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Abstract. (1) We find a set of inequalities on n numbers ν1, . . . νn ∈
[0, 1

2
] (the n-gon inequalities) which are equivalent to the existence

of n-gons with νk as sides. (2) Interpreting νk as logarithms of
eigenvalues, we show in two ways (by elementary analytic and geo-
metric proofs) that the n-gon inequalities are necessary conditions
for the simultaneous unitarizability of n individually unitarizable
matrices in SL2(C) whose product is I. (3) We give a necessary
condition for the simultaneous unitarizability of a set of matrices
in SL2(C) in terms of the cross ratios of their eigenlines.

Introduction

A spherical polygon is a loop of geodesic segments on a 2-sphere,
each of whose side lengths is between 0 and the semicircumference
inclusively.

We prove that the side lengths of a spherical polygon satisfy the
spherical polygon inequalities, and conversely, given any lengths which
satisfy the spherical polygon inequalities, there exists a spherical poly-
gon whose sides have these lengths (theorem 2.5). For example, on a
sphere with circumference 1, the spherical triangle inequalities are

ν1 + ν2 + ν3 ≤ 1

νi ≤ νj + νk, {i, j, k} ∈ {1, 2, 3}.

and the spherical 4-gon inequalities are

νi ≤ νj + νk + νl {i, j, k, l} ∈ {1, 2, 3, 4}

νi + νj + νk ≤ νl + 1 {i, j, k, l} ∈ {1, 2, 3, 4}.

Given n unitary matrices Mk ∈ SU2, with M1 . . .Mn = I, the spher-
ical n-gon inequalities are necessary conditions for the simultaneous
unitarizability of M1, . . . ,Mn (theorem 3.8).

Conversely, if M1, M2, M3 ∈ SL2(C) with M1M2M3 = I are indi-
vidually unitarizable and irreducible (i.e. cannot be simultaneously
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conjugated to upper triangular matrices), and νk ∈ [0, 1
2
] are defined

by cos 2πνk = 1
2
trMk, then the spherical triangle inequalities imply

that M1, M2, M3 are simultaneously unitarizable (theorem 3.7). This
converse is false for n > 3.

This problem has application to the construction of the moduli of
constant mean curvature genus zero surfaces with Delaunay ends (k-
noids).

The hyperbolic space model of this problem (section 4) is due to Rob
Kusner.

1. Planar n-gon

As a preface to geodesic n-gons on S2, we start with n-gons in the
plane R2. The proof of theorem 1.1 has the same flavor as the analogous
theorem in the case of the sphere (theorem 2.5).

A planar n-gon is a loop of straight line segments in R2 with lengths
in [0, ∞). No further constraints are put on a planar n-gon; in particu-
lar it may be non-convex, self-intersecting, or fail to bound an immersed
disk.

Let n ≥ 2 and ν1, . . . , νn ∈ [0, ∞). The planar n-gon inequalities
are:

(1.1) νik ≤
∑

i6=ik

νi, k ∈ {1, . . . , n}.

Theorem 1.1. Let n ≥ 2 and ν1, . . . , νn ∈ [0, ∞). The following are
equivalent:

(i) there exists an n-gon on R2 whose sides have lengths ν1, . . . , νn.
(ii) ν1, . . . , νn satisfy the n-gon inequalities (1.1).

Proof. The case n = 2 is immediate.
That (i) implies (ii) follows from the fact that in R2, a straight line

is the shortest path between two points.
Assume (ii). The case n = 3 is a standard theorem in Euclidean

geometry. The proof for n > 3 is by induction. Suppose the theorem
is true for 1, . . . , n− 1.

Let Q1, Q2 ⊂ {1, . . . , n} with Q1 t Q2 = {1, . . . , n} and |Q1| ≥ 2,
|Q2| ≥ 2.
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Let

A = max
k∈Q1

{

νk −
∑

i∈Q1\{k}
νi

}

B =
∑

i∈Q1\{k}
νi

C = max
k∈Q2

{

νk −
∑

i∈Q2\{k}
νi

}

D =
∑

i∈Q2\{k}
νi.

It is immediate that A ≤ B and C ≤ D. The n-gon inequalities on
{ν1, . . . , νn} imply that that A ≤ D and B ≤ C. Hence max{A, B} ≤
min{C, D}, so there exists α such that

max{A, B} ≤ α ≤ min{C, D}.

By the construction of α, {νi | i ∈ Q1} ∪ {α} and {νi | i ∈ Q1} ∪ {α}
satisfy the (|Q1| + 1)-gon and (|Q2| − 1)-gon inequalities respectively.
Hence by the theorem for (|Q1|+1) and (|Q2|−1), there exist (|Q1|+1)-
and (|Q2| + 1)-gons whose sides have lengths {νi | i ∈ Q1} ∪ {α} and
{νi | i ∈ Q1} ∪ {α} respectively. Since each of the two polygons has a
side of length α, they can be glued together to make an n-gon with
sides with lengths {1, . . . , n}. ¤

Theorem 1.2. If there exists an n-gon on R2 with side lengths ν1, . . . , νn ∈
[0, ∞), then there exists an n-gon on R2 with side lengths ν1, . . . , νn in
any order.

