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We are interested in explicitly parametrizing the moduli spaces Mg,k of em-

bedded surfaces in R
3 with finite genus g and a finite number of ends k having

constant mean curvature. By rescaling we may assume this constant is 1, the

mean curvature of the unit sphere. Two surfaces in R
3 are indentified as points

inMg,k if there is isometry of R
3 carrying one surface to the other. Moreover, we

shall include inMg,k a somewhat larger class of constant mean curvature (cmc )

surfaces, the Alexandrov embedded surfaces, which are immersed surfaces bound-

ing immersions of handlebodies into R
3. The structure of these moduli spaces is

known: they are finite dimensional real analytic varieties [KMP], but only a few

of them are understood completely: the only embedded compact cmc surface is

a round sphere [A], so Mg,0 is either a point (g = 0) or empty (g > 0); Mg,1

is empty, since there are no 1-ended examples [M]; and 2-ended examples are

necessarily the Delaunay unduloids [KKS], which are simply-periodic surfaces

of revolution whose minimal radius or necksize ρ ∈ (0, 1
2
] parametrizes M0,2,

whereasMg,2 is empty for g > 0. The Kapouleas construction [Kp] shows that

Mg,k is not empty for every k ≥ 3 and every g.
We focus on cmc surfaces with special symmetries: the submoduli space

of these can be thought of as the fixed point sets of automorphisms of the

(pre)moduli spaces Ng,k of cmc surfaces before modding out by Isom(R3). Each

embedded end of a cmc surface is asymptotically a Delaunay unduloid [KKS],

so we use the necksizes and axes of these asymptotic unduloids to describe a

surface and its symmetries. In previous work [G] we considered a subset of the

k-unduloids M0,k. We proved existence of an entire connected component of the

submoduli space with dihedral symmetry: for k asymptotic axes arranged in a

plane with equal angles 2π/k, two k-unduloids exist for (asymptotic) necksizes in

the interval (0, 1
k
) and one surface corresponds to the right endpoint. Note that

the submoduli space of dihedrally symmetric k-unduloids is one-dimensional.
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Figure 1. Axes of rectangular and isosceles surfaces

In the present paper some 2-dimensional submoduli spaces are studied for the

first time. The triunduloids Mg,3 are special in that a priori they always have

a plane of reflection [KKS], which we will think of as a horizontal plane. Their

moduli space is 3-dimensional at non-degenerate points [KMP]. Here we study

isosceles triunduloids which have the additional symmetry in the form of a vertical

plane of reflection, as depicted in Figure 1. We also study a submoduli space of

the 6-dimensional space of 4-unduloids, namely the rectangular 4-unduloids with

the two extra vertical symmetry planes depicted in Figure 1. There is no period

problem in the rectangular case; it is remarkable that the balancing property and

the fact that each end is asymptotically Delaunay are sufficient to solve the period

problem arising for the isosceles surfaces. Furthermore, we make some remarks on

the case of rhombic 4-unduloids and dihedrally symmetric k-unduloids of genus

1. However, the present analysis leads only to a qualitative understanding of

the period problems arising for the latter two types of surfaces, and we need the

quantitative information which we obtained numerically (see [GP]). These two

pieces of information still lead to a complete understanding of the moduli spaces

for these surfaces, which are two- and one-dimensional, respectively.

We derive necessary conditions on the class of surfaces we consider. By Law-

son’s theorem [Ka] [L], these follow from an analysis of the fundamental do-

mains and their associated boundary curves. Namely, if there is a cmc surface

with the assumed symmetries, then there is an associated minimal surface in

the three-sphere S
3, and its boundary consists of geodesic arcs. Moreover, adja-

cent spherical arcs make angles with each other which can be determined from

the symmetry properties of the cmc surface. Spherical boundary polygons of

these specific angular types exist only with certain lengths, and this restricts the

range of necksizes of the Delaunay ends which occur. We need the symmetry

assumption to guarantee that a fundamental domain is simply connected so that

Lawson’s theorem is applicable, and to have the number of boundary arcs low

enough to handle the spherical trigonometry explicitly.
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We conjecture, but do not prove, the following: (i) our continuous families of

contours bound a continuous family of minimal surfaces in the sphere which in

turn give rise to a continuous family of cmc surfaces; (ii) these are unique with

the assumed symmetry and Alexandrov embeddedness properties. (iii) There are

no further connected components for our symmetry types.

For the dihedrally symmetric k-unduloids we found in [G] that the necksizes

ρ1 = . . . = ρk of the maximal continuous family have necksize-sum

k
∑

j=1

ρj ≤ 1 .(1)

We also proved existence, so that problem (i) is settled, and in the present paper

we prove (ii) and (iii) for this case. For the maximal continuous families of

rectangular surfaces our result is that the maximal family of associated boundary

contours also has necksize-sum at most 1. However, for the isosceles surfaces, our

bound on the necksize-sum depends on the angle α. The bound is 1 for angles

greater than about 48 degrees, but tends to 0 when the angle tends to 0, see

(28). The transition from constant to non-constant necksize-sum occurs at a

surface which, surprisingly, has one cylindrical end. Although 1 might appear

as a general bound on the necksize sum in Mg,k after these results, our paper

also indicates (but does not prove) that rhombic 4-unduloids and k-unduloids of

genus 1 exceed this necksize-sum; in the rhombic case the four ends can be as

close to cylindrical as we like so that the strict upper bound on the necksize-sum

is 2, see [GP].

We should mention that our approach here to studying these moduli spaces

might be viewed as an example of the “mapping in” method — we seek curves

or higher-dimensional parameter spaces that admit smooth maps intoMg,k. An-

other approach is the “mapping out” method, which considers smooth maps from

Mg,k to natural geometric objects, such as the weighted axes map to space of bal-

anced diagrams, as has been explored in a very preliminary way in [K1] and more

thoroughly in [K2].

1. Preliminaries

1.1. Lawson’s theorem.

Theorem 1. [L, p.364] (i) Let M be a simply connected minimal surface in S
3.

Then there exists an isometric cmc surface M̃ ⊂ R
3, and vice versa.

(ii) Furthermore, if M is bounded by a (generalized) polygon Γ of great circle arcs

in S
3 then M̃ is bounded by geodesic curvature lines.
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Our polygons are parameterized objects, i.e. they do not have to be embedded,

and we distinguish a polygon with an arc of length l from the similar polygon

where the respective arc has length l+ 2π. We say generalized polygons since we

allow for degenerate arcs having infinite length. We call such arcs ray or line if

they extend in only one, or two directions to infinity.

