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Abstract

We show how pairs of isothermic surfaces are given by curved flats in a pseudo
Riemannian symmetric space and vice versa. Calapso’s fourth order partial differ-
ential equation is derived and, using a solution of this equation, a Möbius invariant
frame for an isothermic surface is built.

1 Introduction

These notes grew out of a series of discussions on a recent paper by J. Cieśliński, P. Gold-
stein and A. Sym [3]: these authors give a characterization of isothermic surfaces as
”soliton surfaces” by introducing a spectral parameter. In trying to understand the geo-
metric meaning of this spectral parameter, we observed some analogies with the theory
of conformally flat hypersurfaces in a four-dimensional space form: Guichard’s nets may
be understood as analogues of isothermic parametrizations of Riemannian surfaces (cf.[6,
no.3.4.1]), and so it seems natural to look for relations between the theory of isothermic
surfaces in three-dimensional space forms and the theory of conformally flat hypersurfaces
in four-dimensional space forms. Here we would like to present some results we found —
especially the possibility of constructing isothermic surfaces using

2 Curved Flats

A curved flat is the natural generalization of a developable surface in Euclidean space: it
is an (intrinsically) flat submanifold of a symmetric space for which the curvature tensor
of the ambient space vanishes on each tangent space and whose dimension is equal to the
rank of the symmetric space — this is the maximal dimension possible. Thus, a curved
flat may be thought of as the enveloping submanifold of a congruence of flats — totally
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geodesic submanifolds — of the symmetric space1. Taking a regular parametrization
γ : M r → G/K of a curved flat, r being the rank of G/K, and a framing F : M → G of
this parametrization, the Maurer-Cartan form Φ = F−1dF of the framing has a natural
decomposition Φ = Φk +Φp according to the Cartan decomposition g = k⊕ p of the Lie
algebra g. Now the condition for γ to parametrize a curved flat may be formulated as2

[Φp ∧ Φp] ≡ 0 .(1)

In the case of a pseudo-Riemannian symmetric space this should be taken as the
Definition of a curved flat: An immersion γ : M r → G/K is said to parametrize a
curved flat, if the p-part in the Cartan decomposition3 of the Maurer-Cartan form
F−1dF = Φ = Φk+Φp of a framing F :M → G of γ defines a congruence p 7→ Φp|p(TpM)
of maximal abelian subalgebras4 of g.

At this point we should remark that curved flats naturally arise in one parameter
families [5]: setting

Φλ := Φk + λΦp(2)

the Maurer-Cartan equation dΦλ +
1
2
[Φλ ∧ Φλ] = 0 for the loop λ 7→ Φλ of forms splits

into the three equations
0 = dΦk +

1
2
[Φk ∧ Φk]

0 = dΦp + [Φk ∧ Φp]
0 = [Φp ∧ Φp] ,

(3)

and hence the integrability of the loop λ 7→ Φλ is equivalent to the forms Φλ being the
Maurer-Cartan forms for some framings Fλ : M r → G of curved flats γλ : M r → G/K.
Thus integrable systems theory may be applied to produce examples.

Now we will consider the case leading to the theory of isothermic surfaces: let

G := O1(5) and K := O(3)×O1(2) .(4)

The coset space G+(5, 3) = G/K of space-like 3-planes in the Minkowski space IR5
1 be-

comes a six dimensional semi-Riemannian symmetric space of signature (3, 3) when en-
dowed with the pseudo Riemannian metric induced by the Killing form. The rank of this

1To get developable surfaces in Euclidean space as a special case of curved flats, we have to omit the
dimension assumption.

2The product
[Φ ∧Ψ](v, w) := [Φ(v),Ψ(w)]− [Φ(w),Ψ(v)]

defines a symmetric product on the space of Lie algebra valued 1-forms with values in the space of Lie
algebra valued 2-forms.

