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Abstract. We use the DPW construction [5] to present three new
classes of immersed CMC cylinders, each of which includes surfaces with
umbilics. The first class consists of cylinders with one end asymptotic
to a Delaunay surface. The second class presents surfaces with a closed
planar geodesic. In the third class each surface has a closed curve of
points with a common tangent plane. An appendix, by the third au-
thor, describes the DPW potentials which appear to give CMC punc-
tured spheres with k Delaunay ends (so called k-noids): the evidence is
experimental at present. These can have both unduloidal and nodoidal
ends.

1. Introduction.

In the article [5] Dorfmeister, Pedit and Wu presented a method by which
all immersed CMC surfaces can, in principle, be constructed. Their con-
struction is based on the observation that the Gauss map of every CMC
surface is harmonic and every harmonic map from a surface D to S2 is the
projection of a horizontal holomorphic map from its universal cover D̃ into
a certain loop group. Thus the data for the DPW method is a holomorphic
1-form with values in a certain loop algebra: this is called a holomorphic po-
tential. One of the difficulties in using this method to construct new surfaces
is that if the potential actually lives on D it need not follow that it produces
an immersion of D. We usually only obtain an immersion of D̃: this is the
closing (or monodromy) problem. Therefore part of the purpose here is to
present some examples of solving the closing problem in the simplest case,
where D = C∗.

The simplest known examples of CMC cylinders are the Delaunay sur-
faces, which are characterized by being cylinders of revolution (this includes
the standard cylinder). From [9] one knows that if a CMC cylinder is com-
plete and properly embedded then it must be a Delaunay surface. Also, every
properly embedded annular end must be a Delaunay end (i.e. asymptotic to
a Delaunay surface) even if the surface is not embedded [9]. For example,
the ‘bubbletons’ studied by Sterling and Wente in [15] are immersed cylin-
ders with no umbilics and both ends asymptotic to the standard cylinder.
The examples we will present include cylinders which have one Delaunay
end and any number of umbilics.
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In fact we present three new classes of CMC cylinders. The first class
includes surfaces which are best thought of as a Smyth surface [14, 5] with
the head replaced by a Delaunay end. Given the results of [16] on Smyth
surfaces we conjecture that these new examples are complete and proper
immersions. Indeed these surfaces come in one-parameter families each of
which includes a Smyth surface (with the umbilic removed) as a degenerate
limit, in the same way that the Delaunay surfaces are a one-parameter family
containing the sphere (with two points removed) as a degenerate limit. The
next class consists of CMC cylinders which contain a closed planar geodesic.
The third class presents cylinders each of which admits a closed curve of
points with common tangent plane.

Although it is very easy to read off the Hopf differential from the poten-
tial, it is usually unclear how the geometry of the surface is encoded in the
potential. For example, there is as yet no understanding of the conditions on
a potential which ensure that the surface is either proper, complete or em-
bedded. The main obstacle in understanding the passage from the potential
to the surface is a loop group factorization (the Iwasawa decomposition).
This motivated us to build a numerical package which would compute this
factorization and produce images of the surface: the approach is described
below. The result is a computer laboratory called dpwlab written by the
third author. Other attempts have been made to implement the DPW
method numerically (e.g. [11]) but these find the Iwasawa decomposition by
first turning it into a Riemann-Hilbert problem (i.e. Birkhoff factorization).
The dpwlab directly computes the Iwasawa decomposition according to the
theory described in [13].

An appendix, by the third author, introduces a class of DPW poten-
tials which appear to give the triunduloid surfaces classified by Große-
Brauckmann et al [8]. In fact the experiments predict that there is another
family of 3-punctured spheres, with two unduloidal ends and one nodoidal
end. A generalization of the balancing formulae [10] applies to these latter
surfaces even though they are no longer almost embedded. Moreover, these
ideas are extended to produce a family of DPW potentials which will, it is
conjectured, produce symmetric k-punctured spheres with equal asymptotic
necksizes: the so-called equilateral k-noids. The experiments support this
conjecture.

Further Information. For further information about CMC surfaces, the
DPW construction, and the dpwlab software, visit the Center for Geometry,
Analysis, Numerics and Graphics website (www.gang.umass.edu) or write
to the third author (nick@gang.umass.edu).
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The first author was also partially supported by SFB 288 at Technische
Universität Berlin, and the third author, by NFS grant DMS-9704949.
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2. The DPW Construction.

Before stating the DPW recipe, we introduce the ingredients. For G ⊂
gl(2, C), denote the analytic maps of the unit circle S1 with values in G by
ΛG and define the twisted loops by

ΛσG =
{
g ∈ ΛG : g(−λ) = σg(λ)σ−1

}
, where σ =

(
1 0
0 −1

)
.

Furthermore, define

Λσ
+ =



g ∈ ΛσSL(2, C) : g(λ) =

∑

k≥0

gkλ
k, g0 =

(
a b
0 a−1

)
for a ∈ R+



 .

The principal tool in the DPW method is the loop group Iwasawa decom-
position i.e. any Φ ∈ ΛσSL(2, C) factorizes uniquely into a product Φ = Fb
where F ∈ ΛσSU(2) and b ∈ Λσ

+.
Now let us recall the DPW construction. Let D be a Riemann surface

and D̃ its universal cover. Denote by Ω1,0D the holomorphic 1-forms on D.
Also define

Λσ
−1,∞sl(2, C) =

{
g ∈ Λσsl(2, C) : g(λ) =

∞∑

k=−1

gkλ
k

}
.

The following steps (cf. [5]) give an S1 family, called the associated family,

of immersions (possibly with branch points) fλ : D̃ → R3 ∼= su(2) with
constant mean curvature H.