Geodesic curvature lines are planar and arise as the boundaries of fundamental

domains of cmc surfaces with respect to a group of planar reflections. On the

other hand, simply connected cmc domains bounded by these lines admit smooth

(Schwarz) reflection in the planes.

In the following we use the term patch to stand for either a simply connected

cmc surface bounded by geodesic curvature lines, or a simply connected spherical

minimal surface bounded by great circle arcs. Our patches are not compact.

Specifically we will deal with cmc patches containing quarter ends, that is the

portion of an end cut out by two orthogonal symmetry planes whose intersection

is the axis of the end. Likewise a half end is to one side of one symmetry plane

containing the axis.

Lemma 2. Let M̃ be a cmc patch which contains a quarter end of necksize ρ,

bounded by two geodesic curvature rays γ̃, η̃. The associated spherical patch is

then bounded by two great circle rays γ, η. These two rays project to great circles

with perpendicular great circle arcs of lengths πρ/2 and π(1−ρ)/2, whose distance
to the cmc patch tends to 0 when the end becomes asymptotically Delaunay. If

ρ 6= 1/4 the perpendiculars are unique up to the antipodal map of S
3, for ρ = 1/4

they form a continuous family by running through each point of the boundary

rays.

Proof. By Lawson’s theorem the associated spherical patchM has geodesic bound-

ary. Thus γ and η are geodesic rays. Each embedded end is asymptotic in dis-

tance to a Delaunay unduloid [KKS]. Thus also the associated spherical patch is

asymptotic in distance to an associated Delaunay unduloid.

An unduloid has symmetry lines perpendicular meeting its meridians in right

angles, namely the curvature lines of minimal and maximal radius. These lines

have length 2πρ and 2π(1− ρ), or πρ/2 and π(1− ρ)/2 for a quarter end. Thus

the isometric associated quarter unduloids contain great circle arcs of the same

length perpendicular to the bounding circles. In fact the associated unduloids

are the ruled surfaces obtained by joining points on these pairs of perpendiculars,

where the perpendiculars are parametrized with constant speed, see [G] for an

explicit parameterization. On a non-cylindrical unduloid the symmetry lines meet

the meridians in distance π/2. Since short and long perpendiculars alternate (as
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necks and bubbles do), this gives uniqueness up to the antipodal map. Likewise,

on a cylinder each circle perpendicular to a meridian is a symmetry line, which

gives the continuous family of perpendiculars having the same length π/4.

We will need a similar statement for half ends. Unfortunately the geodesic rays

do not uniquely define perpendiculars of lengths πρ and π(1− ρ). Instead there

is a full circle of those. In the next subsection we introduce a tool to select the

pair of perpendiculars to which an associated end is asymptotic.

We need to define continuity of cmc surfaces and also of assciated boundary

polygons. For the moduli of the cmc surfaces we can take the C1-topology which

is equivalent to all other Ck-topologies, k > 1. For the great circle polygons with

fixed Hopf fields we can simply take the set of (positive) arclengths as coordinates.

Theorem 3. LetM be a connected set of cmc surfaces, invariant under a group

of reflectional symmetries G, such that the fundamental patches are simply con-

nected. Then the the number of boundary arcs of the patch is constant, and the

associated spherical minimal patches are bounded by a connected set of spherical

geodesic polygons.

Proof. The map associating the set of arclengths of the associated contour to a

cmc surface is continuous. We want to show that an arclength cannot degenerate

to 0. We can distinguish two cases for an arc with length tending to 0: (i) It has

(in the limit) no rotation of the tangent plane, or (ii) it has a non-zero rotation.

In case (ii) the tangent plane rotates, and the limit must have infinite curvature.

Hence, when the edgelength tends to zero, the cmc patches do not converge

in C1. On the other hand, in case (i) the rotation of the tangent plane of the

cmc surface along the short arc is either 0 or arbitrarily small. In either case there

is no bound on the order of the group of reflectional symmetries, independent of

the arclength. Thus the resulting surface is either simply periodic or the surface

has continuous symmetries, i.e. it must be Delaunay.

1.2. Karcher’s Hopf fields. The spherical boundary contours associated to a

given curvature line: have a property invariant of length of the polygon arcs: each

arc is tangent to some fixed Hopf field. A Hopf field is a unit vector field tangent

to the sphere S
3, and specifically each geodesic boundary arc is contained in a

great circle, being a fibre of one fixed Hopf fibration. There is an S
2 worth of such

fibrations, being defined for instance by the tangent directions at one fixed point

of S
3. For the following we use a fixed positively oriented orthonormal basis A,

B, C. Thus any linear combiniation aA+bB+cC with a2+b2+c2 = 1 stands for

a Hopf field (or a Hopf fibration) and is the invariant associated to each boundary



6 K. BRAUCKMANN AND ROB KUSNER

arc of a contour. The fields for an entire contour are only well-defined up to a

rotation ϕ ∈ SO4, and we will always make a special choice.

The fields can be read off the boundary of the cmc patch as follows: (i)

subsequent fields make an angle equal to the angle of the geodesic curvature

lines in a vertex (which is also the dihedral angle of the two symmetry planes

containing these arcs), and (ii) the fields rotate from one vertex to the next as

much as the normal rotates between to vertices on the cmc patch, the latter

angle is defined in the plane containing the boundary arc.

Hopf fields were added to Lawson’s conjugate surface construction by Karcher,

see [Ka] or [G] for a detailed description.
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Figure 2. Quadrilateral bounding a Euclidean cmc and an iso-

metric spherical minimal patch (righthand sketch is meant as a

stereographic projection).

1.3. Trigonometry. Our analysis relies on spherical trigonometry, namely the

trigonometry of the boundary polygons of the spherical minimal patches asso-

ciated to the fundamental domains for the cmc surfaces with few ends. It is

sufficient for our purposes to consider quadrilaterals of the type depicted in Fig-

ure 2. These quadrilaterals are characterized as follows: they have three right

angles, one angle 0 < β < π; the Hopf fields along one arc (the l-arc in Fig. 2)

turn with −π/2, as they do on a capped quarter Delaunay unduloid, on the ad-
jacent two arcs they don’t turn. We denote a quadrilateral with lengths as in

Figure 2 as Γ(l, r, r, s; β). Its Hopf fields depend on β, and are, e.g., −A, C,
sin β A− cos β C, −B in the same order.
The two quadrilaterals Γ(π/6, π/4, π/4, π/6;π/3) and Γ(π/8, π/4, π/4, π/8;π/4)

give rise to doubly periodic cmc surfaces studied by Lawson [L]. Let us call all

quadrilaterals with the described Hopf fields and with 0 < l ≤ π/4 Lawson

quadrilaterals.

