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1. Introduction

The study of minimal surfaces in R
3 has a long and rather fruitful history [10]. In this note

we describe how the methods developed in [7] to construct harmonic maps of Riemann surfaces
into symmetric spaces apply to minimal surfaces. The link is provided by the Gauss map which
is harmonic for surfaces of constant mean curvature H. In fact, the Gauss map is holomorphic
for minimal surfaces H = 0. As is well known, e.g. [14, 4], the infinte dimensional loop group
constructions reduce to their finite dimensional analogs in this particular case. This note recovers
these general observations for the special case at hand and thereby derives the classical constructions
and formulas used in (local) minimal surface theory. To see this well known example worked through
in somewhat more detail from the loop group point of view might assist Readers not aquainted
with these techniques to become more familiar with them.

In the first section we briefly overview the so called DPW-method [7] for the special case of harmonic
maps into the symmetric space S2. We then specialize in the next section to holomorphic maps
into S2. We describe all Gauss maps of minimal surfaces (of a domain) in terms of meromorphic
potentials and derive the first and second fundamental forms of the minimal surfaces from the
meromorphic potential. We also describe all minimal surfaces to a given Gauss map. In the third
section we derive the classical Weierstrass representation for minimal surfaces from the meromorphic
potential, thus identifying the DPW-data with the classical Weierstrass data. Section 4 studies the
dressing action on minimal surfaces, or to be more precise, on their Gauss maps. As to be expected
this action is nothing but the finite dimensional dressing action induced by the SL(2,C) action on
S2 = CP 1. Section 5 deals with symmetries of minimal surfaces using the approach of [6]. The
note finishes with a couple of standard examples illustrating the various constructions described.

2. The DPW–Method Revisited

We briefly review the DPW–construction [7, 14] for harmonic maps ϕ : D → S2 from a contractible
domain D ⊂ C into the 2–sphere S2. In this case the harmonic map equation for ϕ reads

∆ϕ+ |dϕ|2ϕ = 0(2.1)

where ∆ = ∂2

∂x2 + ∂2

∂y2 is the usual Laplacian on C = R2. To investigate (2.1) we consider the

canonical projection π : SU(2) → S2 and lift ϕ to a map F : D → SU(2) with π ◦ F = ϕ. Any
such lift (which always exists, since D is contractible) we call a framing or a frame of ϕ. Since
F : D → SU(2) is determined (up to left multiplication by a constant element of SU(2)) by its
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Maurer–Cartan form α = F−1 dF , (2.1) can be expressed as an equation on α. To see this we have
to decompose the Lie algebra of SU(2)

su(2) = k⊕ p(2.2)

into diagonal and off–diagonal matrices. This is the Cartan decomposition of the symmetric space
S2 = SU(2)/S1 under the inner involution σ = Ad

(

i 0
0 −i

)

. Thus we can decompose the su(2)–
valued 1–form α : TD → su(2) into k and p parts

α = αk + αp.(2.3)

The harmonic map equation (2.1) then becomes

dαk = −[α
′

p ∧ α
′′

p ](2.4a)

dα′
p + [αk ∧ α′

p] = 0(2.4b)

where, for an su(2)–valued 1–form β = βz dz+βz̄ dz̄ on D, we denote by β′ = βz dz resp. β
′′ = βz̄ dz̄

its (1, 0)–part resp. its (0, 1)–part. Notice that the forms β ′, β′′ take values in the complexification
sl(2,C) of su(2) and, since β takes values in su(2), β ′′ = β′ where conjugation is always understood
with respect to the compact real form su(2), i.e. ξ̄ = −ξ∗, ξ ∈ sl(2,C). The importance of this
reformulation lies in the fact that equations (2.4) can be expressed as a single Maurer–Cartan
equation involving an additional (spectral) parameter: consider, for λ ∈ C

∗, the sl(2,C)–valued
1–form

A = λ−1α′
p + αk + λα′′

p .(2.5)

Then one easily checks the following [7, 14]:

i. Aλ=1 = α,
ii. A is su(2)–valued if and only if λ ∈ S1 ⊂ C, i.e. Aλ = A1/λ̄,

iii. dA+ 1
2 [A ∧A] = 0 if and only if equations (2.4) hold.

