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1. Introduction

The study of isometric immersions of space forms into space forms is a classical problem of differen-
tial geometry. In its simplest form it arises as the study of surfaces in 3-space of constant (non-zero)
Gaussian curvature. In this case the integrability condition reduces to the sin and sinh-Gordon
equations. Due to the complicated structure of these equations one focused over the past decades
mainly on non-existence results rather then the construction of explicit examples, the most famous
one being a result by Hilbert [14] that there are no complete surfaces of negative curvature in
Euclidean 3-space. A slightly different spirit was present in the work of Bianchi and Darboux (see
also [3]) where one finds many examples, some of which probably have been forgotten over time
and only recently been rediscovered in the framework of what might be called soliton geometry.
Having its origin in the explicit description of all tori of constant mean curvature [20, 6] the finite
gap integration scheme can also be applied to obtain explicit parametrizations of a large class of
surfaces of constant Gaussian curvature [16, 15, 5, 4].

In higher dimensions the situation is quite similar: there are a number of interesting non-existence

results [21, 9, 17, 18, 19, 13] for isometric immersions f : Mm(c)→ M̃n(c̃) between space forms M

of dimension m, curvature c, and space forms M̃n(c̃) of dimension n, curvature c̃, but no general
scheme to construct such immersions. The integrability conditions for such an immersion, the
Gauss, Codazzi and Ricci equations, are sometimes referred to as a generalized sin-Gordon system.
Certain aspects of its inverse scattering theory [1, 24] as well as solutions obtained by Bäcklund
transformations (which generate a finite dimensional solution space starting from a known, trivial ,
solution) [23] have recently been studied.

On the other hand, exterior differential calculus and the Cartan-Kähler theory [12] leads to a
description of the space of local real analytic isometric immersions of space forms (in specific
codimensions) in terms of finitely many functions of a single variable. In particular this shows that
this space is infinite dimesional.

In this paper we will develop the finite gap integration theory for the integrability conditions
for isometric immersions of space forms. By this we mean that we will construct a hierarchy
of commuting finite dimensional ODE in Lax form whose solutions will give local real analytic
isometric immersions of space forms. We call those isometric immersions of finite type. The flows
evolve on a certain loop Lie algebra and can, at least in principle, be integrated by theta functions
on the Jacobian of an algebraic curve, the spectral curve of the Lax flows. In this sense the isometric
immersion equations for space forms are a completely integrable system and thus can be regarded as
a higher dimesional (w.r.t. the flow variables) soliton equation. The explicit algebraic integration
so far has only be carried out in detail in the case of surfaces in 3-space [15, 5] and the higher
dimensional case would require substantial more work on the description of Riemann surfaces with
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two (commuting) involutions and certain reality conditions which will be done elsewhere. The
initial condition for the Lax flows is a matrix valued function of one variable so that our solution
space has at least functionally the correct dimension given by Cartan-Kähler theory and we expect
that an appropiate closure of the finite type solutions will in fact account for all the local real
analytic isometric immersions of space forms.

In order to avoid degenerate cases we will make the following assumptions on our isometric immer-

sions f : Mm(c)→ M̃(c̃) throughout the paper :

i. c 6= 0 6= c̃, c 6= c̃, and

ii. the normal bundle of f : Mm(c)→ M̃(c̃) is flat.

Note that for c < c̃ and n = 2m− 1 the second assumption is always satisfied [17] and, in this case,
there are no (local) isometric immersions for n ≤ 2m− 2 [21]. It is a classical result due to Hilbert

[14, 22] that there are no complete isometric immersions M 2(c) → M̃3(c̃) if c < c̃, c < 0 but it is
yet unknown (though conjectured) whether this result extends to complete isometric immersions

Mm(c)→ M̃2m−1(c̃) for c < c̃, c < 0. Note that for c = 0 one always has the Clifford tori and c > 0
cannot occur due to the fact that such immersions induce global Chebycheff coordinates [17, 19].
In contrast, in the case c > c̃ one always has the totally umbilical hypersurfaces. If n ≤ 2m − 1
and the immersion has no umbilic points [18] then n = 2m − 1 and the normal bundle is again
flat. Generally, flatness of the normal bundle is a necessary assumption in higher codimensions to
guarantee that those isometric immersions are not too flabby to arise from completely integrable
systems [11]. The case c = c̃ is treated exhaustively in [10].

