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Summary: 7o do mathematics is to raise great mathematical problems, and
try to solve them. Eventually to solve them. This time, we shall treat prob-
lems of geometry and space, and we shall classify geometric objects in
dimensions 2 and 3. Dimension 2 is classical: it’s the classification of sur-
faces, which are obtained by attaching handles on spheres. One can also
describe surfaces by using the Poincaré-Lobatchevsky upper half plane.
What happens in higher dimensions? In dimension 2 5, Smale obtained
decisive results in 1960. Last year, Thurston published great results in
dimension 3. He conjectured the way such objects can be constructed starting
with simple models, and also how one could obtain them from the analogue
of the upper half plane in 3 dimensions. He proved a good part of his conjec-
tures. We shall describe Thurston’s vision.

First Part: Rubber geometry.
Curves, surfaces, equivalences, octopusses, sums of geometric object.

Second Part: The geometry of distances.
Euclidean geometry, non-euclidean, distances, motions, translations, rota-

tions, symmetries, identifications.

The link between the two and Thurston’s conjecture.



It is uncommon on a Saturday afternoon in May to see 230 persons
come, not only to listen to a conference on mathematics, but also to
participate, answer questions, in short think about mathematics and
get pleasure out of it. To be sure, the enthusiasm of the lecturer, the
energy which comes from him, and the care which he exercises to
explain his subject and ideas can hardly leave an audience insensi-
tive. On the other hand, it seems clear that the pleasure is shared.
First of all by me, but also by Serge Lang. One sees in him what
should be natural for any good teacher, satisfaction in the face of
positive reactions by the public, and the relevance of the questions
which come from his audience, especially by some high school stu-
dents. After the success of the first two conferences, one can easily
understand that | wanted to invite him again, and that he accepted,
not without some hesitations because he said that it would be
difficult to choose a genuine mathematical topic which would
nevertheless be understandable by a broad audience. Two weeks
later, he phoned me from Germany to tell me that he had found a
possible geometric subject, but that he would have to learn it. To
my question: “In which books?”’ he answered: “l don’t know how to
read . .. Or rather, | know how to read but | don't like it. In a book,
not everything is of equal importance, but one doesn’t know it until
one has read everything. It goes much faster to ask a friend to
explain this stuff. It's more lively, and | can ask questions.”

During the course of the year, | then received successive versions
of his talk, which testified to his concern for clarity and simplicity.
But it is hardly necessary for me to say here that these versions were
only pale sketches compared to the following text, which reproduces
faithfully the tape recording of his marathon talk, which lasted over
three hours.

J.B.



The conference
The first hour

This is the third time that I come here, to the Palais de la Découverte, to
do mathematics with you. Mr. Brette invited me the first time, and it
worked, so I came back.

I see quite a few people here who came last time, How many were here
last year? 1

[About fifty hands go up.]

Good. I see Antoine over there, he’s already been here twice, so he’s
quite faithful. Those who were here last year perhaps remember that just
before starting the conference, I had looked at some high school book in
Brette’s office, and I had become quite upset because it was so lousy. It
took me a good twenty minutes to get over it. I don’t know if you noticed,
today, before the conference, you heard a record of lute music, which is
the music I like best. Brette put it on to calm me down. [Laughter.]

Two years ago, I did something on prime numbers, and last year, I did
what’s here on this reprint, what’s called diophantine equations. And I
asked people what mathematics meant to them. One lady told me: “It’s
to work with numbers.” Well, those answers are for the birds, because this
is not at all what it means to do mathematics. I wanted to show you what
mathematics are about, what the great problems of mathematics are
about, and why one gets excited about them.

Actually, in the first two talks, I did things which were related a little to
algebra, and even a lot. In particular, last year, I wrote down some formu-
las, and then six persons immediately walked out, because
formulas . . . well, people don’t like them so much. But sometimes formu-
las are necessary. Still, I wondered whether it would be possible to do
something without any formulas, without any connection to algebra, and
without numbers. This means doing something geometric, in space, on
problems having to do with geometric objects.

That’s not the mathematics I usually do myself. Personally, I lean
toward algebra and number theory. So I thought about it, as I left Paris
for Bonn, in Germany, trying to figure out what I could talk about this
year. I go to Bonn like this every year, for the last twenty, twenty-five
years. Hirzebruch organizes a conference, and the people who go there
are mostly interested in geometric subjects. I talked to some of them, and
I realized that it would be possible to do one topic, on some recent
research, discovered about a year ago.

It’s very nice in Bonn. Mathematicians try to hold their conferences in
pleasant surroundings, and there, we do mathematics between a glass of
Rhine wine and a strawberry tart—strawberries are in season just at that
time—and also a boat trip on the Rhine.

There is still some time left to do mathematics, and that’s where I
learned the subject I am going to talk about today, some recent
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discoveries of a guy named Thurston. I learned it from Walter Neumann.
We spent three hours in front of a blackboard, and he taught me what
Thurston had done. And today, I pass it on to you.

I really don’t know if I'll be able to go on like this, finding other sub-
jects, because it isn’t so easy. It must be real mathematics, done by real
mathematicians. On the other hand, I must be able to explain it to a
Saturday afternoon audience. And also, as in all aesthetic situations,
somebody may like it, and somebody else may not like it. So it may not
work out. It’s a question of personal tastes, and the personal reactions
which you may have toward any specific topic.

All right, so what I want to do, is to classify geometric objects. We are
immediately motivated for this. After all, we live in a space with at least
three dimensions, like this. But you all know that there may be more than
three dimensions. So we want to describe the kind of space we live in, we
want to know what it looks like. Locally, for instance in this room, it’s a
three-dimensional space.

As a model, it’s OK for this room. But we already know that if you
look very far out, it doesn’t work. We know that the euclidean model is
wrong. It works in restricted cases, but it does not apply in other situa-
tions. So what do physicists do? They try to find out which models are
applicable. But a mathematician, that is, a pure mathematician, doesn’t
care whether the models he thinks about can be applied or not. He con-
structs nice models, geometric models, and if they are beautiful, that’s
what matters to him. He doesn’t care whether these models can be used to
describe the universe or not.

And we can do such geometric models in dimension 1, in dimension 2,
in dimension 3, or also higher dimensions, like 4, 5, or whatever. I
thought for a moment that I could do something today in higher dimen-
sions, but I realized rapidly that I could not, at least in an hour and a
half. It would have taken too much preparation. So I’ll limit myself to
dimensions 1, 2 and 3.

So, one-dimensional objects are like this, they are curves.

A LADY. What about a straight line?
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SERGE LANG. A straight line is a special type of curve. Now if I take a
circle, and other curves like that, they look like each other.

