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Abstract. We present a new approach to the differential geometry of
surfaces in R3 and R4 that treats this theory as a “quaternionified” ver-
sion of the complex analysis and algebraic geometry of Riemann surfaces.
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1 Introduction

1.1 Meromorphic functions

Let M be a Riemann surface. Thus M is a two-dimensional differentiable manifold
equipped with an almost complex structure J , i.e. on each tangent space TpM we
have an endomorphism J satisfying J2 = −1, making TpM into a one-dimensional
complex vector space. J induces an operation ∗ on 1-forms ω defined as

∗ω(X) = ω(JX) . (1)

A map f :M → C is called holomorphic if

∗df = i df .

A map f :M → C∪{∞} is called meromorphic if at each point either f or f−1 is
holomorphic. Geometrically, a meromorphic function on M is just an orientation
preserving (possibly branched) conformal immersion into the plane C = R2 or
rather the 2-sphere CP1 = S2.

Now consider C as embedded in the quaternions H = R4. Every immersed
surface in R4 can be descibed by a conformal immersion f :M → R4, where M is
a suitable Riemann surface. In Section 2 we will show that conformality can again
be expressed by an equation like the Cauchy-Riemann equations:

∗df = Ndf , (2)

where now N : M → S2 in R3 = ImH is a map into the purely imaginary
quaternions of norm 1. In the important special case where f takes values in
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390 Franz Pedit and Ulrich Pinkall

R3 = ImH , N is just the unit normal vector for the surface f . In the differential
geometry of surfaces in R4, N is called the “left normal vector” of f . “Meromorphic
functions” f :M → R4 ∪ {∞} = S4 = HP1 are defined as in the complex case.

To summarize: from the quaternionic viewpoint i is just one special imag-
inary quaternion of norm one. The transition from complex analysis to surface
theory is done by

i. leaving the Riemann surface as it is.

ii. allowing the whole of H∪{∞} as the target space of meromorphic functions.

iii. writing the Cauchy Riemann equations with a “variable i”.

1.2 Line bundles

A classical method to construct meromorphic functions on a Riemann surface M
is to take the quotient of two holomorphic sections of a holomorphic line bundle
over M . For example, if M is realized as an algebraic curve in CPn, then the
affine coordinate functions on CPn are quotients of holomorphic sections of the
inverse of the tautological bundle over M . Another common way to construct
meromorphic functions is to take quotients of theta functions, which also can be
viewed as sections of certain holomorphic line bundles over M.

In Section 3 we introduce the notion of a holomorphic quaternionic line bundle
L over M . Quotients of holomorphic sections of such bundles are meromorphic
conformal maps into H and every conformal map can be obtained as such a quotient
in a unique way.

Every complex holomorphic line bundle E gives rise to a certain holomor-
phic quaternionic bundle L = E ⊕ E. The deviation of a general holomorphic
quaternionic bundle L from just being a doubled complex bundle can be globally
measured by a quantity

W =

∫

|Q|2

called the Willmore functional of L. Here Q is a certain tensor field, the Hopf
field.

On compact surfaces, W is (up to a constant) the Willmore functional in the
usual sense of surface theory of f : M → H = R4, where f is the quotient of any
two holomorphic sections of L.

1.3 Abelian differentials

A second classical method to construct meromorphic functions on a Riemann
surface M is to use Abelian differentials, i.e. integrals of meromorphic 1-forms.
In the quaternionic theory there is no good analog of the canonical bundle K. On
the other hand, also in the complex case 1-forms often arise as products of sections
of two line bundles E and KE−1. Notably, this is the case in situations where
the Riemann-Roch theorem is applied. This setup carries over perfectly to the
quaternionic case, including the Riemann-Roch theorem itself.
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Quaternionic Analysis on Riemann Surfaces 391

We show that for each holomorphic quaternionic line bundle L there exists
a certain holomorphic quaternionic line bundle KL−1 such that any holomorphic
section ψ of L can be multiplied with any holomorphic section φ of KL−1, the
product being a closed H –valued 1-form (ψ, φ) that locally integrates to a confor-
mal map f into H :

df = (ψ, φ) . (3)