First we discuss how the structural equations for an isometric immersion between space forms
can be rewritten as a zero curvature condition involving an auxiliary (spectral) parameter. Thus
each such isometric immersion is part of a 1-parameter family of isometric immersions and the
deformation parameter turns out to be related to the induced curvature. We then express this
fact as the flatness condition on a loop algebra valued 1-form with an algebraic constraint. Such
a reformulation of the equations at hand is reminiscent in the theory of integrable systems and
will be the starting point for their integration. To carry this through we had to slightly modify
AKS or R-matrix theory [7], since our equations could not be treated inside the standard setup.
This modification was geometrically rooted since the Lax flows so obtained yield framings of the
isometric immersions which parallelize the normal bundle and thus are adapted to the geometry of
the situation.

A major part of this research was done while the second author was a visiting member at the SFB
288 at Technische Universität Berlin and enjoyed the hospitality, interest and encouragment present
at this institution. Finally we would like to thank Josef Dorfmeister for inspiring us to think about
a modification of standard AKS and R-matrix formalism.

2. Associated family of isometric immersions

Since our discussion will be local, we may (after scaling) assume M̃n(c̃) to be either the Euclidean
sphere Sn ⊂ Rn+1 of curvature c̃ = 1 or hyperbolic space Hn ⊂ Rn+1

1 of curvature c̃ = −1 realized
as one sheet of the hyperboloid in Lorentz space. We denote by S either of these two standard
spaces.

Let f : Mm(c) → S be an isometric immersion and let F : Mm(c) → SOε(n + 1) be an adapted
framing, that is to say F0 = f, F1, . . . , Fm are tangential and Fm+1, . . . , Fn are normal. We denote
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by

A = F−1dF

the pull back of the left Maurer-Cartan form of SOε(n+1) by F . (Here and in the sequel ε = c̃ = ±1
and indicates whether one deals with the Euclidean or Lorentzian version of the corresponding
object). Then A is an soε(n+ 1)-valued 1-form and since F is adapted,

A =



0 −εθT 0
θ ω β
0 −βT η


 ,(2.1)

where θ is an Rm-valued 1-form on Mm(c) (the dual frame to F1, . . . , Fm), ω is an so(m)-valued
1-form (the Levi-Civita connection on Mm(c)), η is an so(n−m)-valued 1-form (the connection in
the normal bundle) and β is the 2nd fundamental form for f . The integrability conditions for the
existence of such a framing F , the Maurer-Cartan equations

dA+A ∧A = 0 ,(2.2)

unravel to the fundamental equations for the isometric immersion f , the structure equation and
the Gauss, Codazzi and Ricci equations

a

dθ + ω ∧ θ = 0 ,(2.3a)

dω + ω ∧ ω − εθ ∧ θT − β ∧ βT = 0 ,(2.3b)

dβ + ω ∧ β + β ∧ η = 0 ,(2.3c)

dη + η ∧ η − βT ∧ β = 0 .(2.3d)

In addition one has that the induced metric has curvature c,

dω + ω ∧ ω = c θ ∧ θT ,(2.4)

and that the normal bundle is flat,

dη + η ∧ η = 0 .(2.5)

The starting point in soliton theory for integrating the equations at hand is their reformulation as a
zero curvature condition (Maurer-Cartan equation) involving some auxiliary (spectral) parameter.
Let A be an soε(n+1)-valued 1-form on Mm(c) of the form (2.1). We define a family of soε(n+1,C)-
valued 1-forms parametrized by λ ∈ C∗ by

Ãλ =




0 −ε
√
εc

2 (λ+ λ−1)θT 0√
εc
2 (λ+ λ−1)θ ω

√
εc

2
√

1−εc
(λ− λ−1)β

0 −√εc

2
√

1−εc
(λ− λ−1)βT η


(2.6)

Lemma 2.1. A solves (2.3), (2.4), and (2.5) if and only if Ãλ solves the Maurer-Cartan equation

dÃλ + Ãλ ∧ Ãλ = 0

for all λ (in a set with accumulation point) in C∗.

