A lively activity: To do mathematics

Diophantine equations

15 May 1982

Summary: Interest in solving equations in integers or rational numbers
dates back from antiquity. I tried to'show some fundamental problems which
are still unsolved. Euclid and Diophantus already solved the equation
a® + b* = ¢ and gave a formula for all the solutions. The next hardest
equation like y* = x> + ax + b has given rise to very great problems which
have been at the center of mathematics since the 19th century. No one
knows how to give an effective method for finding all solutions. I described
some of the structures which the solutions have, and the context in which
one would like to find such a method.



In May 1981, during a brief stay in Paris, Serge Lang gave us a
conference on prime numbers, showing some of the motivation
which leads a mathematician to ‘“do mathematics".

The welcome given him by the audience, the curiosity and
enthusiasm of certain students who had attended his talk led him to
renew the experience this year, and we are all grateful to him for
doing so.

The following text was written in the same spirit as the one last
year; that is, to preserve as far as possible Serge Lang’s lively tone
and style. The text reflects the exchange, with one deletion and a
few additions. The deletion concerned an exchange on problems of
high school teaching. It was either too general, or on the contrary
too personal, and the questions did not seem to shed any light on
this topic, so we decided to delete it. On the other hand, since Serge
Lang prefers to do things rather than to talk about ‘“‘what could be
done?”’, the reader who would like to know more precisely how he
conceives a mathematics book at this level can consult his Basic
Mathematics,* or the book Geometry, written together with Gene
Murrow.j

The additions deal with certain mathematical points which could
not be discussed for lack of time. These points illustrate, in a certain
way, the patience and kindness with which Serge Lang, in the follow-
ing weeks, accepted to answer all my questions, including those
which today appear rather naive. | take this occasion to express my
thanks.

The last pages of the conference, concerning some conjectures
about the size of solutions, were added six months later, and showed
at the time, if it was still necessary, that the conference dealt with
live mathematics, mathematics in the process of being done. Since
then, one could not have found a better proof of the vitality and
relevance of mathematical research: Mordell’s conjecture (p. 55)
which was about sixty years old, was proved by Gerd Faltings in Ger-
many. This first rate result was obtained in part by using the vast
resources of algebraic geometry, developed mainly during these last
thirty years; and in part by relying on the work of the Soviet school of
mathematics. This is a relatively frequent situation in mathematics,
when a great personal contribution takes place in the context of the
work developed by an active mathematical community.

J.B.

* Addison-Wesley, 1971 (out of print).
1Springer-Verlag, 1983.



The conference

SERGE LANG. The goal of this talk is again to do mathematics
together. For those who were not here last year, I'll start with a few
minutes of more general comments. Last time, I asked: “What does
mathematics mean to you?” And some people answered: “The manipula-
tions of numbers, the manipulation of structures.” And if I had asked
what music means to you, would you have answered: “The manipulation
of notes?” So I ask again: What does mathematics mean to you?

GENTLEMAN. It’s to work with numbers.
SERGE LANG. No, no! It’s not to work with numbers.
A HIGH SCHOOL STUDENT. It’s to solve a problem.

SERGE LANG. There, you are getting closer. Solve a problem. That’s
what I had tried to show you last time. That it was not just to manipulate
something. It strikes much more deeply into our psychology, and unfor-
tunately there is nothing, or almost nothing, except for certain exception-
ally gifted teachers, there is nothing in our elementary schools or high
schools which allows people to realize what mathematics is about, or what
it means to do mathematics. Just before the conference, I was looking at a
tenth grade textbook in Mr. Brette’s office (he organized this conference),
and it’s to vomit. [Whisperings in the audience.] It’s to vomit, from all
points of view: the general incoherence, which goes from beginning to
end; the little problems which don’t mean anything; the aridity of the
exposition . . . It’s disgusting. [Agitation in the audience, some laughter.]

QUESTION. Can you tell us the name of the book?

SERGE LANG. Oh! I could have brought it down here, I wouldn’t
mind! You know, I’'m not afraid to say what I think. But I left it upstairs.
Anyhow, these things are practically all alike. [Laughter.] You know,
those things are homogeneous. So what I am trying to do now, is to show
you something else; to show you why mathematicians do mathematics,
and spend their life doing it. That’s what I am trying to show you.

Last time, we also talked about the role of pure and applied mathemat-
ics, of the relations between them, very briefly. And I read a quote from
von Neumann, when he complained about what he called “baroque”
mathematics. He said:

As a mathematical discipline travels far from its empirical sources, or
still more, if it is a second and third generation only indirectly inspired
by ideas coming from “reality”, it is beset with very grave dangers. It
becomes more and more purely aestheticizing, more and more [‘art
pour lart...at a great distance from its empirical source...a
mathematical subject is in danger of degeneration.
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32 A LIVELY ACTIVITY: TO DO MATHEMATICS

So he was complaining. But there is another quote from von Neumann
which one should read to those people who pester us with the first, and
don’t know or don’t mention the second. I am going to read it to you.

But still a large part of mathematics which became useful developed
with absolutely no desire to be useful, and in situations where nobody
could possibly know in what area it would become useful; and there
were no general indications that it ever would be so. By and large it is
uniformly true in mathematics that there is a time lapse between a
mathematical discovery and the moment when it is useful; and that this
lapse of time can be anything from thirty to a hundred years, in some
cases even more; and that the whole system seems to function without
any direction, without any reference to usefulness . .. This is true for
all of science. Successes were largely due to forgetting completely about
what one ultimately wanted, or whether one wanted anything ulti-
mately; in refusing to investigate things which profit, and in relying
solely on guidance by criteria of intellectual elegance; it was by follow-
ing this rule that one actually got ahead in the long run, much better
than any strictly utilitarian course would have permitted.

I think that this phenomenon could be studied very well in mathemat-
ics; and I think everyone in science is in a very good position to satisfy
himself as to the validity of these views. And I think it extremely
instructive to watch the role of science in everyday life, and to note
how in this area the prir.iple of Laissez faire has led to strange and
wonderful results. [vN]

There is nothing like saying contradictory things to be always right.
[Laughter.]

OK, that’s enough general comments, let’s do mathematics.

Of course, as I said last year, I am forced to choose topics which are in
principle understandable by everybody. This means that most of
mathematics is completely excluded. And it is also true that there will be
numbers in the subject I have chosen for today. But it is not so much the
presence of numbers that counts, as the way we are going to deal with
them and think about them.

We can start without numbers, just as Pythagoras would have done, by
taking a right triangle, with sides a,b,c. 1 suppose that everybody
remembers Pythagoras’ theorem, which says what? [Serge Lang points to a
young man in the audience. Laughter.]

YOUNG MAN. The sum of the squares . . .
SERGE LANG. Yes, so what is the first square? It’s a. ..
YOUNG MAN. a squared plus b squared equals ¢ squared.
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SERGE LANG. That’s right, it’s the equation
a® + b2 = 2.

Now, do you know any solutions of this equation in integers? Everybody
knows what an integer is? 1, 2, 3, 4, 5, 6 and so on. So are there solutions
with integers?

THE AUDIENCE. 3, 4, 5.

SERGE LANG. No, wait! I am asking the guy here. [Laughter.] Let me
choose. [Laughter again.] And especially, the rules of the game: there are
probably, and even certainly, a number of mathematicians in the audi-
ence. I ask them not to intervene, it’s not for them that I am giving this

talk and if they intervene, it’s cheating! All right, let’s go back to the
young man over here. Give me a solution.

YOUNG MAN. 3 squared plus 4 squared equals 5 squared.

SERGE LANG. Yes. Now 1s there another one? Well, let’s take a vote,
we do this very democratically. You, sir, you say no. The gentleman over
there thinks the answer is yes. Who says no? Raise your hand. Who says
yes? There is quite a lot of yes. Those who say yes, give me another solu-
tion. Sir?

THE GENTLEMAN. [No answer.]
SERGE LANG. You said yes.

GENTLEMAN. I know that there are many other solutions, but it is a
little difficult to say which ones.

SERGE LANG. All right, is there any one who knows another one?
THE AUDIENCE. 5, 12, 13.
SERGE LANG. It works, 25 + 144 = 169.

A HIGH SCHOOL STUDENT. If you have one, (g, b, ¢), and if d is any
number, then (da, db, dc) will also work.
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SERGE LANG. Right, if (a, b, ¢) is a solution and if you multiply by an
integer d, then you get another solution:

(da)* + (db)* = (dc)’.