3The subgroup K is not necessarily compact — nevertheless the decomposition g = k ⊕ p is called
“Cartan decomposition”, if the characteristic conditions

[k,k] ⊂ k, [k,p] ⊂ p, [p,p] ⊂ k

are satisfied.
4As a consequence, γ is curvature isotropic in the sense [5] and hence intrinsically and extrinsically

flat. It is not clear, however, whether curvature isotropic surfaces are necessarily curved flats.
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symmetric space being 2, we will consider two-dimensional curved flats

γ :M 2 → G+(5, 3) .(5)

Fixing a pseudo orthonormal basis (e1, . . . , e5) of the Minkowski space IR5
1 with

(〈ei, ej〉)ij = E5 :=

(

I3 0

0 0 1
1 0

)

,(6)

we get the matrix representations

O1(5) = {A ∈ Gl(5, IR)|AtE5A = E5}
o1(5) = {X ∈ gl(5, IR)|(E5X) + (E5X)t = 0} .(7)

The subalgebra k and its complementary linear subspace p in the Cartan decomposition of
o1(5) are given by the +1- resp. −1-eigenspaces of the involutive automorphism Ad(Q) :
o1(5)→ o1(5) with Q =

(

−I3 0
0 I2

)

. Writing down the Maurer-Cartan form of a framing

F :M 2 → O1(5) of our curved flat γ :M 2 → G+(5, 3) with this notation we obtain

F−1dF = Φ = Φk + Φp with

Φk =
(

Ω 0
0 ν

)

: TM → o(3)× o1(2)

Φp =
(

0 η
−E2η 0

)

: TM → p .

(8)

Since Φp is abelian, we can put η into the standard form

η =

(

ω1 −aω1

ω2 aω2

0 0

)

(a ∈ C∞(M))(9)

by taking an O(3)-gauge
(

H 0
0 I2

)

: M → O(3) × O1(2). Henceforth, we make the

regularity assumption that a is never zero5. We may then take a ≡ 1 by applying an
O1(2)-gauge.

Calculating the Maurer-Cartan equation using the ansatz

Ω =

(

0 ω −ψ1

−ω 0 −ψ2

ψ1 ψ2 0

)

and ν =
(

ν 0
0 −ν

)

(10)

together with η given by (9), we see that

dω1 = dω2 = 0 .(11)

5This is equivalent to the assumption that the metric induced by the immersion γ (by pulling back
the Killing form) is nondegenerate.
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So we are given canonical coordinates (x, y) : M → IR2 by integrating6 the forms ω1

and ω2. Moreover, since we also have dν = 0, we may set ν = −du for a suitable
function u ∈ C∞(M) — this gives us ω = uydx − uxdy, where ux and uy denote the
partial derivatives of u in x- resp. y-directions. Finally, the equations ψ1 ∧ ω1 = 0 and
ψ2 ∧ ω2 = 0 show that ψ1 = euk1dx and ψ2 = euk2dy for two functions ki ∈ C∞(M).

We now perform a final O1(2)-gauge

(

I3 0

0 eu 0
0 e−u

)

: M → O(3) × O1(2) and

insert the spectral parameter λ to obtain the Maurer-Cartan form discussed in (cf.[3]):

Φλ =









0 uydx− uxdy −euk1dx λeudx −λe−udx

−uydx+ uxdy 0 −euk2dy λeudy λe−udy

euk1dx euk2dy 0 0 0

λe−udx −λe−udy 0 0 0
−λeudx −λeudy 0 0 0









.(12)

We are now lead directly to the theory of

3 Isothermic Surfaces

In the context of Möbius geometry the three sphere S3 is viewed as the projective light-
cone IPL4 in IR5

