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Abstract. R. Schoen has asked whether the sphere and the cylinder are the only
complete (almost) embedded constant mean curvature surfaces with finite absolute
total curvature. We propose an infinite family of such surfaces. The existence of
examples of this kind is supported by results of computer experiments we carried
out using an algorithm developed by Oberknapp and Polthier.

The cylinder of radius 1

2
is a surface with constant mean curvature 1

(a cmc surface for short). The cylinder has vanishing Gauss curvature K,
and hence finite (indeed, zero) absolute total curvature

∫

|K| dA. It is the
simplest example of an unduloid. These are the embedded cmc surfaces of
revolution, described by Delaunay in 1841 [2] (see also [3]), which are simply
periodic and have as generating curves the roulettes of ellipses (of major axis
length 1). There is a one-parameter family of unduloids, depending on the
eccentricity of the ellipse. For us it is more convenient to parameterize this
family by the necksize n ∈ (0, π], which is the length of the shortest closed
geodesic. One extreme case of the family is the cylinder, whose necksize is π.
At the other extreme, the necksize tends to 0 and the unduloids degenerate
to a chain of unit spheres. Periodicity implies that every unduloid, aside from
the cylinder, has infinite absolute total curvature.

The Delaunay unduloids play a significant role in the theory of embedded
cmc surfaces with finite topology, that is, with finite genus g and a finite
number of (necessarily annular) ends k. It is a result of Korevaar, Kusner,
and Solomon [11] that each of the k ends is exponentially asymptotic to a
Delaunay unduloid. Indeed, their results remain true for the slightly larger
class of almost embedded surfaces, which are immersed surfaces whose im-
mersion extends to the interior of the surface (see Section 1). We call any
such cmc surface a k-unduloid (of genus g). For k ≤ 2 the only k-unduloids
are the sphere and the unduloids themselves [11,17].

More than a decade ago R. Schoen raised the question of whether there
are any complete (almost) embedded cmc surfaces with finite absolute total
curvature, besides the sphere and cylinder. Such a surface must have finite
topology [1]. Thus, by the asymptotics theorem [11], the question is equivalent
to the problem we address in the present paper:

Problem 1. Can a k-unduloid have all of its ends cylindrical for k ≥ 3?
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It is worth noting that simply or doubly periodic surfaces with (an infinite
number of) cylindrical ends exist [4]. Of course, these all have infinite topology
and infinite absolute total curvature, though the absolute total curvature of
each (non-compact) fundamental domain is finite.

1 Immersed examples and almost embeddedness

Interesting complete, non-compact immersed cmc surfaces of finite abso-
lute total curvature are known: for example, Pinkall and Sterling depict a
cmc surface with genus zero and two cylindrical ends [19]. It looks like a
“two-lobed Wente torus” fused to a cylinder, and its existence was proven
later (see [20], [4], and also [21] where similar surfaces can be constructed for
arbitrary Delaunay ends). Since the ends of this surface are embedded they
have again exponential decay to a true cylinder, so its absolute total curva-
ture is finite. These (and many other) examples suggest that the class of all
immersed cmc surfaces is too large to give much control on their geometry.

When studying minimal surfaces, embeddedness is often a natural condi-
tion to impose, especially for physically motivated problems. The maximum
principle implies that, under continuous deformation, a complete minimal sur-
face cannot suddenly stop being embedded unless self-intersections occur at
the ends of the surface. The situation is different in the case of cmc surfaces,
as seen in Figure 1: when we continuously deform an embedded cmc surface,
embeddedness may be lost as bubbles start to overlap.

This leads us to concentrate on a natural class of immersed surfaces which
arise when considering families of embedded cmc surfaces, the almost embed-
ded surfaces, mentioned above. By definition, an immersed surface is almost
embedded if it can be parametrized by an immersion f : M → R

3 which
extends to an immersion F : Ω → R

3, where Ω is a three-manifold with
∂Ω = M . In fact for cmc surfaces of finite topology, the methods of [13]
imply Ω can always be taken to be homeomorphic to a handlebody in R

3.
The principal results on finite topology cmc surfaces are valid for this

almost embedded class: for instance, ends are asymptotic to Delaunay un-
duloids [11], each k-unduloid remains a uniformly bounded distance from
a k-ended piecewise-linear graph [10], and the moduli space of all these k-
unduloids (near a surface with no L2 Jacobi fields) is a real analytic mani-
fold [14] of dimension 3k − 6.