Therefore, the reasonable question is: are there other solutions besides the
two we already know, and their multiples?

Who says yes? Who says no? Who keeps a prudent silence? [Laughter.]
In any case, we are facing a problem which the Greeks already knew.
Well, what we are going to do in the next five or ten minutes, is to find all
the solutions, and I will prove it. How do I prove it? I write them all
down. But since I can’t write them down one after another, because there
is an infinite number of them, I must have a general method. So we begin
by transforming the problem a little. If I divide the equation
a’ + b* = c? by ¢, then I get

a b
=P+ )P =1
c c
Ilet x = a/c and y = b/c. Then the equation a* + b? = ¢? becomes
x2 4+ yr=1.

And if a, b, ¢ are integers, then x, y will be . . . what kind of numbers?
AUDIENCE. Rational numbers.

SERGE LANG. That’s right. Consequently, to find one or all the solu-
tions of a® + b2 = c¢? in integers is equivalent to finding all the solutions
of x2 4+ y2 = 1 in rational numbers. Because conversely, if I have a solu-
tion (x, y) in rational numbers, then I can write each number as a fraction,
with a common denominator c¢; and then I clear denominators and I find
a solution of a® + b2 = ¢? in integers. The problem is now to find all the
solutions of x2 4+ y? = 1 in rational numbers.

Do you know what the equation x> + y> = 1 represents? What is its
graph?

AUDIENCE. A circle.

SERGE LANG. Yes, we can draw it here.

A

\ /
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It’s a circle of radius 1, and with center at the origin of the axes. We have
a triangle of hypotenuse 1, and sides x, y. We can state our problem by
saying that we must find all the rational points on the circle, that is all the
points whose coordinates x and y are rational numbers.
Before I find all the solutions, I am going to write down a lot of them. I
let:
1 — ¢ 2

X = —5 and - .
1 + ¢ YT Fe

I write these formulas . . .
MR. A. [Aggressive.] But you thought of these just like that . . .

SERGE LANG. No, I did not think of them “just like that”, but some-
one, long ago, thought of them “just like that”.

MR. A. Oh yes? Really, all of a sudden?

SERGE LANG. No, of course not, he was playing with mathematics, he
was looking at a lot of things, and then he realized that it gave solutions.
When he realized this, he was doing mathematics and he was being a
good mathematician. But once he discovered it, then the next generations
use the result, and copy it. That’s all I was doing, I don’t claim anything
else.

MR. A. Don’t you think that is precisely the difficultly for someone who
does not keep up with mathematics, to find these results in order to
effectively do mathematics?

SERGE LANG. Where a mathematician goes fishing for these things
cannot be explained. Each mathematician gets them wherever he can.
Right now, I am trying to show you a complete solution of the problem.
After that, I'll show you unsolved problems. You can work on
them . . . you can go fishing for them by yourself, and if the fish bites and
you catch a big fish, then you get a gold medal or a chocolate medal.

ANOTHER. It comes from trigonometry, no?

SERGE LANG. It comes from wherever you want. I don’t have time
now to show you that in greater detail. It comes from many places simul-
taneously.'

! The question where those formulas come from arises frequently, and until today, I did not
know the answer. Considering the intensity of the audience’s reaction, both during the talk
and afterwards, I decided to look into the history of these formulas more closely. Historically
the Greeks were interested in the solutions of @’ + b = ¢’ in integers. Euclid (three centu-
ries BC) already knew the formulas

a = m*—n? b = 2mn, ¢ = m*+n?,

with integers m, n. Diophantus (three centuries AD) knew how to deal with fractions, and
also knew that if you divide these formulas by m? + n? and put 1 = m/n, then you get back
the formulas which I have written above. These formulas therefore certainly did not come
from “trigonometry”. Diophantus was interested in finding rational solutions to equations
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Now let’s check that our formulas do give solutions of x2 + y? = 1.
With very little algebra, you find:

s 1 =224 ¢ 2 4
1 + 22 + % Y 1 + 22 + ¢

and therefore

s L+ 22 44
1+ 202 + ¢4

x2+y

We have therefore found an identity, which is valid for all values of .
Suppose that I substitute for r some rational number. What do I obtain
for x and y?

AUDIENCE. 77?7

SERGE LANG. We obtain rational numbers. We obtain them from ¢ by
additions, subtractions, multiplications, and divisions. Therefore we
obtain rational numbers.

AUDIENCE. Yes.

SERGE LANG. Look at an example. Somebody—you, madam, give me
some value for ¢.

LADY. One half.
SERGE LANG. Thank you. We put ¢+ = 1/2 and we compute a little:

1—1/4 _ 3/4 _ 3
1+ 1/4 5/4 5

just like the one we have considered, and like we shall consider later. The search for these
solutions is known today under the name of diophantine problems. The equations are called
diophantine equations. See [Di], especially Book VI, where Diophantus solves problems con-
cerned with Pythagorean triangles with additional conditions, using the formulas. See the
end of the conference for the converse, and also [La—Ra]. Since it may interest people to see
how Diophantus expressed himself, I reproduce here the first few lines of Problem XVIII of
Book VI:

To find a right triangle such that the number of its area augmented by the number of its
hypotenuse forms a cube, and that the number of its perimeter is a square.

If, as in the preceding proposition, we suppose that the number of the area is one
arithme, and that the number of the hypotenuse is a cubic quantity of units, minus 1
arithme, then we are led to search for a cube which, augmented by two units, is a
square . . .

There are about 300 pages in this style!
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and

2-1/72 1

1+ 1/4  5/4

4
=

Here we find the triangle 3, 4, 5. OK, 1/2 is not very big and it is natural
that we found the same solution in integers that we already knew. Now, if
you want to do the computation with another fraction, maybe one that is
not so simple, you will find other solutions. Do you want to give me
another fraction?

LADY. 2/3.
SERGE LANG. All right, let’s compute quickly:

1-4/9 _9-4 _ 5
14+4/9 9+ 4 13

2:2/3 43 _ 12

1 +4/9  13/9  13°

Now we got back the solution 5, 12, 13 which somebody already men-
tioned. It’s clear that you can continue with any fraction ¢, or any integer
t. If you substitute for instance t = 154/295, you will get values for x and
y which are a lot bigger, and which will give solutions. By this process,
you see how to obtain an infinite number of solutions. It is a theorem that
one obtains all of them except one: x = —1 and y = 0 cannot be
obtained by such substitutions in the formulas. But all the other solutions
(x, y) in rational numbers can be obtained by this procedure, by substitut-
ing a rational value for ¢ in the formulas

1—¢2 and 2
1412 YT T ¥

5 -

Since I want to deal with another topic at greater length, I am going to
skip now the proof that this gives all the solutions except one of them.
Maybe there will be time to give this proof later, after the talk.

MR. A. You said that one “sees” that there is an infinite number of
solutions. Who “sees” it?

SERGE LANG. If you substitute an infinite number of values of ¢ in
these formulas, you get an infinite number of values of x.

MR. A. But it’s not so easy to see.
SERGE LANG. Yes, it is, but I don’t want to go into details now.

MR. A. But I want to say that it cannot be seen so easily. [Brouhaha in
the audience.)
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SERGE LANG. It depends who looks at it, it depends how good your
eyes are. [Laughter.] 2

OK, we just considered the equation x2 + y? = 1. Suppose we want to
generalize this equation, and study others which are more complicated.
What will be the next complicated type of equation that we should look
at? Let’s pick on somebody. Madam.

THE LADY. Replace 1 by another number.

SERGE LANG. That’s a possibility. We can study x2 + y* = D. There
is a theory for that which is quite similar to the one we have just seen. Let
me skip it.

AUDIENCE. Look at the equation x? 4 y% + z2 = D.

SERGE LANG. Very good, we can increase the number of variables.
This raises some very interesting questions. But I am trying to make you
say what I have in mind, I am trying to make you suggest what I intend
to do.

AUDIENCE. Replace the square by a cube.

SERGE LANG. There we are. For example, the equation x* + y? = D,
obtained by putting 3 instead of 2. Let’s write it in the most classical
form:

y2 = x> + D.
For instance, y> = x* + 1. Are there infinitely many solutions? Is there
even a single one?

AUDIENCE. Yes. 2 and 3, because 32 =2 +1.
SERGE LANG. Is there another one?