Thus we arrive at the following recipe to construct harmonic maps ϕ : D → S2: find a C
∗–family of

sl(2,C)–valued 1–forms A : TD×C∗ → sl(2,C), whose λ dependence is given by (2.5), satisfying the
Maurer–Cartan equation dA + 1

2 [A ∧ A] = 0. Then the su(2)–valued 1–form α : = Aλ=1 : TD →
su(2) integrates to a framing F : D → SU(2), F−1 dF = α, of the harmonic map ϕ : = π ◦
F : D → S2. In fact, instead of evaluating A at λ = 1, we could have evaluated at any λ ∈ S1,
thereby obtaining an S1–family of framings Fλ : D → SU(2), F−1

λ dFλ = Aλ, and corresponding
harmonic maps ϕλ : = π ◦ Fλ : D → S2. Clearly every harmonic map ϕ : D → S2 comes from
this construction. The S1–family of harmonic maps ϕλ to any given harmonic map ϕ we call the
associated family of harmonic maps.

To deal more effectively with the λ–dependence it turns out to be useful to study maps into loop
spaces rather than to consider families of maps. Consider the infinite dimensional loop Lie group

ΛSL(2,C) = {g : S1 → SL(2,C) ; g(−λ) = σg(λ)}
with the corresponding loop Lie algebra

Λsl(2,C) = {ξ : S1 → sl(2,C) ; ξ(−λ) = σξ(λ)}.
There are various topologies one can put on these spaces but the choice turns out to be rather
irrelevant for our purposes as long as certain factorization theorems hold. To simplify arguments
(e.g. local existence of solutions to ODE’s) we assume a topology which makes our loop spaces
Banach spaces, e.g. any Sobolev Hs–topology with s > 1

2 will do. If we express ξ ∈ Λ sl(2,C) as a
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Fourier series ξ =
∑

k∈Z λ
kξk then the twisting condition ξ(−λ) = σξ(λ) simply says that ξodd ∈ kC

and ξeven ∈ pC. This is necessary if we wish to interpret the 1–form A of (2.5) as having values in
Λ sl(2,C). The following subgroups and corresponding sub Lie algebras will be important: the real
loop group

ΛSU(2) = {g : S1 → SU(2) ; g(−λ) = σg(λ)} ⊂ ΛSL(2,C)

with Lie algebra

Λsu(2) = {ξ : S1 → su(2) ; ξ(−λ) = σξ(λ)} ⊂ Λ sl(2,C)

and the groups

Λ+
HSL(2,C) = {g : S1 → SL(2,C) ; g extends holomorphically to |λ| < 1 and g(0) ∈ H} ,

where H ⊂ SL(2,C) is a subgroup. If H = SL(2,C) we will omit the subscript at all and use ∗ if
H = {1}. The Lie algebra of Λ+

HSL(2,C) is

Λ+
h sl(2,C) = {ξ : S1 → sl(2,C) ; ξ extends holomorphically to |λ| < 1 and ξ(0) ∈ h} ,

where h ⊂ sl(2,C) is the Lie algebra of H. Similarly we define Λ−
HSL(2,C) as those loops g : S1 →

SL(2,C) which extend holomorphically to |λ| > 1 and for which g(∞) ∈ H and its Lie algebra is
defined correspondingly.

With these loop groups and loop algebras in place we can reformulate the harmonic map problem
as follows: find an Λsu(2)–valued 1–form A : TD → Λsu(2) such that

i. dA+ 1
2 [A ∧A] = 0.

ii. λA is Λ+sl(2,C)–valued and (λA)λ=0 ∈ Ω(1,0)(D) is a (1, 0)–form on D.

By integrating A an equivalent formulation is: find a map F : D → ΛSU(2) such that

F−1dF = λ−1α−1 + α0 + λα1(2.6)

with a (1, 0)–form α−1. Such a map F we will call an extended framing (of the harmonic map
ϕ = π ◦ Fλ=1). To construct all extended framings on the domain D from meromorphic data
we need two factorization theorems for our loop groups, the Birkhoff and Iwasawa decompositions
[12, 7]. The complexified maximal torus (S1)C = C

∗ ⊂ SL(2,C) has the decomposition C
∗ = S1

R
+,

where R
+ ⊂ SL(2,C) consists of the matrices

(

r 0
0 1/r

)

with r > 0. Denote this subgroup by B.

