, requires a more detailed knowledge

of properties of the standing wave, which may not be easily obtained if not at all. The

theory of Ref. 1 circumvents this problem.

Consider now the initial value problem

(2.23)







mε
t + ε−2Φ(β(Jε ∗mε + αε))[mε − tanhβ(J ε ∗mε + αε)] = 0 in RN × (0,∞),

mε = mε
0 on RN × {0},

and assume that there exists an open set Ω0 ⊂ RN and a closed set Γ0 ⊂ RN such that

RN = Ω0 ∪ Ω
c

0 ∪ Γ0 and

(2.24) Ω0 = {r ∈ RN : mε
0 > 0} and Γ0 = {r ∈ RN : mε

0 = 0};
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notice that this last assumption on mε
0 can be easily generalized – see, for example, Ref.

18.

Finally consider the geometric pde

(2.25)







ut = F (Du,D2u) in RN × (0,∞),

u = u0 on RN × {0},

where u0 is a bounded uniformly continuous function such that

(2.26) Γ0 = {x : u0(x) = 0}, Ω0 = {x : u0(x) > 0} and Ω
c

0 = {x : u0(x) < 0}.

As discussed in Section 1, the set Γt = {x ∈ RN : u(x, t) = 0} is by the definition the

weak front propagation of Γ0 with normal velocity

(2.27) V = −µ(n)tr[A(n)Dn+ 2αmβ ].

The first main result is

Theorem 2.3: Assume (2.8), (2.9), (2.24) and let mε be the solution of (2.23). Then, as

ε→ 0+, mε → mβ in {u > 0} and mε → −mβ in {u < 0}, with both limits local uniform,

where u is the unique solution of (2.25) with u0 satisfying (2.26).

As mentioned in the Introduction here we only prove Theorem 2.3 under the assump-

tion that the weak evolution of Γ0 with normal velocity (2.27) is smooth. Theorem 2.3 is

proved, for the weak evolution, in Ref. 1.

To state our result for the IPS, if u is the solution of (2.25), for t > 0, we define the

sets


















P γ
t = {x ∈ ZN : u(γε(γ)x, t) > 0}, Nγ

t = {x ∈ ZN : u(γε(γ)x, t) < 0}

and

Mn
γ,t = {x ∈ ZN

n : xi ∈ P γ
t ∪N

γ
t }.

The result is

Theorem 2.4: Assume (2.8), (2.9) and (2.24). Under the assumptions of Theorem 2.1 on

the initial measure, there exists a ρ∗ > 0 such that for any ε(γ) such that γ−ρ
∗

ε(γ)→ +∞,
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as γ → 0, and, for all t > 0 with the limit local uniform in t,

lim
γ→0

sup
x∈Mn

γ,t

|Eµγ

n
∏

i=1

σtε(γ)−2(xi)−mn
β

∏

i∈Nγ
t

(−1)| = 0.

Theorem 2.4 follows from Theorem 2.3 the same way as the analogous theorem in Ref.

18, we therefore do not present its proof here.

We conclude this section with a discussion about the history of this problem as well

as the meaning of our results.

To our knowledge, Theorem 2.3 and 2.4 are the first rigorous results in a non-

equilibrium setting where an anisotropic macroscopic equation (1.6) as well as a Green-

Kubo formula for the direction-dependent transport matrix (2.20) and mobility (2.19)

are derived from mesoscopic and microscopic dynamics, namely (2.6) and the underlying

stochastic Ising model.

As already mentioned earlier a result analogous to Theorem 2.3 was obtained for the

isotropic case, i.e., when J(r) = J(|r|), first under the assumption that the evolving front

remains smooth in Ref. 15 and later extended past all possible singularities by the authors

in Ref. 18. In this case it turns out that the limiting motion is governed by (2.27), where

V = −µθ trDn, where the constants θ and µ are given by

θ =

∫ ∫

J(|r|)q̇(ξ + e · r)q̇(ξ)(ê · r)2drdξ and µ = β

∫

(1− q2(ξ))−1q̇2(ξ)dξ,

where e, ê are any two orthogonal vectors in SN−1. Note that due to the symmetry of

J , both θ and µ are independent of the particular choice of e and ê. In addition q is the

direction-independent travelling wave corresponding to the symmetric J .

