CONVERGENCE AND ERROR ESTIMATES OF RELAXATION SCHEMES
FOR MULTIDIMENSIONAL CONSERVATION LAWS

M. A. KATsOULAKIS, G. KOSSIORIS AND CH. MAKRIDAKIS

ABSTRACT. We study discrete and semidiscrete relaxation schemes for multidimensional scalar conserva-
tion laws. We show convergence of the relaxation schemes to the entropy solution of the conservation
law and derive error estimates that exhibit the precise interaction between the relaxation time and the
space/time discretization parameters of the schemes.

1. Introduction
In this paper we construct and analyze semidiscrete and fully discrete relaxation schemes for the
approximation of the unique global weak solution of the scalar multidimensional conservation law,

N
(L.1) 8tu+zaziFi(u):0, zeRN t >0,
: i1

u(z,0) = up(z) € L*RY) N L= RYN),
satisfying the Kruzhkov entropy conditions [13],
N
(1.2) Olu— k| + > 0, [ (Fi(u) — Fi(k))sign(u — k)] <0, in D, for all k € R.
i=1
Our schemes are based on the relaxation approximation of (1.1) proposed recently by Katsoulakis

and Tzavaras [11]:

N B 1 N
Ot + Y Aidp,w® = = > (hi(w®) — %)
(1.3) i=1 ¢ =
1

Oz; — A0y, 25 = —(hi(w®) — 25), i=1,..,N.
€

In (1.3), the quantities z; are convected with velocities —A;e; (e; are the unit coordinate vectors),

while the quantity w is convected with velocity (A, ..., Ay), where A; = w;A; > 0, A; > 0. The

functions h;(w), i = 1,--- , N describing the interaction rates between w and Z = (z1,---zn), are

smooth and strictly decreasing. Furthermore the system (1.3) is equipped with the conservation law,

N
(1.4) Or(w =Y 25)+ Y Op, Ai(win® +25) = 0.

=1 i=1
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It is shown in [11] that, as ¢ — 0, the local equilibrium, z; = h;(w), i = 1,..., N, is enforced and that

the limiting dynamics of (1.3) is described by weak entropy solutions of

N N
(1.5) Or(w =Y hi(w)) + > 0, As(wiw + hi(w)) = 0.

i=1 i=1
Conversely, for a given conservation law (1.1), one can find functions h;, i = 1,..., N (h; decreasing)
and positive constants w; , A;,i = 1,--- , N such that u® = w® — Zf\; h;(w®) will converge as ¢ — 0

to the unique solution of (1.1-2), where (w®, Z¢) solve (1.3).

The goal of this paper is the study of relazation schemes induced by discretizing (1.3), yielding
approximations to the solution of the multidimensional scalar conservation law (1.1), as € — 0. We
use this problem as a benchmark for understanding stability, convergence and error estimates for such
schemes and in particular, the interrelation between the relaxation parameter ¢ and the space/time
discretization parameters. Relaxation schemes to systems of conservation laws were first introduced
by Jin and Xin [9], based on relaxation models similar (but not equivalent, except for N = 1) to
(1.3). One of their principal advantages is their simplicity: due to the linear convection in the
relaxation model, relaxation schemes are Riemann solver—free. In addition, semidiscrete relaxation
schemes such as the ones studied in this paper turn out to be an important tool in the derivation of
macroscopic conservation laws as a hydrodynamic limit of Interacting Particle Systems induced by a

kinetic interpretation of (1.3), [12].

Convergence of the schemes. We consider upwind semidiscrete and fully discrete schemes for the
discretization of (1.3), cf. Section 3. In the discrete case the stiff nonlinear term is discretized
implicitly, [15], [9]. Let h and 7 be the space and time discretization parameters and (W= Z"€),
(WThe Z7h:e) piecewise constant interpolations of the semidiscrete and fully discrete approximations

of w in (1.3). We also set

N N
Uh,e — Wh,a _ Z hi(Wh’g) , UT,h,s _ Wr,h,a _ Z hi(WT’h’E) )
=1 i=1

Assuming that the grid in the fully discrete scheme satisfies an appropriate CFL condition, cf. Section

4b, we show that our schemes have the properties:
e they are L'-contractive and Total Variation Diminishing (TVD).

o If the initial data wuy, (Wél - SL ©) are in BV (R") and additionally the initial approximations

satisty S0, [[hi(wh®) — 20| 1 = O(e), then for t > 0,
(1.5) 1UME(t) = ult, )| g2 @ny < [U™(0) = u(0, )2 m) + O(Ve +h).

In the fully discrete case and under the same assumptions on the initial data we have
(1.6) U7 () = ult, )| Lagny < JUT(0) = w(0, )] L1 @n) + O(Ve + 7 +h).
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These estimates yield the compactness and convergence properties of both schemes claimed earlier,
under elementary hypotheses on the approximating initial data. In (1.5) and (1.6), the O—terms
depend on the L°°- norm and the total variation of the initial data and, on the terminal time T'. It is
important to note that our error estimate does not interrelate the parameters € and h, 7 in a restrictive
way. Note also that the results obtained herein imply also the convergence, and the corresponding
error estimate, for the first order schemes of [9] for N = 1. Similar error estimates, but of order
O(e'/? + \/7), were obtained by Schroll, Tveito and Winther [20], for discrete approximations to a
one dimensional relaxation model with nonlinear convection arising in chromatography; see also [21]
for a similar result in two space dimensions. Stability and convergence properties of splitting schemes
obtained by discretizing a 2 x 2 relaxation approximation of a one dimensional scalar conservation

law, were studied in [1].