In the case where KL−1 is isomorphic to L itself, we call L a spin bundle. If
ψ is a nowhere vanishing holomorphic section of a spin bundle then

df = (ψ,ψ)

defines a conformal immersion into R3. This construction is in fact a more intrinsic
version of the “Weierstrass-representation for general surfaces in 3-space” that has
received much attention in the recent literature [5], just as (3), when expressed in
coordinates, gives a representation for surfaces in R4. The Hopf field Q mentioned
above can be identified as the “Dirac-potential” or “mean curvature half-density”
of the surface f :

Q =
1

2
H|df | .

Here H is the mean curvature, and |df | is the square root of the induced metric.

1.4 Applications

The only geometric application discussed in some detail in this paper is a rigidity
theorem for spheres: if f, g : S2 → R3 are two conformal immersions which are
not congruent up to scale but have the same mean curvature half-density, then

∫

H2 ≥ 16π .

This inequality is sharp.

Many other applications, to be discussed in a more elaborate future paper [1],
will concern the geometry of Willmore surfaces (critical points of the Willmore
functional) both in R3 and R4. Moreover, rudiments of an “algebraic geometry of
holomorphic curves” in quaternionic projective space HPn can be developed.

2 Conformal surfaces: the standard example

Let M be a Riemann surface and f : M → R3 a smooth map. The map f is a
conformal immersion if

i. df(v) is perpendicular to df(Jv) for any tangent vector v, where J is the
complex structure on M , and

ii. |df(v)| = |df(Jv)| 6= 0 for v 6= 0.

Documenta Mathematica · Extra Volume ICM 1998 · II · 389–400



392 Franz Pedit and Ulrich Pinkall

If N : M → S2 is the oriented unit normal to f , then the conformality condition
can be rephrased as

df(Jv) = N × df(v) .

To see the similarity with complex function theory, we rewrite this condition using
quaternions H = R⊕ImH [4]. We will always think of R3 = ImH as the imaginary
quaternions. If x, y ∈ R3 then

xy = − < x, y > +x× y .

With the notation (1) the conformality condition for f becomes (2). For the rest
of the article we will take this to be the defining equation for conformality, also in
the case of maps (not necessarily immersions) into R4:

Definition 2.1. A map f : M → R4 = H is conformal if there exists a map
N :M → H such that N2 = −1 and

∗df = Ndf .

At immersed points this is equivalent to the usual notion of conformality, and
f determines N uniquely. If f is R3–valued then N is the oriented unit normal,
but otherwise N is not normal to f . We will call N the left normal to f . Moreover,
if f is conformal so is its Moebius inversion f−1, with left normal f−1Nf . Thus,
the above definition is Moebius invariant and hence defines conformality of maps
f :M → S4 = HP1 = H ∪ {∞}.

3 Holomorphic quaternionic line bundles

A quaternionic line bundle L over a base manifold is a smooth rank 4 real vector
bundle whose fibers have the structure of 1-dimensional quaternionic right vector
spaces varying smoothly over the base. Two quaternionic line bundles L1 and L2

are isomorphic if there exists a smooth bundle isomorphism A : L1 → L2 that is
quaternionic linear on each fiber. We adopt the usual notation HomH(L1, L2) and
EndH(L) = HomH(L,L), etc., for the spaces of quaternionic linear maps.

The zero section of a quaternionic line bundle over an oriented surface has
codimension 4, so that transverse sections have no zeros. Thus any quaternionic
line bundle over a Riemann surface M is smoothly isomorphic to M ×H .

3.1 Complex quaternionic line bundles

Example. Given a conformal map f : M → H with left normal N , the quater-
nionic line bundle L = M × H also has a complex structure J : L → L given by
J(ψ) = Nψ for ψ ∈ L.