Proof. Since (2.3a) to (2.3d) are equivalent to the Maurer-Cartan equation (2.2) we have to verify

that Ãλ solves (2.3a) to (2.3d). Since (2.3a) and (2.3c) are homogeneous in θ and β (and neither ω



4 D. FERUS AND F. PEDIT

nor η involve λ) they are trivially satisfied by Ãλ. Also (2.3d) holds because of (2.5). Now (2.3b)
and (2.4) imply

(c− ε)θ ∧ θT = β ∧ βT = 0

so that, using (2.4), we have

cθ ∧ θT − c

2
(λ+ λ−1)2θ ∧ θT − εc

4(1− εc)
(λ− λ−1)2β ∧ βT = 0 ,

which shows that also (2.3b) holds for Ãλ. To prove the converse we compute the entries in

dÃλ + Ãλ ∧ Ãλ = 0 and compare coefficients of equal powers of λ:

d(

√
εc

2
(λ+ λ−1)θ) + ω ∧ (

√
εc

2
(λ+ λ−1)θ) = 0

dω + ω ∧ ω − c

4
(λ+ λ−1)2θ ∧ θT − εc

4(1− εc)
(λ− λ−1)2β ∧ βT = 0

d(

√
εc

2
√
1− εc

(λ− λ−1)β) + ω ∧ (

√
εc

2
√
1− εc

(λ− λ−1)β) + (

√
εc

2
√
1− εc

(λ− λ−1)β) ∧ η = 0

dη + η ∧ η − c

4(1− εc)
(λ− λ−1)2βT ∧ β = 0 .

The first and third identity yield (2.3a) and (2.3c) and the last identity gives (2.5) and (2.3d).
Expanding the second identity we obtain

dω + ω ∧ ω − c

2
θ ∧ θT +

εc

2(1− εc)
β ∧ βT − (λ2 + λ−2)(

c

4
θ ∧ θT +

εc

4(1− εc)
β ∧ βT ) = 0

and thus

(1− εc)θ ∧ θT + εβ ∧ βT = 0

dω + ω ∧ ω = cθ ∧ θT

which implies (2.4) and (2.3b). The converse follows by a similar, but easier, calculation.

In the situation of Lemma 2.1 we can integrate (F λ)−1dF λ = Ãλ to a (complex) framing

F λ : Mm → SOε(n+ 1,C)

for each λ. To obtain a real valued framing Ãλ has to take values in soε(n+ 1). This is the case if
and only if

S = Sn S = Hn

λ cλ cλ

real (0, 1) (−1, 0)
imaginary (−∞, 0) (0,∞)
unitary (1,∞) (−∞,−1)

(2.7)

In either of these cases F λ : Mm → SOε(n+ 1) is real and thus we obtain a family of immersions

with flat normal bundles (since (2.5) holds for each Ãλ)

fλ = F λ
0 : Mm → S(2.8)

from the first column of F λ. The curvature cλ of the induced metric is given by (2.4) expressed in
the coframe for fλ:

dω + ω ∧ ω = ε
4

(λ+ λ−1)2

√
c

2
(λ+ λ−1)θ ∧

√
c

2
(λ+ λ−1)θT ,
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and thus

cλ = ε
4

(λ+ λ−1)2
.(2.9)

Depending on the domain of λ the induced curvature cλ ranges over the intervals given in (2.7).
Finally, for

λ0 =
1√
εc
(1 +

√
1− εc)(2.10)

we have Ãλ0 = A, fλ0 = f and cλ0 = c, and thus recover the original immersion. We summarize
the discussion so far in the following

Lemma 2.2. Let f : Mm(c) → S be an isometric immersion with flat normal bundle, F :
Mm(c) → SOε(n + 1) an adapted framing with induced Maurer-Cartan form A = F−1dF and

let Ãλ be given by (2.6). Then dÃλ + Ãλ ∧ Ãλ = 0 for all λ.

If Ãλ satisfies the reality conditions (2.7) and F λ integrates Ãλ then F λ : Mm → SOε(n+1) is an
adapted framing for the isometric immersion fλ = F λ

0 : Mm(cλ)→ S with flat normal bundle and
induced curvature cλ = ε 4

(λ+λ−1)2
. The original immersion f is recovered at λ = 1√

εc
(1 +

√
1− εc).

Thus isometric immersions of space forms with flat normal bundle come naturally in 1-parameter
familes which we call the associated family.