1 while the Lorentzian sphere {v ∈ IR5
1|〈v, v〉 = 1} should be interpreted

as the space of (oriented) spheres in the three sphere7 (cf.[1]). Now, denoting by

n := Fe3 :M → S5
1 = {v ∈ IR5

1|〈v, v〉 = 1}
f := Fe4 :M → L4 = {v ∈ IR5

1|〈v, v〉 = 0}
f̂ := Fe5 :M → L4

(13)

one of the sphere congruences resp. the two immersions given by our frame F , we see
that
Theorem: The sphere congruence n given by our curved flat is a Ribeaucour sphere
congruence8, which is enveloped by two isothermic immersions f and f̂ (cf.[1, S.362]):
Since

〈f, n〉 = 0 and 〈df, n〉 ≡ 0,

〈f̂ , n〉 = 0 and 〈df̂ , n〉 ≡ 0 ,
(14)

the immersions f and f̂ do envelop the sphere congruence n and, since the bilinear forms

〈df, dn〉 = λe2u(k1dx
2 + k2dy

2),

〈df̂ , dn〉 = λ(−k1dx
2 + k2dy

2)
(15)

6Since our theory is local, all closed forms may be assumed to be exact.
7Or, equivalently, it may be interpreted as the space of (oriented) spheres and planes in Euclidean

three space IR3: the polar hyperplane to a vector v of the Lorentz sphere intersects the three sphere —
thought of as the absolute quadric in projective four space — in a two sphere. Stereographic projection
yields a sphere in IR3 or, if the projection center lies on the sphere, a plane.

8The curvature lines on the two enveloping immersions correspond.
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are diagonal with respect to the induced metrics

〈df, df〉 = λ2e2u(dx2 + dy2),

〈df̂ , df̂〉 = λ2e−2u(dx2 + dy2) ,
(16)

the two immersions f and f̂ are isothermic9.
It is quite difficult to calculate the first and second fundamental forms of these isother-

mic immersions, when they are projected to S3 resp. IR3, but applying a (constant)
conformal change (constant O1(2)-gauge)

f ;
1
λ
f and f̂ ; λf̂ or

f ; λf and f̂ ;
1
λ
f̂

(17)

and sending λ→ 0, f̂ resp. f becomes a constant vector — Φλ=0e5 resp. Φλ=0e4 vanishes.
This constant light-like vector may be interpreted as the point at infinity and we therefore
obtain an isothermic immersion f :M → IR3 with first and second fundamental forms

I = e2u(dx2 + dy2)
II = e2u(k1dx

2 + k2dy
2)

(18)

resp. its Euclidean dual surface f̂ :M → IR3 with first and second fundamental forms

I = e−2u(dx2 + dy2)
II = −k1dx

2 + k2dy
2 .

(19)

We now recognise the remaining three equations from the Maurer-Cartan equation for Φλ

0 = ∆u+ e2uk1k2

0 = k1y + (k1 − k2)uy
0 = k2x − (k1 − k2)ux

(20)

as the Gauß and Codazzi equations of the Euclidean immersion f resp. its dual f̂ 10 [2],
[3]. As a consequence, we can invert our construction and build a curved flat from an

9The bundle defined by span{n, f, f̂} over M is flat (cf.(12)) and so the map p 7→ dpf(TpM) defines
a normal congruence of circles [4]: for each p ∈M

t 7→ ft(p) :=
1√
2
sin t · n(p) + 1

2
(1 + cos t) · f(p)− 1

2
(1− cos t) · f̂(p)

parametrizes the circle (dpf(TpM))⊥ meeting the sphere n(p) in f(p) and f̂(p) orthogonal. Since n, f

and f̂ are parallel sections in this bundle, the maps p 7→ ft(p) (which generically are not degenerate)
parametrize the surfaces orthogonal to this congruence of circles.