We make this additional complex structure part of our theory:

Definition 3.1. A complex quaternionic line bundle over a base manifold is a pair
(L, J) where L is a quaternionic line bundle and J ∈ EndH(L) is a quaternionic
linear endomorphism such that J2 = −1.
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Quaternionic Analysis on Riemann Surfaces 393

Put differently, a complex quaternionic line bundle is a rank two left complex
vector bundle whose complex structure is compatible with the right quaternionic
structure. Two complex quaternionic line bundles are isomorphic if the quater-
nionic linear isomorphism is also left complex linear.

The dual of a quaternionic line bundle L,

L−1 = {ω : L→ H ; ω quaternionic linear} ,

has a natural structure of a left quaternionic line bundle via (λω)(ψ) = λω(ψ)
for λ ∈ H , ω ∈ L−1 and ψ ∈ L. Using conjugation, we can regard L−1 as a
right quaternionic line bundle, ω · λ = λ̄ω. If L has a complex structure then the
complex structure on L−1 is given by

Jω := ω ◦ J ,

so that L−1 is also complex quaternionic.
Any complex quaternionic line bundle L can be tensored on the left by a

complex line bundle E, yielding the complex quaternionic line bundle EL. On a
Riemann surface M we have the canonical and anti-canonical bundles K and K̄.
It is easy to see that

KL = {ω : TM → L ; ∗ω = J ◦ ω} ,

and
K̄L = {ω : TM → L ; ∗ω = −J ◦ ω} .

In this way, we have split the quaternionic rank 2 bundle HomR(TM,L), which
has a left complex structure given by ∗, as a direct sum KL⊕ K̄L of two complex
quaternionic line bundles.

If E is a complex line bundle, then LE := E ⊕E becomes a complex quater-
nionic line bundle with J(ψ1, ψ2) = (iψ1, iψ2) and right quaternionic structure
given by

(ψ1, ψ2)i = (iψ1,−iψ2) , (ψ1, ψ2)j = (−ψ2, ψ1) .

Conversely, for a given complex quaternionic line bundle (L, J) we let EL := {ψ ∈
L ; Jψ = ψi} be the +i eigenspace of J . Then E ⊂ L is a complex line subbundle
and EL ⊕ EL is isomorphic to L. This leads to the following

Theorem 3.1. The above correspondences

E 7−→ LE , L 7−→ EL

give a bijection between isomorphism classes of complex line bundles and isomor-

phism classes of complex quaternionic line bundles. This bijection is equivariant

with respect to left tensoring by complex line bundles and respects dualization.

Definition 3.2. The degree of a complex quaternioninc line bundle L over a
compact Riemann surface is the degree of the underlying complex line bundle EL,
i.e. degL := degEL.
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394 Franz Pedit and Ulrich Pinkall

On a compact Riemann surface (isomorphism classes of) complex line bundles
are characterized by their degrees. Thus, complex quaternionic line bundles also
are characterized by their degrees. Given a trivializing section ψ of L we have
Jψ = ψN for some N : M → S2 ⊂ ImH , N2 = −1, and one easily checks that
degL = degN .

3.2 Holomorphic quaternionic line bundles

Definition 3.3. Let (L, J) be a complex quaternionic line bundle over a Riemann
surface M and let Γ(L) denote the smooth sections of L. A holomorphic structure

on L is given by a quaternionic linear map

D : Γ(L)→ Γ(K̄L)

satisfying

D(ψλ) = (Dψ)λ+
1

2
(ψdλ+ Jψ ∗ dλ) (4)

for λ :M → H .
The quaternionic linear subspace kerD ⊂ Γ(L) is called the space of holomor-

phic sections and is denoted by H0(L).

One can check that the K̄L–part of a quaternionic connection on L gives a
holomorphic structure D, which may be used as motivation for the above formula.