2 Nonexistence results for cylindrical ends

There is evidence that k-unduloids with only cylindrical ends are rare. For
example, we have proven that there are no k-unduloids of genus zero with all
ends cylindrical when there are only k = 3 ends [6]. More generally, when all
the ends have their axes in one common plane — a case we call coplanar —
there are at least two non-cylindrical ends provided g = 0 and k is odd.
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Fig. 1. Two triunduloids indicate a continuous transition from embedded to non-
embedded cmc surfaces. The second surface, whose bubbles overlap, is still almost
embedded.

There is further evidence for the rarity of these examples from a different
perspective. Gluing constructions were introduced by Kapouleas [8], and have
become a powerful and general tool to produce examples of cmc surfaces.
Two unduloids, for example, can be glued together by connecting them with
a small, almost catenoidal neck. Here, as in general, the resulting surface will
have slightly different axis directions of the ends, and it may be necessary
to perturb the necksizes, too. These changes can be made arbitrarily small,
however, when the connecting neck is small enough.

For Kapouleas’ construction to be applicable, the two unduloids must
have small necksize, and it is natural to ask if we can similarly glue two tan-
gent cylinders together by a small neck. The two cylinders themselves form a
degenerate surface which can be naturally regarded as lying in the boundary
of the moduli space of 4-unduloids; in fact there is a one-parameter family
of tangent cylinders, parameterized by the angle of their axes. We might ex-
pect to find examples with only cylinder ends in the interior of moduli space
within a neighborhood of these boundary points. Kapouleas, Mazzeo, and
Pollack have recently announced [16, p.7] a gluing construction (inserting
a small catenoidal neck between the cylinders) which apparently yields all
4-unduloids in such a neighborhood. However, on each of the surfaces con-
structed this way, at least two of the ends necessarily decrease their necksize,
and thus are no longer cylindrical. This change can be made arbitrarily small
when the gluing neck is small, but the change is always present. Similarly,
when h cylinders are glued to form a 2h-unduloid, then at least h necksizes
must change. Since this type of construction always changes some necksizes,
there are no examples with all cylindrical ends near these boundary points
of moduli space.
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3 The necksize problem

Consider a k-unduloid of genus g. Let n1, . . . , nk ∈ (0, π] be the asymptotic
necksizes of its ends (the lengths of the shortest closed geodesics on the
limiting Delaunay unduloids), and let a1, . . . , ak ∈ S

2 be their (outward
oriented) axis directions. These asymptotic quantities satisfy the balancing
formula [11]

k
∑

i=1

ni(2π − ni)ai = 0.

The balancing formula has the following physical interpretation: imagine
the surface being made as a soap bubble. Due to surface tension and pressure,
each end exerts a force on the surface which can be measured across any cap
spanning a curve which separates the end. This force is independent of the
particular cap chosen and is in fact equal to ni(2π−ni)ai. Note that the force
of a cylindrical end has maximal modulus, while zero force is approached in
the spherical bead limit. The sum of these forces represents the net force on
the remaining compact domain. If this net force were nonzero, the compact
piece would tend to move in that direction; but the surface is in equilibrium so
balancing must hold. We remark that the surfaces we consider are not stable,
and therefore only small pieces can be realized as a soap bubble. Nevertheless,
the physical argument can be made rigorous using the first-variation formula
that characterizes the equilibrium of a cmc surface (see [11,10]).

Balancing gives a necessary condition on the asymptotic data of any k-
unduloid. We can ask to what extent balancing is also a sufficient condition,
leading to a question for which Problem 1 forms an extreme case.

Problem 2. Given potential necksizes n1, . . . , nk ∈ (0, π] and axis directions
a1, . . . , ak ∈ S

2 satisfying the balancing formula, is there a k-unduloid of
genus g with this asymptotic data?