1. Let ξλ =
∑∞

k=−1 ξk(z)λ
k ∈ Ω1,0D ⊗ Λσ

−1,∞sl(2, C) and solve the initial
value problem

dΦλ = Φλξλ,Φλ(w0) = g,(1)

where w0 ∈ D̃ and g ∈ ΛσSL(2, C). Then Φλ is defined on D̃;

2. Apply the Iwasawa decomposition to Φλ pointwise on D̃ to obtain
Φλ = Fλbλ;

3. The Sym-Bobenko formula yields

fλ = − 1

H

(
iλ
∂Fλ
∂λ

F−1λ +
1

2
Fλe1F

−1
λ

)
, where e1 = iσ.

We call the 1-form ξλ the holomorphic potential and Φλ the extended
holomorphic frame. The unitary factor Fλ is called the extended unitary
frame. Our principal interest in this paper is to construct examples where
D = C∗ and provide sufficient conditions to ensure that the resultant map
fλ is also defined on C∗ for λ = 1.

2.1. Properties. We list here a number of properties of the construction
which will be relevant for our surfaces.
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Group actions. Notice that the surface depends on the data ξλ, g, w0. It is
clear from the construction that the infinite dimensional group G of holo-
morphic maps γ : D̃ → Λσ

+ with γ(w0) = I acts by gauge transformation on
the fibers of the map (ξλ, g, w0) 7→ fλ, since the map Φλ → Φλγ leaves the
surface unchanged. In fact one can always gauge away the diagonal terms
of ξλ. Another group action is the left action of ΛσSL(2, C) on the initial
condition, g 7→ hg for h ∈ ΛσSL(2, C), which is called the dressing action cf.
[3, 6]. It is not hard to see from the Sym-Bobenko formula that the dressing
action of the subgroup ΛσSU(2) can only result in Euclidean motions of the
surface, therefore it is more usual to think of the dressing action as being
by Λσ

+.

Metric and Hopf differential (cf. [5]). We may write

F−1λ dFλ = α
(1,0)
1 λ−1 + α0 + α

(0,1)
1 λ,

where α0, α1 are 1-forms on the CMC surface. A simple calculation shows

that α
(1,0)
1 = b0ξ−1b

−1
0 . Further, if we write

ξ−1 =

(
0 a1
a2 0

)
and b0 =

(
r 0
0 r−1

)

for a1, a2 ∈ Ω1,0D and r : D̃ → R+, then it can be shown that f1 has metric

4r4|a1|2 and Hopf differential Q = − 1
2a1a2. It follows that f1 has branch

points at the zeroes of a1 and umbilics at the zeroes of a2. When f1 is
unbranched (and away from umbilics) the metric can be written as eu|dw|2
for a local conformal coordinate w on D̃ and we have

F−1λ

∂Fλ
∂w

=

(
−14uw −12Heu/2λ−1

Qe−u/2λ−1 1
4uw

)
.

Symmetries. We cannot usually expect the symmetries of the potential
to be passed on to the CMC immersion because they might not survive
the combination of integration and factorization. However, there are two
situations which occur in our examples where symmetries will appear in the
CMC surface.

A. Suppose ρ ∈ Aut(D̃) is an automorphism with w0 as a fixed point and
ρ∗ξ = µ(ξ) where µ ∈ Aut(sl(2,C)) preserves the subalgebra su(2). Since
the base point w0 is fixed, the solution to (1) will satisfy ρ∗Φλ = µ(Φλ).
Now, since µ (or rather, its lift to the group) preserves SU(2), we have
ρ∗Fλ = µ(Fλ) by uniqueness of the Iwasawa decomposition. Thus, by the
Sym-Bobenko formula, ρ∗fλ = µ(fλ). We will produce examples of this
below, where ρ is a real involution on C and µ is either the identity or

µ(ξ) = −ξt. These produce reflection symmetries of the immersion.

B. Suppose ν ∈ Aut(D̃) induces a finite order automorphism on D, of order
n, and we are given: a) ν∗ξλ = ξλ; b) h = Φλ(ν(w0))Φλ(w0)

−1 belongs to
ΛσSU(2); c) f1 is an immersion of D itself. Then we may conclude that
f1 has an n-fold rotational symmetry by the following argument. By (b)
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ν∗Φλ = hΦλ, so by uniqueness of the Iwasawa decomposition ν∗Fλ = hFλ.
Therefore ν∗f1 = R(f1) where R is a Euclidean motion. But R must have
order n, therefore it is a rotation. In the examples below we will have
D = C∗ and ν will induce a rotation on C∗.

2.2. Known examples. The following two classes of known examples will
turn out to play an important role in understanding the new surfaces we
will examine later.

Example 1. We recall from e.g. [5] that potentials of the form

ξλ = λ−1
(

0 1
p(z) 0

)
dz,(2)

where p(z) = kzm, for m ∈ N ∪ {0} and any constant k, give the Smyth
surfaces [14]. These surfaces are characterized as CMC planes which possess
an intrinsic isometric S1-action (with a fixed point). If we think of these as
singly punctured (topological) spheres, they have one end with m+ 2 ‘legs’
and an (m+ 2)-fold rotational symmetry. We must beware of some degen-
erate cases: taking p ≡ 0 yields the round sphere while p ≡ ±1 gives the
standard cylinder. The asymptotics of these ends have been quite thoroughly
studied. In [16] it was shown that these surfaces are proper immersions and
that for ϕn = πn/(m + 2), n = 0, . . . , 2m + 3, there are polar coordinate
rays t 7→ f(teiϕn) which are planar geodesics. The curvature of these, in the
limit as t → ∞, tends to 0 for n even and 1 for n odd. The legs develop
around those lines with n even, along which the distance from the origin
grows fastest. The angle between the legs depends upon the coefficient k.
Further, it was shown in [1] that the surface is bounded by a cone.