Should we consider them to be equivalent? What common properties do
they have?

SOMEONE. They are closed.

SERGE LANG. Yes, they are closed, they turn around. If I take just an
interval, like this:

then it doesn’t turn around, it’s an interval.

But the three curves are closed. For many properties, we don’t want to
distinguish between these three curves. So we say these curves are
equivalent.

What does “equivalent” mean, in general? Well, I don’t want to give a
formal definition, but I can say informally that we suppose everything is
made out of rubber. We are dealing with rubber geometry. We say that
two objects are equivalent if by pulling in one direction, pushing in
another, if these objects were made out of rubber, then I could deform
one into the other. This gives me a notion of equivalence.

So if the curve is a rubber band, it’s clear that I can deform it to the
other curve, or that I can deform it into a circle. So these curves are
equivalent. I use the sign ~ to denote equivalence. So I can write:
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I can also draw something like this:

Is this thing closed or open?
THE AUDIENCE. It’s closed.

SERGE LANG. Then is it equivalent to the others or not? Suppose it’s a
rubber band. Who says it’s equivalent to the others?

[Some hands go up.]
Who says it is not equivalent?
[Other hands go up.]

Who keeps a prudent silence? [Laughter.] You, for instance. [Serge
Lang points to a lady in the third row.]

THE LADY. It’s not equivalent. There is a knot.

SERGE LANG. Yes, there is a knot. When I said that the other curves
are equivalent, I could deform them into each other in the plane. I mean,
if they were rubber bands, I could make the deformation entirely in the
plane. But the knot, over there, it lives in three-dimensional space, and
your intuition is right: I cannot deform it into the circle in three-
dimentional space. In some sense, the knot is therefore different from the
circle, and from the other curves. However, can you conceive a situation
when I could deform the knot into a circle? Antoine, what do you say.

ANTOINE. [The answer cannot be heard on the tape.]

A LADY. Sometimes you can make two knots which are opposite to
each other, and undo each other.

SERGE LANG. For now, the knot is in 3-dimensional space. But there
is no reason to limit ourselves to this space. It is true that in four-
dimensional space, we can deform the knot so that it becomes a circle.
One can also prove that this is impossible in 3-space. Although we can
rely on our intuition in 3-dimensional space, when proving things in
higher dimensions, one should first write things down more rigorously,
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and our intuition becomes rather delicate. I also want to make you under-
stand that things aren’t that simple.

We now see that we can raise two different questions:

Can we deform the knot into the circle in 3-dimensional space?

Can we deform it abstractly, or in a higher dimensional space?

The answers are different, depending on the space in which we embed the
knot.

At first, I didn’t say where you could make the deformation, when I
defined the notion of equivalence. Now I say that I allow deformations in
spaces of arbitrarily high dimension, bigger than 2 or 3. So the dimension
of the circle, which is 1, has to be regarded as entirely different from the
dimension of the space in which we consider the circle.

Now I want to say something else about deformations. Take something
which is not a circle, say an interval, like this, with or without its ends.

with the ends without the ends

If T include the ends, then I say that the interval is closed. If I don’t
include the ends, then I say that the interval is open. Suppose the interval
is made of rubber, and I deform it, like this. [Serge Lang draws as he
speaks.]

The points to the right, I move them up and the points to the left, I move
them down. So I take the rubber band, and stretch it up as I go to the
right, but faster and faster. And when I go left, I stretch it down, also fas-
ter and faster. Then we see that the interval is equivalent to a curve which
goes arbitrarily far away, which extends to infinity as one sometimes says.

[Someone raises their hand.]
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SERGE LANG. Yes?
A LADY. It’s going to close up at infinity.
SERGE LANG. No, infinity is not a point. Take a line, like this:

This line does not close up.

A GENTLEMAN. If it’s made of rubber, one can close it up. [Laughter.]
It is not an interval, but with an interval, you can also make up a circle.

SERGE LANG. Watch out! If you close up the line, or if you close up
the interval, then you have to put some points at the end over each other.
Take an interval containing its end points. If I join up the end points, then
I do get a circle.

THE GENTLEMAN. But the interval can be deformed into a circle.

SERGE LANG. No, because if I deform it into a circle and I identify
the two end points, then I do something which I don’t want to allow in
the definition of a deformation. I want to use the word in the sense that I
do not allow identifications. If two points are distinct, then they must
remain distinct during the deformation.

GENTLEMAN. But if you juxtapose them . ..

SERGE LANG. No, no. I don’t want to! [Laughter.] It’s a question of
definitions. For the applications which I want to make here, I want to use
the word “deformation” to mean that if two points are different, then they
must remain different under the deformation. OK?

GENTLEMAN. Yes.

SERGE LANG. Good. Of course, there are other notions where
identifications are allowed. In fact, in a short while, I shall discuss such
notions and how to use them. But here, for deformations, I don’t allow it.

I just wanted to show you this specific phenomenon, that I can deform
an interval without its end points into an infinite band, which is itself
equivalent to an infinite line. I can draw an equivalence between this
infinite thing and the infinite line like this:
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So I can straighten out the curve to a line. And that’s the notion of
equivalence that I want to work with.

All right, we’ve been talking about things of dimension 1. But already
in dimension 1, we see that we can raise some problems. You might think
that everything is known, but that is not the case.

Next, we look at dimension 2. It’s going to get a little more involved.
Objects of dimension 1 are called curves. Objects of dimension 2 are
called surfaces. And there are surfaces with boundary and surfaces
without boundary.

For an example of a surface, take the disc, the interior of the circle. If I
put the circle together with its interior, then I get a surface with boundary.
The circle is the boundary of the disc. So we can consider the disc as a
surface without boundary if we leave out the circle, and with boundary if
we include the circle.

with boundary without boundary

Now, if the disc is made of rubber, then I can represent it in other ways:
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for instance, I can take the interior of a square. The boundary is then the
perimeter of the square.
If everything is made out of rubber, are they equivalent?

THE AUDIENCE. Yes.

SERGE LANG. That’s right, they are equivalent, I can take the disc and
stretch it out to obtain a square, the interior of a square.

hN
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And the boundary of the disc, that is the circle, will become the boun-
dary of the square.

[4 hand goes up.]
SERGE LANG. Yes?
GENTLEMAN. But there is some difference, because of the derivatives.