For our sequel developments it will be crucial that Lemma 2.2 has a converse:

Lemma 2.3. Let

Ãλ =




0 −ε(λ+ λ−1)θT 0
(λ+ λ−1)θ ω (λ− λ−1)β

0 −(λ− λ−1)βT η


(2.11)

be a family of soε(n + 1)-valued 1-forms on Mm, where the forms θ and β may be imaginary (to
fulfill the reality conditions (2.7) ), satisfying the Maurer-Cartan equation. If θT = (θ1, . . . , θm)

are linearly independent then F λ : Mm → SOε(n + 1) integrating (F λ)−1dF λ = Ãλ is an adapted
framing for the isometric immersion fλ = F λ

0 : Mm(cλ)→ S with induced curvature cλ = ε 4
(λ+λ−1)2

and flat normal bundle.

Proof. Since Ãλ solves the Maurer-Cartan equation (2.2) for all λ it follows on the one hand that
we can integrate to an adapted frame F λ for an immersion fλ = F λ

0 . On the other hand, comparing
coefficients at powers of λ, we obtain

dη + η ∧ η = 0 ,

dω + ω ∧ ω = cλ(λ+ λ−1)θ ∧ (λ+ λ−1)θT

which shows that fλ has flat normal bundle and induced curvature cλ.

The gist of this reformulation is that the construction of isometric immersions of space forms with
flat normal bundle is equivalent to the construction of a certain family of soε(n+1) valued 1-forms
(2.11) satisfying the Maurer-Cartan equation. Notice that such a reformulation is well known in
the theory of harmonic maps of Riemann surfaces into Lie groups and symmetric spaces [8].
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3. Loop algebra formulation

In the previous section we discussed how the equations for an isometric immersion f : Mm → S
with flat normal bundle can be written as the zero curvature condition for a family (“loop”) of Lie
algebra valued 1-forms (2.11). The proper setting for this are loop algebras. Let g = soε(n + 1)
with complexification gC = soε(n+ 1,C) and define the loop algebra

ΛgC = {ξ : C∗ → gC ; ξ polynomial in λ and λ−1}
which is a (complex) Lie algebra under pointwise bracket. If C denotes either of R∗, iR∗ or S1 we
have the real subalgebras (c.f. also (2.7))

Λg = {ξ : C → g} ⊂ ΛgC

corresponding to the conjugations

ξ̄(λ) = ξ(λ̄) , ξ̄(λ) = ξ(−λ̄) , ξ̄(λ) = ξ(1/λ̄) .(3.1)

Note that

Ãλ =




0 −ε(λ+ λ−1)θT 0
(λ+ λ−1)θ ω (λ− λ−1)β

0 −(λ− λ−1)βT η




for λ ∈ C can be regarded as a Λg-valued 1-form with the following symmetries:

Ã−λ = AdPÃλ

Ã1/λ = AdQÃλ

where

P =

( -1
1

-1

)
and Q =

( 1
1

-1

)
.

This motivates to consider the following involutions on Λg:

(σξ)(λ) = AdPξ(−λ)

(τξ)(λ) = AdQξ(1/λ) .

We let

Λgσ,τ = {ξ ∈ Λg;σξ = ξ, τξ = ξ}
be the subalgebra fixed under σ and τ .

Lemma 3.1. Let ξ =
∑

k∈Z λkξk ∈ Λg. Then ξ ∈ Λgσ,τ if and only if ξ0 ∈ gP ∩ gQ, ξeven ∈
gP , ξodd ∈ g−P and ξ−k = AdQξk. (Here g±P , g±Q denote the ±1-eigenspaces of AdP resp. AdQ
on g).

Proof. This follows at once by comparing coefficients in σξ = τξ = ξ.

For d ∈ N let

Λd = {ξ ∈ Λgσ,τ ; ξ =
∑

|k|≤d

λkξk}

be the subspace of Laurent polynomial loops of degree at most d.
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Corollary 3.1. ξ ∈ Λ1 if and only if

ξ =

( 0 −ε(λ+ λ−1)aT 0
(λ+ λ−1)a A (λ− λ−1)C

0 −(λ− λ−1)CT B

)

Proof. This follows from Lemma 3.1 together with the fact that

gP =

{( * *
*

* *

)}
, g−P =

{( *
* *

*

)}
(3.2)

gQ =

{( * *
* *

*

)}
, g−Q =

{( *
*

* *

)}
(3.3)

Corollary 3.1 together with the reformulation of the isometric immersion equations in
Lemma 2.2 and Lemma 2.3 now yield

Corollary 3.2. There is a natural correspondence between isometric immersions f : Mm → S of

space forms with flat normal bundle and Λ1-valued 1-forms Ã : TM → Λ1 satisfying the Maurer-

Cartan equation (and whose first row Ã0,− = (0, ε(λ + λ−1)θT , 0) has θT = (θ1, . . . , θm) linearly
independent).