Figure 1. Sector of a Smyth surface bounded by a nodoidal
planar geodesics.
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More general surfaces can be obtained by allowing p(z) to be any polyno-
mial (cf. [5]). The resultant surfaces havem+2 legs, wherem = deg(p), each
of which looks like a Smyth surface leg. To the best of our knowledge, there
has not been any work which describes the strength of this resemblance. Of
course, these surfaces need not possess either intrinsic or extrinsic symme-
tries.

Example 2. All the Delaunay surfaces can be obtained with the family of
potentials

ξDel = Aλ
dz

z
, where Aλ = Aλ(a, b, c) =

(
c aλ−1 + bλ

bλ−1 + aλ −c

)
.(3)

Here z is a coordinate on C∗ and we use as the universal cover the map C →
C∗; w 7→ z = exp(iw). The conditions ab ∈ R, c ∈ R with |a+ b|2+ c2 = 1/4
ensure that the map has period 2π (here, λ is evaluated at 1 in the Sym-
Bobenko formula). The signed neck and bulge radii of Delaunay surface
with this potential (respectively r− and r+) are

r± =
1±

√
1− 16ab

2H
.(4)

The potential ξDel can be normalized by conjugation by a diagonal element
of su(2) so that a, b ∈ R. The parameter c, although not strictly necessary, is
sometimes useful. Its geometric effect is to introduce a phase shift along the
profile curve of the Delaunay surface. Unduloids and nodoids are obtained
when ab > 0 and ab < 0 respectively. The limiting case ab = 0 yields a
sphere with two points removed. In fact the gauge transformation

ξλ 7→ γ−1ξλγ + γ−1dγ, γ =

( √
z 0

−λ√z 1/
√
z

)
(5)

transforms the potential (2) (on C∗) with p ≡ 0 into the potential (3) with
a = 1, b = 0, c = 0. This gauge transformation will be useful later on.

Below we will use ΦDelλ and FDelλ to denote respectively the holomorphic

and unitary extended frames for the potential ξDelλ with ΦDelλ (0) = I. In

particular, notice that ΦDelλ = exp(iwAλ).

Remark. The Delaunay potentials fit into the following more general context.
By a result of Burstall & Pedit [2, Thm 4.3], each CMC surface with doubly
periodic Gauss map can be obtained from a holomorphic potential ξλ on C
which is constant along the plane and with g = I, w0 = 0 in (1). Recall
(from e.g. [1]) that each such surface is partially characterized by its spectral
curve, which is a Riemann surface with equation of the form

µ2 = ζΠg
j=1(ζ − cj)(ζ − c−1j ), 0 ≤ |cj | ≤ 1.

There is a (g−2)-parameter family of CMC surfaces with the same spectral
curve: for g = 1 there is one surface for each spectral curve and this surface
is a Delaunay surface. It can be shown (we omit the proof here) that one of
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the surfaces with the spectral curve above can be obtained by taking

ξλ = λ2g−1
(

0 1
kΠ

g
j=1(λ

−2 − cj)

kΠg
j=1(λ

−2 − c−1j ) 0

)
dw,

where k = Πg
1

√
|cj |. For example, the spectral curve for the Wente torus has

genus 2 and this potential will compute that surface once the cj are known.

2.3. Implementation of the DPW Procedure in Software. Of the
three steps in the DPW process, the second step requires the most atten-
tion. The integration step 1 is performed using a standard fourth order
Runge-Kutta method. We always work with potentials ξλ which are Laurent
polynomials in λ, hence we are always dealing with the Iwasawa decomposi-
tion of Laurent polynomial loops. In software, an element of ΛσSL(2, C) is
represented as a finite vector, consisting of the coefficients of λ−K to λK for
some appropriate value of K (typically between 20 and 100). To explicitly
construct the Iwasawa factors of Φλ one proceeds as follows (cf. [13]). Let
H denote the Hilbert space L2(S1, C2) and let H+ ⊂ H be the subspace
of maps whose Fourier series possess only non-negative powers of λ. Define
W = Φ.H+ ⊂ H. Notice that this is the span of φ1, φ2, λφ1, λφ2, . . . , where
φ1, φ2 are the columns of Φ, and that λW ⊂W has codimension two. Now
compute the orthogonal projections

vj = proj(φj, λW), j = 1, 2,(6)

and define φ̂j = φj−vj : these two span the space V = W ∩ (λW )⊥. Finally,

let F1, F2 be the Gram-Schmidt orthonormalization of the pair φ̂1, φ̂2, then
F = (F1, F2). It is worth recalling from [13, p126] that on V the L2-inner
product and the C2-inner product coincide, hence F is unitary on S1.

The most time-expensive part of the software version of the DPW pro-
cedure arises from computing the projections (6). While these can be
found directly (by e.g. the Gram-Schmidt orthonormalization of the basis
φ1, φ2, λφ1, λφ2, . . . ) they are computed more efficiently and stably with the
following linear method. If V is a finite-dimensional inner product space,
U a subspace with basis u1, . . . , un, and v ∈ V , then proj(v, U) =

∑
xjuj

where x1, . . . , xn solve the linear system

〈v −∑xiui, uj〉 = 0, j = 1, . . . , n.(7)

Since this system is Hermitian it can be solved by Cholesky decomposition.
Notice that ifHK ⊂ H denotes the Laurent polynomials with zero coefficient
of λk for k > K then λjHK ⊥ HK for j > 2K, therefore all our calculations
take place on finite dimensional subspaces of H.