An approximation theorem. We begin, in Section 2, by considering an approximation theorem which
is the discrete analogue of the main estimate in [3]. The method of doubling of variables introduced by
Kruzhkov [13] and the ideas of Kuznetsov [14] to apply such a method to numerical approximations,
have been extensively used by several authors to obtain error estimates for approximations to the
entropy solution of (1.1), cf. e.g. [14], [19], [17]. This technique was further developed in the case
of finite volume or finite element approximations [5], [22], [6], see also [7]. In this case, due to the
lack of BV bounds for the discrete schemes even the convergence of the approximations is a rather
technical task. Kuznetsov’s method along with DiPerna’s theory [8] are the main available tools
to prove convergence in this case. Recently, Bouchut and Perthame [3], see also [2], proposed a
compact form for deriving error estimates to conservation laws by revising the approach of [14], [13].
Their theorem can be applied directly without doubling the variables and thus avoiding much of
the technical work, needed up to now, to obtain estimates for functions satisfying an approximate
entropy inequality, cf. [3]. In section 2 we propose a variation of this result, which is what we call a
discrete version of the main theorem in [3]; this is our Theorem 2.1. In the approximation estimate of
Theorem 2.1 we explicitly include terms that typically arise in any numerical scheme approximating
the scalar conservation law. This result is our main tool in obtaining the estimates (1.5), (1.6) for
the semidiscrete and fully discrete relaxation approximations in section 5, cf. Theorems 5.1 and 5.2.
The same estimate is also used by Katsaounis and Makridakis [10], to obtain converegence and error
estimates to the entropy solution of (1.1), for a finite volume relaxation scheme based on the system

(1.3).

The structure of the paper is as follows. We begin, in Section 2, by considering the approximation

theorem mentioned above. In section 3 we present the discrete and semi-discrete relaxation schemes.



In section 4 we study the properties of the schemes, in particular we show that under structural
conditions on the relaxation functions h;, both schemes are L! contractive with diminishing associated
total variation (TVD) and satisfy an entropy condition. In section 5 we prove the convergence results

and give the rate of convergence based on the theorem presented in section 2.

2. Error Bound for Approximating Schemes

In this section we establish an error estimate for approximating schemes for conservation laws,
which is the discrete analogue of the theorem by Bouchut and Perthame [3]. In the following theorem,

up, stands for any function approximating the solution u of (1.1-2).

Theorem 2.1. Let up,u € L2 ([0,00), Li, . (RY)) be right continuous in t, with values in L} (RN).

loc loc loc

Assume that u is the entropy solution of a given conservation law, i.e., it satisfies (1.1) and (1.2). Let

U a nonegative test function ¥ € C°([0,00) x RY) and assume that uy, satisfies,

_ //(0 . (luh — k|0y U + sign(up, — k)[f(u) — f(k)] - Vx\lf)dtdx

oV 020
< v Ve S af
_//(0,oo)><RN (aK| |+aG‘at |+ 7 aH|8xj|+ aLIaxlaxj‘)dxdt

(2.1) 1<4, j<N
oA i 020
J RJ ij i

+// . (ﬂGBG(at\I/)+ZﬁHBH(%)+ZﬂLBL(axix'))dxdt
(0,00) xR F 7 i 7
for all k € R,

where f = (Fy,...,Fy) and ag, agf, ag, aiLj, Ba, B};, ﬂzj are nonnegative k-independent functions

in L} .([0,00) x RYN) and

(22) ag, 6G S L?(?c([oa OO), Llloc(RN)) .

In addition, the operators Bg, B%I, Bij : C°([0,00) x RN) — L2°

loc

([0,00) x RY) satisfy the properties:
For A,§ >0, let T, = {K} be an element decomposition of supp g, g € C*=(]0,00) xRY) into elements
K, such that

diam(Ky) < A, if either B};, or sz s not zero, and
23 |K.| <0, if the term Bg is not zero,
where K, = {t : (t,x) € K} and Ky = {z : (t,z) € K}. We assume that for all (t,z) € K,
1<i,j<N,

|Ba(g)(t,x)| < C sup [g(t, z)]|
teK,

(24) B, (g)(t,)| < C sup |g(t,z)|

zEK

|BY (9)(t,x)| < C sup |g(t, )|,
reEK,



where C'is a uniform constant independent of g and the element decomposition Tj,.
Then the following estimate holds: for any T >0, xo € RN, R >0, A >0, 6 >0, v > 0, denoting by
M = Lip(f), B = B(zg, R+ M(T —t) + A+ v), we have:

/ lup (T, z) — u(T, x)|de < / |ur (0, 2) — u(0, x)|dx
lz—z0|<R

(25) By
+C(E'+E*+ES+E" + EX + E" + Eg+ En + Ep).
Here
E' = sup / lu(s, ) — u(t,x)|de , E* = sup / lu(t,y) — u(t, z)|dx
t=0,T ,0<s—t<d J B, t=0,T ,0<|z—y|<A J B;

i (t,x)dxdt, EY = // ol (t, x)dxdt,
//<t<TaveBt A Z 0<t<ToeB,
Z // a?(t,x)dwdt

0<t<T ,x€B;

1<z j<N

T

E¢ 1+ —+ su /a t,x)dx
= 0 A+V)o<t<p2T B; ¢(t,2)

and the E-terms are the same as the E—terms with o's replaced by ('s.

The Lipschitz hypothesis on the function f can be removed if, for example, it is known that both

u and uy, are uniformly bounded. Notice also that if the initial datum ug in (1.1) is in BV(RY) then
E' < M&TV (up), E* < ATV(up),

where TV (v) denotes the total variation of a function v € BV (RY). The proof of Theorem 2.1 follows
along the lines of the basic theorem in [3]. The novelty here is the explicit inclusion in (2.1) and
the bound yielding (2.5), of the error f—terms that typically arise in any discrete or semidiscrete
approximation of the scalar conservation law. The importance of such terms will become more clear

in the sequel, when we apply Theorem 2.1 in the relaxation schemes.

Proof. For the sake of completeness we describe the basic steps of the proof, following [1], and then
we estimate in detail the new F—terms.

1. Given two nonegative functions @, € C°((0,00) x R™) that will be specified later, we set

(2.6) o(t,x,8,y) = P(t,z)C(t — s,z —y).