The construction of flat loop algebra valued 1-forms satisfying an algebraic constraint (i.e. taking
values in Λ1) is reminiscent in the theory of soliton equations: they appear as solutions to certain
completely integrable Lax-type equations [7].

4. Integration of the isometric immersion equations for space forms

We are now going to discuss a recipe for the construction of Λ1-valued flat 1-forms on Rm from
finite dimensional commuting Lax flows. Following existing nomenclature we will call the isometric
immersions so obtained finite type isometric immersions. Such immersions will be real analytic by
construction (in fact given by theta functions) and thus cannot account for all isometric immersions
of space forms. Our solutions will be parametrized by a finite number of functions in one variable
which relates to well known results obtained by Cartan-Kähler theory [12]. We begin by recalling
some facts about the integration of certain Lax equations on Lie algebras. Let G be a Lie algebra
(in our case a loop algebra) which has a vector space direct sum decomposition

G = P ⊕A⊕M

with K = A ⊕ P , B = A ⊕M and A Lie subalgebras with commutation relations [A,P] ⊆ P
and [A,M] ⊆ M . Denote the corresponding projections by πP , πA and πM . An ad-equivariant
vector field on G is a map V : G → G satisfying

dξV [ξ, η] = [V (ξ), η](4.1)
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for ξ, η ∈ G. Natural examples of such maps are the gradients (with respect to an invariant inner
product) of ad-invariant functions on G. Notice that (4.1) implies that two ad-equivariant vector

fields V, Ṽ : G → G commute pointwise so that

[V (ξ), Ṽ (ξ)] = 0(4.2)

for ξ ∈ G. Given an ad-equivariant vector field V on G we define a vector field XV on K by

XV (ξ) = [ξ, πPV (ξ)], ξ ∈ K .

In order to make sense of the derivative of a map on G without specifying a topology we assume
that the images under the map of finite dimensional (vector) subspaces are contained in finite
dimensional (vector) subspaces. Note that if V has this property so automatically has XV .

Lemma 4.1. Let V, Ṽ : G → G be ad-equivariant vector fields. Then, for ξ ∈ K,

[XV , X Ṽ ]C∞(ξ) = [ξ, πA[πPV (ξ), πP Ṽ (ξ)]] .

The proof consists of a straightforward calculation using (4.1) and (4.2). Observe that in the case
A = 0, i.e., when G = K ⊕ B is the (vector space) direct sum of two Lie subalgebras, the vector

fields XV and X Ṽ commute, and one is in the realm of standard AKS or R-matrix theory [2, 7].

Lemma 4.2. Let V1, . . . , Vm be ad-equivariant vector fields on G and assume that for all ξ ∈ K
πA[πPVi(ξ), πPVj(ξ)] = 0 .(4.3)

Then the system of ODE

dξ =
m∑

i=1

XVi(ξ)dxi =
m∑

i=1

[ξ, πPVi(ξ)]dx
i , ξ(0) ∈ K

has a unique (local) solution ξ : U ⊂ Rm → K, and the P-valued 1-form on U ,

Ã =
m∑

i=1

πPVi(ξ)dx
i ,

satisfies the Maurer-Cartan equation

dÃ+
1

2
[Ã ∧ Ã] = 0 .

Proof. By Lemma 4.1 the vector fields XVi on K commute. Thus the system

dξ =
m∑

i=1

XVi(ξ)dxi

is integrable and so has a unique solution to any initial condition ξ(0) ∈ K. The final statement
follows from an analogous calculation as in the proof of Lemma 4.1 which gives

dÃ+
1

2
[Ã ∧ Ã] =

m∑

i,j=1

πA[πPVi(ξ), πPVj(ξ)]dx
i ∧ dxj = 0 .

Remark . The previous two Lemmas are simple modifications of standard results in AKS and R-
matrix theory. Even though one cannot expect the commutativity conditions (4.3) to hold for
general ad-equivariant vector fields there are interesting geometric applications where they do in
fact hold. One of them are the isometric immersion equations (Corollary 3.2), which do not fit into
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the standard scheme, but can be treated with this more general setup. A more detailed study of
the abstract general situation will perhaps be done elsewhere.