SERGE LANG. Of course, there are corners. The gentleman says there
is a difference, and he is quite right. There is a difference, but not from
the point of view of rubber geometry. One can define other kinds of
equivalence, for which the two objects would not be equivalent, because
when I stretch out the disc and created a corner, then obviously this
corner is not smooth. You could even say that from a certain point of
view, the corner is disgusting. [Laughter.] It’s not smooth, and it’s not
nicely curved. It’s different in some sense. There is also a mathematical
theory of corners, and now you see, we started from something rather
simple, and already we can ask a lot of questions, which develop like a
tree:

A person who walked out after about twenty minutes told the guardian: “I don’t know if
it’s me who is not smart enough, but all this is just a farce.”
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We climb up the tree, and we find two, or even several possibilities to go
on. Depending on which equivalence relation you work with, you will find
different answers for the same question. But right now, I only want to
consider the rubber equivalence. Then the disc and the square are
equivalent.

Of course, this does not depend on their size. I can make the square
big or small. If it’s made out of rubber, it will still be equivalent to the
disc.

If I take just the interior of the disc, without the circle, then I get a sur-
face without boundary, or the square without boundary. This is similar to
the interval, without its end points. You remember the interval without
the end points? Now I take the interior of the square, or of the disc which
is equivalent to it, without the boundary, and the plane which extends to
infinity in all directions. Do you think that the interior of the square is
equivalent to the plane?
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Who says yes?

A GENTLEMAN. The plane is indefinite?
SERGE LANG. It’s the plane, yes, it’s infinite.
GENTLEMAN. The square is without boundary?

SERGE LANG. Right, it does not have a boundary. I took it out, that’s
why I drew the dotted lines.

GENTLEMAN. Then it’s also indefinite?
SERGE LANG. Like you say, it’s indefinite.
GENTLEMAN. Then they are equivalent.

SERGE LANG. That’s right. The square without boundary is equivalent
to the plane. To summarize, every interval without boundary is equivalent
to an infinite straight line, and every square or disc without boundary is
equivalent to the whole plane.

But please note: if I take the square without boundary, I can still add
the boundary if I want. Suppose however that I take a sphere, like this,
the surface of a sphere:

It’s a surface, but it does not have a boundary, OK? And if I stretch it, is
it possible to stretch it in such a way that parts of it go as far away as you
want?

GENTLEMAN. You can blow up the balloon indefinitely.

SERGE LANG. Watch out! I don’t want to tear up the balloon.
[Laughter.] The objects have to remain equivalent. I blow up the balloon,
and punch it in or out some, like rubber, but I am not allowed to tear it

up.
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But if I stretch it, would it be possible to do what I did with the interval
without its end points, to send parts of it as far away as you want? Who
says yes?

[Some hands go up.]

Who says no? Actually, the answer is no. For instance, if I take the inter-
val with its end points, would it be possible to stretch it so that it becomes
equivalent to something infinite?

A LADY. It would be bounded.

SERGE LANG. That’s right, one can prove that it is impossible. The
interval with its end points is not equivalent to an infinite object.

LADY. Do you mean that the end points are fixed?

SERGE LANG. Oh no! They are not necessarily fixed, you can move
them. For instance, it’s equivalent to this thing here.

It suffices to pull, push, and stretch a little. But the problem is to find out
if I can stretch faster and faster, as I did for the interval before. What
happens if I stretch faster and faster, is that the end points have nowhere
to go. Before, the points of the interval which came closer and closer to
the extremities went higher and higher; or lower and lower. So to include
the extremities in the deformation, I would need to tear off the end points.
And I don’t allow that.

A GENTLEMAN. You can put the end points at infinity.

SERGE LANG. No, we have to remain in the plane, there is no point at
infinity in the plane, there are just points which go out as far as you want,
it’s not the same thing.

GENTLEMAN. Why is it forbidden?

SERGE LANG. It's forbidden in order to define the notion of
equivalence. It’s not forbidden in principle, it’s not absolutely forbidden.
You can add a point at infinity to the plane for other applications, but not
for those I want to make today.

So you have to distinguish between things which have the property that
under some deformations, some parts of them can be sent arbitrarily far
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away, and things which do not have this property. So let me write down
a definition.

I say that something is compact if it contains its boundary (whenever
the boundary exists), and if no deformation of this thing extends arbi-
trarily far away. In other words, if every deformation of this thing is
bounded.

All of this is to come to the point of saying that the sphere is compact.
Of course, the three-dimensional space in which we live goes to
infinity . . . [hesitating], at any rate the naive model that we have in mind
goes to infinity. But suppose you live on a sphere, and that you are very,
very small. When you look around you, in any direction, it looks like a
plane . ..

[A hand goes up.]
SERGE LANG. Yes?

A COLLEGE STUDENT. But the sphere is without boundary. You said:
“compact without boundary”.

SERGE LANG. Ah! if the surface has no boundary, it means that it
contains its boundary. The terminology must accept this way of expressing
yourself. If something doesn’t have a boundary, then it can’t help but con-
tain its boundary, because there isn’t any. [Laughter.] You must allow this
possibility, because otherwise, you’ll have a very hard time making simple
mathematical statements.

Let’s go back to people living on a sphere. Maybe they will see only a
plane, even with good telescopes, and they will quickly come to the con-
clusion that the space on which they live is a plane. But suppose that a
thousand years later, they make better telescopes, then maybe they will
discover some curvature, they will see that space is curved, and they can
start asking questions.

This is precisely what happened until Columbus. People thought every-
thing was flat, except clever people, but there weren’t so many of those.

THE AUDIENCE. So what’s new! [Laughter.]
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SERGE LANG. OK, so we look like that, and we can ask what happens
if we keep on going, whether we can come back where we started from, or
whether we go to infinity. The sphere is an example of something which is
compact. If you start from some point, and keep going straight ahead of
you in a given direction, then you come back where you started from.

Can you give me examples of other surfaces like that, compact sur-
faces?

THE AUDIENCE. A cube.

SERGE LANG. Yes, the surface of a cube, but it is equivalent to a
sphere. Give me an example which is not equivalent to a sphere.

A GENTLEMAN. A torus.

SERGE LANG. What?

A GENTLEMAN. A torus.

SOMEONE ELSE. You make a hole in the sphere.
SERGE LANG. Are you a mathematician?

THE GENTLEMAN. A little.

SERGE LANG. That’s already too much! I would like mathematicians
not to intervene, because otherwise, it’s cheating. [Laughter.] Of course,
mathematicians know the answer, but I am not giving this conference for
them. [Serge Lang throws the chalk at the gentleman. Laughter.]

So, you dig a hole, and you find this object, which has a hole in the
middle.

Then one can show that this surface is not equivalent to the sphere,
because of the hole. Now can you give me an example of a surface which
is not equivalent either to the sphere or to the torus?