We now consider (2.1) for ¥ = ¢(-, -, s, y) with fixed (s,y) € (0,00) x RY and k = u(s,y); similarly
we also consider the entropy inequality (1.2) for the test function ¥ = ¢(¢t, z,-,-), fixing (¢,z) €
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(0,00) x RN and picking k = uy,(t, z). We add the two relations, integrate with respect to all variables

and using 0:( = —0s(, V,( = —V,(, we obtain

[ [ [1ant.2) = (s, 2100000, 2) + sign(un (t,2) = (s, ) (7 (unt. ) = Fuls )] - Vo 0(t,2)
X ((t — s, 2 —y)dsdtdyde < R* + R” |

where
— [[][axtt.0ott.a5.0)] + actt,a)iprot. .5,
+Zo&1 (t, 2)[0a, 6(t, 7, 5,7))|
+ Z 9 (t, )]0 in, 0L, T, 8,y)|dsdtdydx
1<i, j<N
and

R = / / / Be(t,2) Ba(@is(t, . 5,y))

+ > Bt @) By (0:,6(t, 7,5, 9))
J

+ > BY(ta)BY (92,6t 2, s, y))dsdtdydz

1<i, j<N

+ZR6J+ Z Rﬂ(lj)

1<i, j<N
2. Now we select the functions ® and ¢ in (2.6). First, for any positive constants 6 and A, we define

¢ as follows:

C(ta) = CH (B¢ (x), ¢'\¢* e, >0, / Cldt — / e =1

¢'(6) = 5¢H(5), swppct © (~1,0),

¢ (@) = T (), suppcE € B(0,1/4),

where (!, (¥ are given smooth functions independent of the partition, and of 6, A. The constants in

the estimates of 8 terms, will depend also on
C = 110/cHllz=, CP = [IF[lwios -

For 6 > 0, we define Yy(t) so that Yp(—oco) = 0 and Yy (t) = 3Y'(L), where Y’ € C2°, > 0and [Y' = 1.
We intorduce yet another parameter € > 0 and set x(t) = Yz(t) - Yz(t = T) € C&((0,T +¢)), > 0.
Finally we define (¢, z) =1 — Yy (|z — 29| — R— A/2 — M(T —t)) > 0. We now set

O(t,z) = x(O)P(t, ).
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Notice that ® € C*° as long as Me < R+ A/2. Inserting ® in (2.7) and using the Lipschitz condition

on f, we get, cf. [1],

////‘uhtm —u(s, )|} (OY(t, 2)¢(t — s, 2 — y)dsdtdydz < R* + R’

Therefore
(2.8) 0<IT+R'+R*4+R*+RP,

where

I—/// lup (t, 2) — u(t, )X (&), 2)C(t — s,z — y)dsdtdydz
/// lun(t, 2) — u(t,y) X' (O (t, 2)C(t — 5,2 — y)dsdtdydz
/// lun(t,y) — uls, y) X' Q¥ (t, 2)C(t — 5,2 — y)dsdtdyda .
Furthermore notice that for 8 fixed and ¢ small,
(2.9) 1820, R4M(T—t)+A/2) < V(t,2) < 1B(ag, R4 M(T—t)+A/2+40 -

We now intend to pass to the e — 0 limit in (2.8), and with a suitable choice 6, obtain (2.5).
3. Using (2.9), the properties of ¢ and the right continuity of v (see [3] for more details), we get,

limsup < / lup (0, 2) — u(0, z)|dx — / lup (T, z) — u(T, x)|dzx
e—0 |z—z0|<R+MT+A/2+0 |z—z0|<R+A/2

limsup R! < 2E!, limsup R* < 2E7,
e—0 e—0

provided we choose § = A/4 +v. We turn now to the terms R® and R”. First we have the following
bounds for @,

26,0 < C, [Va(t,)| < &,
(2.10) / Y .
0 (1,0) < WO+ O [0, ¥l < 55
and let

Q={t,2):0<t<T+e, |z —a9] <R+M(T—1t)+A/2+ 6},
G={z:|lz—2o|<R+MT —-t)+A/2+6}.
Then (2.10) and the definition of ¢ imply

R < // o (t, @) +O( )ZaHtx aq(t, z)+

C(l )Za }dtdm+0(1+M(T+€)/9) sup /Qag(t,x)dz.

o<t<T+H+e



Keeping in mind that 6§ = A/4 + v, we get

(2.11) limsup R* < C(EX + E¢ + E + EL).
e—0
4. Finally we estimate the term R®. Let 7, = {K} a decomposition of the support of ¥, then
Tn = {K:} is a partition of the space domain.
To estimate the second term of R” we note that (2.3) and supp¥ C Q imply
RS> | Oh) (510, ¢(0 — 5,2~ v) @(t,2)
Ki€Th ¢ *

+sup|¢(t — s,z —y) 8mj¢(t,x)|)dxdtdyds =: I}g’j + I?jj.

Then, (2.9-10) yield
5 < C/// Z / lo(t, )3, (t, x) sup\@x]C (x — )| C'(t — s)dxdtdyds .
Ki¢€Th ¢ K
Since suppd;¢* C B(0,A/4), then if |z —y| > A/4 we have 0;¢*(x —y) = 0. Therefore if Ky o = {y €
RN : dist(y, K;) < A/4} then for z € K,y € (Kia)¢ we will have that 8,,("(z — y) = 0, whence

SUPse K, ye (K. a) |8x]§””(x —y)| = 0. Hence,

// / la(t, x)ﬁil(t, x) sup |02, C* (z —y)| CH(t — s)dydxds
K, JRN

S/ lo(t, )89 (t, =) o Ndedx
Ky Ki A A

< CCS) /K la(t, l’)ﬂi](t7$)|K&A| AN+1 AT dyde.

Now

|K:a| < C (diam(K;)N + AN),

therefore, by (2.3),

I <o~ / 3 dlam diam (/) / lo(t, z) 3% (t, z)dxdt

Ki€Th ¢ K
1 .