One may simplify (2.6) by substituting J2(∆m −m) for the convolution term J ∗m

(see, for example, Penrose(37)), where J2 =
∫

J(|r|)|r|2dr or even additionally linearize the

hyperbolic tangent, thus obtaining a Ginzburg-Landau equation (1.1). It is known (see

Jerrard(38), Evans, Soner and Souganidis(12) and Barles, Soner and Souganidis(6)) that in

the isotropic case, both simplified models have the same qualitative asymptotic behavior

as (2.6) with different though transport coefficients. In the anisotropic case, however, this
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picture is not true anymore. The second order approximations described earlier still give, in

the limit ε→ 0, isotropic motion by mean curvature with a constant transport coefficient,

while (2.6), according to our analysis should yield the anisotropic equation (2.23) with the

Green-Kubo formulae (2.19) and (2.20). It appears that anisotropy is a higher order effect

which cannot be accounted for, only with second order approximating equations. This

phenomenon is also pointed out by Caginalp and Fife(39), where depending on the type of

anisotropy expected, they “correct” (1.4) by suitably adding higher order derivatives.

Fronts moving with normal velocity given by (2.27) can also be obtained at the scaled

limit of monotone threshold dynamics – see Ishii, Pires and Souganidis(40), which can be

thought as deterministic analogues to Ising models.

3. The proof of Theorem 2.3.

As mentioned earlier here we prove Theorem 2.3 under the additional hypothesis that

(3.1) Γ0 is smooth,

which yields, by classical arguments, that there exists T > 0 such that

(3.2) the evolution Γt of Γ0 according to (2.27) is smooth for t ∈ [0, T ].

Here we only present the argument for α = 0, the general case follows by replacing in

the proof below, a by a+ α.

Let u be the solution of (2.25) with u0 satisfying (2.26) and define the signed distance

d to Γt by

(3.3) d(r, t) =







d(r,Γt) if r ∈ {r′ ∈ RN : u(r′, t) > 0},

−d(r,Γt) if x ∈ {r′ ∈ RN : u(r′, t) < 0},

where d(x,B) is the usual distance from x to the set B. Then (3.2) is quantified by saying

that, for some fixed ε > 0 and δ0 > 0,

(3.4) dt, Dd,Ddt, D
2d ∈ C1

b (RN × (0, T + ε)) ∩ {(r, t) : |d(r, t)| < δ0}.
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Finally, throughout this section we will assume that the system starts at a local

equilibrium, i.e., that

(3.5) mε = q(ε−1d0, Dd0) on RN × {0},

d0 being the signed distance to Γ0. This additional assumption can also be removed. We

refer to Ref. 1, 6, 17 and 30 for such arguments. Recall that for simplicity we write q

instead of q0.

The proof of Theorem 2.3 relies on the construction of suitable super- and sub-solutions

of (2.23), which, as ε→ 0+, drive the solution of (2.23) to ±mβ in the appropriate regions

of the (r, t) space. A similar approach was taken in Ref. 1, 6, 12 and 42 for the study of

the asymptotics of reaction-diffusion equations.

A crucial part in the construction of super- and sub-solutions of (2.23) is played by a

lower order corrector terms the existence of which leads to the identification of the matrix

A(e) and the coefficient µ(e). Notice that the transport matrix µ(e)A(e) does not appear

in (2.23). It arises as a result of an averaging effect, in the limit ε→ 0+, due to the highly

nonlinear form of the equation as well as its nonlocal character.

More precisely, but still heuristically, our super- and sub-solutions will be of the form

q(ε−1d(r, t), Dd(r, t)) + εQ(ε−1d(r, t), Dd(r, t)) +O(ε2),

Q being the corrector, which is identified by solving an appropriate “cell” problem. As

usual, it is the condition guaranteeing the solvability of the cell problem that yields the

result.

To this end, for a ∈ R, e ∈ RN\{0} and ε > 0, let qaε = qaε(ξ, e) be the travelling

wave corresponding to

(3.6) mt +Φ(β(J ∗m+ aε))[m− tanh[β(J ∗m+ aε)]] = 0 in RN × (0,∞),

with speed caε(e) satisfying, see for example Ref. 30,

(3.7) c(a, e) := lim
ε→0+

ε−1caε(e) = 2amβµ(e),

with µ(e) given by (2.19).

Next fix B ∈ SN and A ∈ R. A corrector Qε = Qε(ξ, e) : R × RN\{0} → R is the

unique solution of
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Laε(e)Qε =Aq̇aε − Φ(β(J ∗ qaε + aε))

×
[

1−
(

qaε + caε(e)(Φ(β(J ∗ qaε + aε)))−1q̇aε
)2]

×
β

2

∫

J(r′)[q̇aε(ξ + r′ · e, e)(tr(r′ ⊗ r′)B)(3.8)

+ tr([(Deq
aε(ξ + r′ · e, e)⊗ r′ + r′ ⊗Deq

aε(ξ + r′ · e, e))]B)]dr′,

which is such that

(3.9)



































Qε(0, e) = 0, |Qε(ξ, e)| ≤ Ce−λ|ξ|, |Q̇ε(ξ, e)| ≤ Ce−λ|ξ|,

for some positive constants C and λ,

and

DeQ
ε is continuous.

