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Abstract. We introduce a relaxation model for front propagation problems. Our proposed

relaxation approximation is a semilinear hyperbolic system without singularities. It yields a

direction-depedent normal velocity at the leading term and captures, in the Chapman-Enskog
expansion, the higher order curvature dependent corrections, including possible anisotropies.

1. Introduction.

The relaxation approximation to systems of conservation laws, first introduced by Jin

and Xin [JX1], has been an active area of research in recent years [JX1, KT, Nat]. The

idea there is to introduce a relaxation approximation to a system of conservation laws that

can generate entropy solutions in the zero relaxation limit. It also gives rise to a class of

relaxation schemes that are total-variation-diminishing and free of Riemann solvers. For a

general Hamilton-Jacobi equation a class of relaxation approximation was introduced by Jin

and Xin [JX2] using the conservation law formulation of the Hamilton-Jacobi equations.

In this paper we construct a related relaxation approximation for front propagation prob-

lems. Our proposed relaxation approximation not only yields the direction-dependent normal

velocity of the front at the leading term, but also captures, in the Chapman-Enskog expan-

sion, the higher order curvature dependent corrections, including possible anisotropies. This

new relaxation model is a first order semilinear hyperbolic system without singularities.

First, it may constitute a new regularization for front propagation problems, including ill-

posed problems such as evolutions corresponding to a nonconvex interfacial energy. As in
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the case of conservation laws [JX1], it also provides a relaxation scheme for the computation

of propagating fronts. In addition to the numerical advantages of relaxation schemes for

conservation laws, our approximation does not have singularities that arise in the level set

formulation of front propagation problems.

2. Relaxation approximation for general Hamilton-Jacobi equations.

Hamilton-Jacobi equations arise in a variety of applications, among others in control

theory, geometric optics, image analysis and phase transitions. It is well-known that such

equations in general do not have classical solutions. The correct class of suitable weak

solutions, namely the viscosity solutions, was introduced by Crandall and Lions [CL].

The Cauchy problem for a Hamilton-Jacobi equation in Rn,

(2.1)
∂tu+H(∇u) = 0 ,

u(x, 0) = u0(x) , x ∈ Rn

has a corresponding system of conservation laws obtained formally by differentiating (2.1),

(2.2)
∂tp+∇H(p) = 0 ,

p(x, 0) = p0(x) = ∇u0(x) ,

where

(2.3) p(x, t) = ∇u(x, t) .

The equivalence of the weak solutions obtained in the vanishing viscosity limit, of (2.1) and

(2.2) for a convex Hamiltonian H, is a classical result in one space dimension [Kru]. In [JX2]

this result was also proved for any space dimension. Moreover, a relaxation approximation

to (2.2) and subsequently to (2.1), was introduced by Jin and Xin in [JX2]. Their relaxation

approximation is

∂tp+∇w = 0 ,(2.4a)

∂tw + a∇ · p = −
1

ε
(w −H(p)) ,(2.4b)

∂tu+ w = 0 ,(2.4c)

where ε > 0 is the relaxation time, a is a positive constant satisfying the stability condition

(2.5) a > |∇pH|
2 .

In order to understand the behavior of the solution of (2.4) for small ε, the Chapman-Enskog

expansion can be applied to (2.4) [CLL, JX2]. By ignoring the O(ε2) terms, this expansion

yields

(2.6) ∂tu+H(∇u) = ε [a∆u− (∇pH(p))
T∇p∇pH(p)] .
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The stability condition (2.5) guarantees that the O(ε) correction to the Hamilton-Jacobi

equation is dissipative.

The relaxation approximation (2.4) has several advantages, such as finite speed of prop-

agation, linear convection, and greater regularity. It also allows the construction of efficient

relaxation schemes that are Riemann solver free. Moreover, it might provide an alternative

way to construct the weak solution of (2.1). In the case of multidimensional scalar conserva-

tion laws, entropy solutions were rigoriously obtained as the zero relaxation limit of suitable

relaxation approximations [KT, Nat]. The zero relaxation limit and the entropy properties

of general nonlinear hyperbolic systems with relaxation, were studied in [CLL].

3. A relaxation approximation for fronts propagating with curvature dependent

velocity.

A front Γt propagating with normal velocity V = −1 can be described by the zero level set

of an auxiliary function u solving the Hamilton-Jacobi equation (2.1), where H(∇u) = |∇u|.