A further speedup is achieved when the twisted structure of the loop group
is exploited. Two elements of H with opposite polarity are L2-orthogonal.
In this case, the linear system (7) decouples into two simpler Hermitian

systems. This also means that the columns of Φ̂ = (ϕ̂1, ϕ̂2) are already

orthogonal i.e. Φ̂ is unitary. Hence the map fλ can be obtained by using Φ̂
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in place of F in the Sym-Bobenko formula and taking the trace-free part of
the result.

3. CMC Cylinders.

In this section we will present some new classes of CMC cylinders fλ :
C∗ → R3 for which ξλ ∈ Ω1,0C∗ ⊗ Λσ

−1,∞sl(2, C). First let us describe some

conditions under which the map fλ will be periodic on C (see also [4] for

similar results). For any holomorphic potential ξλ ∈ Ω1,0C∗ ⊗ Λσ
−1,∞sl(2, C)

the extended holomorphic frame Φλ has monodromy

MΦ(λ) = Φλ(2π)Φ
−1
λ (0),

where we recall we have chosen to identify C∗ with C/(2πZ). We would like
to define a similar notion for the unitary extended frame Fλ but a priori we
do not know that the quantity

MF (w, λ) = Fλ(w + 2π)F−1λ (w)

is independent of w. However, we can prove the following crucial lemma.

Lemma 3.1. SupposeMΦ ∈ ΛσSU(2). ThenMF is independent of w ∈ C
and equals MΦ.

Proof. Since Φλ(w + 2π) = Fλ(w + 2π)bλ(w + 2π) we have MΦΦλ(w) =
MFFλ(w)bλ(w+2π) which impliesMΦFλ(w)bλ(w) =MFFλ(w)bλ(w+2π).
The result now follows by uniqueness of the Iwasawa decomposition.

Therefore, under the conditions of the lemma, we can sensibly call MF

the monodromy of Fλ (and in fact this implies F−1λ dFλ is periodic). Notice
that if one knows that the surface is a cylinder then Fλ necessarily has well-
defined monodromy. These observations allow us to formulate an elementary
characterization of the conditions under which a periodic potential produces
a periodic immersion.

Proposition 3.2. Let ξλ ∈ Ω1,0C∗ ⊗ Λσ
−1,∞sl(2, C) and Φλ be a solution of

(1). Suppose MΦ ∈ ΛσSU(2), then, for a given λ0 ∈ S1, the monodromy of
Fλ satisfies

MF (λ0) = ±I and d
dλMF (λ)

∣∣
λ=λ0

= 0

iff the associated family member fλ0
: C∗ → R3 obtained by the DPW con-

struction is a CMC immersion of a cylinder.

We will usually work with λ0 = 1. Let us now consider some classes of
potentials which satisfy the conditions of this proposition.

3.1. Cylinders with One End Asymptotic to a Delaunay Surface.

An interesting class of surfaces is obtained by perturbing the Delaunay po-
tential (3) by a potential on C∗ which extends holomorphically into z =
0. The key to this construction is that ΦDelλ has monodromy MDel

Φ =
exp(2πiAλ), which belongs to ΛσSU(2).
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Proposition 3.3. Let η =
∑∞

k=0 ηkz
kdz ∈ Ω1,0C∗ ⊗ Λσ

−1,∞sl(2, C) extend

holomorphically to z = 0 with [ξDel, η0] = 0. Then using the potential
ξ = ξDel+η in (1), with an appropriate initial condition, produces a cylinder
with one end asymptotic to the Delaunay surface with potential ξDel.

Proof. Consider the system (1) as a first order system of ODE with a regular
singular point at z = 0. We will show below that a solution Φλ can be written
in the form

Φλ(w) = ΦDelλ (w)Pλ(e
iw),(8)

where Pλ extends holomorphically to z = 0, with Pλ(0) = I. Given this,
we have MΦ = MDel

Φ since Pλ has trivial monodromy about z = 0, so

MΦ ∈ ΛσSU(2). By lemma 3.1 we have bothMDel
Φ =MDel

F andMΦ =MF

hence MF =MDel
F . Since the Delaunay surface satisfies proposition 3.2 for

λ0 = 1, so does the perturbed surface.
Now let us verify (8). For Pλ to exist, there must be a solution to the

differential equation

dPλ = Pληλ + [P, ξDelλ ], Pλ(0) = I.(9)

When we examine the expansion

Pλ(z) = I +
∞∑

k=1

Pkz
k,

we discover we must have

(kI + adAλ)Pk =
∑

r+s=k−1

Prηs.

Therefore the coefficients Pk can be recursively determined provided the
operator kI + adAλ is invertible. The only difficulty occurs for k = 1, since
the non-zero eigenvalues of adAλ are ±ν for ν = 2

√
(14 +(λ−1−λ)2ab) (and

the reader can easily verify that |ν| ≤
√
3 for |λ| = 1). But for k = 1 we

have

(I + adAλ)P1 = η0,

which is solved by P1 = η0 since [Aλ, η0] = 0. Therefore a solution Pλ exists
of the type required.

Notice that in this class of examples we have more or less complete freedom
to specify the location of the umbilics.