Any complex holomorphic structure ∂̄ on the underlying complex line bundle
EL is an example of a holomorphic structure D = ∂̄ ⊕ ∂̄. These holomorphic
structures on L are characterized by the condition that D and J commute. The
failure to commute is measured by

Q =
1

2
(D + JDJ)

which is a section of T ∗M ⊗ EndH(L). Now

EndH(L) = End+(L)⊕ End−(L)

splits into linear maps commuting and anti-commuting with J . The former is a
trivial complex bundle with global sections Id and J . The latter is a non-trivial

complex line bundle isomorphic to E−1
L ⊗ EL. Since Q anti-commutes with J

and satisfies ∗Q = −J ◦ Q we see that Q is a section of the complex line bundle
K̄End−(L). We call Q the Hopf field of the holomorphic quaternionic line bundle
L. Thus any holomorphic structure D is uniquely decomposed into

D = ∂̄ +Q

with ∂̄ commuting with J . Vanishing of the Hopf field Q characterizes the usual
complex holomorphic structures. Two quaternionic holomorphic line bundles are
isomorphic if there is an isomorphism of complex quaternionic line bundles which
intertwines the respective holomorphic structures. On a compact Riemann surface
this implies that the underlying complex holomorphic structures are isomorphic
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and that the Hopf fields are related up to a constant phase u ∈ S1. Thus the
moduli space of quaternionic holomorphic structures fibers over the Picard group
of M . The fiber Γ(K̄End−(LE))/S

1 over (E, ∂̄) is given by the Hopf fields.
A global invariant of the quaternionic holomorphic line bundle L is obtained

by integrating the length of the Hopf field Q: we define the density |Q|2 by

Qv ◦Qv = −|Q|
2(v)Id , v ∈ TM ,

where we identify JM–invariant quadratic forms with 2-forms onM . TheWillmore

functional of D is the L2–norm of the Hopf field

||Q||2 =

∫

|Q|2 .

The vanishing of ||Q|| characterizes the complex holomorphic theory.

Example. We have already seen that a conformal map f : M → H with left
normal N : M → S2 induces the complex quaternionic bundle L = M × H with
Jψ = Nψ. We define the canonical holomorphic structure D on L to be the one for
which the constant sections are holomorphic, i.e. D is characterized by D(1) = 0.
Any other section of L is of the form ψ = 1λ for some λ :M → H , and (4) implies
that ψ is holomorphic iff

∗dλ = Ndλ .

Thus the holomorphic sections of L are precisely the conformal maps with the
same left normal as f . In particular, dimH0(L) ≥ 2.

The Moebius invariance of the holomorhic structure follows since f−1 induces
an isomorphic holomorphic structure on M × H . Thus we have assigned to each
conformal map into HP1 = S4 a quaternionic holomorphic line bundle with at
least two holomorphic sections.

The Hopf field for this holomorphic structure is Q = 1
4
N(dN + ∗dN), and

|Q|2 =
1

4
(|H|2 −K −K⊥)|df |2 ,

where H is the mean curvature vector of f and K⊥ is the curvature of the normal
bundle. We see that |Q|2 is a Moebius invariant density, which is consistent with
the Moebius invariance of our setup. Thus, the Willmore energy of our holomor-
phic structure, ||Q||2 =

∫

|Q|2 = W (f), is (up to topological constants) just the
Willmore energy of f .

So far we have seen how a conformal map induces a holomorphic line bundle
with at least two holomorphic sections. As in the classical complex theory we
have the converse construction, i.e. all conformal maps into S4 arise as quotients
of holomorphic sections.

Example. Let L → M be a quaternionic holomorphic line bundle and assume
that dimH0(L) ≥ 2 with ψ, φ holomorphic sections such that ψ has no zeros.
Then Jψ = ψN for some N :M → S2. We define f :M → H by

φ = ψf ,
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then (4) implies that ∗df = Ndf , i.e. f is conformal with left normal N .
An interesting special case comes from conformal maps with Q = 0. It can

be shown that they are superconformal in the sense that their curvature ellipse is
a circle. Since Q = 0, superconformal maps are critical for the Willmore energy
and thus Willmore surfaces in S4. In case f is R3–valued Q = 0 simply means
that f is a conformal map into the 2-sphere. The superconformal maps all arise
as projections from holomorphic maps into the twistor space CP3 over S4 and
have been studied by various authors [2, 3]. In our theory these maps arise as
quaternionic quotients of holomorphic sections of (doubled) complex holomorphic
line bundles.