Theorem 2.1. i. ΛSL(2,C) =
⋃

w∈W Λ−
∗ SL(2,C)wΛ+SL(2,C) where W is the Weyl group of

ΛSL(2,C).
ii. Multiplication Λ−

∗ SL(2,C)×Λ+SL(2,C)→ ΛSL(2,C) is a diffeomorphism onto the open and
dense subset Λ−

∗ SL(2,C) Λ+SL(2,C) ⊂ ΛSL(2,C) called the big cell.

Thus every g in the big cell has a unique decomposition

g = g−g+

with g− ∈ Λ−
∗ SL(2,C) and g+ ∈ Λ+SL(2,C).

Theorem 2.2. Multiplication ΛSU(2) × Λ+
BSL(2,C) → ΛSL(2,C) is a diffeomorphism. Thus

every g ∈ ΛSL(2,C) has unique decomposition

g = gug+

with gu ∈ ΛSU(2) and g+ ∈ Λ+
BSL(2,C).



4 J. DORFMEISTER, F. PEDIT, AND M. TODA

We can now state the DPW method [7] for the construction of all extended framings F : D →
ΛSU(2) (and hence all harmonic maps ϕ : D → S2 ): away from the set S ⊂ D where F fails to
take values in the big cell we can decompose

F = F−F+

with F− : D r S → Λ−
∗ SL(2,C) and F+ : D r S → Λ+SL(2,C). One easily checks

F− dF− = λ−1
(

0 p1
p2 0

)

dz(2.7)

with pi : D r S → C holomorphic.

Theorem 2.3. The set S ⊂ D is discrete and F− extends meromorphically to D.

We call meromorphic maps F− : D → Λ−
∗ SL(2,C) complex extended frames. Notice that those

frames are determined by two meromorphic functions pi : D → C as in (2.7), which assemble to the

meromorphic pC–valued 1–form η =
(

0 p1
p2 0

)

dz .We call the Maurer–Cartan form (2.7) of a complex

extended frame a meromorphic potential. How does one recover the extended frame (and thus the
harmonic map) from the meromorphic potential? Given a meromorphic potential ξ = λ−1η where
η is a pC–valued meromorphic 1–form on D we first integrate F− dF− = ξ to a complex extended
frame F− : D → Λ−

∗ SL(2,C). By Theorem 2.2 we can split F− = Fb where F : D → ΛSU(2) and
b : D → Λ+

BSL(2,C).

Theorem 2.4. The map F : D → ΛSU(2) is an extended framing (with possible singularities along
the pole divisor of F−).

Thus we have shown that every harmonic map ϕ : D → S2 is obtained from some meromorphic
potential ξ. For a more detailed study of conditions on ξ yielding smooth harmonic maps see [5].

In order to obtain an essentially unique correspondence between harmonic maps and their potentials
we have to introduce base points into our discussion. Choose a point z0 ∈ D and assume that all
harmonic maps ϕ : D → S2 satisfy ϕ(z0) ∈ o = S1, and their (extended) framings F satisfy
F (z0) = 1. Then we have the following

Theorem 2.5. Let ϕ, ϕ̃ : D → S2 be harmonic maps with corresponding meromorphic potentials
ξ, ξ̃ : TD → Λ−

∗ sl(2,C). Then ϕ and ϕ̃ differ by an isometry of S2, i.e. ϕ̃ = γϕ for some γ ∈ S1,

if and only if ξ̃ = Adγ(ξ).