Example 3. Let us begin by considering the simplest class of perturbations
which produce unbranched surfaces with umbilics. Here we take

ξλ =

(
c aλ−1 + bλ

(b− q(z))λ−1 + aλ −c

)
dz

z
,(10)

where q(z) = kzm for m ≥ 2 and k some constant. By the previous proof, to
obtain a cylinder we must use the initial condition Φλ(w = 0) = Pλ(z = 1)
in (1): this means first computing the solution Pλ(z) to (9). It is quite
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Figure 2. CMC cylinder with two umbilics, one marked with a
dot. Asymptotically, one end is a Delaunay nodoid with a thin
neck and the other is a two-legged Smyth surface. Figure 3 shows
a larger piece of this surface.

remarkable to see that the surfaces obtained appear to be the result of at-
taching a Delaunay end to the head of a Smyth surface. We have observed
that the end opposite to the Delaunay end has m legs which have all the
visible characteristics of the Smyth surface legs described above, and pos-
sesses an m-fold symmetry. It appears that there are 2m planar coordinate
lines, one for each angle nπ/2m and the legs develop around those for n
even. The umbilics, which lie at the m-th roots of b/k, lie on these lines just
before the first self-intersections (as we move away from the Delaunay end).
Indeed, each Smyth surface lies in a one real parameter family of surfaces
with potential (10). To see this, observe that the gauge transformation (5)
transforms the Smyth surface potential as

λ−1
(

0 1
p(z) 0

)
dz 7→

(
0 λ−1

z2p(z)λ−1 + λ 0

)
dz

z
,(11)

which is (10) with a = 1, b, c = 0 and q(z) = −z2p(z). Therefore it makes
sense to think of the surfaces we see as deformations of the Smyth surfaces,
where the intrinsic S1-symmetry has been broken by the bifurcation of the
multiple umbilic at z = 0 into m umbilics at equal distance from the origin
and at equal angles. Because of this, we conjecture that these cylinders are
complete and proper immersions for which the end for z → ∞ is bounded
by a cone.

The m-fold rotational symmetry is explained by reference to the earlier
discussion 2.1B. Let ν ∈ Aut(C) denote translation by 2π/m. This induces
on C∗ a rotation through this angle. Then ν∗η = η, so the same is true



NEW CONSTANT MEAN CURVATURE SURFACES 11

Figure 3. Two-legged Smyth surfaces with Delaunay heads. The
Smyth surface (middle) has a sphere-like head and is a singular
boundary between the unduloidal and nodoidal examples.
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for ξλ. A careful examination of the series expansion of (9) shows that this
implies ν∗Pλ = Pλ. It follows that Φλ(ν(w0))Φλ(w0)

−1 belongs to ΛσSU(2)
for w0 = 0, therefore we have all the conditions for this symmetry to exhibit
itself on the surface.

More general types of perturbations than (10) do not seem to alter the
end behavior a great deal. Certainly taking q(z) to be any polynomial has
the effect one expects from knowledge of the generalized Smyth surfaces:
the number of legs is deg(q) and their direction depends in some way upon
the roots of q(z)− b. If we consider perturbations at higher powers of λ we
can obtain surfaces with no umbilics but they still appear to have the same
end behavior.

Example 4. The form of the potential (10) made us think that to some extent
we may be able to treat holomorphic potentials like building blocks to patch
two types of end behavior together. Therefore we considered potentials of
the form ξλ − ν∗ξ̂λ where ν(z) = 1/z and ξλ, ξ̂λ have the same Delaunay
end. The rationale here is that this might attach the surfaces for ξλ and
ν∗ξ̂λ together along a Delaunay tube centered at the image of |z| = 1 (we
can always make this lie on the Delaunay end by suitable scaling). For

ξλ, ξ̂λ of the type (10) this amounts to examining potentials of the form
(10) where now q(z) = z2r(z)+z−2s(1/z) and r(z), s(z) are entire functions.
Although we do not claim that the resultant surfaces close into cylinders,
the experiments show that they are very close to closing and are quite stable
to perturbations of the coefficients of r and s. As one would hope, each end
has the expected number of legs: deg(r) for the end near z = 0 and deg(s)
for the end near infinity. We believe that cylinders of this type exist with
the correct choice of initial condition for (1).

Figure 4. The double Mr. Bubble is two two-legged Smyth sur-
faces joined by an unduloidal neck.
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3.2. CMC Cylinders with a Closed Planar Geodesic. Proposition 3.2
gives conditions on the monodromy of the extended unitary frame Fλ which
are in general hard to verify, since both integration of (1) and the subsequent
Iwasawa decomposition cannot usually be performed explicitly. Here we will
work with a class of potentials for which (1) can be integrated explicitly at
least over the unit circle. We will choose ξλ to be Λσsu(2)-valued on the
unit circle |z| = 1 in C∗. It follows that the solution Φλ to (1) (with g = I,
w0 = 0) will take values in ΛσSU(2), whence Φλ = Fλ along R ⊂ C and
by Lemma 3.1 the monodromy MF is well-defined. It is not hard to see
that ξ is Λσsu(2)-valued on the unit circle if and only if ρ∗ξ = −ξt where
ρ(z) = 1/z. Since it is always possible to gauge away the diagonal terms of
a potential which is Λσsu(2)-valued on S1, we may assume without loss of
generality that ξλ is of the form

ξλ =

(
0 αλ−1 + βλ

−ρ∗βλ−1 − ρ∗αλ 0

)

with α, β ∈ Ω1,0C∗ .
In the first class of potentials of this type we will also insist that α, β

both satisfy ρ∗α = −α. In this case, under the conditions of the next
proposition, the image of the unit circle is a planar geodesic which contains
the umbilics: we exhibit some examples in figure 7. For the purposes of the
next proposition, let z(t) denote the contour t 7→ eit in C∗.