We need a slightly generalized version of Lemma 3.1 in [G].
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Lemma 4. For given 0 < β < π there exists a continuous 1-parameter family of

quadrilaterals Γ(l, t, r, s; β) as follows:

(i) If 0 < β < π/2 the lengths l, t, r, s range from 0, 0, 0, 0 over β/2, π/4, π/4, β/2

to 0, π/2, π/2, β. Here r, s, t are monotonic, whereas l monotonically increases

on the first part of the family and monotonically decreases on the second half.

(ii) If π/2 < β < π the lengths l, t, r, s range from 0, π, 0, π over β/2, 3π/4, π/4, π−
β/2, to 0, π/2, π/2, π − β. Again r, s, t are monotonic, whereas l monotonically

increases on the first part of the family and monotonically decreases on the second

half.

(iii) For β = π/2 and 0 < r < π/2 quadrilaterals exist with constant lengths

s = t = π/2, and l = π/2− r.

(iv) There are further quadrilaterals with β = π/2 and constant lengths s = t = π

with 0 < l = r < π/2.

Proof. Part (i) was proved in [G]. We repeat the main steps of the proof and use

them for the proof of (ii). We assume 0 < l, t, r, s < π/2. The quadrilateral is

uniquely characterized by the four formulas

cos s cos r = cos l cos t,(2)

sin s cos r = sin l sin t,(3)

cos s cos l = cos r cos t+ cos β sin r sin t,(4)

sin s sin l = cos r sin t− cos β sin r cos t.(5)

These formulas can be obtained using the spherical cosine law. Dividing (3)

by (2) gives

tan s = tan l tan t.(6)

Elementary calculations lead to

tan 2t = cos β tan 2r,(7)

which holds unless r = π/4⇔ t = π/4. Finally

cos 2l = cos β sin 2r

√

1 +
1

cos2β tan2 2r
=

√

cos2β sin2 2r + cos2 2r.(8)

A particular consequence of (8) is cos 2l ≥ cos β.
Existence and uniqueness is obtained as follows: For each 0 ≤ r ≤ π/2 we get

a length 0 ≤ l ≤ β/2 by (8), 0 ≤ t ≤ π/2 by (7) and 0 ≤ s ≤ π/2 by (6), and

obtain a quadrilateral for which (2) – (5) hold. Therefore it has the desired Hopf

fields.
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The proof of (ii) is exactly the same. It can be seen that l, t, r, s, β solve (2)

to (5) if and only if l, π − t, r, π − s, π − β solve them. In particular (6) to (8)

hold. Geometrically these quadrilaterals can be obtained from those of (i) as

follows. We extend the s- and t-arcs in Figure 2 to the left by π/2 each, and join

the endpoints with a perpendicular of length l; then the second quadrilateral is

obtained to the left of the first.

Since (6) – (8) characterize the quadrilaterals with Lawson’s Hopf fields, we

obtain a uniqueness for the Lawson quadrilaterals: and lengths modulo π. More

precisely we have.

Lemma 5. All Lawson quadrilaterals are generated from those listed in Lemma 4

by the following substitutions:

(i) Adding 2πn for n ∈ N to r, s or t,

(ii) replacing s, t by s+ π, t+ π,

(iii) replacing r, t by r + π, t+ π,

(iv) replacing r, s by r + π, s+ π.

For the isosceles surfaces we need another type of quadrilateral which we call

Clifford rectangle: it has four right angles and opposite lengths are equal. If the

lengths are l, r > 0 we denote it with Γ(l, r). These rectangles can be obtained as

subsets of a Clifford torus, and the opposite arcs are Clifford parallels. We will

use the fact that one pair of opposite arcs has equal Hopf fields.

1.4. Balancing and Kapouleas’ existence result. Delaunay determined the

2-ended surfaces in the last century, but existence of surfaces with 3 or more ends

was only proved recently by Kapouleas. To state the existence result for genus 0

we associate a force

f := 2πρ(1− ρ)a ∈ R
3(9)

to a Delaunay unduloid with necksize ρ, whose axis points in the direction of

the unit vector a. Kapouleas proved existence of surfaces with genus g ∈ N0 and

k ≥ 3 ends, asymptotic to Delaunay unduloids with force vectors arbitrarily close
to f1, . . . , fk, if the forces satisfy two conditions: they are balanced,

n
∑

k=1

fk = 0,(10)

and small, i.e. |f1|, . . . , |fn| < ε holds for some ε > 0. The necessity of the condi-

tion (10) was proved by one of the authors [K1] in much greater generality using

an integral representation of the force. Kapouleas’ condition on the forces means
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that the necksizes are small; we will see below that very interesting phenomena

occur for large necksizes.

2. Dihedrally symmetric k-unduloids

We discussed these surfaces already in [G]. However, there the emphasis was

on existence, whereas here we would like to provide what is needed to show

uniqueness. In the next Lemma we relate fundamental domains of the dihedrally

symmetric k-unduloids to the Lawson quadrilaterals with angle β = π/k.

Lemma 6. A fundamental domain of a dihedrally symmetric k-unduloid is as-

sociated to a spherical minimal patch bounded by degenerate triangle T with two

great circle rays and one great circle arc of length 0 < r < π/2. Truncation

of the degenerate triangle leads to a Lawson quadrilateral Γ(l, t, r, s;π/k) with

0 < l ≤ π/4.

Proof. By the Alexandrov reflection principle in the form described in [KKS]

a dihedrally symmetric k-unduloid is symmetric with respect to the horizontal

symmetry plane containing the axes of its ends. Furthermore the portion to one

side of this plane is a graph over some domain Ω contained in the horizontal plane.

Since our surface has genus 0, the domain Ω is simply connected. It follows that

the vertical axis of symmetry meets our surface in a point p̃ and its mirror image

under the horizontal symmetry as in Figure 2. For k ≥ 3 these two points must
be umbilics. We claim these are the only umbilics on the surface, and each is of

index (2− k)/2.

Before proving this claim, we use it obtain the bound on the length of the

great circle arc: The boundary contour of the fundamental domain of the surface

is made up of planar curvature arcs, and the principal curvature on these is

different from 1 except at p̃. Since we know from the asymptotics that the

principal curvatures of the t- and s-arc change sign, their curvatures must be

smaller than 1. But the mean curvature is 1, so the curvature of the r- and l-arcs

must be larger than 1. Since the total turn of the normal is π/2 along the planar

r- and l-arcs, their lengths must be bounded:

r, l < π/2.