By choosing a = 1, (2.6) becomes

(3.1) ∂tu+ |∇u| = ε tr

[(

I −
∇u⊗∇u

|∇u|2

)

∇2u

]

.

This equation is the level set formulation of a front Γt propagating with normal velocity

(3.2) V = −1− εκ ,

where κ is the mean curvature of the hypersurface Γt, u is positive inside Γt. The front is

recovered from (3.1) as the level set Γt = {x : u(x, t) = 0}; in this case the mean curvature

is given by the formula

κ = ∇ · n = −
1

|∇u|
tr

[(

I −
∇u⊗∇u

|∇u|2

)

∇2u

]

,

where n = − ∇u
|∇u| is the outnormal of the front and the velocity is V =

ut

|∇u| . Of course, to

generate the motion V = 1− εκ, one just needs to take H(∇u) = −|∇u| and a = 1. Similar

to Hamilton-Jacobi equations, such equations in general have only weak–viscosity–solutions

[CGG, ESp], so the level set formulation allows for the interpretation of (3.2) in a weak sense

past all possible singularities and changes of topological type of the front. For an overview

to the theory of viscosity solutions for first and second order equations, we refer to [CIL].

An important feature of the level set formulation for (3.2), or any such other local law, is

the geometric property of the corresponding PDE (3.1): the zero level sets of the solution u

remain invariant under the transformation u 7→ φ(u) for an increasing function φ with φ(0) =

0. The geometric property guarantees that the evolution of the zero level set Γt depends only
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on the zero level set Γ0 of the initial datum and its sign inside and outside Γ0, and not on the

particular choice of the initial condition of (3.1). In addition to its analytical advantages, the

level set approach was successfully used in the numerical simulation of curvature dependent

front propogation [OS].

Going back to (2.4), we underline the observation that the Chapman-Enskog expansion

leading to (3.1) (for the “degenerate” choice a = 1), indicates that the relaxation approx-

imation yields a front propagating with normal velocity V = −1 − εκ, including the mean

curvature as the next order correction to the front velocity V = −1. Curvature corrections

of this type arise in a variety of physical phenomena, one of the most striking being in phase

transition problems, for instance the Allen-Cahn theory [AC].

The local law V = −1 or equivalently the PDE ut + |∇u| = 0, describe the isotropic

evolution of an interface with normal velocity one. In an analogous way, anisotropic front

propagation depending on the normal direction of the front is described by the local law

(3.3) V = −H(n) ,

where n is the outnormal of the evolving front Γt. The PDE governing such a propagation

is given by the Hamilton-Jacobi equation

(3.4) ut +H(∇u) = 0 ,

where H is a positively homogeneous function of degree one, i.e.,

H(λp) = λH(p) for λ > 0 ,

and the front is recovered as the zero level set of the viscosity solution of (3.4). Similar to

the isotropic case, the higher order correction to (3.4) is given by terms depending on the

curvature tensor. This fact has been demonstrated formally and rigorously in phase transition

problems, both in microscopic models [Spo, KS] and phase field theories [MWBCS,ES].

If we attempt to approximate (3.4) with the relaxation model (2.4), we readily see that

(2.6) is not geometric, therefore it does not constitute a legitimate level set formulation for

an underlying evolving front. Here we introduce a relaxation model for (3.4) that will yield

a geometric evolution in the Chapman-Enskog expansion, capturing curvature dependent

terms as a higher order effect.

We propose the following hyperbolic system with relaxation

∂tp+∇w = 0 ,(3.5a)

∂tw +∇ · q = −
1

ε
(w −H(p)) ,(3.5b)

∂tq+∇w = −
1

ε
(q− J(p)) ,(3.5c)

∂tu+ w = 0 ,(3.5d)
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where

(3.6) J(p) = 1
2
∇pH

2(p) = H(p)∇pH(p) .

If H(p) = |p| then J(p) = p, and (3.5) recovers the relaxation approximation (2.4) with

the choice of q = J(p). Notice also that the relaxation approximation (3.5), at least when

q = J(p), corresponds to a perturbation of the Hamilton-Jacobi equation (3.4) by a nonlinear

wave operator:

ut +H(∇u) = ε(∇ · J(∇u)− utt) .

Before we study the behavior of (3.5) for small ε, we establish the relation between p and

∇u, following [JX2]. By (3.5d),

(3.7) ∂t∇u+∇w = 0 .