In the above equation Laε(e), which is the linearization around qaε of the equation satisfied

by qaε , is given by

Laε(e)Q =caε(e)
[

Φ(β(J ∗ qaε + aε))Q̇−
Φ′(β(Jε ∗ qaε + aε))

Φ(β(Jε ∗ qaε + aε))
Jε ∗ q̇aεQ

]

+Φ(β(J ∗ qaε + aε)){Q− [1− (qaε + caε(e)(Φ(β(J ∗ qaε + aε)))−1q̇aε)2](3.10)

× β

∫

J(r′)Q(ξ + r′e, e)dr′.

It follows, see for example the discussion in Section 2, that

ker(Laε(e))∗ = ker Laε(e) = q̇aε(·, e)R.

Hence the existence of such a Qε follows from Fredholm’s alternative, provided the right

hand side of (3.10) is orthogonal to the kernel of the operator Laε(e). This leads to the

compatibility condition

A = tr µε(e)Aε(e)B ,
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where

Aε(e) = 1
2

∫ ∫

J(r)q̇aε(ξ, e)[q̇aε(ξ + e · r, e)r ⊗ r

+Deq
aε(ξ + e · r, e)⊗ r + r ⊗Deq

aε(ξ + e · r, e)]drdξ

and

µε(e) = β
[

∫

(q̇aε(ξ, e))2

Φ(β(J ∗ qaε + aε))[1− (qaε + caε(e)(Φ(β(J ∗ qaε + aε)))−1q̇aε(ξ, e))2]
dξ
]−1

Notice that, as ε→ 0,

(3.11) Aε(e)→ A(e) and µε(e)→ µ(e) in RN\{0}.

Furthermore, as we will see later, B will be chosen to be D2d(r, t), hence Qε will depend

on (r, t). Since d satisfies (3.4), it follows that there exists a positive constant C such that

(3.12) |Qε
t|+ |DrQ

ε| ≤ C.

We now introduce super- and sub-solutions for (2.23) refining ideas of Ref. 6, 12, 17,

18, etc., with the use of the appropriate correctors defined earlier. We begin with some

preliminary constructions.

For fixed δ and a, let uδ,a be the solution

(3.13)







uδ,at − F (Duδ,a, D2uδ,a)− c(a,Duδ,a)|Duδ,a| = 0 in RN × (0,∞),

uδ,a(r, 0) = d0(r) + δ on RN × {0},

set Γδ,at = {r : uδ,a(r, t) = 0} and let dδ,a(r, t) be the signed distance from Γδ,at .

Since d satisfies (3.4) in [0, T ], there is a0 > 0 such that for all a ∈ (−a0, a0), d
δ,a

satisfies (3.4) in [0, T + ε). Furthermore we have

(3.14) dδ,at − µ(Ddδ,a)tr{A(Ddδ,a)D2dδ,a} − c(a,Ddδ,a) = 0 on Γδ,at ,

and

(3.15) dδ,at − µ(Ddδ,a)tr{A(Ddδ,a)D2dδ,a} − c(a,Ddδ,a) = O(|dδ,a|) on {|dδ,a| < δ0}.
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We now define our candidate U = U(r, t) for the super- and sub-solution of (2.23).

If |dδ,a| ≤ δ ≤ δ0/2, set

(3.16) U(r, t) = qaε(ε−1dδ,a(r, t), Ddδ,a(r, t)) + εQε(ε−1dδ,a(r, t), Ddδ,a(r, t)).

If dδ,a > δ we extend U so that it is uniformly continuous in (r, t), continuously differen-

tiable in t and satisfies, uniformly in ε,

(3.17)























|U(r, t)−maε,+
β | ≤ amaxe

−λmin
δ
ε + oδ(1) in {dδ,a > δ},

and

|Ut| ≤ C.

Here

λmin = min
|e|=1

λ(e) and amax = max
|e|=1

a(e),

where a and λ are defined in (2.11) for h = 0. Similarly we extend U when dδ,a < −δ by

requiring that

(3.18) |U(r, t)−maε,−
β | ≤ amaxe

−λmin
δ
ε + oδ(1).

We can now state and prove the key lemma leading to the proof of Theorem 2.3.