Whenever all necksizes are sufficiently small, Kapouleas’s construction [8]
shows that the answer is yes. On the other hand, balancing and the require-
ment that all necksizes lie in (0, π] are not sufficient to guarantee the existence
of a k-unduloid. This follows for instance in the case of coplanar k-unduloids
of genus zero with full dihedral symmetry: here the force balancing is au-
tomatically satisfied, but the maximal necksize reached is 2π/k, so that the
necksize sum

∑

ni is at most 2π [4,6].
Also, for k odd, any coplanar k-unduloid of genus zero has necksize sum at

most (k − 1)π, and further constraints are known [6]. Conversely, we believe
that coplanar k-unduloids of genus 0 exist with any necksize sum in the
interval (0, (k − 1)π] for k odd, or (0, kπ) for k even. For example, a surface
like the one pictured in Fig. 2 presumably exists with four cylindrical ends
and two unduloid ends of arbitrary necksize x ∈ (0, π). This figure was built
from four congruent pieces; using instead k − 2 pieces suggests a k-unduloid
with all but two ends cylindrical. If k is even, the necksize sum is (k−2)π+2x,
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while if k is odd, the noncylindrical ends have necksizes x and π−x so the sum
is (k − 1)π. Any smaller necksize sum could be obtained in a similar fashion
starting from pieces with no cylindrical ends. It is an interesting question
whether the bound on the necksize sum for k odd extends to noncoplanar k-
unduloids of genus zero; presumably it does not hold for higher genus surfaces.

For arbitrary genus, we can quantify the rarity of examples with all ends
cylindrical by a parameter count. We already noted above that, for any genus,
the moduli space of all k-unduloids has dimension 3k− 6. Generically, fixing
the necksize of one end gives a subspace of codimension 1, but specifying an
end to be cylindrical yields codimension 2, as we see in [6] for the case k = 3.
Thus one would expect the dimension of the space of k-unduloids with all
ends cylindrical to be k − 6.

Our methods produce examples with coplanar ends. Requiring the ends to
be coplanar generically reduces dimension by k−3. Thus we would expect the
subspace of coplanar k-unduloids with all ends cylindrical to have dimension
(k − 6) − (k − 3) = −3. That means, to find any examples, we need some
special condition (like symmetry) to make them nongeneric. Therefore it is
natural to look for surfaces with a high degree of symmetry; this is precisely
where our methods apply.

4 Numerical examples

We have obtained good numerical evidence for the existence of cmc surfaces
with only cylindrical ends and genus one. We carried out our computer ex-
periments using an algorithm developed by Oberknapp and Polthier. This
algorithm computes a polyhedral approximation to a minimal surface in S

3,
and then applies a discrete version of Lawson’s conjugate surface construc-
tion [15,9]. It is well described in [18] so we refrain from further explanations
here.

It is evident from the accompanying images that we had to search sys-
tematically for our surfaces. Indeed, as we will explain in the next section,
the idea for our surfaces was found on the basis of theoretical work. The
following result is illustrated in Color Plate 4 and Figure 2.

Experimental result 3. There exist almost embedded k-unduloids of genus
one having only cylindrical ends, for k = 30 and k = 72.

Let us describe these surfaces in more detail. First of all, they are coplanar,
so that there is a horizontal symmetry plane of reflection, containing the
axes of all ends. Moreover, each has a large group of symmetries around the
vertical axis, namely a dihedral group with 15 (or 36) vertical mirror planes.
The entire surface is generated from a fundamental piece depicted in Color
Plate 4, top left, by reflection in its boundary planes. This fundamental piece
contains half the cylindrical end, namely the portion above the horizontal
plane; moreover, it contains two (half) bubbles of different sizes. In fact, 60
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Fig. 2. A 72-unduloid of genus 1 with only cylindrical ends can be obtained from
a fundamental domain with a 95◦ angle opposite a cylinder end. The picture shows
four reflected fundamental domains leaving a 20◦ gap. Unlike the two segments at
the top (across whose boundaries further reflection can be performed), the four
cylindrical ends extend to infinity, and are truncated merely for the graphics.
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(or 144) copies of the fundamental domain make up the entire surface. The
asymptotic axes of the ends do not meet in the center of symmetry, but
instead they all have the same nonzero distance to this point. Since each
fundamental domain is embedded, an immersion of the closed solid torus
with 30 (or 72) boundary punctures extends the immersion to the interior.
Thus our surfaces are almost embedded, even though they are evidently not
embedded.