Proof. Any subsequence of k sides can be reversed by flipping the (k+
1)-gon with these as sides, together with the diagonal connecting them
These reversals generate the permutation group. ¤

2. Spherical n-gons

A spherical n-gon is a loop of n geodesic segments on S2(r) with
lengths in [0, πr]. No further constraints are put on a spherical n-gon;
in particular it may be non-convex, self-intersecting, or fail to bound
an immersed disk. These inequalities were found by [1].

2.1. Spherical triangles.

Remark 2.1. The spherical triangle inequalities are

ν1 ≤ ν2 + ν3

ν2 ≤ ν1 + ν3

ν3 ≤ ν1 + ν2

ν1 + ν2 + ν3 ≤ 1.

(2.1)
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Theorem 2.1 (Spherical triangle theorem). Let ν1, ν2, ν3 ∈ [0, 1
2
]. The

following are equivalent:

(i) ν1, ν2, ν3 satisfy the spherical triangle inequalities (2.1).
(ii) there exists a (possibly degenerate) spherical triangle on S2(r)

whose sides have lengths (2πr)(ν1, ν2, ν3).

First, two lemmas.

Lemma 2.2. Let ν1, ν2, ν3 ∈ [0, 1
2
] and let tk = cos(2πνk). Let

(2.2) f(t1, t2, t3) = 1− t21 − t22 − t23 + 2t1t2t3.

Then the following are equivalent:

(i) ν1, ν2, ν3 satisfy the spherical triangle inequalities (2.1).
(ii) f(t1, t2, t3) ≥ 0;

Moreover, f(t1, t2, t3) = 0 iff equality holds in at least one of the in-
equalities (2.1).

Proof. Since t1, t2, t3 are related to ν1, ν2, ν3 by tk = cos(2πνk), we
can write f as a function of ν1, ν2, ν3. This expression factors as

f = 1
4
e2πri(ν1+ν2+ν3)

(

e2πri(1−ν1−ν2−ν3) − 1
)(

e2πri(−ν1+ν2+ν3) − 1
)

×
(

e2πri(ν1−ν2+ν3) − 1
)(

e2πri(ν1+ν2−ν3) − 1
)

.

Then
{f = 0} = {(ν1, ν2, ν3) ∈ R | ±ν1 ± ν2 ± ν3 ∈ Z}.

and the result follows. ¤

Lemma 2.3. Let t1, t2, t3 ∈ [−1, 1]. The following are equivalent:

(i) f(t1, t2, t3) ≥ 0;
(ii) There exist X1, X2, X3 ∈ S2(r) such that tk = (Xi ·Xj)/r

2.

Moreover, f(t1, t2, t3) = 0 iff X1, X2, X3 are coplanar.

Proof. First assume (ii). By a change of basis we may assume that

X1 = r(1, 0, 0)

X2 = r(x2, y2, 0)

X3 = r(x3, y3, z3).

(2.3)

Then
t1 = x2x3 + y2y3

t2 = x3

t3 = x2.

(2.4)

A calculation shows that

(2.5) f(t1, t2, t3) = y2
2z

2
3 .
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Hence f ≥ 0. Moreover, f = 0, iff either y2 = 0 or z3 = 0, iff
X1, X2, X3 are coplanar.

Conversely, assume (i). In case t3 = ±1, then

f(t1, t2, t3) = −(t1 ∓ t2)
2 ≥ 0,

so f = 0 and t1 = ±t2. In this case the choice

X1 = r(1, 0, 0)

X2 = r(1, 0, 0)

X3 = r(±t1, 0, 0).

are in S2(r) and satisfy (ii).
Assume then that the degenerate case t23 6= 1 does not occur. A

calculation shows that

X1 = r(1, 0, 0)

X2 = r

(

t3,
√

1− t23, 0

)

X3 = r

(

t2,
t1 − t2t3
√

1− t23
,

√

f(t1, t2, t3)
√

1− t23

)

are in S2(r) and satisfy (ii). ¤

Proof of the triangle theorem 2.1. Let

(2.6) tk = cos(2πνk)

and f as in lemma 2.2. By lemma 2.2, the triangle inequalities are
equivalent to f(t1, t2, t3) ≥ 0. By lemma 2.3, this is equivalent to the
existence of X1, X2, X3 ∈ S2(r) such that tk = (Xi ·Xj)/r

2.
Given such Xk, the triangle with vertices Xk has sides with lengths

νk(2πr). Conversely, fix a spherical triangle on S2(r) whose sides have
lengths (2πr)νk, and let Xk be its vertices. Then

tk = cos(2πνi) =
Xj ·Xk

r2
.

Hence the existence of X1, X2, X3 ∈ S2(r) such that tk = (Xi ·Xj)/r
2

is equivalent to the existence of a spherical triangle on S2(r) whose
sides have lengths (2πr)νk. ¤

Remark 2.2. Given a spherical triangle, there exists a spherical triangle
with the same side lengths but with the opposite orientation.
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2.2. The spherical n-gon inequalities.