Proof. From our discussion above it follows that the extended framings F, F̃ : D → ΛSU(2) of ϕ, ϕ̃
are related by

F̃ = γFk ,

where k : D → S1 has k(z0) = γ−1. Since γF−F+k = (γF−γ
−1)(γF+k) and γF−γ

−1 takes values
in Λ−

∗ SL(2,C) whereas γF+k takes values in Λ+SL(2,C), the uniqueness of the Birkhoff decom-

position (Theorem 2.1) implies F̃− = Adγ(F−) and thus

ξ̃ = F̃−1
− dF̃ = Adγ(F−1

− dF−) = Adγ(ξ).
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3. Minimal Surfaces via DPW

The main geometric reason to study harmonic maps into S2 is provided by the fact that surfaces
of constant mean curvature H have harmonic Gauss maps [13]. The two cases H = 0 and H 6=
0 are rather different, the former being simpler and well–studied. The case H 6= 0 has only
recently [11, 8, 3] become more tractable and the DPW–approach has been strongly motivated by
its application to constant mean curvature surfaces. The aim of these notes is to reinterpret the
constructions of DPW in terms of classical minimal surface (H = 0) theory. First note that the
case H = 0 is characterized by the fact that the Gauss map ϕ : D → S2 of the minimal surface
f : D → R

3 is holomorphic. Since we view S2 = SU(2)/S1 its complex structure is described (at
the base point o = S1) by the splitting

(ToS
2) = pC = C ( 0 0

1 0 )⊕ C ( 0 1
0 0 ) = T (1,0)

o S2 ⊕ T (0,1)
o S2 .

Hence a map ϕ : D → S2 is holomorphic if and only if one (and hence any) lift F : D → SU(2) has
F−1 dF = α′

p + αk + α′′
p with

α′
p =

(

0 0
p 0

)

dz ,(3.1)

where p : D → C We summarize the discussion so far in

Theorem 3.1. Let f : D → R3 be an immersion and ϕ : D → S2 its Gauss map. Then the
following are equivalent:

i. f is minimal, i.e., H = 0.
ii. ϕ is holomorphic.
iii. the meromorphic potential ξ of ϕ has the form

ξ = λ−1
(

0 0
p 0

)

dz

for some meromorphic p : D → C.

Proof. The equivalence of (i) and (ii) is classical. To see the equivalence of (ii) and (iii) note that
our extended frames F resp. F− of ϕ are related via the Birkhoff decomposition (Theorem 2.1) by

F = F−F+ .

Hence the meromorphic potential

ξ = F−1
− dF− = AdF+(F

−1 dF )− dF+ F
−1
+ = λ−1AdF+,0(α

′
p),

where F+,0 = F+|λ=0 : D → B ∼= R
+ and by (2.5) F−1 dF = λ−1α′

p + αk + λα′′
p . The claim now

follows from (3.1).

Together with Theorem 2.5 we obtain the well known fact that the associated family of holomorphic
maps ϕλ : D → S2 consists of congruent maps.

Corollary 3.1. Let ϕ : D → S2 be holomorphic and ϕλ : D → S2 its associated family. Then

ϕλ = λ−1/2ϕ ,

where we interpret λ ∈ S1 ⊂ SU(2).

This follows immediately from Theorem 2.5 and the fact that for γ = diag(c, c−1), c ∈ S1

Adγ(ξ) = c2ξ

if ξ is a meromorphic potential for a holomorphic ϕ : D → S2.
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Of course, Corollary 3.1 just expresses the classical fact that the associated minimal surfaces of a
given minimal surface all have the same Gauss map up to a rotation.

We now apply our construction to obtain all Gauss maps ϕ : D → C of minimal surfaces f : D → R
3:

we start with a meromorphic potential ξ = λ−1η, η =
(

0 0
p 0

)

dz and p : D → C meromorphic. Then
we can explicitly solve

∂zg = gξ , g(z0) = I

and obtain the complex extended frame

g(z) = I + λ−1

∫ z

z0

η .(3.2)

(We assume that p has no residues at its poles and that z0 is not a pole of p). The Iwasawa
decomposition (Theorem 2.2) can be carried out explicitly and yields

g = FF+

with

F =
1

√

1 + |q|2
(

1 −λq̄
λ−1q 1

)

,(3.3)

where q(z) =
∫ z
z0
p and

F+ =
1

√

1 + |q|2
(

1+|q|2 λq̄
0 1

)

.(3.4)

To obtain an explicit formula for the holomorphic map ϕ = π ◦ Fλ=1 : D → S2 it is easiest to
view S2 ⊂ su(2) = R3 as the adjoint orbit of e3 =

(

i 0
0 −i

)

, i.e., ϕ = AdFλ=1

(

i 0
0 −i

)

. We leave this
calculation to the reader.