Similarly using (2.3 — 4), (2.10) and the fact that supp|d,, ®| C Q, we have,

12’J</// > /K lo(t, ) 3% ( tm) sup|<( s, — y)|dzdtdyds

K ETh

<Cy / Z dlam COg(t, x) 3% (t, )dzdt

Kfeﬁl t Kt

< ¢ / / B, dadt.
0 Ja



For the terms with the time derivatives we first observe that for each fixed z, 7} , = {K,} defines a

decomposition of the time domain. Therefore

/ / / Ba|Ba(0:¢)|dzdtdyds

<cff [ X [ tewnsewn[swiewnac e

K. €T o

+ sup |0:D(t, 2)C(t — s, 2 — y)|} drdtdyds =: I} + I%.
t
Now:
RIS / Lot 2) e (2, 1) sup [ (6, )] sup [9,C (¢ — 5, — )| dicdadyds
RY g eT, , 7/ Ko t t
</} 2
RN

Denoting by K2 = {t : t € K, + &} we observe that since supp 9;¢* C (—6,0), if t € K,,s € (K2)¢
then 9,¢*(t — s) = 0. Therefore,

// / / Lot 2)8a(t, @) sup [O.C (¢ — 8)|C7 (@ — y)didadsdy
RN JK, t

1
< C/ / 1Q(t,.’f)6G(t7l’)/ Ct(l)—dsdtdx
RN K 02

/ La(t. )80 (. ) sup 0" (¢ ~ 9| (@ — y)deddyds

K. €Th,» Ko

¢ L
< —
<3 /R / o (t,x)Cy 5 dtdx
K
< %/ / + Bely ot w)dtda.
Using (2.3) we obtain:
It < ¢ B (t, x)dtdz.
o JJa

We now estimate 12 using the inequality [0,®(t,z)| < |x/(t)| + C2L (cf. (2.10) ):

LI/ Y P>
Sl 2

< C’// la(t, z)Ba(t, x)% sup (' (t — s)dtdsdx
¢

/ / / Lot )8 (t )X (1) sup CL(t — 5)dtdsda.
= n((.eu(TT+e)) ¢

The first term is bounded as before by

/ La(t,2) 8 (t, 7) sup [9:B(t, 2)| sup ¢! (¢ — 5)¢" (& — y)dtdadsdy
t t

K.€Th,z Ka

/ lo(t, z)Ba(t, ) sup |0;®(t, x)| sup ¢'(t — s)dtdzds
t t

K. €Ty » Ka

M M
C— // Ba(t,x)dtde < C— (T 4+¢€) sup /
g Q g 0<t<T+e J|z—xo|<R+M(T—t)+A/2+0

Ba(t, x)dx.
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To estimate the second term recall also that x(¢) = Y (¢t) —Yz(t —T') hence supp|x’| C (0,e)U(T, T +¢)

and |X'| < €. Then using similar arguments as above, we bound this term by

K,
c|. > 1+ Bely1o )6t 2)1 ) ata
BN 9 JK.n((0.0)u(T.T+e))

SC/ Z/ 1Q(t7$)ﬁc(t7x)gdtda;
RY . Kzﬂ((o.,s)u(T,TJrs)) €

<C sup Ba(t, z)dx.
T<t<T+e, 0<t<e JQ,

The above estimates yield the corresponding E terms by using that § = A /4 4+ v. Finally, we estimate
Rg’(i’j ) employing similar arguments as in the estimate of R%j , and the bound of the second derivatives

of @ in (2.10). We omit the details. O

Remark 2.1 The results of Theorem 2.1 hold if we replace assumptions (2.3-4) by

(2.3) diam(K) <A, A=
and
(2.4") I1B(9)ll 2o x) < Cllgllzo k),

where B stands for any of Bg, B}‘{ or B’L] These assumptions are probably better suited in the case

of space-time partitions.

3. Relaxation Approximations

In this section we present the schemes for the relaxation system that will be analysed in the sequel.
First we discuss the relation between the conservation law (1.1) and the relaxation system (1.3) and
in particular whether any given multidimensional, scalar conservation law can be realized as a zero-
relaxation limit of solutions to (1.3). In view of the relation between (1.3) and (1.5), the question
is rephrased whether (1.1) can be transformed to the form (1.5), with the functions h;, describing

the curve of local equilibria, being strictly decreasing. It turns out (see [11], Lemma 4.1) that it

is possible to construct such functions h; : R — R, with the properties %}" < 0, h;(0) = 0 and
limy 400 hi(w) = Foo, whenever w;,A; > 0,72 = 1,--- | N are selected so that the fluxes F;(u)

satisfy the conditions

1 dF;
1 — 0
Y2 A a7
(3.1) 1 1 dF;
~1l+w+ec< o <wi, forueR.
o (L+ 30 4 ) A du



Here w = ), w; and ¢ a positive constant. Note that the second equation implies
1 dF;

<w,

so (3.1) is a multi-dimensional analogue of the subcharacteristic condition (cf. Liu [16], Chen, Lever-

more, Liu [4]). In addition, the constructed functions h; have the property

(3.2) 1—Z|§IZ\>C, for w € R.

¢ being the constant of (3.1). This property is essential for the converegence of the relaxation schemes
to the conservation law because it provides an estimate on the distance ), ||h;(w) — 2|11 of the
solution (w, Z) of (1.3) from the line of equilibria
(3.3) {(w,Z) e R xRN : hy(w) = z}.
Notice also that since we are dealing with bounded solutions of (1.1) and (1.3), properties (3.1) and
(3.2) need not hold for all u,w € R but only for a bounded interval where the solutions lie. For now
on we assume that we are given the functions h; satisfying the above properties and for notational
convenience we let

Gi(w, z) == hij(w) — z;.
3.a Semi-discrete relaxation schemes. For a space discretization parameter Ao > 0 and ¢ >
0, we consider approximations of the solution (w,Z) of the system (1.3), wq(t) = w(t, hq), 24 =

2i(t,hq), q € ZN, defined by:

Ouw + 3 37 A (8) — we, () = 2 3 Gl (1), 20(0)
(3.4) i i

1 1 .
Aizig — EAi(Zi,quEi (t) = ziq(t) = gGi(wq(t)a ziq(t)), i=1,--- N,
with given initial approximations w,(0), z; 4(0). In addition, A; > 0, A; = Ajw; > 0, cf. 81, and e; is
the is the z;-unit coordinate vector. This semi-discrete scheme was considered in [11], and in [12] an

I*(ZN)~contraction and a TVD property were shown.

3.b Discrete relaxation schemes. In addition, let 7 > 0 be the time discretization parameter.