Definition 2.4. Let n ≥ 2 and ν1, . . . , νn ∈ [0, 1
2
]. The spherical n-gon

inequalities are as follows. Let P ⊆ {1, . . . , n} with |P | odd and let
P ′ = {1, . . . , n} \ P .

∑

i∈P

νi −
∑

i∈P ′

νi −
|P | − 1

2
≤ 0.

The n-gon inequalities for n = 2 to n = 6 are listed below. Here,
(i1, . . . , in) ranges over the permutations of (1, . . . , n).
n = 2:

(νi1)− (νi2) ≤ 0.

n = 3:

(νi1)− (νi2 + νi3) ≤ 0

(νi1 + νi2 + νi3) ≤ 1.

n = 4:

(νi1)− (νi2 + νi3 + νi4) ≤ 0

(νi1 + νi2 + νi3)− (νi4) ≤ 1.

n = 5:

(νi1)− (νi2 + νi3 + νi4 + νi5) ≤ 0

(νi1 + νi2 + νi3)− (νi4 + νi5) ≤ 1

(νi1 + νi2 + νi3 + νi4 + νi5) ≤ 2.

n = 6:

(νi1)− (νi2 + νi3 + νi4 + νi5 + νi6) ≤ 0

(νi1 + νi2 + νi3)− (νi4 + νi5 + νi6) ≤ 1

(νi1 + νi2 + νi3 + νi4 + νi5)− (νi6) ≤ 2.

2.3. The spherical n-gon theorem.

Theorem 2.5 (Spherical n-gon theorem). Let n ≥ 2 and ν1, . . . , νn ∈
[0, 1

2
]. The following are equivalent:

(i) there exists an n-gon on S2(r) whose sides have lengths (2πr)(ν1, . . . , νn);
(ii) ν1, . . . , νn satisfy the n-gon inequalities (2.4).

Proof. The case n = 2 is immediate. The proof is by induction on n.
The base case for the induction, n = 3, is the content of theorem 2.1.

Fix n ≥ 4, and assume the theorem is true for {3, . . . , n− 1}.
First assume (i). Fix P ⊆ {1, . . . , n} with |P | odd.
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Let Q1, Q2 ⊂ {1, . . . , n} be a partition Q1 t Q2 = {1, . . . , n} such
that |Q1| ≥ 2, |Q2| ≥ 2, and Q1, Q2 each index consecutive pieces of
the n-gon.

Let P1 = Q1 ∩ P , P2 = Q2 ∩ P , so that P = P1 t P2. Since |P | is
odd, one of |P1|, |P2| is odd and the other even. Renumber if necessary
so that |P1| is odd and |P2| is even. Let P

′
1 = Q1 \P1 and P ′2 = Q2 \P2.

Let (2πr)ν0 be the length of the diagonal dividing the n-gon into the
sides indexed by Q1 and those indexed by Q2.

Applying the theorem to the values {νi | i ∈ Q1} ∪ {ν0},

∑

i∈P1

νi ≤
∑

i∈P1
′

νi + ν0 +
|P1| − 1

2
.

Again, applying the theorem to the values {νi | i ∈ Q2} ∪ {ν0},

∑

i∈P2

νi + ν0 ≤
∑

i∈P2
′

νi +
|P2|

2
.

Adding,
∑

i∈P1∪P2

νi ≤
∑

i∈P1
′∪P2

′

νi +
|P1 ∪ P2| − 1

2
,

that is,
∑

i∈P

νi ≤
∑

i∈P ′

νi +
|P | − 1

2
.

This proves that (i) implies (ii).
Conversely, assume (ii). As before, let Q1, Q2 ⊂ {1, . . . , n} be a

partition Q1 tQ2 = {1, . . . , n} such that |Q1| ≥ 2, |Q2| ≥ 2. Let

A = max
S1⊆Q1, |S1| odd

(

∑

i∈S1

νi −
∑

i∈S1
′

νi −
|S1| − 1

2

)

B = min
S2⊆Q2, |S2| even

(

−
∑

i∈S2

νi +
∑

i∈S2
′

νi −
|S2|

2
.

)

C = max
T2⊆Q2, |T1| odd

(

∑

i∈T2

νi −
∑

i∈T2
′

νi −
|T2| − 1

2

)

D = min
T1⊆Q1, |T1| even

(

−
∑

i∈T1

νi +
∑

i∈T1
′

νi −
|T1|

2

)

.

It follows from the converse above that A ≤ B and C ≤ D. We want
to show that A ≤ D and C ≤ B.
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Let S1 ⊆ Q1 with |S1| odd, and S2 ⊆ Q2 with |S2| even. Let S ′1 =
Q1 \ S1 and S ′2 = Q2 \ S2. Then

∑

i∈S1∪S2

νi ≤
∑

i∈S1
′∪S2

′

νi +
|S1 ∪ S2| − 1

2
,

from which it follows that
∑

i∈S1

νi −
∑

i∈S1
′

νi −
|S1| − 1

2
≤ −

∑

i∈S2

νi +
∑

i∈S2
′

νi −
|S2|

2
.