Proposition 3.4. Let α, β ∈ Ω1,0C∗ satisfy:

1. ρ∗α = −α, ρ∗β = −β;
2.
∫
S1(α+ β) ∈ πiZ and

3.
∫
S1(α− β) exp(2

∫ z(t)
1 (α+ β)) = 0.

Then

ξλ =

(
0 αλ−1 + βλ

βλ−1 + αλ 0

)
(12)

is the potential for a CMC cylinder with umbilics at the zeroes of β. Further,
the plane containing the image of the unit circle is a plane of reflective
symmetry.

Proof. For λ = 1, the solution of

dΦ1 = Φ1ξ1, Φ1(0) = I

along t ∈ R ⊂ C is given by Φ1(t) = exp
∫ z(t)
1 ξ1. Therefore

MΦ(1) = exp

(∫

S1

(α+ β)

(
0 1
1 0

))
.

Since Φλ = Fλ along R the first monodromy condition from proposition 3.2
becomes MΦ = ±I, which is equivalent to∫

S1

(α+ β) = kπi, k ∈ Z.



14 M. KILIAN, I. MCINTOSH, AND N. SCHMITT

Similarly, it is straightforward to check that the second monodromy condi-

tion of proposition 3.2 is implied by
∫
S1 Φλ

∂ξ
∂λΦ

−1
λ

∣∣∣
λ=1

= 0. A computation

yields

∫

S1

Φλ
∂ξ

∂λ
Φ−1λ

∣∣∣∣
λ=1

=

∫

S1

(α− β)

(
sinhω − coshω
coshω − sinhω

)
,

where ω = 2
∫ z(t)
1 (α+ β). Using the reality conditions on α, β, this integral

vanishes precisely when
∫
S1(α− β) expω = 0.

Example 5. The simplest example is obtained with the forms

α = −dz
2z
, β =

(
1

2
+ κ(z−1 + z)

)
dz

z
.

Here the constant κ must satisfy J0(4κ) = 0 where J0 is the Bessel function
of order zero. To see this observe that if we parameterize the unit circle by
z(t) = eit we have
∫

S1

(α− β) exp

(
2

∫ z

1
(α+ β)

)
= −

∫ 2π

0
(1 + 2κ cos t) exp(4iκ sin t) dt

= −2J0(4κ).
It follows that we have a discrete family of immersed CMC cylinders in-
dexed by the zeroes of J0(4κ). Further, ξ(1/z)) = −ξ(z)t and ξ(z) = ξ(z).
Therefore each cylinder in this family has two planar symmetries: one plane
containing the image of the unit circle and the other containing the image of
the real axis. From the graphics we observe that, near the planar geodesic,
the image of the the positive real axis resembles a profile curve of a nodoid
while the image of the negative real axis resembles the profile curve of an
unduloid. Figure 5 displays aspects of the surface for the first positive root
of J0(4κ).

More examples can be obtained using the following method. The first
monodromy condition is simply res0 (α + β) ∈ 1

2Z, where we consider α, β
as 1-forms on C with an isolated singularity at z = 0. For the second
condition, set ω = (α − β) exp(2

∫
α + β), then ω is a 1-form on C∗ by the

first monodromy condition. It is straightforward to show for any 1-form
ω that res0 ω = 0 whenever ν∗aω = akω for νa(z) = az with ak 6= 1. In
particular we consider the case where a is a primitive n-th root of unity.
Then ν∗aω = akω, and the reality conditions are satisfied, if α, β are of the
form

∑

j∈N∪{0}
(cjz

nj + cjz
−nj)

dz

z
, cj ∈ C,

with 2 res0 (α + β) ∈ nZ + k for gcd(k, n) = 1. In this case the potential
(12) possesses the symmetries ν∗aξλ = ξλ and ρ∗ξλ = −ξtλ. These imply that
the surface has an n-fold rotational symmetry (since Φλ is ΛσSU(2)-valued
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Figure 5. This CMC cylinder has the appearance of an undu-
loid conjoined with a nodoid. The figure-eight in the transparent
image is the planar geodesic across which the surface has reflective
symmetry. As it evolves toward an end, one of its loops sweeps out
half of the unduloid, the other traces the opposite half-nodoid.

over |z| = 1). Further, if α, β also satisfy α(z) = α(z) then the surfaces will
have n extra planes of reflective symmetry (for example, see figure 6).

Figure 6. The planar geodesic of this CMC cylinder, marked in
black, lies near the beginning of the sequence shown in figure 7.



16 M. KILIAN, I. MCINTOSH, AND N. SCHMITT

Figure 7 shows a sequence of planar geodesic cross-sections for CMC cylin-
ders with potential (12) for α = 1

2
dz
z and β = c(z3 + z−3)dzz , where c ∈ R.

For c = 0 we obtain the round sphere. As c increases (left to right) the
curves acquire more loops.

Figure 7. Planar geodesics which are the cross sections of a
CMC cylinder family. The dots mark the six umbilic points.

3.3. Other CMC Cylinders. Another class of examples is obtained by
asking that the holomorphic potential satisfy the conditions ρ∗ξλ = −ξtλ for
ρ(z) = 1/z and ξ1 = 0.

Proposition 3.5. Let α ∈ Ω1,0C∗ with
∫
S1 α = 0. Then

ξλ =

(
0 α
ρ∗α 0

)
(λ−1 − λ)(13)

is the potential for a CMC cylinder with umbilics at the zeroes of ρ∗α and
branch points at the zeroes of α.

Proof. Since ξ1(z) = 0, the solution Φλ to (1) with Φλ(0) = I has Φ1 = I.
As above, Φλ = Fλ over the unit circle and we deduce MF = I, so the first
monodromy condition of proposition 3.2 is satisfied. The second monodromy
condition follows from∫

S1

Φλ
∂ξ

∂λ
Φ−1λ

∣∣∣∣
λ=1

= −2
∫

S1

(
0 α
ρ∗α 0

)
= 0

as in the proof of proposition 3.4.