AUDIENCE. x = 0,y = l;andx = -1,y = 0.
SERGE LANG. OK, we now have three solutions. Is there another one?
AUDIENCE. x = 0,y = —1.

SERGE LANG. That’s right, because of the square, we can take y or
—y. So to summarize, we have the five solutions:

x=0,y=+1; x=-1,y=0; x=2,y= £3.

2 No matter how you look at it, you will find immediately what you are looking for. For
instance, we have the equation

l—x
1+ =1-¢7 5o 1+x)=1-x and FA=-—=.
x(1 + %) (1+ ) —
So to each value of x there corresponds a value of r or —¢, and at most two values of 7 give

the same value of x.
One can also notice that if ¢ increases from O to 1 then 1—r* decreases, while 141?
increases, so x = (1—¢?)/(1+1¢*) decreases from 1 to 0. In particular, different values of ¢

give different values of x.
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Are there other solutions? Who says yes? Raise your hand. Who says no?
Who keeps a prudent silence?

It’s not at all trivial. The difficulty to find solutions for this equation,
and other similar ones, is much greater than for the equation
x? + y? = L. Itis a theorem that there is no other solution. It’s out of the
question to prove it here.

Now, who knows about graphs? Do you know how to draw a graph?
Who does not know? Raise your hand so I can see. [4 few hands go up.]
OK, I shall explain briefly what a graph is.

Suppose I have here on this axis values of x, and on the other axis
values of y, and each x is a real number. For any real number x, I cube it,
I add 1, and then I find two values for y:

y = Vx’+1 and y = —Vx’+1.
For example:

ifx =1, theny = :i:\/2_;
ifx =2, theny = +3;
ifx =3, theny = :L-\/:’Z§;
ifx = —1,theny = 0.

If x is negative and smaller than — 1, then x> + 1 is negative, and there
won’t be a corresponding value for y. On the opposite side, if x grows
indefinitely, then y grows also. To each x there correspond values y and
—y, as on the following figure.

/

3 4 x-—axis

We can generalize our equation as you wanted to do earlier for
x? + y?, by considering

y2 = x*> + D, where D is positive or negative.
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We also want to consider the equation y* = x> + x, or y* = x* + ax,
which has considerable historical interest. For example, the Greeks and
the Arabs had raised the following question. What are the rational
numbers A such that 4 is the area of a right triangle, with integral sides
a, b just like those we considered at the beginning. One can show that A4
is such a number if and only if the equation

Y2 = %3 — A%

has infinitely many rational solutions.’
So finally, let’s consider the equation

y2=x3+ax+b,

which covers all these cases. When we dealt with y> = x>+ b or
y2 = x3 + ax, we assumed that b # 0 and a # 0, otherwise the equations
are too degenerate. Similarly, for the general equation, we assume that
4a® 4+ 27b% + 0, to guarantee the appropriate non-degeneracy. For our
purposes, you don’t need to pay any more attention to such a technicality.

The graph of the general equation y*> — x> + ax + b is going to look

like this, with a branch tending to infinity, and sometimes an oval.

A l

Y
v

D _.
an

3 The area of a right triangle whose sides are a, b and hypotenuse c is given by the formula
A = ab/2.
Hence we find
¢t + 44 = a* + b* + 2ab = (a + b)
2 — 44 = @* + b* — 2ab = (a — b).

It follows that a rational number 4 is the area of a right triangle if and only if one can solve
simultaneously the equations

ur + 44v* = w?

u? — 44v* = 72
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Using this graph, we can define an addition for points. Take two points
P and Q on the curve. We define the sum of these two points in the fol-
lowing way. The straight line passing through P and Q intersects the curve
in a third point. We reflect this point over the x-axis, and we find a new
point which we denote by P + Q as on the figure.

%
_

v
v

B

P+ Q

P+ Q

a) case where there is an oval b) case where there is no oval

A UNIVERSITY STUDENT. But it does not always happen that the line
through two points intersects the curve in a third point.

SERGE LANG. Oh yes? Can you give me an example?
A STUDENT. Well, yes, if the line is vertical.

SERGE LANG. Excellent remark. She is right, because if Q is the
reflexion of P over the x-axis, then the vertical line will not cut the curve
in any other point. We shall come back to this special situation in a
moment. But this is essentially the only possible example of this
phenomenon. Before looking at this special case, let’s go back to the
definition of the sum of two points.

I have used the symbol +. You have the right to expect certain proper-
ties, otherwise I should not have used the symbol +. What are those pro-
perties?

AUDIENCE. 77?

in rational numbers (, v, w, z). In a recent article, J. Tunnell [Tu] took up this theme and
remarked that if one makes a projection from the point (1,0, 1, 1) onto the plane z = 0, then
one obtains a correspondence between the curve defined by these simultaneous equations,
and a plane curve, which itself can be put in the form

Yt =x* — A%,

which is precisely of the type we are now considering. Tunnell gives criteria for the existence
of an infinite number of solutions depending on recent, and quite difficult mathematical
theories.
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SERGE LANG. You know the symbol + from ordinary addition of
numbers. I have just defined an addition of points. Which properties does
addition of numbers have?

SOMEONE IN THE AUDIENCE. It’s a group law.

SERGE LANG. Don’t use such fancy language.

SOMEONE ELSE. The order of the terms can be reversed.
SERGE LANG. Indeed, that’s the first property. We must have

P+Q=0+P

Which is true. To compute Q + P, I use the same straight line, so I find
the same point of intersection, so the same sum Q + P = P 4+ Q. What
other properties can you expect?

SOMEONE IN THE AUDIENCE. Associativity.

SERGE LANG. You, it’s clear that you know too much. [Laughter.] Let
others speak too. For instance, the lady, there.

LADY. Associativity.

SERGE LANG. Yes, that’s right. What does it mean? If I take the sum
of three points, I could take it in two possible ways:

P+(Q@+R and (P+ Q)+ R.

Associativity means that these two expressions are equal, therefore we
have

P+ Q@+ R)=(P+ Q) + R.

It’s obvious that P+ Q = Q + P, but if you try to prove associativity,
you won’t find it so easy. If you try by brute force, you won’t succeed. But
it’s true.

What other properties do you expect?

A HIGH SCHOOL STUDENT. A neutral element?

SERGE LANG. That’s it. So what will be the neutral, or zero element?
It means an element such that

P + neutral element = P.
Is there one?
SOMEONE. The point over there.

SERGE LANG. No. This requires some imagination. Ah [Laughing] the
gentleman over there does like this [pointing upward] Are you a
mathematician?

GENT. No, but I have been one. [Laughter.]

SERGE LANG. We are forced to invent this neutral element. Let’s
redraw the figure.
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You are given a point P. What do I have to find? I must find something
which is such that, when I take the straight line between P and this some-
thing, the line cuts the curve in a point whose reflection over the x-axis is
P itself. The reflection of P is denoted by R in the figure, and the line
passing through P and R is the vertical line. Consequently, if there is a
point O such that P + O = P, this point cannot lie anywhere in the plane,
because it must be on the curve and on the vertical line. So what do we
do? We invent this point. We call it zero, and denote it by O. We say that O
is at infinity. All the vertical lines tend toward infinity, going up or down.
We make the convention that all these points at infinity are all the same
point. We define a single point at infinity, which we view as the intersec-
tion of all vertical lines. It is a convention we accept that the straight vert-
ical line passing through P also passes through P and O, and if this line
cuts the curve at R, then P + R = O. Then what should we call R?

AUDIENCE. Minus P.
SERGE LANG. Yes, very good, because one has the condition

P+ (—=P)=0.

That’s the convention we adopt.

v

R
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And if I want to find P + P, what do I do?
AUDIENCE. Take the tangent.

SERGE LANG. That’s right, perfect. The tangent to the curve at P cuts
the curve in a point, which we reflect to obtain P + P, which I also
denote by 2P. Suppose I want to find 3P. What do I do? I take the sum
2P + P, always following the same process: I draw the line between P
and 2P, I reflect the point of intersection of this line with the curve, and I
find 3P. Same thing for

4P = 3P + P, SP = 4P + P, and so on.

Now a little question. Where are all the points P such that 2P = O?
Use your imagination. Where are they? You. [Pointing to someone.]

SOMEONE. I don’t see.

SERGE LANG. You saw how we find 2P. We draw the tangent, we look
at where the tangent cuts the curve, we reflect, and we get 2P. Now I
want 2P to be at infinity.

GENTLEMAN. On the horizontal line.