Hence A ≤ D.
Again, let T1 ⊆ Q1 with |T1| even, and T2 ⊆ Q2 with |T2| odd. Let

T ′1 = Q1 \ T1 and T ′2 = Q2 \ T2. Then similarly,

∑

i∈T2

νi −
∑

i∈T2
′

νi −
|T2| − 1

2
≤ −

∑

i∈T1

νi +
∑

i∈T1
′

νi −
|T1|

2
.

Hence C ≤ B.
Hence max{A, C} ≤ min{B, D}. Take ν0 ∈ [0, 1

2
] such that

max{A, C} ≤ ν0 ≤ min{B, D}.

Then {νi | i ∈ Q1}∪{ν0} and {νi | i ∈ Q2}∪{ν0} satisfy the (|Q1|+1)−
and (|Q2| + 1)-gon inequalities respectively, so there exist spherical
(|Q1|+ 1)− and (|Q2|+ 1)-gons, each having a side with length 2πrν0.
These can be glued together along this side to form an n-gon whose
sides have lengths (2πr)(ν1, . . . , νn). ¤

Remark 2.3. The n-gon inequalities obtained with |P | = 1 also follow
from the fact that each side of a spherical n-gon (whose sides have
lengths at most half the circumference of the sphere) is the shortest
curve connecting its endpoints.

Lemma 2.6. Let there be a spherical n-gon on S2(r) whose sides have
lengths (2πr)(ν1, . . . , νn) in order. Then there exists a spherical n-gon
on S2(r) whose sides have lengths νi1 , . . . , νin for every permutation
(i1, . . . , in) of (1, . . . , n).

Proof. Any subsequence of k sides can be reversed by flipping the (k+
1)-gon with these as sides, together with the diagonal connecting them
These reversals generate the permutation group. ¤

3. SU2

3.1. Preliminary.
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Lemma 3.1 (QR-decomposition). Let M ∈ SL2(C). Then there exists
a unique pair (U, T ), with U ∈ SU2 and T ∈ SL2(C) upper-triangular
with diagonal elements in R+.

Lemma 3.2. Let M ∈ SU2. Then there exists P ∈ SU2 such that
PMP−1 is diagonal and unitary.

Lemma 3.3. Let M ∈ SU2 and P ∈ SL2(C). Then the following are
equivalent:

(i) PMP−1 ∈ SU2;
(ii) there exists (U, C) such that U ∈ SU2 and C ∈ SL2(C) with

[M, C] = 0.

Proof. That (ii) implies (i) is immediate.
To show that (i) implies (ii), first take the case in which M is diago-

nal. Let P ∈ SL2(C) such that PMP−1 ∈ SU2. By lemma 3.1, P = UT
with U ∈ SU2 and T upper triangular. Then TMT−1 ∈ SU2. A calcu-
lation shows that this implies that T is diagonal, hence [T, M ] = 0.

For the general case, let P ∈ SL2(C) such that PMP−1 ∈ SU2. By
lemma 3.2, there exists B ∈ SU2 such that B−1MB = D is diagonal.
Then PMP−1 = (PB)D(PB)−1. By the diagonal case above, PB =
UC with U unitary and C diagonal. Then P = (UB−1)(BCB−1), and
UB−1 is unitary, and [BCB−1, BDB−1] = 0. ¤

Lemma 3.4. Let M1, M2 ∈ SL2(C) \ {± I}. Then the following are
equivalent:

(i) trM1 = trM2

(ii) M1 and M2 are conjugate.

Proof. That (ii) implies (i) is immediate from the fact that trX =
trPCP−1.

To show (i) implies (ii), suppose (i). First assume M1 and M2 are
diagonal. Then M1 and M2 are conjugate iff M2 = M1 or M2 = M−1

1 .
In either case, trM1 = trM2.

IfM1 andM2 are diagonalizable, then each is conjugate to a diagonal
matrix, so the above case shows trM1 = trM2.

If M1 is not diagonalizable, then 1
2
trM1 = ±1, so M1 and M2 are

upper or lower diagonal. In this case they are again conjugate. ¤

Lemma 3.5. Let M ∈ SL2(C) \ {± I}. Then M is unitarizable iff
1
2
trM ∈ (−1, 1).

3.2. Unitarization.

Notation 3.6. A matrix A ∈ SL2(C) is unitary if A ∈ SU2.
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A matrix A ∈ SL2(C) is unitarizable if there exists P ∈ SL2(C) such
that PAP−1 ∈ SU2. The matrix P is a unitarizer of A.

Matrices A1, . . . , An ∈ SL2(C) are individually unitarizable iff each
Ak is unitarizable (k = 1, . . . , n).

Matrices A1, . . . , An ∈ SL2(C) are simultaneously unitarizable iff
there exists P ∈ SL2(C) such that PAkP

−1 ∈ SU2 (k = 1, . . . , n).
The matrix P is a unitarizer of A1, . . . , An.

3.3. Spherical triangle inequalities and SU2. Theorem 3.7 gives an ele-
mentary proof of a necessary and sufficient condition for the simultane-
ous unitarizability of three matrices whose product is I. This condition
is found in [2].