To prove the claim, we note that the umbilic points and their indices correspond

to the zeros of the holomorphic quadratic (Hopf) differential Q associated to any

cmc surface. A zero of Q of order n gives an umbilic of index −n/2. The total
order of Q on a closed surface of genus g equals 4g − 4. However, our complete
surfaces are conformally closed surfaces with k punctures, and near each puncture
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Q has a double pole, so the total of zeros is 4g − 4 + 2k instead. On a surface of
genus zero, this means the total index of umbilics is then 2−k (the Euler number

of the surface). But the k-fold symmetry implies the index of each of the two

umbilics is at most (2− k)/2, and so must equal (2− k)/2 as claimed.

The statements on the quadrilateral follow from the Hopf fields of the contour

and Lemma 2.

In [G] we solved Plateau’s problem for the degenerate spherical triangles given

by the previous lemma.

Theorem 7. Any (Alexandrov embedded) dihedrally symmetric k-unduloid is con-

tained in the family given in [G].

Proof. The previous lemma shows that the associated boundary contour is of the

type considered in [G]. If there was any surface different to our family, then it

would lead to another spherical minimal surface bounded by the same contour.

By Alexandrov embeddedness the total turn of the normal along the boundary

arcs is given by the real numbers 0, π/2, 0.

We now use the foliation described in [G] to show uniqueness of the minimal

surfaces bounded by the degenerate Lawson triangles.

uups. I have to think about this, hopefully it will work out

3. Rectangular surfaces

In the cmc patch for a rectangular surface there is one planar curvature line

running from one end to the other, see Figure 3.1. Thus two opposite geodesic

rays of the associated patch match to a line. The other pair of rays meets at a

right angle in a point p ∈ S
3 as the curvature lines of the cmc patch do.

The associated contour thus consists of two geodesic rays and one line. It is

a simplification to truncate its ends. For this we use the pair of perpendiculars

provided by Lemma 2; we truncate at the necks, i.e. the truncated arcs have the

shorter set of lengths

0 < l1, l2 ≤ π/4.(11)

The resulting pentagon, with the truncated line of length s, two truncated rays of

lengths t1, t2, and two connecting arcs of lengths l1, l2, is a right-angled pentagon

denoted Γ(t1, l1, s, l2, t2).

To reduce the spherical trigonometry of these pentagons to the quadrilaterals

of Subsection 1.3 we determine the Hopf fields of the pentagons. We start at the
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intersection point p̃ of the geodesic rays. The Hopf fields, compare Figure 3.2 are

then A, −C, −B, −A, and C, where −B runs from one end to the other. Here
the −C and −A fields of the arcs capping the ends, are defined up to sign by
the fact that they are perpendicular to their adjacent arcs; the sign follows from

asymptotics of the ends. We refer to such a pentagon, whose lengths satisfy (11)

as a pentagon for rectangular surfaces. The main geometric observation for these

pentagons is (see Figure 3):

Lemma 8. (i) Two Lawson quadrilaterals Γ1(l1, t1, r, s1; β) and Γ2(l2, t2, r, s −
s1;π/2 − β) with angle 0 < β < π/2 can be glued together along their r arcs to

form a pentagon with Hopf fields for rectangular surfaces Γ(t1, l1, s, l2, t2).

(ii) On the other hand, a pentagon with sufficiently large s, t and satisfying (11)

can be decomposed into two Lawson quadrilaterals.

Proof. (i) If the two quadrilaterals are glued along their arcs of lengths r in such

a way that the two non-right angles face each other and are contained in the

same tangent plane, a rightangled pentagon is formed. Moreover, this pentagon

has the correct Hopf fields.

(ii) Given the pentagon we define the diagonal as the geodesic arc orthogonal to

the geodesic containing the −B arc, which meets the intersection point p of the
C and A arc, and which has length smaller than π/2. By orthogonality its Hopf

field must be of the form sin β A − cos β C with respect to an orientation as in
Figure 3. Note that 0 < β < π for a non-degenerate pentagon.

Then the Hopf fields of the two quadrilaterals imply that the quadrilaterals are

of Lawson type. This is also evident from the fact that the arcs l1 and l2 cap off

quarter ends.

We will see below that it is not necessary to require that s and t are large.

We now analyse the pentagons via the two quadrilaterals the lemma pro-

vides. Let us remark that the family of dihedrally symmetric 4-unduloids con-

structed in [G] satisfy 0 < ρ ≤ 1/4. Thus they lead to symmetric pentagons

Γ(l, t, s, t, l) with 0 < l ≤ π/8; these decompose into two equal Lawson quadri-

laterals Γ(l, t, r, s/2;π/4) as given by Lemma 4(i). For the general case we take

two different quadrilaterals but we can prove that l1 + l2 ≤ π/4 still holds.

Proposition 9. There exists a continuous 1-parameter family of pentagons

G = {Γ(t1, l1, s, l2, t2) | 0 < l1, l2 and l1 + l2 ≤ π/4, 0 < t1, t2, s < π/2},
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Figure 3. Generating cmc patch for a rectangular surface, and

spherical boundary polygon of associated spherical minimal sur-

face. The truncation of the patches by two arcs is indicated with

dotted lines; an extra arc in the spherical contour gives the decom-

position into two quadrilaterals.

with the Hopf fields for rectangular surfaces. For each pair of l1, l2 > 0 with

l1+l2 < π/4 the family contains exactly two different pentagons, while for l1+l2 =

π/4 there is only one such pentagon.

Proof. We determine a quadrilateral Γ1(l1, t1, r, s1; β) with angle 0 < β < π/2

and all edgelengths in (0, π/2) as follows. We take 0 < l1 ≤ π/4 and r with

l1 ≤ r ≤ π/2− l1 as parameters. Then (8) (with l = l1) gives

cos2β =
cos22l1 − cos22r

sin22r
(12)

and we obtain a β ≥ 2l1. Since l1 ≤ r the numerator of (12) is positive, and

the fraction is at most 1, so that we can choose β < π/2. Then Lemma 4(i)

gives existence of a family of quadrilaterals Γ1(l1, t1, r, s; β) with 0 < t < π/2 and

0 < s < β < π/2 as in (7) and (6). These quadrilaterals depend continuously on

the parameters r and l1.

With r and β fixed, we now construct another quadrilateral Γ2(l2, t2, r, s −
s1;π/2−β). According to (8) and Lemma 4(i) there is such a quadrilateral with

0 < l2 ≤ π/4 determined by

cos22l2 = cos
2(π/2− β) sin22r + cos22r,(13)

and 0 < t2 < π/2 and s− s1 < π/2− β given by (7) and (6). Consequently, the

quadrilaterals Γ2 form a family which is continuous in (l1, r). By Lemma 8 this

gives a pentagon for rectangular surfaces.