Then the fully discrete relaxation scheme is defined by

n+1 n T A n n _ T . n+1 _n+l1
’U)q —’U)q + EZAz(wq _wqfei) - EZGz(wq azi,q )
% i

(3.5)
n+1 n T n n _ T n+1l _n+l .
g g T A Ege — ) = CGilwg T 2, i =1, N
Here w; = w(hg,nt) and 27, = z;(hg,n7), and wg, z?q are given approximations of the initial data.

In the sequel we will use the notation (W, Z) to denote the set of values of the schemes (3.4), (3.5) on

all grid points and typically supress the dependence on the parameters €, h, 7, unless necessary.
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4. Properties of the schemes

4.a Semi-discrete Scheme. The first proposition shows that the semi-discrete scheme is {*-contractive

and Total Variation Diminishing (TVD); the total variation of a function v : Z + R is defined as:
N N
=D TV =D > W ugre, — gl
i=1 i=1 qezZN

Proposition 4.1. (L'-contraction, TVD property) Let (W,Z2), (W,Z) be two solutions of (3.4),
with corresponding initial data (Wo, Zo), (Wo, Zo) such that Wy, Zo, Wo, Zo € IN(ZN)NI=(ZN). Then,
for allt > 0,e >0,

Z <|wq — wq(t |+Z|Zz,q — Zig( )|>
< Z (lwq(()) |+Z|22q — Zi (0 )|)

qeZN

Furthermore the semidiscrete scheme (3.4) is TVD:

> (lgren® = we®) + D lzigren () = 214(0)])
qeZN i
< Y (lowres(0) = w O] + Y 21410, (0) = 200 (0)])

q€ZN
fort >0 and all directions e, k=1,...,N.
Proof. The essential ingredient of this proof is the monotonicity of G;. To get an error estimate
equation we first subtract the corresponding equations for (W, Z) and (W, Z). Then we multiply the
equation for wy, — wy by sign(wg(t) — we(t)) and that for z; ; — 2 ¢ by sign(z; 4(t) — Z ¢(t)) and we
add them up to obtain:

I (lwg — wq‘+2‘zzq Zigl) + ZA (wilwg — We| + |2i,q — Ziql)
_ % Z A; [wisign(wq — Wq)(Wq—e, — Wyg—e;) +8igN(2i,g — Zi q) (Zi,qte; — Zi,quei)]
_ é > [Giwg(t), 24,0 (1)) = Gilig(8), Z0(8))| (signlug (£) — w,(1)) + sign(z:,4(t) = Z2.4(¢)) <0

The {'-contraction property follows from the above inequality by summing over ¢, provided we show

first that (W (t), Z(t)), (W(t), Z(t)) € I* for any t > 0. For the details see [12]. The TVD estimate

property follows by the translation invariance property of the scheme. [

We next prove a comparison principle which implies the discrete entropy inequality and an [*°

bound:
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Proposition 4.2. Under the assumptions of Proposition 4.1 we have: For allt > 0,e > 0,

(i) 8t( —wg) T + Z Zig — Ziq) ) m ZA [ — Wy, — Wge,)*
“h ZAz' [(zz‘,q+ei — Zigtes) — (Zig — zi,q)*} <0,

() Y [ - )+ D alt) = Bl D))< X [wh-a)t+ e, -2

qeZN qeLN

(iii) If for some a < b we have, a < w,(0) < b, hi(b) < z;4(0) < hi(a), i=1,--- ,N,q € ZV, then
a < wy(t) <b, hi(b) < zi4(t) < hila), g€ ZN, i=1,--- N,

i.e. the region R*® = [a,b] x 1_[2.]\Ll[l"Li(b)7 hi(a)] is positively invariant.

Proof. Let x40 stand for the characteristic function of the set {s : g(s) > 0} where g is an arbitrary
function and set n, = (wqy —w,) and (; ¢ = 2, — Z q- Then multiplying the error equations for 74, ;4

by Xn,>0, —X¢i.,<0 Tespectively and summing over i we get:
_ 1 ~ 1
A (ng + Z Gg) t+ 7 Z Ai(ng = Ng—e,)Xn,>0 + ’ Z Ai(Giigtes — Cig)X¢ig<0
=z Z [ (wgs 2i,q) — Gi(Wy, Zi,q)} [an>0 - XCi,q<0:|'

Observe now that the monotonicity properties of G imply

(4.2) (Giwq: 20.) = G, Zi.0) | (x>0 = Xciy<0) < 0.
Also
(43) (nq - UQ*ei)XTIq>0 > nt—;_ - ngiei and (<i7(Z+5i - Ci;Q)XCi,q<O > _Cijq+ei + fq

Thererefore for each ¢ € ZV,

at(’f];_ + Z Cz_q h Z A 77q 51 % Z Ai(Ciqurei - <7,_,q) <0,

i.e., (i) holds. By summing over ¢ € ZV (W(t), Z(t) are in [}(Z") by proposition 4.1), we get (ii).
For (iii), we note that w, = b, z;, = hi(b), ¢ € Z" is a solution of (3.4). Then (i) implies

wy(t) —b <0, 2 4(t) —hi(b) >0 for all ¢ € ZN, t > 0. A similar argument gives the lower bounds. O

13



Discrete Entropies. For any k € R consider the solution (W, Z2) of (4.1), where w, = k, Z;, =
hi(k), q € ZN. Tt is also clear that Proposition 4.2(i) is valid if we interchange positive with negative

parts, thus after summation we get

1 _
Oulwy = K+ Y 1zig = haB)) + 7 > A = k| = [y, — K]
i i
1
(4.4) % > Aillzigre, = hilk)| = |21 — hi(k)| <0, g € ZV, k€ R.
Finally we have the following proposition regarding the distance of a solution (W, Z) of (3.4) from
the line of equilibria (3.3).

Proposition 4.3. In addition to the assumptions of Proposition 4.4, we assume that (3.2) holds. Let
(W, Z) be a solution of (3.4) emanating from data with finite total variation and lying in an (invariant)

region R*?. Then, the following estimate holds:

- Z hNZ|G (wq(t), zi.q(t)] < Z hNZG wd, 20

qGZN qeZN

wherew c is the constant in (3.2) and K depends on R*® and the total variation of the initial data

Wo, Zo.