Theorem 3.7. Let A1, A2, A3 ∈ SL2(C) be individually unitarizable,
with A1A2A3 = I. and suppose A1, A2, A3 are irreducible (i.e., cannot
be simultaneously conjugated to upper triangular matrices). Let νk be
defined by

1
2
trAk = cos 2πνk.

Then the following are equivalent:

(i) ν1, ν2, ν3 satisfy the triangle inequalities (2.1).
(ii) A1, A2, A3 are simultaneously unitarizable.

Analytic proof. A1, A2, A3 are simultaneously unitarizable iff

CA1C
−1, CA2C

−1, CA3C
−1

are simultaneously unitarizable for some C ∈ SL2(C). Hence we can
assume without loss of generality that A1 is diagonal and unitary.

In the degenerate case that A1 = ±I, then A3 = ±A−1
2 , so t1 = ±1,

t3 = ±t2, and f(t1, t2, t3) = 0, so in this case the theorem is true. So
assume none of A1, A2, A3 is ±I.
A1, A2, A3 are simultaneously unitarizable iff A1, A2 are simultane-

ously unitarizable iff A2 is unitarizable by a diagonal matrix.
Let

A1 =

(

α 0
0 ᾱ

)

where α = x1 + iy1 and x2
1 + y2

1 = 1. Let

A2 =

(

a b
c d

)

,

where a = x2 + iy2, d = x′2 − iy2. Then

A−1
3 =

(

αa αb
ᾱc ᾱd

)

.
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The half traces of A1, A2, A3 are

t1 = x1

t2 = 1
2
(x2 + x′2)

t3 = 1
2
x1(x2 + x′2)− y1y2 +

1
2
i(x2 − x′2)y1.

Since t3 is real, (x2 − x′2)y1 = 0. But by assumption, A1 6= ±I, so
y1 6= 0, and so x′2 = x2, and d = a, so bc is real (since ad − bc = 1).
And t3 = x1x2 − y1y2, so

f(t1, t2, t3) = (1− x2
1)(1− x2

2)− y2
1y

2
2 = y2

1(1− x2
2 − y2

2)

= y2
1(1− ad) = y2

1(−bc).

Thus f ≥ 0 iff ad ≥ 1 iff bc is nonpositive.
A2 is diagonal iff bc = 0 iff f = 0, so from which it follows that f = 0

iff A1, A2, A3 are reducible.
So assume f 6= 0. Then there is a diagonal matrix which unitarizes

A2 iff there is a solution to |x|4 = −c̄/b iff −c̄/b is positive iff bc is
negative. This proves the theorem. ¤

3.4. Spherical n-gon inequalities and SU2.

Theorem 3.8. Let A1, . . . , An ∈ SU2 with
∏

Ak = I. Let νk be defined
by

1
2
trAk = cos 2πνk.

Then ν1, . . . , νn satisfy the n-gon inequalities (2.4).

Analytic proof. The case n = 2 is immediate. The proof is by induction
on n. The base case for the induction n = 3 is part of theorem 3.7.

The proof for n ≥ 4 is similar to that of theorem 2.5. Fix n ≥ 4,
and assume the theorem is true for {3, . . . , n− 1}. Fix P ⊆ {1, . . . , n}
with |P | odd.

Let Q1, Q2 ⊂ {1, . . . , n} be a partition Q1 t Q2 = {1, . . . , n} such
that |Q1| ≥ 2, |Q2| ≥ 2, and Q1, Q2 each index consecutive matrices,
that is, Q1 = {1, . . . ,m}, Q2 = {m + 1, . . . , n}. Let B−1 =

∏m

k=1 Ak,
so

A1 · · · · · AmB = I

B−1Am+1 · · · · · An = I .

Let νB ∈ [0, 1
2
] with

1
2
trB = cos 2πνB.

Let P1 = Q1 ∩ P , P2 = Q2 ∩ P , so that P = P1 u P2. Since |P | is
odd, one of |P1|, |P2| is odd and the other even. Renumber if necessary
so that |P1| is odd and |P2| is even. Let P

′
1 = Q1 \P1 and P ′2 = Q2 \P2.
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Applying the theorem to the values {νi | i ∈ Q1} ∪ {νB},

∑

i∈P1

νi ≤
∑

i∈P1
′

νi + νB +
|P1| − 1

2
.

Again, applying the theorem to the values {νi | i ∈ Q2} ∪ {νB},

∑

i∈P2

νi + νB ≤
∑

i∈P2
′

νi +
|P2|

2
.

Adding,
∑

i∈P1∪P2

νi ≤
∑

i∈P1
′∪P2

′

νi +
|P1 ∪ P2| − 1

2
,

that is,
∑

i∈P

νi ≤
∑

i∈P ′

νi +
|P | − 1

2
.

This proves the theorem. ¤

Corollary 3.9. Let A1, . . . , An ∈ SL2(C) with
∏

Ak = I. Suppose that
A1, . . . , An are simultaneously unitarizable. Let νk be defined by

1
2
trAk = cos 2πνk.

Then ν1, . . . , νn satisfy the n-gon inequalities (2.4).

Proof. Let P be a unitarizer of A1, . . . , An, and let Bk = PAkP
−1. The

trace is invariant under conjugation of a matrix, so

1
2
trBk = cos 2πνk.