We now want to show that any pair l1, l2 with l1 + l2 ≤ π/4 is attained, such

that there are two different pentagons for l1+ l2 < π/4, and one if equality holds.
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For this we consider the extremal choices of r. If r → l1 then by (12) β → π/2,

and thus by (13) l2 → 0. On the other hand, for r = π/4, (12) implies β = 2l1,

and from (13) we conclude 2l2 = π/2 − 2l1. By continuity we obtain that for
given l1 a choice of r in the lower interval (l1, π/4] gives all l2 ∈ (0, π/4 − l1].

Taking r-derivatives of (12) and (13) it is elementary to see that, for given l1, the

function l2(r) is strictly monotonic. Thus each l2 in (0, π/4− l1] is taken exactly

once, and in particular l1 + l2 ≤ π/4. We denote

The upper r-interval [π/4, π/2 − l1) also yields quadrilaterals Γ2(l1, r) with

l2 ∈ (0, π/4−l1]. This follows with the same arguments since the limit r → π/2−l1
is analogous to r → l1.

There are further families of pentagons with rectangular Hopf fields. Clearly

we can extend (i) s and t1 by π or any integer multiple of π, or (ii) do the same

with s and t2. Finally, (iii) we can extend any of s, t1, t2 by integer multiples of

2π. This way all pentagons of rectangular type are obtained.

Lemma 10. All pentagons with rectangular Hopf fields are generated from the

family G by the substitutionns (i), (ii), or (iii).

Proof. Given a pentagon, we arrive at two Lawson quadrilaterals Γ1 and Γ2 as

in Lemma 8. It follows from Lemma 5 that these quadrilaterals are uniquely

determined by r and l1 up to the ambiguity given by (i) to (iii).

Lemma 11. The family G forms a maximal continuous family.

Proof. We have to show that all non-degenerate pentagons of rectangular type in

a sufficiently small neighbourhood of G are actually in G.
Let us consider a path Γ(σ), σ ∈ [0, 1], of pentagons of rectangular type, such

that d(Γ(σ),Γ(0))→ 0 and Γ(σ) ∈ G only for σ = 0.
We decompose the pentagon Γ(σ) into two quadrilaterals by Lemma 8(ii). The

diagonal depends continuously on σ. For σ = 0 the diagonal meets the opposite

−B arc at an interior point, and this extends to small σ > 0, too. Furthermore

by continuity we can assume 0 < l1, t, r, s < π/2 for small σ, and thus, by

Lemma 4(i), the quadrilateral Γ1(l1, r) of the proof of the previous proposition

is unique. Similarly, this determines a unique Γ2(l1, r), and it follows that the

quadrilaterals arise in the construction of the previous proposition. Hence Γ(σ)

is contained in G for small σ, in contradiction to our assumption.

Taking the proposition and the previous theorem together we we arrive at our

main statement for the rectangular surfaces.
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Theorem 12. There is a maximal continuous 1-parameter family of associated

spherical boundary contours for rectangular surfaces, with the four necksizes of

the ends ρ1 = ρ3 and ρ2 = ρ4 satisfying

4
∑

i=1

ρi ≤ 1.(14)

If the necksizes satisfy the strict inequality there are two different such contours,

and one for equality.

We would also like to mention a consequence on doubly periodic cmc surfaces

of rectangular type. By this we mean surfaces whose fundamental domain is

a pentagon with rectangular Hopf fields, i.e. no truncation is involved. These

surfaces have a planar rectangular lattice, whose parameters are related to the

lengths of t1, t2, and s. For these surfaces we have to give a different definition

of necksize. For our purposes it is reasonable to define the necksize ρ via the

spherical distance of the meridians. This length is reflected in the length of

the symmetry curve intersecting a handle: the necksize is thus the length l of

the symmetry curve divided by 2π, i.e. ρ := min (l/2π, 1− l/2π); the minimum

arises since the symmetry curve sits can sit on a neck or on a bubble.

Theorem 13. There are countably many maximal continuous 1-parameter fami-

lies of associated spherical boundary contours for doubly periodic rectangular sur-

faces. In each family, the four necksizes of the handles ρ1 = ρ3 and ρ2 = ρ4 satisfy

(14) with two different contours for strict inequality and just one for equality.

Proof. If Γ(t1, l1, s, l2, t2) is a pentagon with rectangular Hopf fields then so is

Γ(t1 +mπ, l1, s+ (m+ n)π, l2, t2 + nπ) for m,n ∈ N. some more things

The main theorem of this section follows. Check the statement for the

Kapouleas surfaces, for the others it is clear.

Theorem 14. LetM be a connected component of the moduli space of the rectan-

gular cmc surfaces containing surfaces of Kapouleas, Brauckmann, or Berglund.

The four neck radii ρ1 = ρ3, ρ2 = ρ4 for each surface inM satisfy (14).

Remark: We believe there is only one component of the Alexandrov embedded

rectangular surfaces. However, it is not even clear that Kapouleas’ surfaces are

all in the same connected component (see Remark 4.6 of [Kp]). All we know on

the number of components is that the number containing surfaces with necksize

at least ε > 0 must be finite; this follows from the curvature and area bounds

of [KK]. Note that our spherical contours could bound many minimal surface

patches. This could give rise to many connected components of the moduli space.
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Figure 4. Schematic diagram of the moduli space for the

rectangular surfaces. Our associated boundary contours give a

two-sheeted covering of the triangle defined by ρ1, ρ2 > 0 and

ρ1+ρ2 < 1/2. Existence is known in a dense subset of a neighbour-

hood of the origin by Kapouleas (on one sheet), on the diagonal by

one of the authors (on both sheets), and on the line ρ1 + ρ2 = 1/2

in some neighbourhood of the coordinate axes by Berglund.

The relation (14) can be expressed in terms of the force. The force w is qua-

dratic in the minimal radius ρ, in fact 1/2 − w/π = 2(ρ − 1/2)2 and hence (14)
gives the quadratic equation on w1 and w2

√

1

4
− w1

2π
+

√

1

4
− w2

2π
≥ 1
2
.

Similarly we obtain an equation for the radii quotients a1, a2: a1/[a1 + 1] +

a2/[a2 + 1] ≤ 1/2. Comparing these equivalent formulas to (14) it seems that
the minimal Delaunay radius is the appropriate way to parameterize the moduli

space for the present problem.