The cylinders generated by these potentials have constant frame Fλ = I
over the unit circle. This means that the Gauss map is constant along the
image of the unit circle so that this lies on a single tangent plane to the
surface.
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Example 6. First, this class contains all Delaunay nodoids. These arise if
we take any s ∈ R \ {−1} and set α = zs+1dz. The explanation for this lies
in the gauge transformation

(
−s/2 λ−1 − λ

−(λ−1 − λ) s/2

)
dz

z
7−→

(
0 zs

−z−s 0

)
(λ−1 − λ)

dz

z

achieved by gauging the left-hand potential by

γ =

(
esw/2 0

0 e−sw/2

)
,

where z = ew. This left-hand potential is −s ξDelλ with a = −b = −1/s and
c = 1/2

By contrast, if we take α = (1 + z)dz we obtain the surface in figure
8. This example displays the characteristic features of the cylinders in this
class.

Figure 8. This CMC cylinder is tangent to a plane along the
black curve in the solid figure.

More generally, if α = p(z)dz for a polynomial p(z), we have observed that
the resulting surface has deg(p) legs emerging within a nodoid-like sheath.
Experiments suggest that all surfaces in this class are bounded by the outer
nodoid-like surface.

4. Concluding Remarks.

It is difficult to convey in static pictures the intuition gained by being able
to rotate, cut away and zoom in on these surfaces. One feature which struck
us was the ubiquity of nodoidal and unduloidal features in the ends. In fact,
the Smyth end itself, which at first looks impossibly complicated, appears
to have the following simple description. Consider the 2-legged Smyth end.
Divide the region |z| > 1 into its four quadrants. The lines at angles 0, π are
mapped to unduloidal-like profiles, which decay in amplitude as the radius
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increases. The line at angles π/2, 3π/2 are mapped to nodoidal-like profiles
which become more circular as the radius increases. Between these lines the
surface must interpolate between an unduloid and a nodoid. It does so in
a way which strongly resembles the way a Delaunay unduloid unravels and
wraps up into a Delaunay nodoid as it moves through the associated family.

The surfaces introduced in sections 3.2 and 3.3 have a similar description
as we rotate around C∗. But their behavior as the radius increases or de-
creases is quite different. From the figures 5 and 8 we are lead to ask: are
either of these surfaces bounded by a standard cylinder?

For the surface with a planar geodesic in figure 5, as |z| increases from
|z| = 1 (or as it decreases) each circle is stretched in two opposite directions
in 3-space. Since the image of circles of constant |z| appear to pass through
the central plane of reflection not far from the planar curve, it is not yet
settled whether these examples are properly immersed.

On the other hand, the surface in figure 8 seems to be made by translating
the same shape as the radius |z| increases and decreases from |z|, although
this cannot be literally true since there is only one umbilic (and branch
point): it lies at z = −1. This suggests that this map is proper.

It seems that these surfaces give two new types of end behavior which,
although they are immersed, do not appear to be significantly more compli-
cated than the Smyth surfaces.

5. Appendix: K-noids: Nicholas Schmitt

5.1. Introduction. A problem of fundamental importance in the theory
of constant mean curvature surfaces is the classification of complete CMC
surfaces with ends asymptotic to Delaunay surfaces (k-noids). Examples
have been constructed using the conjugate cousin construction of minimal
surfaces in S3 [7, 8]. The almost embedded CMC surfaces with genus zero
and three ends (triunduloids) have been classified:

Theorem (Große-Brauckmann, Kusner, Sullivan). Triunduloids are classi-
fied by triples of distinct labeled points in the two-sphere (up to rotations);
the spherical distances of points in the triple are the necksizes of the un-
duloids asymptotic to the three ends. The moduli space of triunduloids is
therefore homeomorphic to an open three-ball.

Specifying DPW potentials and initial conditions to produce k-noids will
require a careful analysis of the Riemann-Hilbert problem. In the genus-
zero case, trinoids can be constructed by choosing DPW potentials whose
monodromy is computable using hypergeometric functions.1 For potentials
with more than three poles, the Riemann-Hilbert problem cannot be solved
with hypergeometric functions, but one still expects to be able to prove
existence for the various Delaunay-type end configurations and describe their
moduli.

1J Dorfmeister and H Wu: private communication.
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In this appendix we conjecture, on the basis of computer experiments,
the existence of three families of genus-zero k-noids. The meromorphic po-
tentials for these examples are constructed as the linear superposition of
Delaunay potentials.

Figure 9. Two views of an isosceles 3-noid with one nodoid end;
all three ends extend infinitely downward. In contrast to the tri-
unduloids, the two umbilic points lie not symmetrically about the
mirror plane but on it.

5.2. Balancing. As a prerequisite for specifying the meromorphic poten-
tials for the conjectured families, we discuss the balancing formula for k-
noids [9, 10] (see also [1]).

Theorem 5.1 (Balancing Formula). Let S be an k-noid with monodromies

Mn = Un exp(2πiAn)U
−1
n (n = 1 . . . k),

with Un ∈ ΛσSU(2) and

An =

(
cn anλ

−1 + bnλ
bnλ

−1 + anλ −cn

)

and µn = (|an + bn|2 + c2n)
1/2 ∈ 1

2Z as in (3). Then

∑ anbn
µ2n

UnAnU
−1
n

∣∣
λ=1

= 0.

Proof. With λ = eiθ, apply ∂2/∂θ2
∣∣
θ=0

to
∏
Mn = I.