But the Bk are unitary, so by theorem 3.8, the ν1, . . . , νn satisfy the
n-gon inequalities. ¤

3.5. The axial triangle. Any M ∈ SU2 can be written uniquely as

M = x I +yA,

with x ∈ [0, 1], y ∈ [0, 1] and A ∈ su2. A is the axis of M and
x = 1

2
trM . If ν ∈ [0, 1

2
] is defined by x = cos 2πν, then M is a

rotation about A by an angle of 2ν. Also,

M−1 = x I−yA.

Theorem 3.10. Let M1, M2, M3 ∈ SU2(C) such that M1M2M3 = I.
Let Ak be the axes of Mk, xk = 1

2
trMk, and tk = cos 2πνk. Let Pk the

planes perpendicular to Ak through the center of S2(r). Then the length
of the sides of the triangle formed by Pij with angles 1

2
trAiAj are nk.
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Proof. Write Mk = xk I+ykAk. Then M−1
i = MjMk, so

xi I−yiAi = (xj I +yjAj)(xk I+ykAk).

Multiplying,

xi I−yiAi = xjxk I +yjxkAj + xjykAk + yjykAjAk.

Taking the half-trace,

xi = xjxk + yjyk
1
2
trAjAk.

This is the spherical law of cosines, hence the triangle with angles
cosines 1

2
trAjAk has side cosines x1, x2, x3. ¤

Remark 3.1. Theorem 3.10 provides an alternate proof of theorem 3.7.
For since ν1, ν2, ν3 are the sides of a triangle, they satisfy the spherical
triangle inequalities by theorem 2.1.

Remark 3.2. Theorem 3.10 does not extend to n > 3. LetM1, . . . ,Mn ∈
SU2(C) such that

∏

Mi = I. Let Ak be the axes of Mk, xk = 1
2
trMk,

and tk = cos 2πνk. Let Pk the planes perpendicular to Ak through the
center of S2(r). Then the length of the sides of the n-gon formed by
Pij with angles 1

2
trAiAj need not be nk.

In particular, let n = 4 and let M1M2M3M4 = I. Then for any P
which commutes with M1M2 (and thus with M3M4) we have that the
product of the four matrices M1, M2, PM3P

−1, M4 is I. The planes
P1, P2 remain fixed, but the planes P3, P4 get rotated.

Theorem 3.10 provides the first step in an alternate inductive proof
of theorem 3.8.

Geometric proof of theorem 3.8. The theorem is true for n = 3 by
remark 3.1. Assume the theorem is true for 1, . . . , n − 1. Given
M1, . . . ,Mn ∈ SU2 with M1 . . .Mn = I. Let νk ∈ [0, 1

2
] be defined by

cos 2πνk = 1
2
trMk. Choose k ∈ 2, . . . , n− 2 and let A−1 = M1 . . .Mk,

so

M1 . . .MkA = I

A−1Mk+1 . . .Mn = I .

Let α ∈ [0, 1
2
] be defined by cos 2πα = 1

2
trMk. By the induction

hypothesis, ν1, . . . , νk, α satisfy the spherical (k + 1)-gon inequalities,
and νk+1, . . . , νn, α satisfy the spherical (n − k + 1)-gon inequalities.
Hence by theorem 2.5 there exists a spherical (k + 1)-gon P1 with
side lengths ν1, . . . , νk, α, and a spherical (n− k + 1)-gon P2 with side
lengths νk+1, . . . , νn, α. Since the polygons P1 and P2 each has a side
with length α, they can be glued together along this side to form an
n-gon with sides ν1, . . . , νn. ¤
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3.6. Computing the Unitarizer.

Lemma 3.11. Let M1, . . . ,Mn ∈ SL2(C). The following are equivalent:
(1) P ∈ SL2(C) simultaneously unitarizes M1, . . . ,Mn ∈ SL2(C); (2)
P ∗P is in the kernel of the linear operator defined by

XMk −M∗
k
−1X.

Remark 3.3. Thus to construct the simultaneous unitarizer ofM1, . . . ,Mn ∈
SL2(C), let X be a Hermitian positive-definite element in the kernel.
Then X factors into X = P ∗P , and P is a simultaneous unitarizer.

4. Simultaneous Unitarizability and Hyperbolic Space

The problem of simultaneous unitarizability can be visualized in the
ball model of hyperbolic 3-space. In this model, a unitary matrix is
a rotation of H3 about an axis which is a geodesic through the center
of the ball. The axes of a set of unitary matrices then all intersect at
the center of the ball. Simultaneous conjugation of this set moves the
axes to geodesics which do not necessarily pass through the center of
the ball, but still intersect at a common point. Conversely, if the axes
of a set of unitarizable matrixes intersect at a common point, then the
matrices are simultaneously unitarizable (theorem 4.2).

4.1. Hyperbolic geometry. First we give a known description of the
group of isometries of hyperbolic space. This is constructed syntheti-
cally from the action of the Möbius group on the 2-sphere.

The Möbius group PSL2(C) acts on C ∪ {∞} = P1. This action
can be extended synthetically to an action on the half-space or ball in
a conformally, making PSL2(C) the group of isometries of hyperbolic
3-space.