4. Isosceles surfaces

Trigonometry. For the isosceles surface a fundamental domain comprises a

quarter end and a half end. Since the ends are asymptotically Delaunay [KKS],

by balancing their axis are contained in a plane, and they meet in a point. We

remark that a similar statement applies to the general three-ended surfaces, and

can be proved using torques (see [K1]). Thus arms and stem of these Y-shaped

surfaces enclose a well-defined angle. We choose α to be this angle as indicated

in Figure 1; that is α = 0 means that the arms straightly extend the stem to

form a I, whereas for α = π/2 the surface looks like a T. The balancing formula

implies that, for a surface with embedded ends,

α ∈ (0, π/2).
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Cmc surfaces with π/2 < α < π exist in the non-Alexandrov-embedded class, for

instance with either stem or arms nodoid ends [Kp].

The fundamental patch is again bounded by a geodesic line and two rays. As

before the result on the asymptotics of the ends allows to truncate the infinite

contour in order to obtain a finite pentagon.

Starting with the saddle point p (see Figure 5) the Hopf fields of a pentagon can

be seen to be −B, cosαA− sinαC, −B, −A, C. We call a pentagon with such
Hopf-fields a pentagon for isosceles surfaces, and denote it with its five lengths

Γ(b, r, s− b, l, t). We can require

0 < l ≤ π

4
and 0 < r ≤ π

2
,(15)

if we truncate the contour with the shorter geodesics, i.e. we cap the ends at the

necks not at the bubbles. Similar to the rectangular case, the main idea is to

reduce the trigonometry of the pentagon to a Lawson quadrilateral.

Lemma 15. (i) A Lawson quadrilateral Γ1(l, t, r, s;π/2−α+2b) and a Clifford

rectangle Γ2(b, r) can be glued together to form a pentagon Γ(b, r, s − b, l, t) for

isosceles surfaces provided s > b.

(ii) Conversely, a pentagon satisfying (15) and kπ < s − b, t < (k + 1)π for

sufficiently large k ∈ Z can be decomposed into a Lawson quadrilateral and a

Clifford rectangle as in (i).

Proof. (i) Taking a Lawson quadrilateral, and glueing a Clifford rectangle along

the r-arc, such that the s arc is shortened yields a pentagon for isosceles surfaces.

(ii) We consider an arc perpendicular to the geodesic line and passing through

the point p. The arc can be constructed explicitely as follows. Since both arcs

running along the half end have the same−B Hopf field they have a continuous set
of perpendiculars, which are all Clifford parallel to the r-arc. Thus the diagonal

is a Clifford parallel to the r-arc in distance b. Its Hopf field, in the orientation

indicated in Figure 5 is cos(α − 2b)A − sin(α − 2b)C. We have to go the same
distance b on both −B arcs to obtain the Clifford rectangle of the r-arc and the
diagonal; this means that the diagonal does not meet the opposite −B arc, but
an extension of forms the side of the rectangle.

Writing the Hopf field of the diagonal in the form sin(π/2−α+2b)A−cos(π/2−
α + 2b)C we see that the other quadrilateral formed has a non-right angle

β :=
π

2
− α + 2b

at p. It is clearly a Lawson quadrilateral, since the −A arc caps off a quarter
end.
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Figure 5. Generating cmc patch for an isosceles surface, and

spherical boundary polygon of associated spherical minimal sur-

face.

We want to investigate how the length l of the arc capping the quarter end

(stem of Y) relates to the length r of the arc capping the half end (arms of Y).

For the Lawson quadrilateral Γ1(l, t, r, s;π/2 − α + 2b) the following relation is

obtained from (8)

cos2 2l = sin2(α− 2b) sin2 2r + cos2 2r.(16)

Not every pentagon with the Hopf fields for isosceles surfaces actually leads to

an isosceles surface: If there is a minimal surface spanned by the pentagon then

the two boundary rays of the half end (arms) of the associated cmc surface must

be contained in parallel planes. To generate an isosceles surface upon reflection

these arcs have to be in parallel planes. Thus a period problem must be solved.

4.1. Balancing. To solve the period problem we use the balancing formula. This

statement should be taken with care: we do not give an existence proof, and in

particular we do not show that the pentagons which the balancing formula admits

span minimal surfaces with vanishing periods. Thus technically we discuss a

further necessary condition, which reduces the number of free parameters to the

correct number: one. Only in the case of the symmetric family, α = π/3, it

can be checked that the condition we obtain from balancing is satisfied by the

surfaces with closed periods.

In the following we take the index S for the stem and A for the arms. The

balancing formula (10) gives

|fS| = 2 cosα |fA|.
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Thus (9) gives the relation 2πρS(1− ρS) = 2 cosα 2πρA(1− ρA) for minimal radii

ρS and ρA. These radii are 2πρS = 4l and 2πρA = 2r in terms of the arclengths

of the pentagon. We obtain

l(π − 2l) = cosα r(π − r).(17)

Solving this quadratic equation (using (15)) for l we arrive at the following state-

ment.

Lemma 16. Assume that the geodesics of the half end for a fundamental spheri-

cal patch of a balanced isosceles surface have perpendiculars of length r and π−r.

Then the geodesics of the quarter end have perpendiculars of length 0 < l ≤ π/4

and π/2− l, where l satisfies

l =
π

4
−
√

π2

16
− cosα r(π − r)

2
.(18)

In particular, (18) has only a solution for those 0 ≤ r ≤ π/2 which are in the

interval

I(α) :=

{ [

0, π
2

(

1−
√

1− 1
2 cosα

) ]

for 0 < α ≤ π
3

[

0, π
2

]

for π
3
≤ α < π

2

(19)

We now want to construct a family of pentagons satisfying (16) and (18).

Eliminating r from the equations means that (r, b) are a zero of the function

f(r, b) := sin2(α− 2b) sin22r + cos22r − sin2

(

2

√

π2

16
− cosα r(π − r)

2

)

.

The function f is defined on I(α)× R.

From [Kp] it follows that isosceles surfaces with small weights exist, and we

want to continue their branch in the moduli space. It is not known that the

Kapouleas isosceles surfaces form indeed a continuous family. Still, the associated

boundary contour for the degenerate limit, when the neck sizes tend to 0, is

uniquely defined, and, capping the ends off at the central bubble, we call it a

degenerate Kapouleas pentagon. It has the following trigonometric data: The

ends have l = r = 0, the geodesic line has length s− b = π − α, the rays length

t = π, b = α.