SOMEONE. A Klein bottle.
SERGE LANG. Some of you know too much.'
A CHILD. A pyramid?

! I don’t want to go into this kind of technicality at this point.
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SERGE LANG. No, that’s equivalent to the sphere.?
A LADY. A box without its top?

SERGE LANG. Yes, but it will have a boundary. I want a surface
without boundary. The preceding one doesn’t have one, the sphere nei-
ther. I want a compact surface.

A COLLEGE STUDENT. You can make two holes, like eyeglasses.

SERGE LANG. There you are, that’s what I wanted you to say. But are
you a mathematician?

THE STUDENT. Yes.

SERGE LANG. Oh no, no, don’t do this! Naturally, if you are a
mathematician, you’ll say: make two holes. But you are not playing the
game. [Laughter.] That’s why I am asking you not to intervene. I want to
make people think for themselves.

So, you are right, I can make two holes. Like this.

And if I want still another example, what do I do?
A STUDENT. A torus with a knot.
A LADY. You can continue to make more and more holes.

SERGE LANG. Very good. You were here the first time madam? Two
years ago? You don’t remember? I remember you very well. Anyhow,
you can make more and more holes. And there is no limit to the number
of holes, except that there can only be a finite number.

2 The audience has all kinds of people, including twelve year old children, high school and
college students, engineers, and retired people. I learned subsequently that this child is 12
years old. Her teacher asked some students in her class who attended the conference to write
up their impressions afterwards. This one wrote:

Of course, sometimes, I was a little confused, as when Mr. Lang asked for an example
different from the sphere in dimension 2. I answered: “A pyramid”, because I understood
that Mr. Lang asked for a similar example. Otherwise, everything went well.

Another one said:

If I knew that what I say would be written down, I would have raised my hand more
often.
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So that’s a theorem:

Compact surfaces, without boundary, are completely characterized, up
to equivalence, by the number of holes. And there are no others.

I also have to make an additional hypothesis in the statement of the
theorem. I should have said: an orientable surface. But I don’t want to get
into this kind of question now. So forget I said it. If I had not said it, then
someone would have raised a fuss, some mathematician. [Laughter.]

[As Serge Lang writes the statement of the theorem on the blackboard,
space runs out, which forces him to erase another part of the blackboard.]

So, there is no space left! Then you must all write to the Secretary of
Education, so that he gives more funds to Mr. Brette for the Palais de la
Découverte, so he can get more blackboards, and bigger ones, in a big
room, and so on ... Non-compact funds, if possible. [Laughter.] You all
write to the Secretary, after the conference. I write the theorem:

Surfaces which are compact, without boundary and orientable (just for
my conscience) are characterized up to equivalence by the number of
holes.

That'’s the general model for surfaces.
Now let’s look at surfaces with boundary.

A GENTLEMAN. And when there are only holes left?

SERGE LANG. There always remains some surface. I am doing all this
as an introduction to objects in three dimensions, when it’s going to
become much more serious.

OK, now I draw a surface with boundary. Someone had already men-
tioned a cylinder.




88 GREAT PROBLEMS OF GEOMETRY AND SPACE

What’s the boundary of the cylinder?
A GENTLEMAN. A circle.

SERGE LANG. Right, there is a circle on top and a circle on the bot-
tom. The boundary of the cylinder is composed of two circles.

A LADY. There are also some edges.

SERGE LANG. No, because when the cylinder turns around, and you
look at it sideways, you won’t see these edges.

LADY. Then there are two boundaries?

SERGE LANG. Yes, or rather, there is a single boundary composed of
two circles. Nobody said that the boundary has to consist of only one
piece. It doesn’t have to be connected.

Now I’ll draw one which is a little more fun. Who can tell me how to
draw a surface with a boundary consisting of more than two pieces?

GENTLEMAN. A face.

SERGE LANG. Yes, for instance.

LADY. A sieve. [Laughter.]

SERGE LANG. Yes, very good. Let me draw another one.

What is this?
GENTLEMAN. An upside down vase.
OTHERS IN THE AUDIENCE. A pair of pants.

SERGE LANG. Yes, a pair of pants. The boundary consists of the circle
on top, and the two circles on the bottom. So the boundary has three
pieces.

Now I am going to do something that mathematicians like a lot.
Mathematicians like to combine things to make sums. Suppose you have
two pairs of pants.
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What can I do to them? If I take a circle on each one of them, I can
glue them together.

And I can do the same thing with the other leg. Then I obtain something
which I can call a sum of the two pants.

GENTLEMAN. But you don’t have the right to do this, you are identi-
fying things.
SERGE LANG. Now I have the right. I am doing sums, I am sewing the

pants together. [Laughter.] I have the right to sew. We are coming to the
point when I have the right to identify.

LADY. Why didn’t you have the right to identify a while ago, but now
you have the right to identify?

SERGE LANG. You always have the right to identify, to put two points
together. Do what you want. But for what purpose? To define the notion
of equivalence, you don’t have the right. I did not say that when I iden-
tify, then I obtain an equivalence. I said I obtain a sum. It’s not the same
thing. For equivalences, I am not allowed to identify points. For sums, I
do have the right. To do a sum consists in identifying pieces of the boun-
dary.

So if I draw the sum, I obtain something like this, with a hole, and still
a boundary which contains two circles.
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Now I can again do a sum, to eliminate the circles.

GENTLEMAN. In any case, you identify the boundaries of two distinct
things.

SERGE LANG. Yes, two distinct objects. I take two pairs of pants, yours
and mine, and I sew them together. [Laughter.]

Now I could also make a sum by taking a single pair of pants, and by
identifying the two pieces at the boundary of the legs. It also gives me a
surface with a hole.

It's the same thing as if I had taken the sum of the surface with a
cylinder, it’s equivalent. I would get a hole, but there remains a single cir-
cle as the boundary.

Now this circle, I want to eliminate it. How do I do that? What sum do
I have to take to eliminate the boundary completely?

GENTLEMAN. A half-sphere?
LADY. A cover.
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SERGE LANG. Precisely. A cover, which is a disc with its boundary.

You glue them together, and you get something without boundary. That’s
what I wanted to show you. If I take surfaces with boundaries, with circles
as their boundaries, and I take their sum, I can add them a certain
number of times, and get a surface with holes, but without boundary.
Take the pants again. I can eliminate the boundary first by sewing the
bottoms together, and then putting a cap at each end. I get a torus.

A STUDENT. But you could also have sewn them together along the
belts.

SERGE LANG. Yes, I could, but that would have created a new hole.

Mathematicians love to do that, it’s one of the things they get a high
on. [Laughter.] If you get a high by making pants and sewing them
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together, then by definition this is called doing topology, and you are a
topologist.