.
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SERGE LANG. That’s right, the points P such that 2P = O will be the
points whose tangent is vertical, and therefore the points on the curve
which lie on the horizontal line, the x-axis. There will be three such points
if there is an oval. If there is no oval, then there is only one such point.
Plus O itself, of course.

Suppose we have found a point P = (x, y) which is rational, that is
whose coordinates (x, y) are rational numbers.

Then in general, I can find other rational points: the multiples
2P, 3P, 4P , etc. will also be rational. One can see this because one can
give a formula for the addition of two points.

Let’s look at three points on the curve y*> = x> + ax + b:

Py = (x1,)1), Py = (x2,)2), Py = (x3,)3)

and suppose that P3 = P; + P,. How do you compute the coordinates
x3, y3 from the coordinates x;, x2, y1, y2? There is a formula:

2
Y2 =)
X3 = —X] — X2 + | ——
X2 — X1
Of course if x; = x, then the formula does not make sense. In this case,

if P = (x, y), then we compute 2P by the formula
2
3x* + a

X3 = —2x + 2})

[Six persons leave the audience at this point.)

These formulas, again, nobody can find them just like that. They lie
much deeper than those which give rational points on the circle. One
needs serious ideas, general ideas, in order to arrive at the notion of
straight line between two points intersecting the curve in a third point.
But if you follow this procedure, and if algebra does not give you any
trouble, then you will be able to derive these formulas with about a page
of computations.

Let’s apply these formulas to find rational points. We pick a concrete
example, for instance the equation

¥y =x* =2,

There is a first solution, x = 3 and y = 5. Let’s call this solution P. Then
Mr. Brette (who organized the conference at the Palais de la Découverte),
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was kind enough to do the computations with a computer, in order to find

multiples of P. The solution 2P has coordinates 2P = (x,, y,) where

129 —383

- =7 d = — .
2 =70 2™ 2= 7000

He substituted x = 3 and y = 5 in the formula for 2P. Then he went on

to find the following table.

The curve y> = x3 — 2
Multiples nP = (x,, y,) of the point (3,5)
n Xn

129
100

164323
292414

23409228861
58675600

307326105747363
160280942564521

794845361623184880769
513127310073606144900

496803175045292277861 16937923
34585191047026166790447194414

30037088724630450803382035538503505921
30106839828987630717868429937799218400

182386897568483763082689099250940650872600619203
§1275723963353050497405470386463457417968859364401

10 29167682803130958433397234917019400842240735627664950533:249

13329936285363921812106507497681304319732363816626483202500

i1 824172661141552804187727190037944704511772520746388075511412015463008803

Yi80205660473362926399398259803734819568168604589649639T35939426606601

For reasons of space, the values of y, are omitted. One can compute them
by the formula

_ |2 n _
SEE s (x3 —x1) + y1.

If you look at the numerator of x, in this table, you see that the
numerators of these fractions increase very regularly. In fact, the way they
increase has been one of the fundamental problems in this field of
mathematics, diophantine equations. I have shown you the simplest exam-
ple, after the equation of the circle.

The problem is to find all solutions, in integers or rational numbers, for
equations of this type. It’s extremely hard. There is no known procedure
today to determine all the solutions. For the special equation

| length

i

38

48

59

71
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»? = x* — 2, I was able to write down one solution by inspection. But if I
give you an equation of this type, there is no systematic method which
allows you to find a first solutions, by an effective process. It’s one of the
great problems that mathematicians face: find a first solution by an
effective process. But if I give you a first solution, then you can find others
by applying the formulas.
Two cases can happen. The first is like the case with 2P = O, but
when, instead of 2P, we might have 3P = O, or 4P = O, or 5P = O. In
general, if P is a point on the curve such that

nP =0

with some positive integer n, then we say that P is a point of finite order,
or of order n. One question is to find out if there exist many rational
points of finite order. One of the greatest discoveries of modern
mathematics is due to Mazur, just three or four years ago [Maz], that if P
is a rational point of order n, then n is at most 10, or n = 12. Further-
more, there are at most 16 rational points of finite order.*

The second case is when you construct 2P, 3P, 4P, . . . you find a new
point each time, like in the table a minute ago. You find points whose size
grows regularly.

I am now going to show you, in the remaining few minutes, what are
some of the theorems and conjectures concerning such equations and their
solutions.

In 1922, Mordell [Mo] proved a conjecture of Poincaré [Poi] that one
can always find a finite number of rational points

P, P, P;5,... P

such that any rational point P can be written as a sum of these points; this

means that there are integers n;, ny, ... ,n, depending on P, such that P
can be written as a sum,

P=nmP + mP, + --- + n,pP,.

Addition is, of course, addition on the curve as I have defined it.
[Someone raises his hand.]
SERGE LANG. Yes?
A HIGH SCHOOL STUDENT. What’s “r”?

SERGE LANG. That’s a very good question. There might be relations
between the points Py,...,P,. For example, one of them could be of finite

4 Mazur’s methods are among the most advanced of contemporary mathematics, and
depend on what is called algebraic geometry and the theory of modular curves.
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order. One can prove that we can always choose the points Py,...,P, such
that any rational point can be expressed as a sum

P:anl + mpP + .- +anr+Q,

with integers ny,...,n, which are uniquely determined by P; and Q is a
point of finite order. This means that there are no relations among the
points Py,...,P,. If I choose r like that, then r is the maximum number of
points among which there are no relations. Since Poincaré, r is called the
rank of the curve. The problem is to determine r and to find the points
Py,....P,.

Nobody knows how to do it in general. In special cases, one has
methods which give a solution to the problem. Here is a table of Cassels
for curves y* = x>—D, where D is an integer between —50 and +50. In
each case, the rank is 0, 1, or 2. Cassels give the points P;, P, as they
arise [Ca). [ You will find the table in an appendix.)

For the general case, there exist very deep conjectures; one of them is
due to Birch and Swinnerton-Dyer, two English mathematicians [B-SDJ;
it gives the rank in terms of very complicated objects associated with the
equation. I cannot enter here into these considerations. But you can see
how little we know, since nobody today knows an example when the rank
1s large, nor even an example when the rank is bigger than 10 (I think, it
may be 12). Still, mathematicians conjecture that there are cases when the
rank is arbitrarily large. Anybody can think about this problem: find a
curve with an equation

= x* 4 D,

with D an integer, whose rank is bigger than 15, or 20, or 100, or arbi-
trarily large. We believe that such curves exist, but it’s a great challenge to
find them.

Recently, Goldfeld formulated the question somewhat differently [Go].
He considers curves

Dy* = x> + ax + b,

where a, b are fixed and D varies. Let’s say D is an integer,
D =1, 2, 3, 4, etc. How does the rank behave for these values of D? For
instance, how many integers D are there less than or equal to a number X
for which the rank is 0, so for which there won’t be any rational point
except possibly a point of finite order? How many D = X are there for
which the curve has rank 1?2 How many D = X are there for which the
curve has rank 2? And so on. Goldfeld suggested that one should find a
fairly regular behavior for rank 0 or 1; in fact he expects that the density
of each should be one half for rank 0 and one half for rank 1. This means
that approximately half the curves should have rank 0, and half of them
should have rank 1, with perturbations which depend on much more com-
plicated invariants of the curve. And there should be relatively few values
of D for which the rank is bigger than 1.
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It is a fundamental problem to give a quantitative answer to questions
like that, and similar questions for curves like

y2=x3+D,

with D variable, or for the general family of curves y> = x> + ax + b
with a and b variable: for which values of @, b do we get rank 0, 1, 2, 3, 4,
or any given integer as the rank. Since we don’t even know whether there
exist such curves with rank bigger than 10, we are far from knowing the
answer, except possibly conjecturally.

Euh . .. that’s a lot of algebra. I hope it wasn’t too much. I just wanted
to try, and see if I could make you understand this kind of problem that
mathematicians raise. But I have been talking for an hour, so I’ll stop and

we’ll see if there are any questions and if you have gotten anything out of
all this.

The questions

SOMEONE. What is it good for?

SERGE LANG. I already gave the answer last year: it’s good to give
chills in the spine to a certain number of people, me included.’ I don’t
know what else it is good for, and I don’t care. But I speak for myself
only. Like von Neumann said, one never knows whether someone is going
to find another use for it. I was just trying to show you the kind of prob-
lem that excites us, or that excites me.