Proposition 17. For each 0 < α < π/2 there is a continuous 1-parameter fam-

ily of pentagons satisfying (16) and (18). This family extends the degenerate
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Kapouleas pentagons and is a maximal continuous family with non-zero edge-

lengths. These pentagons attain all r admissable in

0 < r ≤ R(α) := π
1− cosα
2− cosα.(20)

For strict inequality there are two such pentagons in the family, and, if α 6=
arccos(2/3), for equality just one . For α = arccos(2/3) there is a one-parameter

family of contours satisfying r = R(arccos(2/3)) = π/2.

Proof. We want to establish solutions f(r, b) = 0 for all 0 < r ≤ R(α). Let us

first of all show that f(r, b) is defined for all 0 < r ≤ R(α), b ∈ R. We have to

show that

[0, R(α)] ⊂ I(α).(21)

Since R(α) < π/2 this is clear for α ≥ π/3. For 0 < α < π/3 (21) is equivalent

to

1− 2 1− cosα
2− cosα ≥

√

1− 1

2 cosα
.

The left hand side is equal to [2−cosα−(2−2 cosα)]/[2−cosα] = cosα/[2−cosα].
Since this is positive, squaring gives the equivalent inequality

cos2α

cos2 α− 4 cosα + 4 ≥
cosα− 1

2

cosα
,

or cos3α ≥ cos3α− 9
2
cos2α + 6 cosα− 2. This inequality is valid since

−9
2
cos2α + 6 cosα− 2 = −

(

3√
2
cosα−

√
2

)2

≤ 0,

and holds with equality for cosα = 2/3.

We want to find a branch of zeros (r, b(r)) for 0 < r < R(α). We establish

b(r) in the interval (α/2 − π/4, α/2), which means that 0 < β < π/2. This first

branch of solutions will be extended by a second branch of zeros below. To apply

the implicit function theorem we show three facts:

(i) ∂f

∂b
< 0 on D := (0, R(α))× (α/2− π/4, α/2),

(ii) f(r, α/2− π/4) > 0 for 0 < r < R(α), and

(iii) f(r, α/2) < 0 for 0 < r < R(α).

The derivative

∂f

∂b
= −2 sin(2α− 4b) sin22r(22)
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is negative on D which proves (i). We now prove (ii). Since sin2(α − 2(α/2 −
π/4)) = 1 we have f(r, α/2−π/4) = sin2r+cos2r−sin2

(

2
√

π2

16
− cosα r(π−r)

2

)

=

cos2(2
√
. . .). Clearly this is non-negative; it is in fact positive for 0 < r ∈ I(α).

To prove (iii) amounts to a further elementary calculation. f(r, α/2) < 0 is

equivalent to

sin2
(π

2
− 2r

)

< sin2

(

2

√

π2

16
− cosαr(π − r)

2

)

.

Since 0 < 2
√
. . . < π/2 and −π/2 < π/2− 2r < π/2 this is equivalent to

∣

∣

∣

π

4
− r
∣

∣

∣
<

√

π2

16
− cosαr(π − r)

2
.

Squaring yields

π2

16
− r(π − 2r)

2
<

π2

16
− cosαr(π − r)

2
,

which is equivalent to π− 2r > cosα(π− r) or π(1− cosα) > (2− cosα)r. Thus
we arrived at our assumption (20).

This gives a differentiable function b(r) for 0 < r < R(α), which is unique in D

by (i).

We construct a second branch. It can be obtained from the first one by means

of the substitution b 7→ α − b. Then α − 2b 7→ 2b − α, and, in particular, f

is invariant under this substitution. Thus if (r, b(r)) is a zero of f then so is

(r, α− b(r)). Since 0 < β < π/2 on the first branch we have π/2 < β < π on the

second branch.

We patch the two branches together to determine a continuous 1-parameter

family of quadrilaterals, which will give the desired pentagons. We discuss dif-

ferent cases.

• First branch, i.e. 0 < β < π/2: We find an 0 < l ≤ π/4 satisfying (16),

and the two remaining lengths 0 < t, s < π/2 for a continuous family of

quadrilaterals Γ(l, t, s, r; β) by (7) and (6). To discuss the limiting behaviour

(L1) of r ↘ 0, and (L2) of r ↗ R(α) we need to distinguish the following

cases:

∗ 0 < r < π/4: Under these assumptions an l solves (16) with

0 < l < r < π/4.(23)
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We have 0 < t < r < π/4, since (7) gives that tan 2t > 0. Furthermore,

by (6)

0 < s < t < r < π/4.(24)

Consider the limit (L1) with r ↘ 0. From (23) and (24) follows l, s, t↘
0, so that all lengths tend to 0. For later use we want to show that (0,0)

is the limiting zero, that is r ↘ 0 gives β ↘ π/2 − α, or, equivalently

b↘ 0. This is proved by writing f(b, r) for small r as

f(b, r) = 4r2
(

cos2α− cos2(α− 2b)
)

+O(r4).(25)

On the other hand we consider the limit (L2) with r ↗ R(α) < π/4,

or equivalently β ↗ π/2. By (7) it follows that t ↘ 0, and (24) gives

s↘ 0.

∗ π/4 < r < R(α): In this case (7) gives

π

4
< r < t < π/2.

The limiting quadrilaterals for (L2) with β ↗ π/2 have t↗ π/2 by (7),

and s↗ π/2 by (6).

∗ r = π/4: This condition gives t = π/4 by (7).

• Second branch, i.e. π/2 < β < π: Again we find an 0 < l ≤ π/4 satisfy-

ing (16), and the two remaining lengths π/2 < t, s < π for a continuous

family of quadrilaterals Γ(l, t, s, r; β) are determind by (7) and (6). These

quadrilaterals can also be obtained from the first branch by the substitution

(l, r, s, t; β) 7→ (l, r, π − s, π − t;π − β).(26)

Similar to the limits before, we consider the limit behaviour (L3) of r ↗
R(α), and (L4) of r ↘ 0.

∗ 0 < r < π/4: The substitution (26) transforms (24) to

0 < π − s < π − t < r < R(α) < π/4.(27)

In particular (26) gives the limit (L4): we obtain s, t↗ π, l ↘ 0 for this

limit, and b ↗ α. Therefore we recognize (L4) as the Kapouleas limit.

The limit (L3) β ↘ π/2 is similar to (L2); we have s, t→ π.

∗ π/4 < r < R(α): The limit (L3) has s, t↘ π/2.

∗ r = π/4: This condition gives t = 3π/4 by (7).

• Maximal r = R(α): A zero of f(R(α), b) is b = α/2, which is unique in

(−α/2− π/4, α/2 + π/4).