Even if you don’t have a boundary, you can create one to define still
another kind of sum. Up to now, we did only sewing, but you can also do
some surgery. Take a surface, like this, nice and smooth, without boun-
dary. Then I cut off a disc.

This yields a boundary, a circle which was not there before. I want to do
the same thing with another surface, to create another circle. No I am in
the previous situation, I have two surfaces with boundaries, and I can take
their sum along these circles.

In this way I can define the sum of surfaces without boundaries. If I
do this sum, between any surface and the sphere, then I find the same
surface, up to equivalence. One can say that the sphere is the neutral ele-
ment for this kind of sum.
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On the other hand, if I have a surface with two holes, and a surface
with one hole (so a torus), and I take their sum, then I obtain a surface
with three holes. If I take the sum of a surface with three holes and a sur-
face with one hole, then I get a surface with four holes, and so on.

One says that a surface is irreducible if, when you express it as a sum
of two surfaces, one of them is necessarily a sphere. The torus is an
irreducible surface, and every surface which is not equivalent to the
sphere can be expressed as a sum of toruses, a certain number of times,
corresponding to the number of holes in the surface.

I repeat that in everything I have said, I meant the surfaces to be
orientable. And we have just done part of the theory of such surfaces,
which have dimension two. ,

Now I want to go on to objects having dimension three.

A while back, we spoke of people living in two dimensions, say on a
surface. They are very small. What they see around them is also small,
and it looks like a plane. But they could ask themselves: if we were able
to see very far out, what would space look like? What about us? We are
very small beings, on something which is three-dimensional. Are we living
on something which is the analogue of the three-dimensional sphere?
What happens if we look far out in space, do we find a hole? One can
also ask the question in dimension two, but for us dimension three is
more relevant.

We see a three-dimensional space, and we have telescopes which are
more and more powerful. If we can see sufficiently far, what are we going
to find? Are we living on an object equivalent to a sphere? Or are we
going to find holes? This is getting serious. You can really raise this ques-
tion about the nature of the universe. So if you are dead set on wanting a
physical interpretation for what I am doing today, there you are.

I started in dimension 2 because it was easier to define the notion of
sum than in dimension 3.

A GENTLEMAN. But the pants had dimension 3.
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SERGE LANG. No, no! The surface of the pants has dimension 2. Of
course, the pants exist in a three-dimensional space, but the surface itself
has only two dimensions. You must distinguish between the dimension of
the object itself, the surface itself, and the space in which it is embedded.
Now it’s the objects themselves which have dimension three.

Take the ball, for instance, the interior of the sphere, the full ball. It
has dimension three.

the sphere the ball
This ball, without the sphere which is its boundary, is equivalent to the
whole three-dimensional space, for the same reason that the interior of
the disc is equivalent to the plane R?, or the interval without boundary is
equivalent to the line R. The letter R denotes the real line, the straight
line, and I put a small 2 on top to indicate that the space has dimension 2.
For three-dimensional space, I would write R>.

Something of dimension 1 is a curve. Something of dimension 2 is a
surface. What do you call something of dimension 3?

AUDIENCE. A volume.

SERGE LANG. If you wish. But the word “volume” has several mean-
ings. It can mean space itself, or it can mean the numerical value of this
space. For instance, the interior of a suitcase, you might say that it is a
volume, but you could also say that it is three cubic feet. You have to dis-
tinguish the two notions.

In rubber geometry, I don’t measure a volume with numbers, because
something can be equivalent to something else which is much larger, just
by pulling and stretching. '

I could go on talking about three-dimensional things, but they have a
name in mathematics, a technical name. They are called manifolds,
three-dimensional manifolds. I don’t like this name, but that’s the way
they are called. Again I have the notion of rubber equivalence; I have the
notion of compact manifold in other words, a manifold which does not go
to infinity no matter how you deform it. I also have the notion of boun-
dary, which will be what?

LADY. A surface.

SERGE LANG. Right, perfect. You have understood what I'm talking
about.
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OK, I've been talking for an hour. For the last two years, we stopped
after an hour, then there were some questions, and people stayed around
for quite a while. But I have to allow people to go if they want to. So we
can have an intermission for a few minutes. The main topic which I want
to discuss has to do with the classification of three-dimensional manifolds,
and even of some non-compact objects.

In dimension two, I gave a theorem classifying surfaces: There is only
the sphere and toruses with more and more holes. In dimension three, it’s
an extremely difficult problem, which mathematicians try to solve. This is
precisely Thurston’s contribution, to have stated a conjecture which
describes all of them. There will also be sums, and there will be holes, but
it will be much more complicated. That’s what I want to do later.

But for the moment, intermission or recess, depending on your rhetoric.

[Applause. Someone asks if he has the time to go get a drink across the
street, and I answer yes. We start again after about fifteen minutes.]

The second hour

[At the start, the room was full, with about 230 persons. About three
fourths have now come back for this second part.]

[On the blackboard, one can see the following picture, drawn by someone
in the audience.)

SERGE LANG. [Looking at the picture.] Ah, very good drawing. It’s
analogous to the knot, but with a torus. Do you have any questions on
what I have done so far?

GENTLEMAN. Is this surface equivalent to a torus?
SERGE LANG. Very good question. What do you think?
SOMEONE. How many holes does this surface have?
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SERGE LANG. Well, it’s a surface with one hole, embedded in three-
dimensional space, and one can’t deform it on the torus if you ask that
the deformation take place in three-dimensional space. But you can
deform it on the torus if you allow higher dimensional spaces. It’s just
like the knot at the beginning. You see, there are several ways of
representing the same surface.

GENTLEMAN. If someone walks inside the surface, then they have no
way of knowing if the thing is knotted or not. :

SERGE LANG. Yes, excellent remark. It’s just like the knot. If you
move forward on the knot, always walking ahead, then you come back to
where you started from, but you don’t have any way of knowing that you
are not on the circle.

[A hand goes up.]
SERGE LANG. Yes?
A LADY. What about the Moebius strip?

SERGE LANG. I have already said that I want to consider only orient-
able objects, precisely to eliminate this kind of thing, because I wanted to
avoid technicalities to make simpler statements. It was to protect myself
against someone who would complain that I was being incomplete. If I
discuss non-orientable surfaces, then I won’t have time to talk about
three-dimensional things, and that’s what I want to talk about. OK, the
Moebius strip, many of you probably have heard about it, and there isn’t
much point dealing with it now. But you probably don’t know so much
about three-dimensional objects.