A HIGH SCHOOL STUDENT. This kind of problem is analogous to
someone doing research in physics or electronics. They do experiments,
but they don’t know what they will find. It’s like penicillin, for instance.

SERGE LANG. There is no universal answer, but your comment is very
valid.

A GENTLEMAN. There is a question which interests me very much: it’s
the hyperdimensions of space. I hear that Lobatchevski found up to
thirty-two dimensions. Do you believe that’s a limit, or are there more?

SERGE LANG. I don’t know what you mean by hyperdimensions.

GENTLEMAN. You don’t know what hyperdimensions mean? Do you
believe there are only three dimensions in space?

SERGE LANG. If you put the question that way [Laughter] then I can
give, if not an answer, then at least an analysis of the question. You asked
me: “Do you believe there are only three dimensions in space?” What do
you mean by “space”? If by space you mean “that” [Serge Lang shows the
room] then by definition there are only three dimensions. If you want
more dimensions, then you accept to give the word “dimension” a more

5 Not to speak of Diophantus . . .
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general meaning, which is anyway the one which has been accepted long
ago. Every time you can associate a number with a notion, you have a
dimension, no matter what kind of notion you start from; in physics,
mechanics, economics, or anything else. In mechanics, besides the three
spatial dimensions, you can have speed, acceleration, curvature, etc. In
economics, take for example the big businesses, oil companies, the sugar
companies, steel, agriculture, etc. and their gross profits in 1981. For each
company you get a number, and therefore a dimension; and in addition,
of course, the number 1981 associated with time. Then you can have hun-
dreds of dimensions like that.

By the way, if you look in the Encyclopoedia of Diderot, under
“dimension”, you will see that d’Alembert wrote the comments, and here
is what he wrote:

This way of considering quantities of more than three dimensions is
just as right as the other; because algebraic letters can be seen as
representing numbers, rational or not. I have said above that it was not
possible to conceive more than three dimensions. A clever gentleman
friend of mine believes that one could nevertheless view duration as a
fourth dimension, and that the product of time by solidity would in
some way be a product of four dimensions. This idea can be chal-
lenged, but it has, it seems to me, some merit, were it only that of
being new. [Did]
Naturally, a friend of his, that’s him, but he is being careful. He under-
stood that the notion of dimension should not be restricted to space, but
could be associated with any situation when you can associate a number.
Time is only one example.
The rank of curves which we discussed before is another example. We
can say that if a curve has rank r, then the rational points generate a
space of dimension r.

SOMEONE. Does it help you in your theories to be able to use com-
puters to find solutions, may be not all solutions, but some of them?

SERGE LANG. Yes, definitely. The Birch and Swinnerton-Dyer conjec-
tures were based on experimental data from computers, as well as intui-
tion and theoretical results. Historically, the rate of growth of the length
of the multiples of one point could have been discovered by computers.
More precisely, if you have a rational point P = (x, y) on the curve, write
x = c/d where c is the numerator and d the denominator. Write

nP = (X, yn) with X, = cp/d,.

Then how fast does ¢, grow? It is a theorem due to Néron that the length
of ¢, grows approximately like n2. In the table of multiples of P, you can
see this growth illustrated for » = 11. To make more precise what we
mean by “approximately”, I need a more elaborate mathematical
language. I would have to say that it is a quadratic function, up to a
bounded function. I don’t want to go into this now. One can write down a



A LIVELY ACTIVITY: TO DO MATHEMATICS 51

more precise formula for the length, but it’s much more difficult.® Here I
merely stated an approximate behavior for the length.

SOMEONE. Is there some relation between the addition of points that
you showed us, and the question of strange attractors?

SERGE LANG. Strange attractors in what, physics?

THE PERSON. Yes, systems of iteration which give certain kinds of
curves.

SERGE LANG. Are you a physicist?
THE PERSON. Yes.

SERGE LANG. I don’t know your physics and you don’t know my
elliptic curves. Maybe it’s time we should get to know each other. I don’t
know an answer to your question, I don’t know much physics. But it’s
possible. [To the audience:] Do you see, what’s happening right now? I
wrote certain formulas which struck a chord in the gentleman’s mind.
They suggested something to a physicist, by free association of ideas.
That’s how one does research. Two things can happen. Either nothing
comes of it, or the gentleman will pursue the idea, which perhaps will give
new relations between certain physical theories and the theory of so-called
elliptic curves—of cubic equations. Maybe we’ll know next year. The phy-
sicist might give a conference on those relations. That’s what research is.
But right now, I don’t know the answer.

A GENTLEMAN. Can you tell us something of Fermat’s great theorem?
SERGE LANG. Fermat’s conjecture?
GENTLEMAN. Yes.

SERGE LANG. One can generalize the equation we looked at, for
example, we can consider x> + y*> = 1, or more generally

xn+yn=1

where n is an arbitrary positive integer. What happens when n goes from
3to4?

SOMEONE. There are no solutions!

6 Let us write x as a fraction, x = c¢/d where ¢ is the numerator and 4 the denominator.
Define the height of the point to be

h(P) = h[x(P)] = maximum of log | c |, log |d| .

Néron’s theorem states in particular that h(nP) = gq(P)n* + O(1), where ¢g(P) is a number
depending of P, and O(1) is a term bounded independently of n. The number g(P) is called the
quadratic form of Néron-Tate, because Tate gave a very simple proof for its existence.
Mathematicians raise many questions about this number g(P), for example whether it is a
rational number or not. People believe it is not, unless P is of finite order. One can define a dis-
tance between two points P and Q by letting the square of this distance be g(P — Q). The study
of this distance constitutes one of the fundamental problems of the theory.



52 A LIVELY ACTIVITY: TO DO MATHEMATICS

SERGE LANG. Sir, you know too much, it’s cheating. Don’t butt in.
Besides, there are solutions:

x=1Ly=20 and x=0y=1.

[Laughter.] Are there others than those with x = 0 or y = 0? Who says
yes? Who says no? Who does not know the answer? [There are still some
people who did not raise their hands.] Who thinks that the answer is
known? [Laughter.] Who thinks that the answer is not known? [Several
hands go up.] Who knows that the answer is not known? [Laughter.]

In fact, the answer is not known. One knows the answer for a large
number of values of n, but not in general. That’s Fermat’s problem:

Are there solutions of x" + y" = 1 in rational numbers, other than
withx = Oor y = 0, when »n is an integer > 2?

The answer is not known in general. One believes that the answer is no.

A HIGH SCHOOL STUDENT. Do people hope to know the answer
some day?

SOMEONE ELSE. But Fermat said that he knew the answer!

SERGE LANG. Yes, Fermat said that’ but one still does not know it. As

for the question if one hopes to know the answer some day, what does it
mean?

THE STUDENT. Does humanity hope to know the answer? Is it prov-
able, or has it been shown to be unprovable?

SERGE LANG. No, it’s an act of faith that it’s provable.
Mathematicians—euh, to be careful, all those I know—[Laughter] believe
that it’s provable. I think that if you raise an intelligent mathematical
problem, there is an answer which will be found, some day.® That means,
it suffices to think about the problem, and somebody will find the solu-
tion. Problems which are not solvable, that is, for which one can prove
that they are not provable one way or another, are pathological cases, and
I don’t care about them. They don’t occur when one “does mathematics”.
You have to look for them specifically.

SOMEONE. What’s the definition of an intelligent problem?

SERGE LANG. No definition. [Laughter.]
The problems that you will meet, like that, it’s an act of faith by
mathematicians that you can try to solve them, and that you will succeed.

7 More precisely, Fermat used to write comments in the margin of Diophantus’ collected
works. Next to the problem where Diophantus gives solutions of Pythagoras’ equation
a’ + b* = ¢?, Fermat wrote that he had a “marvelous” proof of the fact that for higher
degree, there are no other solutions besides the trivial solutions, but the margin was too
small to write down his proof.

8 My use of the word “intelligent” is obviously idiotic, and the following sentences are
deficient in that they don’t take into account properly the choice which everyone makes con-
cerning the subject of one’s research.
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That’s all. One does not even think of the possibility that they are perhaps
not provable. And if you think too much about that, then maybe you will
do something else, but you won’t do this kind of mathematics. It will
prevent you from thinking.

But watch out! There are some problems which are somewhere in
between, for example what is called the continuum hypothesis. It is the
only counterexample that I can think of right now.

QUESTION. What is the continuum hypothesis?
AUDIENCE. Cantor . ..