Proof. We observe

0Gi(wal0) 240(0) = [ = 3 3 As(wg(8) = ey () + £ 3 G0, 230(0)]

£5
0G; 1
+ 2 { Ai(Zi,gte; (t) — 2i,q(t)) + gGi(qu Zi’q)}

Multiplying by signG; and adding, we obtain

Oy Z |Gi|+l Z(—aaGZi)\GA = é Z %sign(}i Z G
i i J
+ ZblgnG ( [— — ZA wq_ej)} + aaii [%Ai(zi7q+ei — zi,q)])

Then, in view of the fact that W, Z are bounded (Proposition 4.2) and the TVD property of the

scheme, we have upon summing with respect to g € Z~,

dtZNhNZ\GH ZNhNZ( Z| e

<CZhN IZ qy|+|zlq qu+e¢|)§K

qeZN

We conclude the proof by integrating the above equality and using (3.2). O
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4.b Discrete upwind scheme. In this section we present the properties of the discrete scheme (3.5).

Proposition 4.4. (L!-contraction, TVD property) Let (W,Z), (W,Z) be two solutions of (3.5)
with corresponding initial data (Wo, Zy), (Wo, Zo) such that W, Zo, Wo, Zo € IN(ZN)NI®(ZN). If the
CFL condition

(4.5) = < min{1/NA;, 1/4;}

D‘\ﬁ

is satisfied, then for alln € N, € > 0,
Z(\w?—’g|+2|zﬁq—iﬁq\)§Z(w —w0|+2|zlq )
qeZN i qeZN
Furthermore the fully discrete scheme (3.5) is TVD:
Z ('wq+ek - w2| + Z ‘zZquek - Zznq‘) < Z (‘qurek - w2| + Z |Z2q+6k - z2q|) )
qeZN % qeZN i

for alln € N, e > 0 and all directions e, k=1,...,N.

Proof. Without loss of generality we may assume that the initial data vanish outside a ball By, of
radius M: due to the finite speed of propagation in (3.5), the solution (W,, Z,,) at time ¢ = n7 vanishes
outside a ball Bys1vnr, where V = maz{A;, A;i=1,---,N }. Therefore all the summations below
are finite, and the statement of the Proposition will follow by eventually sending M — oco.
_ — _ — . . . . +1
Set Uy = wy —wy, V' =z — z;. Multiplying the error equations for Uy and V' by signUg

and Sigan"+1 respectively, we obtain:

. 1 . n
U3 2 Adn = 20U = e JsgnU

7

IS ot~ e

q 7 7,q

“/;T,Lq+1| + [(ThAi - 1)V — ThA; V iq+e )} blgnV”‘H

-
_ +1 _n+1 -—n+1 -—n+l1 . n+1
=2 {Gi(w;‘ Zig )~ Gi(wy 2 )} signV;,"",

where 7, = 7. We add the two relations and sum over g. Due to the monotonicity of G; the right

hand side of the resulting equality is nonpositive which yields:

Z ‘Un+1‘ + Z |Vn+1

qeZN
(4.6) 2.2 [ ~ ) UqsignUg ! — ThAiU;_eiSignU;+l}
i qeZN
+ Z Z [ (ThA; — 1)V signV}", ntl g, AV ot &gnV'L“} <0.
i qezZN

15



By selecting 7, < min;{1/NA;, 1/A;} and using the inequalities

1
(thA; — N)U blgnU"+1 (ThA; — N)|U;’|, (hA; — 1)V, blgnV"‘*‘1 ((rnAi = DIV

Th/L‘U;ZeiSignU;Jrl < ThfL‘U;feiL THhA; V i,q+e: SlgannJrl < T, 4; |

i,q+e; |

equation (4.6) yields
Z Un+1|_|_Z|Vn+1 Z Um‘+Z|
qezN
ZThA Z (05" = U ZThA oV = IV,

qeZN qeZN

The I'-contraction follows as indicated at the beginning of the proof; the TVD property is a conse-

quence of the [*-contraction and the translation invariance of (3.5). O

As in the case of the semi-discrete scheme, (3.5) satisfies a monotonicity property and an entropy

condition. The proof follows along the lines of that of Proposition 4.2.

Proposition 4.5. Under the assumptions of Proposition 4.4 the discrete scheme (3.5) satisfies:

(i) Z ((w;111+1 i AR Z n+1 —n+1 > < Z ((wg — ﬂ)g)Jr + Z(z{fq — 2&)7)

qeZN qeZN

where the same inequality holds with positive and negative parts interchanged.

(ii) (entropy condition). For any k € R,
™= b = =K+ 3 (1225 = ha®)] = 122, = hah)])
T n n n n
+ E ZAZ( wg — k - ‘wqfei - k ) - E ZAi(|Zi,q+ei - hl(k)l - |Zi,q - hl(k”) <0

(i) If for some a < b the initial approximations satisfy a < w(q) < b, hi(b) < zﬁ
1, ---,N, ¢ €Z"N then

a<w] <b, hi(b) <z}, <hi(a), g€ Z", neN, i=1,--- N,
i.e. the region R%* = [a,b] x [[i—,[hi(b), hi(a)] is positively invariant. O

Finally we prove an analogous result to Proposition 4.3:

16



Proposition 4.6. In addition to the assumptions of Proposition 4.4, we assume that (3.2) holds. Let

(W, Z) be a solution of (3.4) emanating from data with finite total variation and lying in an (invariant)

region R*". Then for alln € N, > 0,

(i) ZhNZ|G w?, 2 )| < ( 1+c ZhNZ|G w9, 20 )| +eK

qeZN qeZN
1
” N +1 _ ntl _ N
@ 30w (g =+ DL o) £ S04 eD) ™ R g £+ K
qEZN qeEL™
where c is the constant in (3.2) and K depends on R’ and the total variation of the initial data.