Combining (3.7) with (3.5a) gives

(3.8) ∂t(∇u− p) = 0 .

By choosing the initial data to be in local equilibrium i.e.,

(3.9) p(x, 0) = p0(x) ≡ ∇u0(x) ,

(3.5) has no initial layer. Moreover, (3.8) and (3.9) give

(3.10) ∇u(x, t) = p(x, t) for t ≥ 0 .

We now apply the Chapman-Enskog expansion to (3.5),

(3.11)

w(x, t) = H(p)− ε (∂tw +∇ · J(p)) +O(ε2)

= H(p)− ε (∂tH(p) +∇ · J(p)) +O(ε2)

= H(p)− ε (∇pH · ∂tp+∇ · J(p)) +O(ε2)

= H(p)− ε (−∇pH · ∇w +∇ · J(p)) +O(ε2)

= H(p)− ε (−(∇pH)
T∇p∇pH +∇ · J(p)) +O(ε2)

= H(p)− ε tr [(−∇pH ⊗∇pH +∇pJ(p))∇p] +O(ε2) .

Recall that the homogeneity of H implies the following properties:

(3.12)
p∇pH(λp) = H(p) , ∇pH(λp) = ∇pH(p) ,

p∇2
pH(λp) = 0 , ∇2

pH(λp) =
1
λ
∇2

pH(p) .
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Consequently

(3.13) ∇pJ(p) = ∇p(H(p)∇pH(p)) = ∇pH(p)⊗∇pH(p) +H(p)∇2
pH(p) .

Substituting in (3.11) we get

(3.14) w = H(p)− ε tr [H(p)∇2
pH∇p] +O(ε2) .

We now replace w in (3.5d) by the previous expression and set p = ∇u. After ignoring the

O(ε2) term, we get the equation

(3.15) ut +H(∇u) = εH(∇u) tr
[

∇2
pH(∇u)∇

2u
]

.

It easily follows from (3.12) that this equation satisfies the geometric property and the level

set Γt = {x : u(x, t) = 0} evolves with normal velocity

(3.16) V = −H(n) + εH(n) tr [∇2
pH(n)∇n] .

By a rescaling c2ε 7→ ε, cH 7→ H in (3.5), one can also obtain the slightly more general

anisotropic mean-curvature flow

(3.17) V = −cH(n) + εH(n) tr[∇2
pH(n)∇n] .

Interface laws similar to (3.16) or (3.17) are obtained as singular limits of anisotropic

phase field equations. In such models one first postulates the free energy [MWBCS, TC]

(3.18) E(v) =

∫

Rn

[ε2A(∇v) +W (v)]dx ,

where A(p) = 1
2
H2(p) andW is a double well potential. Then an analogue of the Allen-Cahn

equation is derived as the L2–gradient flow of (3.18), which after rescaling is:

(3.19) vεt = ε∇ · ∇pA(∇v
ε)−

1

ε
W ′(vε) .

Formal asymptotic expansions [MWBCS], as well as rigorous analysis [ES], demonstrate that

(3.17) governs the asymptotic behavior of the solution of (3.19) (c in (3.17) is related to the

relative minima of the double well potential W ), as ε→ 0.

4. Discussion of the relaxation model (3.5).

It is evident that the equation (3.15) is well-posed only if H is positive and convex.

However, there are physical examples where H is not convex [CH], thus equation (3.15) has
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backward parabolic regions for suitable gradients ∇u. In this case microstructure develops

[AG], and (3.15) is considered after an ad hoc convexification of H. This approach, at least

in two dimensions, gives rise to the so-called crystalline motion by curvature [Tay], which

describes the evolution of faceted curves. However the relaxation approximation (3.5) is well-

defined in any dimension for even a non-convex H and as a result, it may provide a suitable

approximation of the underlying front, both analytically and numerically. In this sense,

our model is close in spirit to Suliciu’s relaxation model for van der Waals type equations

describing dynamical phase changes [Sul].

Finally, note that (3.15) is a second order fully nonlinear equation with a singularity

at ∇u = 0, while the relaxation model (3.5) is a first order semilinear hyperbolic system

without singularities. This fact indicates that (3.5) may provide numerical advantages in the

computation of propagating fronts governed by (3.15). All these issues, as well as some of

their analytical aspects, will be explored in our forthcoming work [JK].
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