In the above construction the structure of zeros of quaternionic holomorphic
sections becomes important. Applying a result of Aronszajn we can show

Theorem 3.2. Let ψ be a non-trivial holomorphic section of a quaternionic holo-

morphic line bundle L over a Riemann surfaceM . Then the zeros of ψ are isolated

and, if z is a centered local coordinate near a zero p ∈M ,

ψ = zkφ+O(|z|k+1)

where φ is a local nowhere vanishing section of L. The integer k and the value

φ(p) ∈ Lp are well-defined independent of choices. We define the order of the zero
p of ψ by ordpψ = k.

We conclude this section with a degree formula:

Theorem 3.3. Let ψ be a non-trivial section of a quaternionic holomorphic line

bundle L over a compact Riemann surface M . Then

π degL+ ||Q||2 ≥ π
∑

p∈M

ordpψ . (5)

In contrast to the complex holomorphic case, where negative degree bundles
do not have holomorphic sections, we see that in the quaternionic theory the
Willmore energy of the bundle compensates for this failure and we still can have
holomorphic sections.

Equality in (5) is attained by holomorphic bundles L−1 where L = E ⊕
E is a doubled complex holomorphic bundle E and L has a nowhere vanishing
meromorphic section ψ. The holomorphic structure on L−1 then is obtained by
defining ψ−1 to be holomorphic.

We conjecture the following lower bound for the Willmore energy on holo-
morphic line bundles over the 2-sphere: let n = dimH0(L) and d = degL then

1

π
||Q||2 ≥ n2 − n(d+ 1) . (6)

Examples are known where equality holds. Using the degree formula we can prove
(6) under certain non-degeneracy assumptions [1]. For d = −1, the case of spin
bundles (see the next section), this estimate has been conjectured by Taimanov
[6].
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4 Abelian differentials

Definition 4.1. A pairing between two complex quaternionic line bundles L and
L̃ overM is a nowhere vanishing real bilinear bundle map ( , ) : L× L̃→ T ∗M⊗H
satisfying

(ψλ, φµ) = λ̄(ψ, φ)µ

∗(ψ, φ) = (Jψ, φ) = (ψ, Jφ)

for all λ, µ ∈ H , ψ ∈ L, φ ∈ L̃.

A pairing between L and L̃ is actually the same as an isomorphism of complex
quaternionic line bundles L̃→ KL−1, given as φ 7→ α, where

αX(ψ) = (ψ, φ)(X) .

If ω is a 1-form on M with values in L and φ is a section of L, then we define an
L-valued 2-form (ω ∧ φ) as

(ω ∧ φ)(X,Y ) = (ω(X), φ)(Y )− (ω(Y ), φ)(X) .

Similarly, for ψ ∈ Γ(L) and η a 1-form with values in L̃, we set

(ψ ∧ η)(X,Y ) = (ψ, η(X))(Y )− (ψ, η(Y ))(X) .

Lemma 4.1. For each ω ∈ K̄End−(L) there is a unique ω̄ ∈ K̄End−(L̃) such that

(ωψ ∧ φ) + (ψ ∧ ω̄φ) = 0

for all ψ ∈ Γ(L), φ ∈ Γ(L̃). The map ω 7→ ω̄ is complex antilinear:

Jω = −Jω̄ .

Theorem 4.2. If two complex quaternionic line bundles L and L̃ are paired, then

for any holomorphic structure D on L there is a unique holomorphic structure D̃
on L̃ such that for each ψ ∈ Γ(L), φ ∈ Γ(L̃) we have

d(ψ, φ) = (Dψ ∧ φ) + (ψ ∧ D̃φ) .

The Hopf fields Q and Q̃ of D and D̃ are conjugate:

Q̃ = Q̄ .

Thus, a holomorphic structure on L determines a unique holomorphic struc-
ture on KL−1 such that L and KL−1 become paired holomorphic bundles. In this
situation, the Riemann-Roch theorem is true in the familiar form of the theory of
complex line bundles: on compact Riemann surfaces of genus g we have

dimH0(L)− dimH0(KL−1) = deg(L)− g + 1 .