This action is defined as follows. Let p be a point in the halfspace.
There exist three hemispheres through p perpendicular to the plane,
intersecting the plane in three circles. An element of PSL2(C) takes
these three circles to three circles. The three hemispheres on these
circles intersect in a point q in the halfspace. The action is defined to
take p to q (figure 1).

In definition 4.1, the isometries of H3 are classified into types anal-
ogous to the rotations, translations and screw motions of R3.

Definition 4.1. Let M ∈ PSL2(C) \ {I}.

(i) M is parabolic iff 1
2
trM ∈ {±1}.

(ii) M is elliptic iff 1
2
trM ∈ (−1, 1).

(iii) M is hyperbolic iff 1
2
trM ∈ R \ [−1, 1].

(iv) M is loxodromic iff M is not parabolic or elliptic.
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Figure 1. Three hemispheres intersecting at a point.

Figure 2. The three kinds of isometries of H3 (ball model):
elliptic, hyperbolic and loxodromic.

If M ∈ PSL2(C) \ {I} is parabolic, it has one fixed point; otherwise
it has two, and there is a geodesic γ joining the fixed points which
is setwise fixed by M . In this case, elliptic elements are “rotations”
around γ, hyperbolic elements are “translations” along γ, and elements
which are neither parabolic, elliptic or hyperbolic are “screw motions”
along γ.

4.2. Simultaneous Unitarization in Hyperbolic 3-Space. Elliptic ele-
ments of PSL2(C) are simultaneously unitarizable iff their axes inter-
sect.

Theorem 4.2. LetM1, . . . ,Mn ∈ SL2(C) be elliptic elements in PSL2(C).
Let α1, . . . , αn be their axes in H3. Then M1, . . . ,Mn ∈ SL2(C) are
simultaneously unitarizable if and only if α1, . . . , αn intersect at a com-
mon point p ∈ H3.

Proof. For any point p ∈ H3 there exists an isometry of H3 taking p to
0 (ball model). But an isometry of H3 is conjugation by P ∈ SL2(C).
Hence α1, . . . , αn have a common point p iff M1, . . . ,Mn ∈ SL2(C) can
be simultaneously conjugated to elliptic elements of PSL2(C) whose
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axes pass through 0. Such elements are precisely the unitary matrices.
¤

4.3. Unitarization and cross ratios. Theorem 4.2 reduces the unita-
rization problem to the problem of knowing when geodesics in H3 in-
tersect. If two geodesics in H3 intersect, their endpoints must lie on a
circle. This property can be measured by the reality of the cross ratio
of the endpoints (lemma 4.5). However, if the endpoints lie on a circle,
the geodesics do not necessarily intersect (figure 3). They intersect iff
their real cross ratio is in a certain interval.

z1

z2

z ’1

z ’
2

z1

z ’1
z ’

2

z2

z1

z ’1 z ’
2

z2

Figure 3. The three cases in which circle arcs intersect, meet
on the boundary and do not intersect. These correspond to
the cases φ ∈ (0, 1), φ ∈ {0, 1} and φ ∈/ [0, 1] respectively.

Before proving these results, some elementary properties of the cross
ratio are listed.

There are six ways to define the cross ratio. We choose the unique
permutation for which [0, 1, ∞, z] = z.

Definition 4.3. Let z1, z2, z3, z4 ∈ P1. The cross ratio is

[z1, z2, z3, z4] =
(z4 − z1)

(z2 − z1)

(z2 − z3)

(z4 − z3)

Remark 4.1. Special cases of the cross ratio: 1. If z1, z2, z3, z4 are
distinct, then

[∞, z2, z3, z4] =
z2 − z3

z4 − z3

[z1, ∞, z3, z4] =
z4 − z1

z4 − z3

[z1, z2, ∞, z4] =
z4 − z1

z2 − z1

[z1, z2, z3, ∞] =
z2 − z3

z2 − z1

.



SPHERICAL POLYGONS AND UNITARIZATION 17

2. If no three of z1, z2, z3, z4 are equal, then

[z1, z, z, z4] = [z, z2, z3, z] = 0

[z1, z, z3, z] = [z, z2, z, z4] = 1

[z1, z2, z, z] = [z, z, z3, z4] =∞

3. If three of z1, z2, z3, z4 are equal, then the cross ratio [z1, z2, z3, z4]
is undefined.

Lemma 4.4 (Symmetries of the cross ratio). Let z1, z2, z3, z4 ∈ P1 with
no three equal. Let

φ = [z1, z2, z3, z4].

Then

φ = [z1, z2, z3, z4] = [z2, z1, z4, z3] = [z3, z4, z1, z2]

1− φ = [z2, z1, z3, z4]

1/φ = [z3, z2, z1, z4]

Lemma 4.5. Let z1, z2, z3, z4 ∈ P1 with z1 6= z2 and z3 6= z4. Suppose
that φ = [z1, z2, z3, z4] ∈ R, so z1, z2, z3, z4 lie on a circle or straight
line c. Let α, β be the circles from z1 to z2 and from z3 to z4 respectively
which are perpendicular to c. Then

(i) α, β intersect off c iff φ ∈ (0, 1).
(ii) α, β intersect on c iff φ ∈ {0, 1}.