Finally, we want to determine the fundamental forms of the corresponding minimal surface f : D →
R3. We recall that given an immersion f : D → R3 we may assume that z = x+ iy are conformal
coordinates for f , i.e. |df |2 = eu |dz|2 for some function u : D → R. If ϕ : D → S2 is the Gauss
map of f then we call

F = (e−
u
2 fx, e

−u
2 fy, ϕ) : D → SO(3)(3.5)

the coordinate frame of f . Lifting F to the universal cover SU(2) → SO(3) yields an extended
framing F : D → ΛSU(2), which we also call a coordinate frame (of course, F also frames ϕ in the
usual sense, i.e. π ◦ Fλ=1 = ϕ). Then a calculation yields

F−1Fz =
(

uz/4 λ−1 1
2
Heu/2

λ−1Qe−u/2 −uz/4

)

= V , F−1Fz̄ = −V ∗(3.6)

where Q = (ϕ, fzz) is the Hopf differential. For a minimal surface H = 0 and Q is holomorphic.
Computing F−1Fz for the frame in (3.3) and comparing it to (3.6) yields

u = 2 ln(1 + |q|2)(3.7a)

Q = qz = p .(3.7b)

Unlike in the case of surfaces of constant mean curvature H 6= 0, the Gauss map ϕ : D → S2 does
not determine a minimal surface. If f̃ : D → R3 is a minmal surface with the same Gauss map
ϕ : D → S2 as f : D → R3, then its coordinate frame F̃ (3.5) must satisfy

F̃ = Fk
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where k = diag(eiα, e−iα) : D → S1 ⊂ SU(2). Thus

F̃−1F̃z = Adk−1(F̄ ′Fz) + k−1kz

which unravels to

ũz = uz + 4iαz(3.8a)

Q̃ = e2iαQe
1
2
(ũ−u) .(3.8b)

Integrating (3.8a) yields

ũ− u = 4iα+ h(3.9)

for some antiholomorphic h : D → C. Since ũ − u is real valued, (3.9) says that ũ − u : D → R is
harmonic. One also checks at once, using (3.9) and (3.8b), that Q is holomorphic, (which it has

to be if f̃ is a minimal surface). Thus we have described all minimal surfaces and all holomorphic
Gauss maps starting from a meromorphic potential. Keeping the above notation we may summarize
this discussion in the following

Theorem 3.2. Let ξ = λ−1
(

0 0
p 0

)

dz be a meromorphic potential on D and let q : D → C be given

by q(z) =
∫ z
z0
p(w) dw. Then

i. F = 1√
1+|q|2

(

1 −λq̄
λ−1q 1

)

is a coordinate frame of a minimal surface f : D → R
3 with induced

metric |df |2 = ( 1
1+|q|2

)2|dz|2 and Hopf differential Q = p dz2.

ii. Every other minimal surface f̃ : D → R
3 having the same Gauss map ϕ : D → S2 as f is

obtained as follows: choose an antiholomorphic map h : D → C and put ũ = u + Reh and
α = Imh, where u = 2 ln(1 + |p|2). Then F̃ = F diag(eiα, e−iα) is the coordinate frame of the

minimal surface f̃ with induced metric

|df̃ |2 = eũ|dz|2

and Hopf differential

Q̃ = Qeh/2 .

4. The classical Weierstrass representation

From the extended frame equations (3.6) it is straightfoward to derive a formula for the minimal
immersion f : D → R3. Let J : R3 → su(2) be the map J(x) = − i

2

∑

xkσk where σ1 = ( 0 1
1 0 ), σ2 =

(

0 −i
i 0

)

and σ3 =
(

1 0
0 −1

)

are the Pauli matrices. Extending J complex linearly to J : C3 → sl(2,C)
we obtain from (3.5)

Jfz = −
i

2
e

u
2 AdF ( 0 1

0 0 ) = −
i

2
e

u
2

(

ab̄ a2

−b̄2 −b̄a

)

(4.1)

for the extended frame F =
(

a b
−b̄ ā

)

. Equations (3.6) read

(

a b
−b̄ ā

)

z
=
(

a b
−b̄ ā

)(

uz/4 0

λ−1Qe
−u
2 −uz/4

)

,(4.2)

from which we deduce

a = e−
u
4 s b = e−

u
4 r̄(4.3)
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with s, r : D → C holomorphic. Inserting this into (4.1) gives

fz = −
i

2
J−1

(

rs s2

−r2 −rs

)

=
(

1
2(s

2 − r2), i
2(s

2 + r2), rs
)

: D → C
3 ,(4.4)

which is (a version of) the classical Weierstrass representation [10] of the minimal surface

f = Re

∫ z

z0

fz dz : D → R
3 .