5 The fundamental domains as truncated triunduloids

We think of the fundamental domains of our surfaces with cylindrical ends
as truncated, and slightly deformed, triunduloids. Here, by triunduloid we
mean specifically an almost embedded 3-unduloid of genus zero. In [6] we
classify the triunduloids by triples of points in S

2. This classification has the
following consequence for the angles enclosed by the asymptotic axes of the
ends (compare Figure 3).

Fig. 3. A one-parameter family of triunduloids with one cylindrical end. Cylin-
ders with a perpendicular string of spheres attached form the degenerate limiting
surfaces of the family. The pictures indicate half of the family running from a de-
generate surface with axis graph `, to a Y-shaped (or isosceles) surface, past which
it can be continued with mirror images up to another degenerate a.

Proposition 4. A triunduloid can have at most one end with cylindrical
necksize. Furthermore, the angle opposite the cylindrical end must be in the
interval (π/2, 2 arccos(2/3)] while the two angles adjacent to the cylinder end
are in the range (π/2, π). The latter two angles are equal only when the angle
opposite the cylindrical end is exactly 2 arccos(2/3).

For each possible angle opposite the cylinder end, in the allowed inter-
val (π/2, 2 arccos(2/3)], trigonometric formulas determine the remaining two
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angles exactly [6]. Currently we are working on an existence proof for tri-
unduloids whose result would in particular imply the one-parameter family
suggested by Proposition 4. At present, however, the conditions stated in
the proposition are only necessary conditions, and for sufficiency we take the
computer experiments as support.

A triunduloid with one cylindrical end can be truncated (at some neck
along each of the other two ends) to give a fundamental domain for a surface
with only cylindrical ends. We want the curves along which we cut to become
planar lines of curvature across which the surface can then be extended by
(Schwarz) reflection. To achieve this, the surface must be slightly perturbed.
In particular, the parameters of such a truncated triunduloid, namely the
axis directions for given necksizes, must deviate from those of the complete
triunduloid. While these parameters are known theoretically [6] for triundu-
loids, they must be determined experimentally in the truncated case in a way
we will explain below. In fact, we even need to make the definition of these
parameters precise in the truncated case. For the necksizes we simply take
the length of the bounding curves. Since each of these curves is contained in
a vertical plane, the axis direction can be defined to be the normal to this
plane.

To see how much the parameters for truncated triunduloids differ from
those of the complete surfaces, we look at the angle deviation for a given triple
of necksizes. This point of view is natural since triunduloids and truncated
triunduloids seem to exist for the same range of necksizes. Of course, if we
truncate far out, leaving many bubbles on the truncated ends, then the angles
for the truncated surface will approach those of the original triunduloid, as
expected from the asymptotic convergence result [11].

Experimentally, we can determine the axis directions for truncated tri-
unduloids by solving a period problem: since we need to reflect across three
boundary curves in some horizontal plane, we require all three to be con-
tained in the same plane. From the numerical construction of a fundamental
domain, all we know is that they are contained in parallel planes. However,
we can adjust the angle parameters to “kill” the periods, that is, to make
the parallel planes coincide. As the end itself has no period, its two bounding
arcs are contained in the same plane, so effectively we are left with only a
single period problem.

In our computer experiments, when we use (for the truncated triundu-
loid) the theoretically known parameters for a complete triunduloid, we find
no observable period. Therefore we may conclude that the angle parameters
(for a given triple of necksizes) are almost exactly the same for a truncated
triunduloid as for the original triunduloid, even if only a small number of
bubbles is left on each end. (This differs from our experimental observation
for other problems, like the rhombic surfaces considered in [5,7]: there the de-
viations in the angle parameters between the truncated and complete surfaces
are significant.)
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Thus it is reasonable to consider the angle range of Proposition 4 as
valid for the truncated case, too. On the grounds of this assumption, we
now calculate the lowest number of ends possible. The angle ϕ opposite a
cylindrical end lies in the interval between 90◦ and 2 arccos(2/3) ≈ 96.4◦.
The dihedral angle of the two truncating planes is π−ϕ. Hence, if successive
reflection leads to a closed surface with k ends then (π−ϕ) ·k = 2πl for some
integer l. Note that the number of ends or fundamental domains k must be
even, since according to Proposition 4, only for ϕ = 2arccos(2/3) itself does
the truncated triunduloid have an extra mirror symmetry; in every other case
the segments between the cylindrical ends alternate in necksize. Moreover, l
gives the turning number of the k-gon one sees in the horizontal symmetry
plane when the axes of the ends are deleted. It is not hard to determine the
lowest value for even k when ϕ is in the given range: with ϕ = 96◦ we obtain
k = 30 and l = 7 as in Color Plate 4. Furthermore, every even k ≥ 30 except
for 32, 36, 40, 44, 48, 52 and 56 gives an example, while for every even k ≥ 102
there is more than one example since different turning numbers are possible.
(For k = 72, we have ϕ = 95◦ and l = 17 as in Figure 2.)