In general the immersions f and f̂ = fπ will be the only isothermic surfaces among the surfaces.
10When the normal congruence of circles mentioned in footnote 9 (p.5) is projected to Euclidean three

space IR3, we see that, in the limit λ→ 0, the circles become straight lines — circles meeting the collapsed
surface f̂ resp. f in the point at infinity — while the Ribeaucour sphere congruence enveloped by the
two surfaces f and f̂ becomes the congruence of tangent planes of f resp. f̂ .
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isothermic surface:
Theorem. Given an isothermic surface f : M 2 → IR3 and its Euclidean dual surface
f̂ : M → IR3 we get a curved flat γ : M → G+(5, 3) integrating the Maurer-Cartan form
(12), which we are able to write down knowing the first and second fundamental forms of
the immersions f and f̂ 11.

Another way to obtain these two Euclidean immersions is presented in [3]. Applying
Sym’s formula to the associated family of frames F = F (λ), we obtain a map

( ∂
∂λ
F )F−1|λ=0 :M → p ;(21)

interpreting p as two copies of Euclidean three space12 IR3 this map gives us the immersion
f , and in the other copy of IR3, its dual f̂ : this can be seen by looking at the differential

d( ∂
∂λ
F )F−1|λ=0 = F0ΦpF

−1
0

∼= H3

(

eudx −e−udx

eudy e−udy

0 0

)

.
(22)

Here F0 =
(

H3 0
0 I2

)

solves the equation F−1
0 dF0 = Φk and thus we may view H3 :

M → O(3) as an Euclidean framing of f resp. f̂ .
There is another possibility for producing isothermal surfaces in Euclidean space IR3

(or S3): that is, by using a solution of

4 Calapso’s equation

To understand this, we write down the Maurer-Cartan form of a frame F : M → O1(5),
which is Möbius-invariantly connected to a given immersion: taking f = Fe4 the (unique)
isometric lift of the isothermic immersion and n = Fe3 the central sphere congruence
(conformal Gauß map) of the immersion, the frame is determined by the assumption of
being an adapted frame (i.e. Fe1 = fx and Fe2 = fy). The associated Maurer-Cartan
form will be

Φ =









0 0 kdx dx χ1

0 0 −kdy dy χ2

−kdx kdy 0 0 τ

−χ1 −χ2 −τ 0 0
−dx −dy 0 0 0









,(23)

k2 being the conformal factor relating the metric induced by the central sphere congruence
to the isometric one, and the 1-forms χ1, χ2 and τ to be determined. From the Maurer-

11Since this construction depends on the conformal rather than the Euclidean geometry of the ambient
space, we generally get a whole three parameter family of “loops” of curved flats from one isothermic
surface: when viewing our given isothermic surface as a surface in the three sphere S3, we may choose
the point at infinity arbitrarily.

12Here the Euclidean metric is induced by the quadratic form 1
2
trΦt

pΦp instead of the Killing form.
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Cartan equation for this form we learn that

τ = kxdx− kydy

χ1 = (1
2
k2 − u)dx− kxy

k
dy

χ2 = −kxy
k
dx+ (1

2
k2 + u)dy ,

(24)

where u ∈ C∞(M) is a function satisfying the differential equation

du = −((kxy
k
)y + (k2)x)dx+ ((kxy

k
)x + (k2)y)dy(25)

— the integrability condition of this equation is a fourth order partial differential equation
closely related to Calapso’s original equation [2]:

0 = ∆(kxy
k
) + 2(k2)xy(26)

This shows, that
Theorem: Any isothermic surface gives rise to a solution of Calapso’s equation.

Conversely, from a solution k ∈ C∞(M) of Calapso’s equation we can construct a
Möbius invariant frame of an isothermic surface by integrating the Maurer-Cartan form
(23), where the function u is a solution of (25).