The advantage of this version over the usual formula

fz =
(

1
2(1− ν2), i

2(1 + ν2), ν
)

µ ,

where µ = s2 and ν = r/s is the stereographically projected Gauss map, is that no artificial poles
are introduced. Moreover, formula (4.4) can naturally be globalized by viewing r and s as two
holomorphic spinor fields over a Riemann surface (rather than as functions on D) [9]. Since

1 = |a|2 + |b|2 = e−
u
4 (|s|2 + |r|2) ,

we obtain as the induced metric

|df |2 = (|s|2 + |r|2)2 |dz|2 .
Moreover, from the remaining equations in (4.2) we derive for the Hopf differential of f : D → R3

Q = rsz − srz

the Wronskian of r and s. Finally one can check that the λ–dependence of r and s is given by

r = λ−
1
2 r0 s = λ−

1
2 s0

where r0, s0 are λ–dependent. This simply restates the classical fact that the associated family of
minimal surfaces is given by

fλ = Reλ−1

∫ z

z0

fz dz , λ ∈ S1 ,

where f is the minimal surface obatined from the Weierstrass data for λ = 1.

As an example we specialize to the frame F obtained by the DPW construction from the mero-
morphic potential

ξ = λ−1
(

0 0
p 0

)

dz .

Comparing (3.3) and (3.7) with (4.3) we obtain for the classical Weierstrass data of the minimal
surface f described by Fλ=1

s = 1 r = ν = −
∫ z

z0

p .

Thus

|df |2 = (1 + |ν|2)2 |dz|2, Q = −νz = p ,

where ν is the Gauss map (stereographically projected from the south pole) of

f = Re

∫ z

z0

(

1
2(1− ν2), i

2(1 + ν2), ν
)

dz .
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5. The dressing action on minimal surfaces

In the previous sections we discussed how one can describe minimal surfaces f : D → R
3 in terms

of their meromorphic potentials (Theorem 3.2) and how this approach relates to the classical
Weierstrass representation (Section 4). An important feature of our description in terms of loop
groups is that we can deform a minimal surface by the dressing action. Given a meromorphic
potential

ξ = λ−1η dz , η =
(

0 0
p 0

)

, p : D → C(5.1)

with corresponding complex extended frame g = 1+ λ−1
∫

η : D → Λ−
∗ SL(2,C), we can dress g by

an element h ∈ Λ+SL(2,C) using Theorem 2.1:

hg = g̃b ,(5.2)

where g̃ : D r S → Λ−
∗ SL(2,C), b : D r S → Λ+SL(2,C) and S ⊂ D is the discrete set where hg

leaves the big cell. Calculating the meromorphic potential of the new complex extended frame g̃
we obtain:

ξ̃ = g̃−1∂z g̃ = Ad b−1
0 (ξ) = λ−1

(

0 0
ρ2p 0

)

dz ,(5.3)

where b0 = b|λ=0 = diag(ρ, ρ−1), ρ : D r S → C
∗. In particular, dressing preserves the class of

minimal surfaces.

Next we calculate the stabilizer group Λ0 of the “action” g 7→ g̃ = (hg)−: let g =
(

1 0
λ−1q 1

)

and

h =
(

α β
γ δ

)

then hg = gb yields

α+ λ−1βq = α̃

γ + λ−1δq = γ̃ + λ−1α̃q

where b =
(

α̃ β̃

γ̃ δ̃

)

. Since h and b take values in Λ+SL(2,C), the above relations imply

α̃0 = α0 = δ0 = ±1 , β1 = 0

where α =
∑

i>0 λ
iαi and similar for the other coefficients. From this we conclude easily the

following

Lemma 5.1.