Lemma 3.1: The function U defined in (3.16) is a super-solution (respectively sub-) of

(2.23), (3.5) if a is positive (respectively negative).

Proof. 1. We only argue for a > 0. 2. If r ∈ {dδ,a > δ}, then, for ε uniformly small,

U(r, 0) ≥ maε,+
β − amaxe

−λmin
δ
ε > mβ > m(r, 0).

Similarly, if r ∈ {dδ,a < −δ}, U(r, 0) ≥ m(r, 0). If r ∈ {|dδ,a| ≤ δ}, using the properties of

q and qaε we obtain, for ε sufficiently small,

U(r, 0) = qaε(ε−1(d0(r) + δ), Dd0(r)) ≥ q(ε−1(d0(r)), Dd0(r)).

Hence

U(·, 0) ≥ m(·, 0) = q(d0, Dd0).
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3. Next we show U is supersolution of (2.23) in {dδ,a > δ} ∪ {dδ,a < −δ}. Using the

fact J has compact support, we obtain, for ε uniformly small, that

Ut + ε−2Φ(βJε ∗ U)
[

U − tanh
(

β

∫

J(r′)U(r + εr′, t)dr′
)]

≥ −c+ ε−2Φ(βJε ∗ U)[maε,+
β +O(e−λmin

δ
ε )− tanh(βJmaε,+

β +O(e−λmin
δ
ε ))]

= −c+ ε−2Φ(βJε ∗ U)[tanh(βJmaε,+
β + aε)− tanh(βJmaε,+

β ) +O(e−λmin
δ
ε )]

≥ −c+ ε−2Φ(βJε ∗ U)[tanh′(βJmaε,+
β )aε+O(ε2) +O(e−λmin

δ
ε )] > 0.

4. If |dδ,a(r, t)| < δ, then, since qaε is a travelling wave solution of (3.6) with speed

cε(a, e),

Ut + ε−2Φ(βJε ∗ U)[U − tanh J ε ∗ U ] = ε−1q̇aεdδ,at + ε−1Φ(βJε ∗ U)Qε+

+Deq
aεDdδ,at + Q̇εdδ,at + εDeQ

εDdδ,at + εQε
t − ε−2caε(e)

Φ(βJε ∗ U)

Φ(β(Jε ∗ qaε + aε)
q̇aε+

+ ε−2Φ(βJε ∗ U)
{

tanhβ
[

∫

J(r′)qaε(ε−1dδ,a + er′, e)dr′ + aε
]

−

− tanhβ
[

∫

J(r′)(qaε(ε−1dδ,a(r + εr′, t), Ddδ,a(r + εr′, t))+

+ εQε(ε−1dδ,a(r + εr′, t), Ddδ,a(r + εr′, t), r + εr′, t))dr′
]}

where we denote by e the gradient Ddδ,a(r, t) and whenever we evaluate a function at (r, t)

we omit the arguments.

5. Call Cε the term in the curly bracket in the equation of Step 3. Expanding tanh

to second order we obtain

Cε = tanh′
[

β
(

∫

J(r′)qaε(ε−1dδ,a + er′, e)dr′ + aε
)]

·Dε + tanh′′(ζ) · (Dε)2
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where

Dε = β

∫

J(r′)[qaε(ε−1dδ,a + er′, e)− qaε(ε−1dδ,a(r + εr′, t), Ddδ,a(r + εr′, t))]dr

+ βaε− εβ

∫

J(r′)Qε(ε−1dδ,a(r + εr′, t), Ddδ,a(r + εr′, t), r + εr′, t)dr′

= Bε − εEε.

6. Using (3.4) and the properties of the corrector Qε we find that

Eε = β

∫

J(r′)Qε(ε−1dδ,a + er′ +O(ε), e+O(ε), r + εr′, t)dr′

(3.19)

= β

∫

J(r′)Qε(ε−1dδ,a + er′, e, r, t)dr′ +O(ε).

and

Bε = β

∫

J(r′)[qaε(ε−1dδ,a + er′, e)− qaε(ε−1dδ,a + er′ +
ε

2
(D2dδ,ar′, r′) +O(ε2),

(3.20)

e+ εD2dδ,ar′ +O(ε2))
]

dr′ + βaε,

where the O(ε) and O(ε2) depend only on ε and the constants in (3.4).

Expanding q to second order we obtain

Bε =β

∫

J(r′)
{

q̇aε(ε−1dδ,a + e · r′, e)
[ ε

2
(D2dδ,ar′, r′) +O(ε2)

]

+

(3.21)

+Deq
aε(ε−1dδ,a + er′, e)(εD2dδ,ar′)

}

dr′ + βaε+O(ε2).