Now, applying a conformal change f ;
1
k
f while fixing the central sphere congruence

n ; n, the Maurer-Cartan form of the associated frame becomes

Φ =











0 ω kdx 1
k
dx χ1

−ω 0 −kdy 1
k
dy χ2

−kdx kdy 0 0 0

−χ1 −χ2 0 0 0
− 1
k
dx − 1

k
dy 0 0 0











,(27)

where
ω = −ky

k
dx+ kx

k
dy

χ1 = k(kxx
k
− k2

x+k2
y

2k2 + 1
2
k2 − u)dx

χ2 = k(kyy
k
− k2

x+k2
y

2k2 + 1
2
k2 + u)dy

.(28)

Here we see that the central sphere congruence of an isothermic surface is a Ribeau-
cour sphere congruence, which actually is a characterisation of isothermic surfaces (cf.[1,
S.374]), and hence it has flat normal bundle as a codimension two surface in the Lorentz
sphere S4

1 .
In general, the second enveloping surface of the central sphere congruence of an isother-

mic surface will not be an isothermic surface and it seems to be difficult to built a curved
flat starting with it. But in a quite simple case this is possible:

5 Example

Starting with a surface of revolution

f(x, y) = (r(x) cos y, r(x) sin y, z(x)) ,(29)
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the functions r and z satisfying the differential equation

r2 = r′2 + z′2 ,(30)

i.e. the curve (r, z) being parametrized by arc length (thought of as a curve in the Poincaré
half plane), we may write down the loop of Maurer-Cartan forms

Φλ =













0 − r′

r
dy − r′z′′−r′′z′

r2
dx λrdx −λ

r
dx

r′

r
dy 0 − z′

r
dy λrdy λ

r
dy

r′z′′−r′′z′

r2
dx z′

r
dy 0 0 0

λ
r
dx −λ

r
dy 0 0 0

−λrdx −λrdy 0 0 0













,(31)

which gives us the immersion f and its dual f̂ in the limit λ→ 0.
On the other hand, denoting by H = 1

2
( z
′

r2
+ r′z′′−r′′z′

r3
) the mean curvature of our

surface of rotation, the central sphere congruence of f is n +Hf . The metric it induces
has conformal factor k2 (relative to the metric induced by f) given by

k = 1
2r2

(rz′ − r′z′′ + r′′z′) .(32)

Since ky ≡ 0, this is obviously a solution of Calapso’s equation and a function u solving
(25) is u = λ2 − k2. So the Maurer-Cartan form (23) becomes

Φλ =











0 0 kdx dx ( 3
2
k2 − λ2)dx

0 0 −kdy dy (− 1
2
k2 + λ2)dy

−kdx kdy 0 0 kxdx

−( 3
2
k2 − λ2)dx ( 1

2
k2 − λ2)dy −kxdx 0 0

−dx −dy 0 0 0











.(33)

A change n ; n+kf of the sphere congruence, enveloped by f , followed by an O1(2)-gauge
f ; λf and f̂ ; λ−1f̂ gives us the Maurer-Cartan form

Φλ =









0 0 2kdx λdx −λdx

0 0 0 λdy λdy

−2kdx 0 0 0 0

λdx −λdy 0 0 0
−λdx −λdy 0 0 0









.(34)

of a curved flat, quite different from that coming from (31).
To understand the geometry of the two enveloping immersions f = Fe4 and f̂ = Fe5,

we remark that the sphere congruence n = Fe3 depends only on one variable and hence
the two immersions parametrize a channel surface; moreover all spheres of the congruence
are perpendicular to the fixed circle13 given by span{Fe2, F (e4 + e5)}, which may be
thought as an axis of rotation: the immersions f and f̂ parametrize pieces of a surface
of revolution14, f and f̂ being axisymmetric15. Taking now the limit λ→ 0, we obtain a
cylinder resp. its dual, which is an (axial) reflection of the original cylinder.

13We have Φe2 = −(e4 + e5)dy and Φ(e4 + e5) = 2e2dy.
14The meridian curve is given by 1√

2
(f − f̂) — which only depends on one variable — thought as a

curve in the Poincaré half plane; its tangent field is given by Fe1 and its unit normal field by n = Fe3.
15The circles {F (p)e1, F (p)e2}⊥ intersecting the sphere n(p) orthogonally in f(p) and f̂(p) all meet

the axis (cf. footnote 9, page 5).
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