Λ+SL(2,C)/Λ0
∼= G

where

G = {
(

α λβ
0 α−1

)

; α 6= 0, β ∈ C} .

In particular, the dressing orbit of (the Gauss map of) a minimal surface is complex 2–dimensional.

This is a well-known fact and can be found in the existing literature in a much more general

framework [14, 2, 4]. For an element h =
(

α λβ
0 α−1

)

∈ G and a complex extended frame g =
(

1 0
λ−1q 1

)

,

the dressing relation hg = g̃b, b =
(

α̃ β̃

γ̃ δ̃

)

yields

q̃ =
q

α2 + αβq
.(5.4)

From the discussion in Section 4 we know that −q is the (stereographically) projected Gauss map,
so that (5.4) is just the standard action of SL(2,C) on S2 = CP1 restricted to G.
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6. Symmetries of Minimal Surfaces

This chapter is largely in the spirit of [6]. We obtain a very specific description of symmetries for
minimal surfaces. Let M be a complete, orientable minimal surface with meromorphic potential ξ
and coordinate frame F and denote by φ the minimal immersion of M . We consider the group

Aut φ (M) = {R proper rigid motion of R
3, R φ (M) = φ (M)} .

From [6] we know

For every R ∈ Autφ (M), there exists a g ∈ Aut D such that φ ◦ g = R ◦ φ .

In particular, g is in the group

Autφ D = {g ∈ AutD ; there exists R ∈ Autφ (M) : φ ◦ g = R ◦ φ}.

Also we obtain [6]

(F ◦ g) (z, z̄, λ) = χ(g, λ) F (z, z̄, λ) k(g, z, z̄),(6.1)

where χ(g, λ) ∈ Λsu(2). Moreover, χ and k satify

χ(g2 ◦ g1, λ) = ε(g2, g1)χ(g2, λ)χ(g1, λ)(6.2a)

k(g2 ◦ g1, z, z̄) = ε(g2, g1) k(g2, g1(z), g1(z)) k(g1, z, z̄)(6.2b)

where ε(g2, g1) = ±1. Also, splitting F = g−F+, we obtain

(g− ◦ g)(z, λ) = χ(g, λ)g−(z, λ)p+(g, z, λ)(6.3)

where p+ ∈ Λ+sl(2,C). For the meromorphic potential ξ this implies

g∗ξ(z, λ) = p−1
+ ξp+ + p−1

+ dp+ .(6.4)

We have the following

Theorem 6.1. Under the assumptions on M listed above and writing χ in the form χ = ( u v
−v̄ ū ) ,

we have

χ =
(

u0 λv1
−λ−1v̄1 ū0

)

,(6.5)



MINIMAL SURFACES VIA LOOP GROUPS 11

p+ =
(

w0(z) λp1
−λ−1p1 t0(z)

)

,(6.6)

where p1 ∈ C is independent of z.

Proof. Consider

g−1
− (z, λ) = χ−1(g, λ)(g, λ)(g− ◦ g)(z, λ) =

=
(

1 0
−λ−1b̌ 1

)

( ū −v
v̄ u )

(

1 0
λ−1b̌◦g 1

)

=
(

ū −v
−λ−1b̌ū+v̄ λ−1b̌v+u

)(

1 0
λ−1b̌◦g 1

)

=

=
(

ū−λ−1b̌◦g v −v

−λ−1b̌ū+v̄+λ−2b̌b̌◦gv+ λ−1ub̌◦g λ−1b̌v+u

)

This is an element of Λ+sl(2,C) if and only if

i. v = v1λ+ v3λ
3 + ...

ii. u = u0 + u2λ
2 + ...

In the left lower corner of the matrix above, the coefficients of λ−1 and λ−3 must vanish. This
implies respectively:

i. −b̌ū0 + v̄1 + b̌b̌ ◦ gv1 + u0 b̌ ◦ g = 0
ii. −b̌ū2 + v̄3 = 0

Since v3 and u2 are independent of z, v3 = u2 = 0. Similarly, all higher–order terms vanish. This
proves (6.5) and (6.6).

