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Abstract. I construct two families of constant mean curvature
genus-zero surfaces with three ends via the DPW construction.
One of these families is known and has three unduloid ends; the
other is a new family with two unduloid and one nodoid end.

The classification of the almost-embedded CMC genus-zero surfaces
with three ends — the trinoids with unduloid ends, or triunduloids
— was announced by Große-Brauckmann, Kusner, and Sullivan [2].
In this note, I construct these examples explicitly (result 1) using a
method due to Dorfmeister, Pedit and Wu [1], and present a new family
of CMC trinoids (result 2) which enjoy two unduloid and one nodoid
end.

Taking H > 0 to be a fixed mean curvature, the space of triunduloids
may be described as follows.

Result 1. Let n1, n2, n3 be real numbers in the interval (0, 1/(2H)]
satisfying

n1 ≤ n2 + n3, n2 ≤ n1 + n3, n3 ≤ n1 + n2, n1 + n2 + n3 ≤ 1/H.

Then there exist two potentials which, with appropriate initial condi-

tions, produce trinoids with n1, n2, n3 as neck radii, except when any

of the above four inequalities is an equality; in this case there is exactly

one such trinoid.

We extend this result to trinoids with two unduloid and and one
nodoid end (that is, ends asymptotic to Delaunay unduloids and nodoids
respectively).

Result 2. Let n1, n2, n3 be real numbers in the intervals (0, 1/(2H)],
(0, 1/(2H)], (−∞, 0) respectively satisfying

n1 ≤ n2 − n3, n2 ≤ n1 − n3, n1 + n2 − n3 ≤ 1/H.

Suppose further that the end weights w1, w2, w3 corresponding to the

neck radii n1, n2, n3 satisfy w1 + w2 + w3 ≥ 0. Then there exist two

potentials which, with appropriate initial conditions, produce trinoids
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Figure 1. These CMC triunduloids lie in the one-
parameter family whose neck radius sum is maximal. Each
of the isosceles and scalene examples has a cylindrical end.

with n1, n2, n3 as neck radii, except when any of the above three in-

equalities for n1, n2, n3 is an equality; in this case there is one such

trinoid.

These surfaces were produced with two tools I developed at the Cen-
ter for Geometry, Analysis, Numerics and Graphics (GANG). The al-
gorithm for the main software, DPWLab, which computes CMC surfaces
from DPW potentials, is discussed in [1]. The second tool, killerB,
discussed in more detail below, uses an unsophisticated but very stable
algorithm to compute the initial condition for which a surface simulta-
neously closes at its ends.
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Figure 2. The top images show equilateral trinoids with
equal neck radii but opposite phase; the one joined at a cen-
tral bulge, the other meeting in a thin neck. The lower image
is a cutaway view of an equilateral trinoid whose neck radii
are so small that it self-intersects.

Neck Radii and End Weights. The minimum and maximum radii
a, b of a Delaunay unduloid satisfy 0 < a < 1/(2H) < b < 1/H, with
constant sum a+ b = 1/H. It is natural to extend this notion of neck
and bulge radii to the round cylinder (a = b = 1/(2H)), the round
sphere (a = 0, b = 1/H), and to the nodoid, where a < 0 < 1/H < b.
In all cases, the sum is a+ b = 1/H.

The end weight, defined as w = ab, is at most 1/(4H) (for the round
cylinder) and like the neck radius, is positive for unduloids, zero for
the round sphere, and negative for nodoids.
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The Family of Trinoid Potentials. The family of DPW potentials
generating the trinoids of results 1 and 2 are meromorphic on the thrice-
punctured Riemann sphere and are asymptotic to the DPW potential
for a Delaunay surface at each puncture. For a, b ∈ C and c ∈ R I
denote this potential by

Dele(a, b, c) =

(

c aλ−1 + b̄λ
bλ−1 + āλ −c

)

dz

z − e
(1)

The Delaunay surface produced by this potential is closed if and only
if a, b, c satisfy

|a+ b̄|+ c2 = 1/4.(2)

Fix distinct points {e1, e2, e3} ∈ CP1. The space of trinoid potentials
is parameterized by

U =
{

(a1, a2, a3, v) ∈ R4 | (a1 + a2 + a3)
2 + v2 = 1/4,

a1a2 + a1a3 + a2a3 ≥ 0}

as follows. Fix (a1, a2, a3, v) ∈ U and let s = a1+a2+a3. Let d ∈ CP1

satisfy γ(e1, d, e2, e3) = −a2/a3. Here, γ denotes the cross ratio

γ(z1, z2, z3, z4) = (z1 − z3)(z2 − z4)/((z1 − z4)(z2 − z3)).

Then the trinoid potential ξ ∈ ΛσSL(2,C) ⊗ Ω(1,0)CP1 is the unique
form with divisor −[e1]− [e1]− [e3]− [d] and residues

rese1ξ = Dele1(−s+ a1, −a1, −v)

rese2ξ = Dele2(a2, s− a2, v)

rese3ξ = Dele3(a3, s− a3, v)

resdξ = Deld(0, −s, −v).

ξ is the potential for a (closed) constant mean curvature immersion
fξ : CP1 \ {e1, e2, e3} 7→ R3 under the DPW procedure for initial
condition found numerically. The resulting trinoid will be denoted Tξ.