Combining (3.19) and (3.21) yields that

Dε = O(ε).

7. Using this last fact as well as (3.19) and (3.20) and

tanh′(J ∗ q) = 1− tanh2(J ∗ q)
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we obtain

Cε =[1− (qaε + caε(e)(Φ(βJ ∗ qqε))−1q̇aε)2]

×
{βε

2

∫

J(r′)q̇aε(ε−1dδ,a + e · r′, e)(D2dδ,ar′, r′)dr′

+ βaε+ βε

∫

J(r′)Deq
aε(ε−1dδ,a + e · r′, e)D2dδ,ar′dr′

− βε

∫

J(r′)Qε(ε−1dδ,a + e · r′, e, r, t
)

dr′ +O(ε2)
}

+O(ε2).

Using that Φ is Lipschitz and subsequently expanding J ε ∗ U as in (3.20), (3.21), we get

that

Φ(βJε ∗ U) = Φ(βJε ∗ qaε) +O(ε).

Going now all the way back to the equation of Step 4 we obtain

Ut + ε−2Φ(βJε ∗ U)[Φ− tanhβJ ε ∗ U ] =

ε−1
{

q̇aεdδ,at − Φ(βJ ∗ qaε)[1− (qaε + caε(e)(Φ(βJ ∗ qaε))−1q̇aε)2]
[β

2

∫

J(r′)

[q̇aε(ε−1dδ,a + e · r′, e)(D2dδ,ar′, r′) + 2Deq
aε(ε−1dδ,a + e · r′, r′)D2dδ,ar′]dr′

− β

∫

J(r′)Qε(ε−1dδ,a + e · r′, e, r, t)dr′ + βa+O(ε)
]

+Φ(βJ ∗ qaε)Qε−

− ε−1caε(ε)
Φ(βJε ∗ U)

Φ(β(Jε ∗ qaε + aε))
q̇aε

}

+ [Deq
aεDdδ,at + Q̇εdδ,at + εDeQ

εDdδ,at + εQε
t] +O(1).

8. Recall the definition of Qε through the cell problem (3.7), where B = D2d(r, t) and

26



A = tr{µε(Ddδ,a)Aε(Ddδ,a)D2dδ,a}. Then

Ut + ε−2Φ(βJ ∗m)[U − tanh J ε ∗ U ] = ε−1
{

q̇aε
[

dδ,at − trµε(Ddδ,a)Aε(Ddδ,a)D2dδ,a

− c(a, e) + (c(a, e)− ε−1caε(e))
]

+ βa+O(ε)− caε(e)[Φ(βJ ∗ qaε)Q̇ε

−
Φ′

Φ
J ∗ qaεQ] +O(ε)

}

+O(1).

Since, as ε→ 0,

ε−1caε(e)→ c(a, e) and Aε → A and µε → µ,

and

|dδ,at − µ(Ddδ,a)tr{A(Ddδ,a)D2dδ,a} − c(a,Ddδ,a)| = O(|dδ,a|) ≤ O(δ),

for ε, δ small, the right hand side of the last equality is positive, thus U a supersolution of

(2.23) in {|dδ,a| < δ}. ¤

We conclude with the

Proof of Theorem 2.3: 1. Pick (r0, t0) ∈ RN × [0, T ) such that u(r0, t0) = −γ < 0,

where u solves (2.23). The stability of solutions for pde’s of the type (2.23) yields that

uδ,a → u locally uniformly in RN × [0, T ) as δ, a → 0. Therefore, for sufficiently small δ

and a, we have

(3.22) uδ,a(r0, t0) < −
ε

2
< 0 and dδ,a(r0, t0) < 0.

2. Lemma 2.2 and Lemma 3.1 yield

U ≥ mε ≥ −mβ in RN × [0, T ),

which combined with (3.22) yields

lim
ε→0+

mε(r0, t0) = lim
ε→0+

Φ(r0, t0) = −mβ .

3. Using a subsolution constructed as in Lemma 3.1 we see that

lim
ε→0+

mε = mβ in {u > 0}. ¤
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Remark. Notice that the above proof does not quite work for the Metropolis dynamics,

since in (3.10) we used the differentiability of Φ. However we may mollify the singularity

of the Metropolis dynamics at 0 by introducing a new small parameter ζ. Then we may

proceed in the proof of Theorem 2.3, using the stability of equations (2.21) and (2.23) and

letting first ζ → 0 and then ε→ 0.
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