Actually, (i) gives an important condition on b̌, namely

b̌ ◦ g =
ū0b̌− v̄1

v1b̌+ u0
.(6.7)

Since v1 and u0 are constant and (|u0|2 + |v1|2 = 1 we obtain

Corollary 6.1.

b̌ ◦ g = Tg b̌(6.8)

where

Tg =
(

ū0 −v̄1
v1 u0

)

∈ SU(2) .(6.9)

Conversely, we have

Theorem 6.2. Let Tg =
(

ū0 −v̄1
v1 u0

)

∈ SU(2). Assume a meromorphic function b̌ satisfies (6.8).
Then g− ◦ g = χg−p+, with χ given by the formula (6.5).

Proof. A careful look at the proof of Theorem 6.1 shows that one can reverse the order of all
arguments.
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Remark 1. Let us consider the stereographic projection from the point (0, 0, 1), σ : S2 → C̄ given
by the formula

σ(x1, x2, x3) =
x1 + ix2
1− x3

.

Note that since N : D → S2, the composite σ ◦ N : D → C̄ makes sense. Moreover, σ ◦ N = ν.
(Recall that (µ, ν) denotes the Weierstrass pair for the surface for which N is the Gauss map).
Therefore, the relations (6.8) and ν = 1

λ2b̌
induce

ν ◦ g =
u0ν − λ−2ν1
λ2v1ν + ū0

,(6.10)

which is to say

ν ◦ g = Sλg ◦ ν(6.11)

where Sλg =
(

u0 −λ2v1
λ2v̄1 ū0

)

. Since σ ◦N = ν we also have

N ◦ g = SλgN .(6.12)

7. Examples

To illustrate some of the results of this note, we list a number of well-known surfaces, all of which
have the same Gauss map, represented by the map ν(z) = z. From (3.5) we know that all these
surfaces yield the same meromorphic potential, given by

a = b′ = (−1

ν
)′ =

1

z2
.(7.1)

The catenoid can be obtained on D = C− {0} considering

µ =
1

z2
dz .(7.2)

Since ν(z)2µ(z) = dz in this case, we can apply (3.5) and get u0 = u(0, 0) = 0. Theorem 3.2 then
gives the metric 1 and the Hopf differential:

eu|dz|2 = (1 +
1

z2
)2|dz|2(7.3)

Q(z) = a(z)(dz)2 =
1

z2
(dz)2 .(7.4)

Any minimal surface of revolution in R3 is (up to a rigid motion) part of a catenoid or part of a
plane [1].

Another example is the helicoid which is given by

µ(z) = − i

z2
dz .(7.5)

The corresponding metric is the same as in the case of the catenoid (7.3). The importance of the
helicoid among minimal surfaces is emphasized by the fact that any ruled minimal surface of R3

is, up to a rigid motion, part of a helicoid or part of a plane [1]. Theorem 1 in Section 2.4 showed

that two orientable minimal surfaces with coordinate frames F and F̃ have the same Gauss map
N if and only if the corresponding metrics ds2 = eu |dz|2 and ds2 = eũ |dz|2 satisfy the property

1It is worthwhile to recall [1] that, given the Weierstrass pair µ = h(z) dz, ν = ν(z), the corresponding metric can
be obtained a posteriori from it as ds2 = |h|2(1 + |ν|2)2|dz|2.
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ũ − u is harmonic. As already mentioned this is the case for the catenoid and helicoid. On the
other hand there are examples of minimal surfaces having the same Gauss map but distinct metrics.
Enneper’s surface defined on C and given by Weierstrass pair µ(z) = dz (so f(z) = 1) and ν(z) = z
has the same Gauss map as the helicoid and the catenoid, but the metric is ds2 = (1 + |z|2)2|dz|2.
Obviously uE − u = ln(1 + |z|2)2 − ln(1 + 1

|z|2
)2 = ln|z|4 = 4 ln|z| is a harmonic function (where

uE corresponds to the Enneper surface and u to the catenoid or helicoid).

Finally we mention Scherk’s surface defined on the unit disc D = {z ∈ C, |z| < 1} and given by

µ(z) =
4

1− z4
dz ν(z) = z .(7.6)

In this case the induced metric is

ds2 = | 4

1− z4
|2(1 + |z|2)2|dz|2 = 16

(1 + |z|2)2
|1− z4|2 |dz|

2 .(7.7)
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