Proof. We have

G, 27;;1> Gifwy.

n+1 / wl + ZH w)s, 2}, + (22;1 _ z}fq)8> ds
L n+1 / ( n+1 —wl)s, 20 + (zz”;lrl _ zﬁq)8>d$
B +1 _n+1
= ([ Fat) - i)+ L Gt

0 J
8G n n "

+ ( 0 Oz )[ﬁAi(zi,q-&-ei - )Jr G (w +1’Zi’;1)]

We multiply the above equality by sign G;(w ”“, zztjl):

ntl .n 8G
|Gl(w 1 +1)|_|G( Wy s zq

q ’lq

s ) |Galwy 2|

7 %1,q
T /| Z|G (wntt, 22|

T T
E n n ~ n
< CE |wq - wqfej + c%"zi,q — Zi,qte;
J

)

where C' depends on R*?. We again multiply the above inequality by kY, we sum over i, q and use

(3.2) to obtain
(+eQ) 30 h" 3ol sl < 3 KV 3G ]y

qeZN q€ZN
N-1 N-1
-or Y S - 3 5y s

qeZN qeZN

where ¢ is given in (3.3). We use the above inequality and the TVD property of the discrete scheme
to get

1+c ZhNZ|G wpth, 2| < ZhNZK? wy, 28|+ TK

qezN qEZN
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where K depends on R%? and the total variation of the initial data. By means of the last inequality

we conclude

n—1
( ZthlG ‘I’ lq|<ZhNZ|G zq|+7—Kzl+CE)
qezN qeZN k=0

which implies (i). We obtain inequality (ii) directly from (3.5),

1 1%
;|w;+1 —w?| < - Z Wy — Wq—e,| +
i

Z|G q’ zq

the corresponding estimate for the 2, terms, (i) and the TVD property of the scheme. [J

5. Convergence

We first consider the semi-discrete scheme defined by (3.4). Let Q, C RY the rectangular region
with side length h and center at the ¢ € Z" grid point and let (W" Z") the piecewise constant

approximation function defined by

(5.1) (WhE(t, ey, 2, )la,) = (wq(t) z1,4(), -+ 2ng(t)

We consider initial data (WSL e, Zg #) lying close to the line of equilibria, in the sense
(5.2) D G(We =, Zig ) [ = O(e) .

We then have the following theorem:

Theorem 5.1. Let (W™e Z"2) be the piecewise constant functions (5.1) obtained by solutions of
(3.4), with initial data (W<, Z) € BV(RN) N L=(RN) and satisfying assumption (5.2). Let u be
the entropy solution of (1.1) and UM = Whe — 3~ Zih’s. Then, for any fited T >0 and all t < T,

(5-3) UMt ) = ult, )l [or < JU™(0,-) = (0, )]s + CVE +h.

Here, C is a positive constant depending on the fluzes F*, the L™= norms and the total variation of

(We, Z) and up = (0, -).

Proof. We first show that U"¢ satisfies an approximate entropy condition similar to (2.1). For all
k € R, define k € R such that k = k=), h;(k) . Since the functions h;, i = 1,--- , N are nonincreasing,

we readily see that
|Uh’5—k|9 :|wq_’i|+2|hi(u’q> hi(k )l—‘wq_“|+2|zlq |+Jh5(x £,
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where |J7e(t, 2)| < 3, [Gi(Whe(t, x), Z¢(t, ))|. Similarly,

(Fi(U"™?) = Fy(k))sign(U"* — k)

- [Aiwi(wq — k) + Ay (hi(wy) — hi(r))|sign(w, — k)
= Ajwilwg — K[ — Ai|hi(wg) — hi(K)]

Q,
= Ajwilwg — K| — Ailzig — hi(r)| + H
where S, |HM(t,2)] < V'Y, |Gi(Whe(t, ), ZI° (t,2))]. If @ € C2°(]0,00) x R™), ¥ > 0, then
// |U’” k|\I/t+Z Fy(U"e) — Ey(k))sign(U" — )\Ilmi)dxdt
:_Z/dt (‘wq—/€|—|—Z|zi,q—hi(f€)|)/ﬂ W) —//Jh*E\I/tdxdt
q i q
-3 [Z/dt(Ainwq—/{\ —Ai|zi,q—hi(/<;)|)/ﬂ \leidx} —Z/ H (2, 1)U, dxdt
7 q a 7
_ —Z/dt((\wq—fﬂ—i—zm,q —hi(/f)|)/9 W de)
q %

q

1

=32 [ a3 (i == g = el [ (@
—Z / / H (2, 1)U, dedt — / / JhEW, dadt
:fZ/dt |wqfn|+Z|zl,q hi(k) / \I/tdx)
+ Z/dt A;w; Z(\wq — K| = |wg—e, — %
_Z/dt A Z |2i g e; — Kl = |2ig —

-3 / / H]"* W, dedt — / / JhEw dadt

Using the discrete entropy inequality we obtain

)d:c)
z;=h(q—3e:)

zi=h(q+%e:)

iz)
$1*h(q7’ 1)

LG dm)
zi=h(q+31e;)

1
I(k, W) < ZAM /dt(zq:(wq — k] = hwge, = )7 /Qq(xp e \Il)d:c)
1
2 A /dt(Z (Zigbes = £l = l2iq = )3 / ], gy~ V)

—Z//H“xtqf ddt — //J’”\I/da:dt

The first term on the right hand-side of the inequality is bounded by

S A far( Yty v / v
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and the second term by

1
S far(Sletare =zl 19

- \I/|dx).
zi=h(q+%es)
To apply Theorem 2.1 note that the partition of [0, 00) x R™ consisting by [0, 00) x Q, ¢ € Z" defines
a partition of supp ¥, 7, = {K?}, simply by taking K? = ([0, 00) x €4) Nsupp ¥. Then we define for
V = maxi{Al—, Aiwi},