Besides, they are relevant for the world in which we live. I have already
said that mathematicians work with lots of possibilities, lots of models. As
mathematicians, we are interested in the beauty of these models, and not
necessarily in their physical applications. Today, I classified surfaces, and I
am interested in the classification of three-dimensional manifolds. I am
trying to describe them all. After we know them all, then we can ask
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which ones correspond to the physical world, the world we live in. A phy-
sicist chooses among these models to find those which fit the empirical
world. I myself have never done physics, and it disturbs me that there is a
correlation between the world of experience, the world with which we
come into contact with our senses. I have always felt that way, ever since I
was a student. I have no ability in physics, which does not really interest
me.

A LADY. No wonder students have a hard time to apply what they
know in mathematics in order to do physics.

SERGE LANG. I have no reason to hide my personal tastes, but I don’t
impose them as being a law of nature. I like the classification of things,
just like that, I make up models, and I tell the physicist: “Pick the one
that suits you.” On the other hand, there are other mathematicians, like
Atiyah, or Singer, who are directly interested in physics. Conversely, there
are physicists who understand mathematics very well, and who do both at
the same time. And I am all for it. I make that quite clear to students, and
I encourage them to do both if they are able to do so, and if they like it.
But everyone has his own limitation.

OK, let’s return to three dimensions. It becomes a lot harder to draw,
because for instance, even the three-dimensional sphere, I can’t show it to
you. The ordinary sphere, the two-dimensional one, I could draw it as the
set of all points which lie at a certain distance from a given point, which is
called its center. The three-dimensional sphere S* again can be defined as
the set of points in four-dimensional space, which are at a given distance
from the center. So the sphere S* is embedded in four-dimensional space,
and we can’t draw it. But we can conceive it.

What I can do, however, are drawings which suggest what happens. Or
give other representations. For example, in the plane, take two axes and
points P, Q on these axes.

I can write the point (P, Q) where Q is on a line R and (P, Q) is in the
plane. This construction is called a product. It is as if I put a line above
each point P, and the point Q wanders along a line above P.
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Qq

RxR

As 1 said, this construction is called taking a product. We saw that the
plane R? is a product of R with R, and we write

R’ = R X R.

Similarly, if I have two intervals /; and I, and if I take the set. of all
points P in the first and Q in the second, then all the pairs of points
(P, Q) like this constitute all the points of a rectangle.

!
H
oyr-———7"—-

I can construct products like this with any two sets. If I take a surface F
having dimension two, I can take its product with any one-dimensional
thing.

If F has dimension 2, then the product is a manifold of dimension 3. It
is the set of points (P, Q) where the first point P is a point on the surface
F, and the second point Q belongs to a one-dimensional space.
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FxR

Let me draw another example. Let S' be the circle. I take the product
S' x S that is the set of all couples (P, Q) where P is on the circle, and
0 is on another circle. To each point P of the first circle, I can associate all
the points on the other circle.

What kind of a surface do I get?
AUDIENCE. A torus.

SERGE LANG. Right, a torus. S' x S'is a torus. I'll call it 7%, with T
like torus, and the 2 because it has dimension two.

This notion of product allows me to construct higher dimensional
object, and I can write them down. I don’t need to draw them any more.

Now I can get to bigger dimensions. Take 7? for instance, and its pro-
ducts with R, its product with a straight line. I would have a hard time
drawing it, but I can represent it by drawing a torus, straight lines like
that, and I can consider the torus as a section of this thing, this three-
dimensional product.
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T2 x R

Of course, this drawing is not correct, but it gives you a good idea of
what’s happening.

Next I want to draw more complicated things in three dimensions. I
already have the sphere in three dimensions, and the product 7> X R,
but I want things which correspond to surfaces, when I had holes. What
does such a thing look like?

LADY. It could be a pipe with thick walls.

SERGE LANG. That’s right. I want holes, toruses, and things which go
to infinity. [Serge Lang draws the following picture.]

[Laughter.] So, here is a three-dimensional thing. What do I call it?
AUDIENCE. An octopus!

SERGE LANG. Precisely, an octopus. In dimension two, I had pants. In
dimension three, I have octopusses. This suggests ... suppose I take a
pair of scissors, and I cut one of the legs. What do I get?
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AUDIENCE. . ..
SERGE LANG. The octopus does not have a boundary.® If I cut one of
its legs, I get something whose boundary will have dimension two, and

which will be a torus.

Now suppose you have some three-dimensional thing, whose boundary
is a torus, and you have another thing whose boundary is also a torus.
You must have an irresistible impulse to do something to them. What is

your irresistible impulse? You [pointing to a lady].

LADY. To glue them together.
SERGE LANG. Right, just like before with circles. So I take two

octopusses.

3 Unfortunately, one cannot draw the picture correctly, and more than one could draw the
sphere S°. The way we have made the drawings, there is a boundary, but nevertheless, they

show rather well what’s going on.
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I cut one leg of each one, I get two toruses, and I glue them together.
Then I have taken the sum of the two octopusses along a torus.

I can also do a similar operation with only one octopus, by cutting two
legs, and glueing the two sections, which are toruses.

Before we also had caps. What do we have now? I have a boundary
which is a torus, and I want to eliminate the boundary. What do I do?

GENTLEMAN. You glue a ring.

SERGE LANG. Very good, that’s right, a ring, the interior of a torus. I
take the ring, and I glue it on the torus. It’s the same type of operation as
capping, but with one more dimension. So I have eliminated a piece of
the boundary.

GENTLEMAN. How many legs can an octopus have?
SERGE LANG. Any number. Two octopusses can have a different
number of legs, in which case they are not equivalent. [Laughter.]

GENTLEMAN. How do you take the sum of two octopusses if one of
them has an odd number of legs, and the other has an even number of
legs?

SERGE LANG. I didn’t say that you had to glue all the legs of one to
all the legs of the other. You can just glue together some of the legs, and
then you can cap the rest of them with solid rings.

GENTLEMAN. What about 7% X R?

SERGE LANG. Well, 72 X R, it’s...euh...it’s like an octopus
without holes, which has only two legs.
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If I cut 72 X R by makKing a section, then I get a boundary which is a
torus. And there also exist octopusses without holes, with several legs.

Just like for surfaces, one says that an octopus is irreducible if the only
way to express it as a sum of two octopusses is when one of the two is
equivalent to 72 X R, or when it is a capping operation, so glueing a ring
like the gentleman said a minute ago.

If I take an octopus and take its sum with 7% X R, then I get an
octopus which is equivalent to the one I started with. From the point of
view of equivalence, I have not changed anything. One can say that
T X R is the neutral element with respect to this sort of addition,
obtained by cutting and glueing a leg.