To apply the above considerations to the integration of the isometric immersion equations we first
work in the complex setup and put

G = ΛgC
σ = {ξ ∈ ΛgC ; σξ = ξ} ,

K = ΛgC
σ,τ = {ξ ∈ ΛgC ; σξ = τξ = ξ} .

A natural vector space complement M to K in ΛgC
σ is given as follows: note that

G = G− ⊕ G0 ⊕ G+(4.4)

with

G± = {ξ ∈ ΛgC
σ ; ξ =

∑

k><0

λkξk} , G0 = (gC)P .

Given ξ ∈ ΛgC
σ we write ξ = ξ− + ξ0 + ξ+ according to (4.4) and decompose

ξ = (ξ− + τξ− +
ξ0 + τξ0

2
) + (ξ+ − τξ− +

ξ0 − τξ0

2
)(4.5)

to obtain the factorization G = K⊕M where M = (gP ∩ g−Q)C ⊕ G+ . Unfortunately M is not a
Lie subalgebra since

0 6= [gP ∩ g−Q, gP ∩ g−Q] ⊆ gP ∩ gQ .

In fact,

gP ∩ gQ = soε(1 +m)⊕ so(n−m) =: a1 ⊕ a2 =

{(
*

*

)}

and

[gP ∩ g−Q, gP ∩ g−Q] ⊆ a2 .

Thus, setting

A = aC
2 =

{(

*

)}
,

P = {ξ ∈ K ; ξ0 ∈ aC
1 } ,

we arrive at

G = P ⊕A⊕M
withK = P⊕A ,B = A⊕M andA Lie subalgebras satisfying the commutation relations [A,P] ⊆ P
and [A,M] ⊆M .

Finally we introduce the ad-equivariant vector fields relevant to our situation.

Lemma 4.3. (i) The map V : G → G defined by

V (ξ) = λ2kξ2`−1, k ∈ Z, ` ∈ N

is an ad-equivariant vector field on G.

(ii) Let d ∈ N be odd and define V`(ξ) = λd(2`−1)−1ξ2`−1, ` ∈ N. Then the corresponding vector
fields on K

XV`(ξ) = [ξ, πPV`(ξ)] ,
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are tangential to the finite dimensionsal subspace Λd
C = {ξ ∈ K ; ξ =

∑
|k|≤d λ

kξk } ⊂ K and

πPV`(ξ) ∈ ΛC
1 .

(iii) [XVi , XVj ]C∞ = 0, i.e., the vector fields XV` commute.

(iv) (Reality conditions) If ξ ∈ Λd is real (w.r.t. any of the three reality conditions (3.1) λ ∈ R∗,iR∗

or S1) then also πPV`(ξ) ∈ Λ1 is real (and thus the vector fields XV` are real, i.e., remain tangent
to Λd).

Proof. (i) Since ξ ∈ G = ΛgC
σ we have

σV (ξ)(λ) = (−λ)2kAdPξ(−λ)2`−1 = λ2k(AdPξ(−λ))2`−1

= λ2kξ(λ)2`−1 = V (ξ)(λ)

so that V : G → G is well-defined. To verify (4.1) we simply compute

dξV [ξ, η] = λ2k
∑

i+j=2`−2

ξi[ξ, η]ξj = λ2k(ξ2`−1η − ηξ2`−1) = [V (ξ), η] .

(ii) Let ξ =
∑
|j|≤d λ

jξj ∈ ΛC
d then

V`(ξ) = λd(2`−1)−1ξ2`−1 = λ−1ξ2`−1
−d +

2d(2`−1)−1∑

j=0

λj η̃j ,

where

η̃0 =
2l−2∑

k=0

(ξ−d)
kξ−d+1(ξ−d)

2l−2−k .(4.6)

Thus, by (4.5),

πPV`(ξ) = λ−1ξ2`−1
−d + η0 + λAdQξ2`−1

−d ∈ ΛC
1(4.7)

with η0 = π
aC
1

η̃0+AdQη̃0

2 ∈ aC
1 . From this it is clear that XV`(ξ) = [ξ, πPV`(ξ)] ∈ ΛC

d , i.e., XV` is

tangential to ΛC
d .

(iii) Due to Lemma 4.1 we have to verify that for ξ ∈ ΛC
d

πA[πPVi(ξ), πPVj(ξ)] = 0 .