∗ R(α) < π/4: (16) gives cos22l = cos22r, and by (15) l = R(α). We find

quadrilaterals with s, t = π by Lemma 4(iv).
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∗ R(α) = π/4: (16) gives l = π/4, and there is a one-parameter family

of quadrilaterals of the form Γ(π/4, t, π/4, t;π/2) with t > 0. These

are in fact Clifford rectangles Γ(π/4, t), and the one parameter family

is related to the fact that a surface with a cylinder end does not have a

discrete set of perpendiculars.

∗ R(α) > π/4: The quadrilaterals satisfy l = π/2−R(α) by (16) and (15),
so that t = s = π/2 by Lemma 4(iii).

It remains to patch the continuous families together at r = R(α). Again we

distinguish cases according to how α relates to

0 < α0 := arccos 2/3 < π/2.

• R(α) < π/4 ⇔ 0 < α < α0: The limits (L2) and (L3) do not match

continuously. However, if we extend the s- and t-arcs of the first arc by

π, then all lengths are continuous and agree with the quadrilaterals for

r = R(α).

• R(α) = π/4 ⇔ α = α0: To discuss the limits (L2) and (L3) we need to

consider the equations up to first order. First we consider (L2), i.e. l, r ↗
π/4. From (17) we obtain

6

π

(π

4
− l
)2

=
π

4
− r + o(

π

4
− r).

This expression can be substituted into (16) to give the expression

β(l) =
π

2
+ 2(

π

4
− l) + o(

π

4
− l).

This can be used to calculate the limiting value for t with (7), tan 2t =

cos β tan 2r: since β is (π/4 − l) in first order, but cos 2r only (π/4 − l) in

second order it follows that tan 2t↗∞. Therefore, the limit of t in (L2) is
π/4, and this gives s↗ π/4. Similarly for the limit (L3) where s, t↘ 3π/4.

The quadrilateral with r = R(α0) = π/4 is special. Since l = π/4, the stem

has a cylinder end. In particular there is a continuous set of perpendiculars,

i.e. we can choose any length for s = t. To make the family of quadrilaterals

continuous at r = R(α) we can vary s = t from π/4 to 3π/4 to join the

limits (L2) and (L3).

• R(α) > π/4 ⇔ α0 < α: The family of quadrilaterals obtained above is

continuous in this case.

Replacing the r-arc of the quadrilaterals by its Clifford parallel in distance b(r),

and joining it to the t-arc with an arc of length b, as well as shortening the s-arc

by b gives the desired pentagons, whose lengths satisfy (18) and (16).
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Figure 6. Schematic diagram of the submoduli space for isosceles

surfaces. Boundary contours for these surfaces exist inside the bold

triangle and degenerate on its boundary as indicated. Both neck-

sizes are symmetric to the line β = π/2 and attain their maximum

on this line. Existence is only proved for the symmetric family [G]

and in a neighbourhood of the Kapouleas boundary [Kp].

It remains to show that our pentagons form a maximal continuous family.

Should be similar to the rectangular case.

Remark: (i) The above 1-parameter families do not yield a continuous 2-parameter

family of pentagons F(α, r). Clearly a discontinuity arises at (α0, R(α0)) = π/4).

Instead of our continuous families for each α it is helpful to consider the original

choice of lengths obtained in the proof (no extension of the t- and s-arcs on the

first branch of (i)): the disconinuity is then located on the arc {(α, r)|0 < α ≤
α0, r = R(α)}. It should be viewed as a discontinuity which is in our description
of the moduli space of the isosceles surfaces, not in these surfaces themselves.

Indeed, the definition of the lengths s, t and b is arbitrary, while the only param-

eters on the surface are the continuous parameters r and l. Even so there is a

mathematical observation for the moduli space to make: a curve in the moduli
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space F(α, r) which winds once around the point (α0, π/4) will create (or remove)

one bubble on the stem. Indeed, the fact that we have to extend s, t by π when

going from (L2) to (L3) in case (i) means that we add a bubble on the stem.

(ii) The maximal family with the maximal weights for each α is not continuous

at α0, but can easily be altered to become continuous. For this, we have to relax

the requirement (15): if we admit to vary l in the larger interval (0, π/2] then the

maximal family satisfies:

t =
π

2
, l =

π

2
−R(α), s− b =

π

2
− α

2
, r = R(α), b =

α

2

This means, that for α < α0 we “cut” the surface at the bubble, for α > α0 at

the necks. Of course for continuity of the surfaces (in a fixed compact set) this

does not matter.

We expect that for all pentagons in the family the Plateau problem can be

solved, so that the family corresponds to a component of the moduli space. How-

ever, to solve the Plateau problems needs barriers and this is technically difficult.

Therefore the statement we can make on the cmc surfaces is as follows:

Theorem 18. The connected component of the moduli space of the iscosceles

surfaces containing Kapouleas surfaces satisfies

ρ1 + ρ2 + ρ3 ≤ min
(

1, 4
1− cosα
2− cosα

)

.(28)

For α0 = arccos
2
3
≈ 48.2◦ we have R(α0) = π/4. Thus the minimum on the

right hand side of (28) is 1 for α0 ≤ α < π/2, but smaller for 0 < α < α0.

All other statements as in the rectangular case

A preliminary remark on rhombic surfaces: Assume that there is a spherical

minimal surface that bounds contours which are only truncated along the l arc.

Does reflection of the associated cmc contour lead to a rhombic surface? This

does not seem to be the case. Note that for the condition (10) we used to select

a contour that bounds a surface with (presumably) closed periods we needed the

asymptotics of the ends. Namely we assumed that the reflected arcs form round

circles, so that we could compute their weights with (9). This does not imply

that the period problem is solved for the truncated contours. The following facts

support this view:

(i) For α = π/4 the rhombic surface is the 4-ended symmetric surface of [G], so

that the family satisfies
∑4

1 ρi ≤ 1. On the other hand the isosceles family F(π/4)
has the smaller necksize-sum 4ρA ≤ 4R(α)/π = 4[1−

√

1/2]/[2−
√

1/2] ≈ .906.

(ii) There is an automorphism of the moduli space for rhombic pentagons induced
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by the map (l, t, b, r, s − b;α) 7→ (t, l, s − b, r, b;π/2 − α). The assumption that

the surfaces are in the same connected component of the moduli space and have

closed periods leads to a contradiction since the maximal necksize-sum is not

symmetric under α 7→ π/2 − α. It may well be that the surfaces are not in the

same connected component; note that, unlike the isosceles case, we believe that

the rhombic surface with k bubbles on the central arc are in different connected

components for different k.
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