Now it is perfectly conceivable that after a finite number of additions
like this, I can eliminate all the legs. Let me write this down.

After a finite number of additions, one can eliminate, in many ways, all
the legs. Then one obtains a three dimensional manifold, compact,
without boundary.

LADY. But there are holes.

SERGE LANG. Yes, definitely. We have eliminated the legs, but we
have created holes, and there can be many of them. This is one of the
ways of constructing three-dimensional manifolds, compact and without
boundary . . . and orientable, just so my conscience does not bother me,
and so nobody complains.

Of course, the next time you are on the beach, you can try it out
[Laughter], take the legs of an octopus, and you can even knot them
before you glue them together.

In order to classify octopusses, we must therefore classify the irreduci-
ble ones, and then we must classify the way you can add them together,
as I did just now by cutting and glueing their legs.

Up to now, I have described geometric models: first models of surfaces,
then models of three-dimensional manifolds, octopusses, the three-
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dimensional sphere S, which is not an octopus, and which is something
else.

AUDIENCE. It does not have any holes.

SERGE LANG. Right, no holes. Then one can raise the following ques-
tion.

Take all compact, three-dimensional manifolds, without holes and
without boundary. Can you describe all of them? The problem is
unsolved. Poincaré’s conjecture is that a three-dimensional manifold, com-
pact, without holes, without boundary is equivalent to the sphere S>.
Presumably there is no other. Of course, one should make more precise
what is meant by a “hole”, but let’s leave this technicality aside for today.

Many people have tried to find the answer to Poincaré’s conjecture, but
so far no one has succeeded. In 1960, Smale proved the analogous conjec-
ture in dimension bigger or equal to 5. After that, there remained the
problem in dimension three and four. But the smaller the dimension, the
harder it becomes, because you have not enough room to move around.
The case of dimension 4 was just solved by Freedman in 1981. Many
mathematicians contributed to the solution. They developed the theory as
far as they could by “pure thought”, without too many technical compli-
cations, and then they got stuck.

And it was Freedman, after six to ten years of work, who got it. It was
very difficult, and very technical, and very complicated. It is one of the
great result of contemporary mathematics, it is a first rate result,

There remains the three-dimensional case.

Therefore I cannot state a complete classification for three-dimensional
manifolds, because Poincaré’s conjecture is not yet proved.

For the other three-dimensional manifolds, there is a conjecture due to
Thurston, of which he has proved a good part himself: it is possible to
make up a concrete list, not too big, of certain manifolds, such that:

Every three-dimensional manifold, without boundary, compact and
orientable, is either in this list, or is a sum of octopusses.

So far, I have carried out the part I wanted to do concerning rubber
geometry. To make Thurston’s conjecture more precise, and to describe
the list more precisely, I have to deal with entirely different ideas.

And it is rather interesting, it is even very interesting, that the mani-
folds in this list will be constructed by the same method which will also
allow us to construct octopusses with legs. In other words, we shall con-
struct simultaneously, by the same process, manifolds without legs and
manifolds with legs. To do this, we must leave rubber geometry, and do
an entirely different kind of geometry. Most of you probably have already
heard of it, non-euclidean geometry. But we have to do it in dimension
three.

Before I go any further, do you have any questions? How do you feel
about all this?
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A GENTLEMAN. Through any point of an octopus, is there only one
torus or are there several toruses?

SERGE LANG. It depends. If I cut a leg to make a section, then I get a
torus. But if I cut elsewhere, it depends. I have to cut in the right place to
get a torus, I have to cut a leg. A mathematician would say it this way:

An octopus is a three-dimensional manifold, non-compact, without
boundary, with a finite number of ends, each of which is equivalent to
T® X R.

So if I cut near a point, and not a leg, if I cut elsewhere besides an end
which is equivalent to 7> X R, then there is no reason why I should get a
torus. In fact, if I cut near a point, I can cut a ball, just like when you
take an ice cream ball, and it leaves a boundary which is an ordinary
sphere. You can also think of an air bubble in a piece of swiss cheese. It’s
the same thing as for surfaces. In that case, I cut a disc, leaving a circle as
boundary, and that’s how I defined the sum of two surfaces by glueing
together two circles.

By cutting off balls, I can add together three-dimensional manifolds. I
cut off a ball in the first, I cut off a ball in the other, this leaves a boun-
dary in each one; a sphere in each one. I glue the two spheres together,
and I obtain the sum of the manifolds. One says that a manifold is irredu-
cible if, when I express it as a sum like this, one of the two must be
equivalent to a sphere S** In 1962, Milnor proved that every compact,
three-dimensional manifold without boundary can be expressed as a sum
of irreducible manifolds, essentially in a unique way.® This result reduces
the classification of three-dimensional manifolds to the classification of
irreducible manifolds. Always up to equivalence, of course.

Are there any other questions? No? OK, then we go on, and we come
to the geometry of distances, and non-euclidean geometry. But I have
been talking for two and a half hours. What do I do with the non-
euclidean stuff? Do you want to leave? Have you had enough? I'll do
what you want.

A LADY. No, we stay, you have stimulated our curiosity. We go all the
way.

SERGE LANG. Oh, I have stimulated your curiosity! Then the
octopusses sank in. Good [laughing], do you want another five minute
recess and we go back to work?

AUDIENCE. No, we are all set, let’s go on.

4 Note that we use the word “irreducible” here with respect to the sum taken along spheres,
while we already used this word when dealing with the sum along toruses. There are indeed
two types of sums, and the context should always make precise which one is meant.

5 J. Milnor, “A unique factorization theorem for 3-manifolds,” Amer. J. Math. 84 (1962).
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GENTLEMAN. Now that we are coming along, keep it up. [And the
gentleman makes a gesture meaning “keep it up”.]

SERGE LANG. OK, then, let’s go. But you have some stomach to do
mathematics! If any one wants to go, or has an appointment, don’t be
afraid to leave. [Laughter.] It’s not that I want to kick you out, but still . . .

[Several persons leave, and others will continue to leave during this last
hour.]

The third hour

Now I leave rubber geometry to do the geometry of distances. On the real
line, or in the plane, or in ordinary three-dimensional space, we have the
notion of distance. We are then interested in a new type of equivalence,
which preserves distances.

I shall call motion a transformation which preserves distances. We shall
have motions in euclidean geometry, and also in non-euclidean geometry,
but I want to start with examples in the euclidean case, just to give you
the idea. Using these motions, we can then do certain identifications,
which will allow us to recover octopusses, and the geometry of distances
will thus meet the rubber geometry. So we are going to do something
quite substantial.

Let’s start with the straight line R, with 1, 2, 3,..., —1, =2, =3, ...