The Parameter Space Conditions. Of the two conditions defining U ,

(a1 + a2 + a3)
2 + v2 = 1/4(3)

a1a2 + a1a3 + a2a3 ≥ 0(4)

(3) insures that at each of its poles e1, e2, e3, the Delaunay potential
(1) to which ξ is asymptotic satisfies the closing condition (2).

The remaining condition (4) defining U arises from a balancing for-
mula [3] according to which the sum of the forces exerted by each end
is zero. It follows that the end weights must satisfy the inequality
|wi| ≤ |wj|+ |wk| for each permutation i, j, k of 0, 1, 2.
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Figure 3. Two views of an isosceles CMC trinoid with one
nodoid end; all three ends extend infinitely downward. In
contrast to the triunduloids, the two umbilic points lie not
symmetrically about the mirror plane but on it.

Each trinoid Tξ is represented several times in U because (a) per-
mutations of the parameters (a1, a2, a3, v) produce the same trinoid
with ends permuted, and (b) (a1, a2, a3, v) and (−a1, −a2, −a3, −v)
trivially produce the same surface.
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On the other hand, there are two trinoids for each choice of neck radii
unless v = 0. The two values ±v give two triunduloids with identical
neck radii but opposite phase: one has a bulge in the middle, and the
other a neck. This phenomenon is illustrated in figures 1 and 5.

End Types. The family of trinoids parametrized by ξ must have ei-
ther (a) three unduloid ends, or (b) two unduloid and one nodoid end.
Trinoids with more than one nodoid end cannot arise in this family.
To see this, note that the ends e1, e2, e3 are unduloidal or nodoidal ac-
cording as their weights 4a1(a2+a3), 4a2(a1+a3), 4a3(a1+a2) are posi-
tive or negative respectively. Because (a1, a2, a3) and (−a1, −a2, −a3)
give the same trinoid, as do permutations of (a1, a2, a3), without loss
of generality there are two cases: (a) a1 > 0, a2 > 0, a3 > 0, and
(b) a1 > 0, a2 > 0, a3 < 0. Case (a) yields a trinoid with three un-
duloid ends. In case (b), a3(a1 + a2) < 0, making e3 nodoidal. The
condition a1a2 + a1a3 + a2a3 > 0 means that a1(a2 + a3) > −a2a3 and
a2(a1 + a3) > −a1a3. But −a2a3 > 0, so a1(a2 + a3) > −a2a3 > 0, and
likewise −a1a3 > 0, so a2(a1 + a3) > −a1a3 > 0. Hence each of the
remaining two ends are unduloidal.

Asymptotics. At each of its poles e1, e2, e3, the z-leading-order term
of ξ is the DPW potential for a closed Delaunay surface Di, and the
trinoid Tξ converges to Di near ei.

Near e1, ξ is a is a special perturbation of a Delaunay surface in
which the leading-order z-term of ξ commutes with its holomorphic
part. This means that there is a linear space of initial conditions for
which the CMC immersion closes (has trivial holonomy) at this end.

Cone Points. The point d ∈ CP1, while a simple pole of ξ, is a
regular point for the resulting immersion. Writing

ξ =

(

γ αλ−1 + βλ
βλ−1 + αλ γ

)

the cross-ratio condition for d guarantees that orddα ≥ 1, so the Hopf
form has no pole at d.

Symmetry. If τ : CP1 −→ CP1 is the anticonformal diffeomorphism
fixing e1, e2, e3, then τ ∗fξ = Tfξ for a reflection R of R3. Hence each
trinoid ξ has a plane of reflective symmetry.

Umbilics. Each trinoid Tξ has two umbilic points, whose preimages
u1, u2 ∈ CP1 are the zeros of the coefficient of λ−1 in the lower-right
entry of ξ. For triunduloids u1, u2 are interchanged by the involution
τ and hence by the reflection Tξ of R3. For trinoids with one nodoid
end, u1, u2 are individually fixed by τ and lie in the plane of reflective
symmetry of the trinoid.
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Figure 4. This CMC trinoid has three ends which are
asymptotically a cylinder, a nodoid, and an unduloid. The
three downward ends have zero-sum force because the nodoid
end’s force is upward.

Period Closing. As the DPW potentials for these surfaces became
clear, I implemented period-closing software killerB to solve the ho-
lonomy problem numerically and verify that the potentials indeed pro-
duce trinoids. Since the desired initial condition is not a constant but
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Figure 5. These two isosceles trinoids with one nodoid end
are sliced through a mirror plane. As with the triunduloids
in figure 2 they have correspondingly equal neck radii and
opposite phase.

a loop group element, the period closer’s search space is an infinite di-
mensional space of Fourier series, so for the purposes of computation it
is necessary to restrict to a finite dimensional subspace by truncating
the series.
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The period-closing software uses a brute-force algorithm. Starting
with an arbitrary initial guess, it cycles through the dimensions of the
search space (the loop group coefficients), varying one parameter at
a time while holding the others fixed. In this way it minimizes, one
dimension at a time, an error measure of the holonomy by quadratic
interpolation. By stair-stepping through the parameters, the algorithm
slowly converges to a stable relative minimum which in practice is the
global minimum. It is interesting to note that the periods of ends with
small neck radii converge much more quickly than do those near the
maximal limit.

As noted above, due to the special structure of the potential, at
one end a linear space of initial conditions can be found for which the
trinoid closes. Within this space, the period-closing software must be
used to close a second end. Because the holonomy around the third end
coincides with the composition of holonomies around the other two, the
closing condition on the third end is vacuous.
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