SERGE LANG. Yes, let’s talk a little about the continuum hypothesis.
Last year, somebody got chills in the spine just to know whether the real
numbers are denumerable. Take all the real numbers, the numbers on the
number line, or in other words, all the infinite decimals, like

212.35420967185 . . .

You also have the positive integers 1, 2, 3, 4,... One says that a set is
denumerable if you can make a list of all the elements of the set, with a
first, a second, a third, and so on, so that you catch all the elements of the
set, so that none is left out. Somebody last year asked me to prove that
the real numbers are not denumerable, and I gave the proof.

Mathematicians, or Cantor, raised the following question. Between
denumerable sets, those that you can enumerate like the integers, and the
real numbers, are there sets whose cardinality is in-between; that is, sets
which have more elements than the denumerable sets—so that you cannot
enumerate them—but which have fewer elements than the real numbers?
What does it mean, “fewer”? It means that you cannot establish a one to
one correspondence between the real numbers and the elements of this
set. The continuum hypothesis was that there does not exist any such sets,
non-denumerable, but with “fewer” elements than the real numbers.

Considering the way we write the real numbers, as infinite decimals,
they seemed so close to the rational numbers (which are denumerable),
that it seemed reasonable to think that there was no set of intermediate
cardinality.

SOMEBODY. Maybe someone is trying to find the answer?

SERGE LANG. Of course, that’s why I said that it was a counterexam-
ple to the statement I made. There is no doubt that the question is intelli-
gent. And the solution was found by somebody who did not get caught by
the way the question was phrased. It’s Paul Cohen.

QUESTION. What century?

SERGE LANG. Recent, about fifteen years ago. And the answer is that
the question is meaningless. One can prove neither that there exists such a
set, nor that there does not exist such a set. The answer is that, given the
mathematical system with which we work today, which is sufficient for all
our needs except this one, if you add as an axiom the positive answer to
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the continuum hypothesis, then you still have a consistent system, the sys-
tem will still be valid. And if you add as an axiom the negative answer to
the continuum hypothesis, then again the system will also be consistent.

AUDIENCE. It’s independent of the axioms you already have.

SERGE LANG. That’s right. What I mean is that the questions was
badly posed. It means that when you speak of “sets”, you don’t know
what you are talking about. The ambiguity lies in the intuitive notion you
have of a set. Everybody has some intuition of sets: a set is a . . . bunch of
things. [Laughter.] To say a bunch of things, it’s OK if you speak of all the
real numbers; it’s OK if you speak of all the rational numbers; it’s OK if
you speak of all the points on a curve; but if you speak of all sets simul-
taneously, of all the sets contained in the real numbers, then it’s not OK,
it does not work any more. That’s what Paul Cohen’s answer means: our
notion of set is too vague for the continuum hypothesis to have a positive
or negative answer. There remains that many mathematicians feel the
need of an axiom which is psychologically satisfactory, and which would
imply either the continuum hypothesis or its negation. This side of
mathematics is interesting to some people. It does not really interest me
personally. But I have to admit that it was worth seeing: a question which
nobody thought could have an answer other than yes or no; and the guy
who answered: you are all wet, there is no possible answer.

THE HIGH SCHOOL STUDENT. Is it possible that Fermat’s conjecture
is of this type?

SERGE LANG. What do you want me to answer? From my point of
view, it’s obvious what I am going to answer. It’s not me that’s going to
say that it could be of the same type. No way.

Besides, there is an argument . . . [hesitates] if you succeeded in proving
that Fermat’s problem is unsolvable, then ipso facto you would have
shown that the conjecture is true. Because if there was a counterexample,
then with some big computer, some day someone would pull out the
counterexample. But I hate this type of argument, and as far as I am con-
cerned, I regard it as the normal state of affairs that some day, somebody
will prove Fermat’s theorem, or will prove that it is false.

QUESTION. And you personally, do you believe it is true or false?

SERGE LANG. [Hesitates] Well, it’s true. There is no other solution
besides x = 0 or y = 0. For the following reasons. We begin to under-
stand the theory of such equations from a general point of view. There is
a general conjecture of Mordell which I am going to describe.

Take an equation, for instance

P4+ xT = 312" + 2 — 18y + 913xy + 3 = 0.

This is what one calls a general diophantine equation. We ask in general:
are there infinitely many solutions of this equation in rational numbers
x, y? We have already seen two types of examples when there exist such
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solutions. In the first example, we could express x as a quotient of two
polynomials in a variable ¢, and y similarly, so that the equation was
satisfied as an indentity of ¢. This is precisely what happened we used the
formulas

1— 12 2

X = and = —,
1+ 12 Y 1+ ¢?

and found that x> + y* = 1, an identity in ¢. Clearly (despite somebody’s
objections), you will get infinitely many solutions. That’s one of the possi-
bilities.

The other possibility is that you can get solutions of the equation from
a cubic, with formulas

x = R(t, u) and y = S u),

where 1, u satisfy an equation > = 4> + au + b having infinitely many
solutions; and R, S are quotients of polynomials, with rational
coefficients.

The first possibility is called genus 0, and the second is called genus 1.

Mordell’s conjecture says this. Let f(x, y) = 0 be an equation, where f
is a polynomial with integer coefficients. If you cannot reduce this equa-
tion to the case of genus 0 or genus 1 by formulas like the above, then the
equation has only a finite number of rational solutions. That’s the conjec-
ture.

In a family of equations like Fermat’s, with » variable, there should be
very few solutions. One can even prove that for n = 4, the equation
x" + y" = 1 cannot be reduced to genus 0 or genus 1. According to
Mordell’s conjecture, Fermat’s equation should have only a finite number
of solutions in rational numbers x and y. Some people have done compu-
tations going quite far, maybe up to n = 1,000,000, and one knows that
up to that point, there are no solutions other than the obvious ones with
x = 0ory = 0. And if what we feel is true, then there should not be any
others for even bigger values of n, because such families should behave in
a regular way. If one has not found solutions at the beginning, for n
small, then there should not be any later, when # is large. That’s the gen-
eral intuition which directs us when we work on diophantine equations.
Well, OK, it’s a working hypothesis. One is always ready to backtrack if
somebody shows that it’s wrong. That’s how mathematicians work: we
make working hypotheses, we try to prove something, but we are always
ready to accept any evidence that we are wrong, and that we have to start
over again.

[Someone raise his hand.] And the computers, can’t you do anything
with them?

SERGE LANG. Oh, the computer, it has been used many times. It is
with computers that people have shown that there were no solutions up to
n approximately 1,000,000.
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QUESTION. Sir, I have a question—there are problems which were
solved first with restrictive hypotheses, and then better mathematicians
could eliminate these hypotheses. But still, the first proofs used these
hypotheses. Why?

SERGE LANG. When you try to solve a problem, you try first to solve
special cases, and then try more general cases. The first ideas that you
have might work only in the special cases. Maybe other ideas are needed
in the more general cases. Who knows when these new ideas will come?
Or even if they will come to one person and not another? Somebody pub-
lishes a first paper, then someone else relies on these first results, and
obtains further results, publishing a second paper, but with some new
ideas; and so forth until the general problem is solved. That’s how one
works. It does not mean that the mathematician who succeeds in eliminat-
ing the restrictive hypotheses is “better” than the other. Quite the con-
trary, the first mathematician might have shown much more imagination,
and might have opened up a whole domain of research where nobody
understood anything before. It may be that this first contribution will be
admired much more than the following ones which, perhaps, merely
developed the first one’s program.

QUESTION. Let me change the subject a little. At the beginning of
your talk, you alluded to the teaching of mathematics in France . . .

SERGE LANG. Everywhere, in the whole world.

QUESTION. The subject is of current interest. How do you see things
in this direction? There seems to be a general problem.

SERGE LANG. How do I see things? I don’t understand the question.
It’s too general.

A HIGH SCHOOL STUDENT. Do you think that mathematics should
be taught like that, just for the beauty of it and not for applications to
physics, or that at least until the end of high school, they should be turned
towards physics, toward applications?

SERGE LANG. The way you phrase your question is too . . . exclusive.
One does not prevent the other. It’s obvious that the negation of one
extreme does not imply an extreme on the opposite side. Do
what . . . what comes naturally. Of course, there should be applications
when teaching mathematics. But from time to time, you must also be able
to say: OK, let’s look at x> 4+ y? = 1 and let’s find all the rational solu-
tions. Some will like it, some won’t like it, but I know it’s the sort of thing
students like. I know it because I have talked about this problem to 15
and 16 year old kids several times, and they like it. They thought it was
interesting. At the beginning of the talk, they know one solution, maybe
some student knows another, maybe still another, but usually nobody
knows any more. And then, after five minutes, we succeed in giving
infinitely many! Listen, you would have to be really insensitive not to
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react positively. [Laughter.] Well, OK, this does not mean that you should
not also do applications.