This calculation, together with the experimental fact that truncation of
a triunduloid does not significantly change the angle parameters, has the
following consequence:

Experimental result 5. Suppose that a coplanar k-unduloid of genus one
has dihedral symmetry, acting transitively on its k cylindrical ends. Then k
is even and k ≥ 30 (and if k is a multiple of four, then k ≥ 60).

6 Conjectures

By the reasoning of Section 5 it is obvious that many further cmc sur-
faces with only cylinder ends must exist. First, we can increase the num-
ber of bubbles on each segment, that is, each annular portion of surface
between successive cylindrical ends. Second, any other “rational” angle ϕ ∈
(π/2, 2 arccos(2/3)) will lead to a similar surface.

Conjecture 6. For all but a finite number of even integers k ≥ 30, there
exist coplanar k-unduloids of genus 1 with only cylindrical ends and transitive
dihedral symmetry on the set of ends. Moreover, for each such integer there
is a countable family of these surfaces, distinguished by turning number and
by the numbers of bubbles on the two distinct segments modulo symmetry.

To find coplanar surfaces with fewer ends, we consider higher genus. For
instance, we propose a 6-unduloid with genus 4 and dihedral symmetry tran-
sitive on the ends. The fundamental domain for this surface would be a
coplanar 4-unduloid with one cylindrical end and two angles of 60◦ opposite
this end. The axes of the segments then form an equiangular hexagon with
all three of its diagonals, while the axes of the ends are six outward rays
from the vertices. This surface fails to be embedded near the points where
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the diagonals cross. Because this surface is coplanar with simply connected
fundamental domain, it is accessible by our experimental methods.

All the surfaces we have considered so far are almost embedded, but none
are embedded. To find examples without self-intersection it seems we must
drop the coplanarity assumption. We now propose an embedded 6-unduloid
of genus 1. Consider the cycle consisting of the six edges on a cube which
avoid the pair of opposite vertices along some body-diagonal direction; this
cycle is a right-angled skew hexagon. Now compress the cube along the body-
diagonal, until the equal angles in the hexagon increase to 2 arccos(2/3). Next,
take an isosceles triunduloid with one cylindrical end and two truncated ends
of necksize π/2. Place six copies of the triunduloid along the cycle, with the
truncated ends along the edges, and a cylindrical end sticking outward at
each vertex. With an appropriate edgelength for the original cube, these tri-
unduloids should approximately match up at the truncations. The twist along
each edge means there is no plane of mirror symmetry, so our present meth-
ods do not apply. Still, we believe that the truncated ends can be fused even
in this case, producing an embedded example of a 6-unduloid with all ends
cylindrical. In fact we suspect that this example is part of a one-parameter
family of similar surfaces, using the other triunduloids from Proposition 4.

Recall that, generically, the space of k-unduloids with all ends cylindrical
should have dimension k−6. This means that if the one-parameter family just
mentioned does exist, it is nongeneric because of its symmetry. But similar
symmetries fail to exist for k = 5, while other arguments rule out lower k.
Thus the dimension count leads us to conjecture that k-unduloids with all
ends cylindrical exist only for k ≥ 6.
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Fig. 4. A constant mean curvature surface with finite absolute total curvature,
this 30-unduloid of genus one has only cylindrical ends. At the top left, we see a
fundamental domain having a 96◦ angle opposite the cylindrical end. At the top
right, four copies leave a 24◦ gap. Finally, at the bottom, thirty copies close up to
form the upper half of the complete surface.