— 0|+ |¥

: |4
Bi am.\I/‘ :—(\1/ —fo),
H( ‘ ) Ka h | zi=h(q—%e;) zi=h(q+3%e;) |

and

6%{(1573”)‘}@ = |wg — Wy—e;| + |2i,gte; — Zigl-

Then B, satisfies (2.4). The TVD property of the semidiscrete approximation implies
> / / Bipdtdz < ThTV (WS, Z°)

he h, h, h, h, - h,
where TV (W5, Zy%) = TV (W) +TV(Zy") and TV (Zy>°) = 32, 30, WV 12D pye, =20, |, TV (W) =
D g PV T W, —wy]. Since all the hypotheses of Theorem 2.1 are satisfied, sending § — 0, R — oo,

delivers

10", T) = ul, D)l prgeny < UM, T) = ul(, Tl vy + C[ATV(Uo)

Th M+ 1)T
+—TV(WO’“E,Z{}’E)+(1+u sup / > OIGi(WE (x,1), 2] (v, t)|dwdt
A 0<t<2T JRN

A

1 // h h,e

+ — Gi(W"™(x,t), Z;" (z,t)|dzdt| .
82y crcr, GO0 20

Setting 1" = supyg yr) X0, [1G: (W= 1), Z1 (-, 1) |13, we gt
U™, T) = ul, Tl <0 (,0) = w0

(M + 2)TI’“5]

Th
+ C[ATV(UO) + TV(WS, Z0%) + 1 + 3

By considering the minimum of the right-hand side of (4.6) over A we get

UM, =l DI U7 (,0) = e, 0) 1 ey

+C [1’%5 TV TV (WS, ZE5YTV (uo)h + (M + 2)TV (ug) I } :
In view of the above inequality and Proposition 4.3 we conclude the proof of the theorem. [J
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Remark. 5.1 The previous analysis applies directly to the semidiscrete upwind relaxation scheme
introduced in [9] for the scalar one dimensional conservation law, based on the relaxation approxima-

tion,

(5.4) { up + vy =0, (t,x) € (0,00) x R

v+ ug = —Lv— f(u)], (¢ )€ (0,00) x R.

-«

As the relaxation parameter ¢ — 0, the local equilibrium v = f(u) is enforced, yielding the scalar
equation [18],
ug+ f(u)e =0, (t,z) € (0,00) xR,

provided the following subcharacteristic condition holds:
—c< f'(u) <c.

The approximating scheme for (5.4), introduced in [9] is

0 1 1

&uj + ﬂ[”ﬁ#l - 'Ujfl] - %C[ujqu —2u; + ujfll =0,

0 1 1 1

T 502[%‘“ —uj1] — %c[vjﬂ =205 +vjm] = =~ [0~ f(uy)].

Rewriting the semidiscrete system in Riemann invariants,

w; = v; + cuy, Zj =Vj — Cuj,
we have
0 c 1
5T ;[wj —wj] = —G(w), z)
0 c
ars Sl T al= 6w ),
where G(w,z) = f(%2) — “f2. If the subcharacteristic condition is met, then G is separately

nonincreasing in both variables and the previous results hold for this case also.
We next obtain a convergence rate for the fully discrete scheme (3.5). We first define the piecewise

constant approximation function given by

. Tk 5 ) Qg X [nT,(n+1)T)> mh ) Qg X [T, (n+1)T)) = ;Lv {L}q7"'7 %7q .
(5.5) (WTE( ) Z7E ()] ) = (wg, 2 ZNq)

Since the proof follows the lines of Theorem 5.1 we only consider the extra terms that appear in (3.5)

due to the time discretization.
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Theorem 5.2. Let (W™e Z7he) be the piecewise constant functions (5.5) obtained by solutions of
(3.5), with initial data (W5, Z)°) € BV(RN) N L®(RN) and satisfying assumption (5.2). Let u be
the entropy solution of (1.1) and UTMe = Wnhe — 3. ZiT’h’E. Then, if the CFL condition (4.5) is
satisfied, then for any fired T > 0 and ollt <T,e >0,

(5.6) UMt -) —ult,)||or < ||[UTP2(0,-) = u(0,)]|pr + CVe +7 + I,

Here, C is a positive constant depending on the fluzes F*, the L™ norms and the total variation of

(We, Z#) and uo = (0, -).

Proof. We only consider in the sequel the contribution of the time derivative in (2.1). We have,

- // |UTMe — k|, dtdx =

= =33 (g — w1+ X Jat, — hath)) / / e
== 3%l =l + Sl — kb)) [ {0+ )7 = B e

q

[ v

:z;(uww—m—ws—w

:Z £ )~ 28 = ) [ ()7 e = [ e
—ZZ( § =l g — )+

DA >|—|zzq—hi<k>\>)$ [, v

+zz( — lwy — wl)+

DA |—|z:tq—hi<k>|>)% L) (e, )i

— / / JTMEw, dtdx,

where I,, = [n7, (n + 1)7) and |J7"¢(t,2)] < 3, |Gs(WTe(t,x), Z]"(t,x))|. That is, the time

discretization will contribute the extra term

n+1 n 1 n+1 n+1)7—
ZZ[ wyl+ 2 3l / /m (¢, 2)|dtd

=(n+1)7
to the bound of the discrete entropy I(k, V). Following the notation of Theorem 2.1, for K™ =
(I, x Q) Nsupp ¥, define the function

Beow)| = %W(t,x)’ — Ut 2],

Kn.q t=(n+1)7
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and

ﬁG(t)x)‘Kn,q = ‘wngl - 'LU;;L| + Z |Z2;1 - Z:fq|
%

It is clear that Bg(0;¥) satisfies (2.4). By Proposition 4.6(ii), we have that S satisfies (2.2) and

1 T N
de <7[=(1+c2)™ STV ST |G (w?, 20 K}<K7
s [ e < r20+ D) S0 S G|+ ] < 7
qEZ i
where K is a positive constant depending on the L° norm and the total variation of the data, as well
as the assumption (5.2).
The spatial terms (that give rise to the ,6%1 terms in Theorem 2.1) are handled as in Theorem 5.1.

Following the lines of the proof of Theorem 5.1 we conclude by minimizing over A the quantity (we

take § = A)

% [ThTV(Wé"E, ZVE) 4 (M 4+ 2)TIT" 4 K(M + 1)T7| + C(M + 1)ATV (ug) + CI™"™ + 7K ,

where 17" is the corresponding quantity to I™# in the proof of Theorem 5.1. [
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