QUESTION. When you are at Yale, do you have the same approach to
teaching?

SERGE LANG. Same as what? Here? Yes, of course, like this. [Serge
Lang points to someone. Laughter.] Naturally! How else do you want me
to do it? Today, I was caught a little short, I picked a topic . . . I wanted
to see just how far I could go in doing mathematics with you. It was hard.
Because I needed algebraic formulas, it’s dangerous for a Saturday after-
noon audience. [Laughter.] Don’t think I was not conscious of the
difficulty. [Allusion to the six persons who left after the first formulas.] 1 just
wanted to see how it would go. It did not go so badly.

AUDIENCE. No, no!

SERGE LANG. Were it only, for instance, him, or him [pointing], or the
physicist over there. It’s clear that they got something out of it, each one
something different. Even if there had been only these three, it was worth
it, and there were many others. Even if some of you are hung up on the
formulas, if you are still sitting here, nobody is forcing you.’

QUESTION. Is there any hope to solve the great mathematical prob-
lems which have not yet been solved?

SERGE LANG. That’s what mathematicians do, research. They hope to
solve the problems which have not yet been solved. If they did not have
that hope, they would not be, by definition, mathematicians doing
research.

QUESTION. But you also find problems?

SERGE LANG. Yes, of course. To find the problem of which one is
going to work, on which I am going to concentrate, is at least as important
as solving it. To do mathematics, it is also to find problems, to make con-
jectures. For example, following Goldfeld, I raise the problem of finding
the asymptotic behavior of the rank in a family of curves

2 =x*4+ D,

for example when D varies, for a given rank > 1. The density should be
0, but maybe there is an asymptotic behavior, so bounded from below,
which would be much stronger than simply finding curves with arbitrarily
high rank.

QUESTION. Perhaps in teaching mathematics, at least at the begin-
ning, there is too much emphasis on solving problems instead of showing

9 At the beginning of the talk, the room was about full, with about 200 persons. During the
question period, about half remain.
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how to pose problems. That’s why I come back on what you have said;
some people have suggested modelization, or similar things in applied
mathematics. It’s very positive: ask questions related to simple problems,
before starting to solve them. Perhaps that is where the teaching of
mathematics is deficient.

SERGE LANG. There is no single place where it is deficient, there are
always several. If you show me the books, I’ll tell you concretely from the
books. I cannot give a general recipe, just like that. I like to deal with con-
crete instances. I’ll show you in the book what I think is deficient in itself.
There are always many deficiencies depending on the teacher, depending
on the class, depending on a whole lot of circumstances, internal and
external. No matter what I said, I did not mean that there was a single
reason or a single condition which caused the deficiencies.

QUESTION. Perhaps it would be wuseful to enumerate these
deficiencies.

SERGE LANG. Maybe, but after that, one would have to ... Listen, I
wrote up last year’s talk. It’s right here. This is what I have to say. I said
it, I did it. I am doing it again this year, the conference will again be pub-
lished. You see how I express myself, how I do mathematics. It’s serious
business. But it does not mean that someone else should do exactly as I
do, just this way. Different people react differently. Do as you like, after

all. My point of view is never exclusive. I speak only for myself, I don’t
like generalizations.

A HIGH SCHOOL STUDENT. I am a high school student, and there is
something which I object to in the teaching of mathematics.

SERGE LANG. What year?

STUDENT. 11th grade. And since I was very small, I was shown
proofs, but I was not shown, to use your analogy with music, the beauty
in them. There was no taste to what was done in school. When one does

music, then one gets into the beauty of the music, not just its rythm, or
the theory of music . . .

SERGE LANG. In any case, the beautiful proofs, they are not in the
curriculum. There is a whole lot of beautiful ones, and usually they are

omitted. But anyway, did you like what I did today, these structures, the
diophantine equations?

STUDENT. Yes.

SERGE LANG. Are you into computers?
STUDENT. Yes.

SERGE LANG. Where, here?

STUDENT. No, in my school, in the suburbs. But if you want, I think a
priori that people who would be exposed just like that to what you did
today, they might not see the beauty in it, anyway not everybody.
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SERGE LANG. Of course, in an aesthetic situation, there are some who
see it right away, there are some who see it later, and there are some who
never see it. This is typical of an aesthetic situation. I don’t ask everybody
to find what I did beautiful. But still, the formula we had,

2
Y2—)1
X2 —X

X3 = —X3; — X1 +

b

it’s a little complicated, but the fact that it can give you infinitely many
solutions for the equation, I find it fascinating. I don’t know what you
think, but you asked enough questions to show that you are reacting posi-
tively.

THE PHYSICIST. It seems that in French schools, the main reason for
the heavy-handedness and lack of understanding is that, behind the whole
program, one tries to show, even to very young children, a logical con-
struction which is completely irrefutable. Whether it is in physics or
mathematics, a teacher can never allow himself to assert something
without giving a clear proof for it.

SERGE LANG. I entirely agree with this evaluation, and I deplore it as
much as you do. It is true that the textbooks tend toward a certain aridity
and are pedantic. I have nothing else to say.

A UNIVERSITY STUDENT. I am a student, but those problems, we see
them, but we don’t have time to deal with them. If we did, then we would
still be at the beginning when we get to be forty years old.

SERGE LANG. But nobody asks you to do that the whole year long.

When you go to a concert, nobody asks you to do music all the time till
you are forty.

THE STUDENT. During math class, we see interesting problems, but if
we go deeper into them, we spend hours and hours, and there is a lot of
other things to do. The curriculum is much too heavy to allow us to take
an interest in things like that.

SERGE LANG. It depends on the level. I think the curriculum is filled

with stuff that could easily be taken out without anybody missing it.
[Laughter.]

STUDENT. Can you tell me which ones?

SERGE LANG. Bring me the book and I'll show you. You can find
more and more technical exercises, which don’t teach anybody anything.!°

10 Here I misunderstood. I am speaking of elementary and high schools. Beyond, that is at
the student’s level, the situation is different, and complicated in different ways. I sympathize
with what he said, but this is not the time to go into the contradictory requirements of edu-
cation at the college level.
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[The preceding dialogue is extracted from a long general discussion—too
general—on teaching. I pass now to my last answer.]

I spend my life doing mathematics. From time to time, I do mathemat-
ics with you, just like this. I prefer to do this than to have general discus-
sions. I prefer to come here, give this talk, show you how I teach, point
my finger at you, and make you ask questions ... and if it works, that
was one of the ways of doing things. Maybe in this way, you will find
your own inspiration, to do as you want to touch others. That’s how I
function, rather than by pontificating with generalizations. I don’t like
generalities. This does not mean that I never generalize, sometimes I do,
but I don’t like them.

There is some success in what I did today, for mstance [showing the
high school student] what’s you name?

STUDENT. Gilles.

SERGE LANG. Gilles is one of those who asked questions on the
mathematics. Others took refuge in pedagogical questions. I prefer Gilles’
questions.

ANOTHER HIGH SCHOOL STUDENT. [Antoine, who had also come
last year.] You told us that the formulas

X = 1;12 and = 2
T 1+ Y
give all the rational solutions of x? + y*> = I, except x = —1 and

y = 0. Can you give us the proof now?

SERGE LANG. Yes, naturally, I had even hoped somebody would ask
that question earlier. The proof is easy. Suppose that (x, y) is a rational
solution. Let

Yy .
t = ———
x + 1

and don’t ask me where it came from, with a little ingenuity you could
discover it yourself.!' We then have

(x +1)=y,

and squaring, we find

P+ 1) =y"=1-x=(1+ 01 — x).

' G. Lachaud informs me that Diophantus, and therefore the Greeks, had not raised the
question whether the formulas give all the solutions. He also informs me that this result is
due to the Arabs of the 10th or 11th century [La—Ra]. The algebra necessary to prove this
result is approximately at the same level as the algebra used by Diophantus, and so we see a
posteriori that once the question is raised, one finds the answer rather easily.
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You can then cancel x + 1 on both sides, and we find
Px+1) =1-—x.
Therefore t*x + > = 1 — x, and
x(1+1%) =1 - 7%
Divide both sides by 1 + ¢ to find the formula

1 — 72

X = .
1+ 2

One more line will give you the corresponding formula for y.