Proof. The proof is by cases, using the symmetries of the cross ratio.
¤

Theorems 4.6–4.7 brings together the previous lemmas to give a nec-
essary and sufficient condition for the simultaneous unitarizability of 2
and 3 unitarizable matrices.

Theorem 4.6. Let M1, M2 ∈ SL2(C) be individually unitarizable, and
suppose [M1, M2] 6= 0. Let zk, z

′
k be the eigenlines of Mk and suppose

z1, z
′
1, z2, z

′
2 are distinct. Let φ = [z1, z

′
2, z1, z

′
2]. M1, M2 are simulta-

neously unitarizable iff φ ∈ (0, 1).

Proof. Since M1, M2 are individually unitarizable, they are elliptic el-
ements of PSL2(C). Let α1, α2 be their axes in H3. By lemma 4.5,
α1, α2 intersect at a point p ∈ H3 iff φ ∈ (0, 1). By lemma 4.2, M1, M2

are simultaneously unitarizable. ¤

The following theorem provides a criterion for the simultaneous uni-
tarizability of three matrices.
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Theorem 4.7. Let M1, M2, M3 ∈ SL2(C) be individually unitarizable,
and suppose [Mi, Mj] 6= 0. Let zk, z

′
k be the eigenlines of Mk and sup-

pose z1, z
′
1, . . . , z3, z

′
3 are distinct. Let φij = [zi, z

′
i, zj, z

′
j]. If (1)

φij ∈ (0, 1), and (2) z1, z
′
1, z2, z

′
2, z3, z

′
3 do not lie on a circle, then

M1, M2, M3 are simultaneously unitarizable.

Proof. SinceMk are individually unitarizable, they are elliptic elements
of PSL2(C). Let αk be their respective axes in H3. Condition (1)
insures that the αk intersect pairwise. Condition (2) insures that the
αk do not lie in a common geodesic hemisphere. Since φ12 ∈ R, α1, α2

lie in a common hemisphere Σ and intersect at a point p ∈ Σ. But
α3 does not lie in Σ, so α3 intersects Σ in at most one point. But
α3 intersects both α1 and α2. intersects both α1 and α2 at p. Hence
α1, α2, α3 have a common intersection point. By lemma 4.2, M1, M2

are simultaneously unitarizable. ¤

4.4. Simultaneous Unitarization in Hyperbolic 3-Space. The follow-
ing theorem provides a criterion for the simultaneous unitarizability of
n matrices in terms of certain triples.

Theorem 4.8. Let M1, . . . , Mn ∈ SL2(C) be individually unitarizable.
Let T graph of each of whose nodes is a triple of numbers taken from
the set {1, . . . , n}, and such that each number in {1, . . . , n} is in at
least one element of T . The nodes of T are connected which have two
numbers in common. Suppose

(i) T is a connected graph;
(ii) for each node (i, j, k) ∈ T , the matrices (Mi, Mj, Mk) are

simultaneously unitarizable;
(iii) for any pair of connected nodes (i, j, k) and (j, k, l) ∈ T ,

[Mj, Mk] 6= 0.

Then M1, . . . ,Mn are simultaneously unitarizable.

Proof. For each k ∈ (1, . . . , n), let αk be the axes of Mk. The axes
are distinct, since the matrices do not pairwise commute. We prove by
induction that the axes α1, . . . , αn intersect at a point p. It then follows
by theorem 4.2 that M1, . . . ,Mn are simultaneously unitarizable.

Let t1, . . . , tS be the nodes of T arranged so that for each R, tR
is connected to at least one of t1, . . . , tR−1. For the base case of the
induction, let t1 = (i, j, k). Since by hypothesis, (Mi, Mj, Mk) are
simultaneously unitarizable, by theorem 4.2, αi ∩ αj ∩ αk 6= ∅. Since
αi, αj, αk are distinct geodesics in H3, αi ∩ αj ∩ αk is a single point p.

Now suppose that for all the numbers i in t1, . . . , tR, we have that
p ∈ αi. Since tR+1 is connected to some tJ (1 ≤ J ≤ R), at least two
of the numbers in tR is in one of t1, . . . , tR. Let tR+1 = (i, j, k) and
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suppose i and j are in one of t1, . . . , tR. We want to show that p ∈ αk.
Since by hypothesis, (Mi, Mj, Mk) are simultaneously unitarizable, by
theorem 4.2, αi∩αj ∩αk 6= ∅. Since αi and αj are distinct geodesics in
H3, their intersection is a single point, which is p. Therefore p ∈ αk. ¤

Corollary 4.9. Let M1, . . . , Mn ∈ SL2(C) be individually unitarizable,
and suppose [Mi, Mi+1] 6= 0 for 2 ≤ i ≤ n− 1. If the triples

(M1, M2, M3), (M2, M3, M4), . . . , (Mn−2, Mn−1, Mn)

are each simultaneously unitarizable, then M1, . . . ,Mn are simultane-
ously unitarizable.
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