From (4.7) and the fact that η0 ∈ a1
C it suffices to show that πA[ξ

2i−1
−d , AdQξ2j−1

−d ] = 0 . But this last

is seen from the more general fact that πA[X,Y ] = 0 for X,Y ∈ (g−P )C implies πA[X,AdQY ] = 0,
which follows at once from (3.2) and the specific form of Q.

(iv) If λ is real then the statement is obvious. In case λ is purely imaginary ξ =
∑
|k|≤d λ

kξk ∈ Λd

is equivalent to ξk = (−1)kξk. From this and (4.7), (4.6) it is clear that πPV`(ξ) is real. Finally, if
λ is unitary the reality condition (3.1) for ξ ∈ Λd gives ξ−k = ξk = AdQξk so that by (4.7), (4.6)
we again conclude that πPV`(ξ) is real.

Putting together the above discussion with the results in the previous sections we obtain a recipe
for the construction of (local) isometric immersions of space forms into Sn and Hn from a hierarchy
of finite dimensional ODE.
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Theorem 4.1. Let d ∈ N be odd, m := [n+1
2 ] and recall the ad-equivariant vector fields V`(ξ) =

λd(2`−1)−1ξ2`−1, ` = 1, . . . ,m.

(i) The system of ODE

dξ = [ξ,
m∑

`=1

πPV`(ξ)dx
`], ξ(0) =

◦
ξ ∈ Λd(4.8)

has a unique (local) solution ξ : U ⊂ Rm → Λd for any initial condition
◦
ξ ∈ Λd.

(ii) If ξ : U → Λd is a solution to (4.8) then

Ã =
m∑

`=1

πPV`(ξ)dx
`

is a Λ1-valued 1-form on U ⊂ Rm solving the (matrix) Maurer-Cartan equation

dÃ+ Ã ∧ Ã = 0 .

Thus, integrating (F λ)−1dF λ = Ãλ, F λ(0) = 1, to a framing F λ : U → SOε(n + 1) gives a family
of isometric immersion

fλ = F λ
0 : U → S = Sn or Hn(4.9)

with induced curvature cλ = ε 4
(λ+λ−1)2

.

Proof. (i) follows from Lemma 4.2 together with Lemma 4.3. (ii) is a consequence of the description
of isometric immersions as special loops of flat soε(1 + n)-valued 1-forms, c.f. Lemma 2.3 and
Corollary 3.2, together with Lemmas 4.3 and 4.2.

Remark . (i) Due to the fact that

Ã =
m∑

`=1

πPV`(ξ)dx
` ∈

{( *
* * *

*

)}

the framing constructed from the Lax flows (4.8) parallelizes the normal bundle of the isometric
immersion (4.9) which makes the flows geometrically adapted.

(ii) Since the ad-equivariant vector fields V` arise from (shifts of) gradients of ad-invariant functions
on the finite dimensional Lie algebra soε(1+n) only rank = [n+1

2 ] many vector fields are independent,
i.e., one cannot construct in this way isometric immersions of space forms of dimension exceeding
m = [n+1

2 ]. This fact is also geometrically rooted: it is well-known that there are no isometric

immersions f : Mm(c)→ M̃n(c̃) in case c < c̃ and n ≤ 2m− 2.

(iii) Using Cartan-Kähler theory one can show that local real analytic isometric immersions f :

Mm(c) → M̃2m−1(c̃) with c < c̃ depend on finitely many functions in one variable. Our scheme

produces such real analytic isometric immersions from an arbitrary initial condition
◦
ξ ∈ Λd, d ∈ N

odd, which is a certain soε(1+n)-valued Laurent polynomial (of arbitrary odd degree) in the variable
λ. This indicates that an appropriate closure of the solutions so constructed should account for all
real analytic solutions, but at present we have little idea how to address this issue.

(iv) If the target space form is the sphere Sn and hence the corresponding Lie algebra g = soε(1 +
n) compact, then there exists an ad-invariant positive definite (appropriately weighted L2) inner
product on Λg which makes the flows (4.8) evolve on Euclidean spheres in Λd and thus complete.
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But in general we cannot show that the flows (4.8) have global, i.e., defined on all of Rm, solutions,
in which case there still remains the question of whether the isometric immersion (4.9) is globally
defined or whether its differential drops rank. This is of course related to the conjecture that there
are no complete isometric immersions f : Mm(c)→ M̃2m−1(c̃) for c < c̃, c < 0 which is a classical
Theorem first proved by Hilbert in the case of surfaces in Euclidean 3-space.
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