You can interpret the argument geometrically, thanks to ideas which
appeared only in the 17th century, namely coordinates and the represen-
tation of equations by curves. Namely, y = #(x + 1) is the equation of a
straight line, passing through the point x = —1, y = 0; and whose slope
is equal to ¢. This line intersects the circle of radius 1 at the point (x, y)
such that

1 —¢? 2

and = s
1+ 12 YTt

which is precisely what we have just shown.

»
ot

the liney =t(x + 1)

v

(—1,0) \ 1 X

I would like to add a few words on the difference between integral and
rational solutions. We have seen that an equation like

V¥=x+ax +b
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can have an infinite number of rational solutions, obtained as multiples
nP of some rational point P. For instance, in the example

we started with the integral point P = (3,5). One can prove that it is the
only integral point on the curve. Furthermore, there exists a very general
theorem of Siegel, which says that the number of integral points on a
curve y*> = x* + ax + b is always finite [Sie].

When a, b are integers, then any point of finite order (x, y) must neces-
sarily be an integral point, that is x, y are integers, according to a theorem
of Lutz—Nagell. Of course, the converse is false, as in the example with
x = 3, y = 5 which is not of finite order.

By the way, about points of finite order, let me give you an easy exer-
cise. Go back to the curve y*> = x> + 1. We found the integral points:

x=0y= %1, X =2,y = %3 x=—-1Ly=0.

I told you that there were no other rational points. It follows that if you
take any one of these points, for instance P = (2, 3), one of the multiples
nP with a suitable n, must give O. So I ask you to compute explicitly
2P, 3P, 4P, SP. It’s easy with the addition formulas, and you can also do
it on the graph. You will find all the other integral points, and you will
also find that

5P = —P.

Therefore 6P = 5P + P = O, and the point P has order 6.2

MR. BRETTE. [Question asked two days later.] You said that the order
of a rational point is at most equal to 12. But if you look at all real points,
does there exist points of arbitrary order?

SERGE LANG. Yes, and one can even describe them quite precisely.
Suppose first for simplicity that there is no oval. Then for each integer
n Z 2, there exists one point P of order exactly n (that is, P does not have
smaller order), and such that every point of order # is equal to an integral
multiple of P. If there is an oval, then the situation is the same, up to a
point of order 2.

12 T thank Mr. Brette for having drawn a very effective illustration of the curve (on the oppo-
site page), which shows very clearly the point at infinity, and the rational points of finite
order. Note that P, has order 6, P, has order 3, and P; has order 2.
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Added August 1982

Following the talk, I continued to think about the determination of
integral and rational points, to try to get more coherent conjectures about
them. Siegel’s proof did not give an upper bound for the integral points,
depending on the coefficients a and b of the curve

2 =x*+ax + b.

We now suppose that a, b are integers. In the special case y> = x> + b,
Baker [Ba] has given effective bounds, although far from the best possible

ones which one might expect. For example, there is a conjecture of
Marshall Hall which says that when b is an integer, then x is bounded in



64 A LIVELY ACTIVITY: TO DO MATHEMATICS

absolute value by b® times some constant, independent of 5."* I think one
might expect something similar in the general case. It would be very
interesting to show that there is some constant k such that for any integral
point (x, y), the integer x is bounded in absolute value by a constant times
the maximum of the absolute values of a* and b raised to the kth power.
One can write this in the form

3

| x| = Cmax (|a b | AF.

Finding bounds like that would constitute great progress in the study of
such curves.

It would also be interesting to find bounds in the context of points of
infinite order. More precisely, let P = (x, y) be a rational point. Write
x = c/d as a fraction as we already have done. Define the height

h(P) = log max (|c|,|d]).

Considerations having to do with the Birch-Swinnerton—Dyer conjecture
have led me to the following conjecture, understandable by someone who
is not necessarily a number theorist. There exist points Py,...,P, as we
have considered them previously, ordered by increasing height, such that

h(P) = C" max (|a|® |b|HV2+e

where C is some constant, and e approaches 0 as max (|a|? |b]|?)
increases indefinitely. See [La 2].

The existence of such bounds would allow an effective way of finding
all the rational points, since these can be expressed by means of addition
and subtractions starting with Py,...,P, and points of finite order.

Note that in tables, for instance that of Cassels or Selmer [Se], it seems
that there is a better bound than that described above. If we let

H(P) = maximum of |c| and |d]|,
then one has an approximate inequality
H(P) = max (|a|? |b]|d

with k = 1, 2, or 3. I give a numerical example taken from Selmer’s
table, where he considers the related equation

X3 + Y =Dz

13 Recall that the absolute value of a number is the positive part of the number. For exam-
ple, the absolute value of —3 is 3, and the absolute value of —3 is 3 also. The absolute value
of x is denoted by | x |.
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as in Fermat’s equation. Mr. Brette used the computer to transform
Selmer’s biggest solutions back to the form we have considered, that is

y3 — x3 4 2332
with b = 243’ D2 _
Take D = 382. Then we have a solution x = u/z, where

u = 96,793,912, 150, 542,047,971, 667,215, 388,941, 033
z = 195,583,944, 227, 823, 667, 629, 245, 665,478, 169.

The reader can compare this solution with 2 You will find that u < b°,
so k = 3 works. It would be interesting to make a statistical analysis of
such polynomial bounds, rather than the logarithmic bounds conjectured
previously.

Appendix

I reproduce below a table of Cassels [Ca]. The following comments will
describe the content of the table, and how to read the columns.
Given a curve

yz =x3—-D with —50 = D = 50,

we look for rational points Pj,...,P, on the curve such that for every
rational point P, there exist integers ny,...,n, uniquely determined by P,
such that

=mbP  + --- +nP + 0,

where Q is a point of finite order. Therefore, r is the rank.
In all cases, we have r = 0, 1, or 2. For instance, let

P = (x, ).

Rather than make a table of rational numbers, we prefer integers. So we
express the rational numbers x, y as fractions,

x =u/t* and y = v/

with integers u, v, . The equation of the curve can be expressed in terms
of u, v, t in the form

v2 = u® — DiS.

“None” means that the rank is equal to 0, and so the only rational
points are of finite order, if there are any.

The first column gives Py if it exists.

The second column gives P, if it exists, besides P .
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Table 1
vZi = u® - Dt®
u v t u v
1 None
2 3 5 1
3 None
4 2 2 1
5 None
6 None
7 2 1 1
8 None
9 None
10 None
11 3 4 1 15 58
12 None
13 17 70 1
14 None
15 4 7 1
16 None
17 None
18 3 3 1
19 7 18 1
20 6 14 1
21 37 188 3
22 71 119 5
23 3 2 1
24 None
25 5 10 1
26 3 1 1 35 207
27 None
28 4 6 1
29 3,133 175,364 3
30 31 89 3
31 None
32 None
33 None
34 None
35 11 36 1
36 None
37 None
38 4,447 291,005 21
39 4 5 1 10 31
40 14 52 1
41 None
42 None
43 1,177 40,355 6
44 5 9 1
45 21 96 1
46 None
47 12 41 1 63 500
48 4 4 1
49 65 524 1
50 211 3059 3
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\
b P, P,
\} u \"
—1 None
—2 1
-3 2
—4 None
-5 2
—6 None
-7 None
-8 2 4 |
-9 2 1 1
- 10 -1 3 1
—11 N 19 2
—12 -2 2 1
—13 None
— 14 None
—-15 1 4 1 109 1,138
—16 None
—-17 —1 4 1 -2 3
—18 7 19 '
—19 5 12
—20 None
—21 None
-22 3 7 1
—23 None
—24 —2 4 1 1 5
—25 None
—26 —1 5 1
— 27 None
—28 2 6 1
—29 None
—30 19 83 1
—-31 -3 2 1
—32 None
—33 -2 5 1
— 34 None
—-35 1 6 1
- 36 -3 3 1
-37 -1 6 1 3 8
—38 11 37 1
—39 217 3,107 2
—40 6 16 1
—141 2 7 1
—42 None
—43 -3 4 1 57 2,290 7
—44 -2 6 1
—45 None
— 46 -1 51 2
47 17 89 2
—438 1 7 1
—49 None
—59 —1 7 1
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