In interpreting the balancing formula [1, 10], each summand can be thought
of as a force vector along a unit-length asymptotic end axial direction, scaled,



20 M. KILIAN, I. MCINTOSH, AND N. SCHMITT

up to a proportionality constant, by a weight:

axis = U (iA/µ)U−1 ∈ su(2) ∼= R3

weight = 2ab/µ ∈ R,
force = weight · axis.

The end weight is equal to mH2r+r−, where m is the end’s wrapping num-
ber and r± are the signed neck/bulge radii as in (4). The weights of undu-
loid/nodoid ends are respectively positive/negative.

A corollary of the balancing formula [1, 9] are the triangle-type inequalities

|wn| ≤
∑

j 6=n

|wj | (n = 1, . . . , k).

Applying ∂3/∂θ3
∣∣
θ=0

to
∏
Mn = I leads to a torque balancing formula

[1, 9, 10].

Figure 10. Two isosceles 3-noids with one nodoid end, sliced by
a mirror plane. The corresponding ends of the two surfaces have
the same neck radii but opposite phase: the left examples has a
bulge at the center, the right a neck.

5.3. Genus-zero k-noids. We conjecture the existence of two families of
trinoids and a discrete family of k-noids.

Conjecture 5.1 (Triunduloids). The triunduloids are obtained from the mero-
morphic potential ξ(a1, a2, a3, c) (definition 5.1 below) subject to weight
constraints w1 > 0, w2 > 0, w3 > 0.

Conjecture 5.2 (Trinoids with one nodoid end). There exists a family of
3-noids with one nodoid and two unduloid ends. These are obtained from
the meromorphic potential ξ(a1, a2, a3, c) (definition 5.1 below) subject to
weight constraints w1 > 0, w2 > 0, w3 < 0, |w3| ≤ |w1|+ |w2|.
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Definition 5.1 (Family of trinoid potentials). Let e1, e2, e3 ∈ CP1 be fixed
distinct points. Let a1, a2, a3 ∈ R \ {0}, and s, c ∈ R satisfy

s = a1 + a2 + a3; s2 + c2 = 1
4 .

The meromorphic Λσsl(2, C)-valued differential ξ = ξ(a1, a2, a3, c) is de-
fined uniquely by the conditions:

(i) ξ has simple poles only at e1, e2, e3, p ∈ CP1;
(ii) with Aλ denoting the Delaunay residue as in (3), the residues of ξ are

rese1 ξ = Aλ(−s+ a1, −a1, −c)
rese2 ξ = Aλ(a2, s− a2, c)

rese3 ξ = Aλ(a3, s− a3, c)

resp ξ = Aλ(0, −s, −c);

(14)

(iii) the Hopf differential corresponding to ξ has neither pole nor zero at p;
with the above residues, this condition specifies p uniquely.

The end weights of the trinoid induced by ξ(a1, a2, a3, c) are wk = 4ak(ai+
aj) ({i, j, k} = {1, 2, 3}).
Conjecture 5.3 (Maximal equilateral k-noids). For each integer k ≥ 2 there
exists an equilateral k-noid with meromorphic potential ξk defined by

ξk =

(
0 αkλ

−1 + βkλ
βkλ

−1 + αkλ 0

)

αk =
(zk−1 − 1) dz

2 (z − 1)(zk − 1)

βk =
(k − 1)zk−2(z − 1) dz

2 (zk−1 − 1)(zk − 1)
.

Cone points. The conjectured k-noid potentials have, besides the k poles
inducing ends, k−2 extra poles, which we will call cone points, that are not
ends (or umbilics) on the CMC surface. These arise from the fact that the
meromorphic differential β in the potential

ξ =

(
γ αλ−1 + βλ

βλ−1 + αλ −γ

)

has k simple poles at the ends and a total of 2k − 4 zeros at umbilics, and
must therefore have k−2 more poles so that the algebraic sum sum is −2. At
these cone points, α is constructed to have zeros so that the Hopf differential
does not see the cone point. The residue at each cone point p is chosen to
be ±Aλ(0, b, c) with b

2+ c2 = 0 so that the monodromy around p is −I and
the surface closes at p for any initial condition.

5.4. Experimental evidence. That the meromorphic potentials in the
DPW initial value problem (1) for these examples are locally those of De-
launay surfaces is not sufficient to guarantee global existence: initial condi-
tions must also be found which simultaneously close all the ends. While it
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it yet unproved that such initial conditions exist, these are conjectured on
the basis of computational evidence: we have computed approximate initial
conditions with a minimizing algorithm.

This computational algorithm implements conjugate gradient methods
[12] to find a DPW initial condition C that minimizes, for a fixed potential,
an error-measure ε(C) on the monodromies:

ε(C) =
∑

n

‖Mn(C)|λ=1 + I‖+
∥∥ d
dλMn(C)

∣∣
λ=1

∥∥ .

Mn(C) is the monodromy of the extended frame around the nth end induced
by C. The sum is taken over a set of generators of the fundamental group
of the underlying Riemann surface. This method was used to create the
k-noids shown in figures 9–12.

Figure 11. Two views of an asymmetric 3-noid whose ends are
asymptotically a cylinder, a nodoid, and an unduloid. The down-
ward force of cylinder and unduloid are balanced by an upward
force of the nodoid.

5.5. Further Directions. Recent experiments give evidence for other genus-
zero k-noids: trinoids with three nodoid ends, families of k-noids with k > 3,
and 4-noids with non-coplanar end axes.

A monodromy-closer under development finds initial conditions more ef-
ficiently by simultaneously unitarizing the monodromies.
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