Theorem 4.2 suggests a way to construct conformal immersions f :M → R4 = H .
If L and L̃ are paired holomorphic bundles and ψ, φ ∈ H0(L) are both nowhere
vanishing sections, then (ψ, φ) is a closed 1-form that integrates to a conformal
immersion into R4, possibly with translational periods. In fact, this construction
is completely general:
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Theorem 4.3. Let f : M → H be a conformal immersion. Then there exist

paired holomorphic quaternionic line bundles L, L̃ and nowhere vanishing sections

ψ ∈ H0(L), φ ∈ H0(L̃) such that

df = (ψ, φ) . (7)

L, L̃, ψ and φ are uniquely determined by f up to isomorphism.

In the setup of the theorem choose locally non-vanishing sections ψ̂ ∈ Γ(L),

φ̂ ∈ Γ(L̃) satisfying ∂̄ψ̂ = 0, ∂̄φ̂ = 0, Jψ̂ = −ψ̂i, Jφ̂ = φ̂i. Then there is a
R⊕ Ri –valued coordinate chart z on M satisfying

dz = (ψ̂, φ̂) .

We can write
ψ = ψ̂(ψ1 + ψ2j) φ = φ̂(φ1 + φ2j)

with R ⊕ Ri–valued functions ψα, φα. Expanding (7) we obtain a generalization
of the Weierstrass representation of surfaces in R3 [5] to surfaces in R4. The
equations (∂̄ +Q)ψ = 0 and (∂̄ + Q̃)φ = 0 unravel to Dirac equations for ψα and
φα.

Definition 4.2. A holomorphic line bundle Σ over M is called a spin bundle if
there exists a pairing of Σ with itself such that the second holomorphic structure
on Σ provided by Theorem 4.2 coincides with the original one.

As a direct consequence of the definition of a pairing we obtain in the case of
spin bundles the relation

(φ, ψ) = −(ψ, φ) .

Therefore, for any holomorphic section ψ of a spin bundle Σ the equation

df = (ψ,ψ)

defines a conformal map into R3 = ImH , possibly with translational periods. This
is in fact a coordinate-free version of the Weierstrass representation for surfaces in
R3 [5], which could be obtained by a calculation similar to the one given above for
R4. We now show that the “Dirac potential” H|df | featured in this representation
can be identified with the Hopf field Q of Σ.

For a spin bundle Σ the map K̄End−(Σ) 3 ω 7→ ω̄ puts a real structure on
K̄End−(Σ) and therefore allows us to define a real line bundle

R = Re(K̄End−(Σ)) = {ω ∈ K̄End−(Σ) ; ω = ω̄} .

We now show that R can be identified with the real line bundle D−1/2 of half
densities over M . A half-density U is a function on the tangent bundle TM which
is of the form

U(Xp) = ρ(p)
√

g(Xp, Xp)

where ρ ∈ C∞(M) and g is a Riemannian metric compatible with the given confor-
mal structure. For each ψ ∈ Γ(Σ) the function X 7→ |(ψ,ψ)(X)| is a half-density.
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On the other hand, it can be checked that for each ψ ∈ Γ(Σ) we can define a
section ωψ of R as

ωψ(φ) = ψ(Jψ, φ) .

There is a canonical isomorphism R → D1/2 which takes ωψ to |(ψ,ψ)| for all
ψ ∈ Σ.

Theorem 4.4. Let ψ be a holomorphic section of a spin bundle Σ over M . Then

there is a conformal immersion f : M̃ → R3 on the universal cover of M with

only translational periods such that

df = (ψ,ψ) .

Identifying the half-density |df | as explained above with a section of K̄End−(Σ),
the mean curvature of f is given in terms of the Hopf field Q of Σ as

Q =
1

2
H|df | .

We conclude by indicating a proof of the rigidity theorem for spheres stated
in Section 1.4. The hypotheses imply that in the situation of the theorem above Σ
has a 2–dimensional space of holomorphic sections. Since in the case at hand the
conjecture (6) has been proven, we take n = 2 and d = degΣ = −1 and obtain

∫

H2|df |2 = 4

∫

|Q|2 ≥ 16π .
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