3 2 4 ) 1 2 3 %

Suppose given a certain direction, and a certain distance which I denote
by an arrow.

Then take a point P. I can move it in the direction of the arrow, exactly
this distance. Then I get a point Q which I call the translation of P, and
which I write 7(P).6

P ———> Q = =(P).

For concreteness, take the arrow to have length 1. Then the translate of 1
is 2; the translate of 2 is 3; and so on. Now I identify a point P with its
translations. Let me draw a point and its translations.

¢ The letter 7 is a greek letter, tau. I would use a T except for the fact that we have already.
used T for a torus, so we need another letter.
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P Q

—n

1 2 S 4

If T identify like this, then I obtain a circle, just in the way that you
wanted to do it at the beginning. If I take an interval, with its end points,
and I identify the end points, then I get a circle.

. O

It was a very healthy reaction, a very mathematical reaction, for you to
want to make these identifications, except that we are using them now.
They were not allowed when we defined the notion of equivalence in
rubber geometry. So, briefly, on the line, I get a circle by identifying a
point with its translations in a given direction, by a given distance.

Of course, if P is a point, then I identify P with the next point 7(P),
then with the next R = 7(Q). And how can I write R?

AUDIENCE. 7(7(P)).

SERGE LANG. Right, 7(7(P)), which I also write 72(P). And if I iterate
a third time, then I write

T(R) = 7(r(v(P))) = T(P).

And if I go in the opposite direction, then I write 7~ '(P).

P Q R

< (P) X (P) <2 (P)

All right, let’s go to dimension 2. Then I have vertical translations, and
horizontal translations, which I denote by 7ver and Thor.

ver

T hor

—_
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I can then make identifications, or translations, in two directions: the vert-
ical direction, and the horizontal direction. Suppose that I identify the
point P and the point Q in this next diagram. I identify the left hand side
and the right hand side of the rectangle. And I also identify the top side
and the bottom side.

What do I get?
LADY. A sphere.

SERGE LANG. No! Watch out, to identify means what? When I iden-
tify the top and the bottom, then I get a cylinder.

Then if I identify the sides, what do I get?
AUDIENCE. A torus.
SERGE LANG. That’s right, a torus, T2

Now you see that I can describe the torus by means of a diagram in
dimension two, by identifications and translations horizontally as well as
vertically.

Y
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I can also make these identifications in the whole plane.

O - --T—

e e -

I’ll say that two points of the plane are equivalent if I can make hor-
izontal and vertical translations which move one point on the other. But
this is a different kind of equivalence from the rubber equivalence. Here I
have the notion of direction and distance in addition.

I now need these two notions, which I had completely disregarded pre-
viously. So I have to specify which equivalence I mean, and I need two
different words to denote these two equivalences. I have to fix some termi-
nology, which I am going to do more systematically in a moment.

OK, I just got a torus, that is a surface with a hole, by making certain
identifications. If I want a surface with several holes, can you guess what I
should identify and how? Here I got a torus with a rectangle. If I want a
surface with, say, two holes, what kind of identifications should I make?

LADY. Draw another line in the middle, or something like this.

SERGE LANG. Yes, you are right, one should draw more lines, but not
quite as you said. Let me show you just what to do. Instead of four sides,
use a polygon with eight sides.
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And make the identifications just as I drew them. For instance, I drew the
point P identified with the point Q.

And if I want a surface with three holes?

AUDIENCE. Use a polygon with twelve sides.

SERGE LANG. Right, eight for the surface with two holes, and twelve
for the surface with three holes. And if I want a surface with » holes, then
I need...

AUDIENCE. 4n.
SERGE LANG. That’s right, and we draw it like this.

And that’s how we get a representation of a surface with several holes.
GENTLEMAN. And if you have a polygon with six sides?

SERGE LANG. It won’t give necessarily a surface with holes like the
ones we had before. It can give something else, a non-orientable surface,
but today, I want to limit myself to orientable surfaces.” But your question
shows that you have understood what I am talking about.

You see, the torus 72 can be obtained as a quotient of the plane, by
means of certain identifications, which I am going to write with a slanted
bar, on the left hand side:

T? ~ Identif. \ RZ.

These identifications were translations.
GENTLEMAN. What does the 2 mean?

7 It all depends on the respective position of the sides which are to be identified, and of their
orientation. In some cases one can find a torus, and in other cases, one can find a non-
orientable surface. This is a good exercise: study those surfaces obtained by identifying sides
in a polygon with 2n sides.
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SERGE LANG. It’s just to denote the dimension. The numbers which I
write as superscripts, upstairs, are just to indicate dimension. I did not use
numbers in any other way. I had sworn not to use numbers, but it is still
useful to write the little 2 upstairs. I said I would do only geometric
things, but the 2 denotes dimension. Do you allow this?

AUDIENCE. Yes.

SERGE LANG. Thanks. It’s because I had promised not to use
numbers. But this 2 is not really a number. [Laughter.]

Good, so I have represented 72 as a quotient of R? by translations.
And this was euclidean, with respect to translations. Now let’s go to non-
euclidean motions.

One of the models of the non-euclidean plane is the disc. I'll call it H?,
H for hyperbolic.

HZ

We need the notion of hyperbolic distance, and the notion of “line”
with respect to this distance. In an audience like today’s, there must be
some of you who already know about this. Who knows already what this
means?

AUDIENCE. ?7?

SERGE LANG. All right, I'll tell you what it means. By definition, a
hyperbolic line is just an arc of circle in H?, perpendicular to the boun-
dary. I can draw it like this. Here are some hyperbolic lines.
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Some of them intersect each other, and others do not. Perpendicularity
means the same thing as in the euclidean case.

As you see, you can have infinitely many lines passing through a given
point P, but not intersecting another given line L. This cannot happen in
the euclidean case.

N

non-euclidean case euclidean case

In euclidean geometry, given a line L and a point P, there is just one
line passing through P and parallel to L.

We define a triangle just as in the euclidean case. Here is an example
of a triangle, whose sides are line segments.

Now that we see what lines look like, we are going to describe the
notion of hyperbolic distance, and the spaces we get from this point of
view. After that, we’ll make the connection with octopusses, and the
classification of three-dimensional manifolds. I want to end up by stating
Thurston’s conjecture.

So we have to define a new distance, called hyperbolic distance. It’s
also called the Poincaré distance by the French, and the Lobatchevski dis-
tance by the Russians. I call it hyperbolic distance, so nobody gets upset.
[Laughter.]
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To describe this hyperbolic distance completely, I would need some for-
mulas, and I don’t want to write down formulas which are too technical.
But I can speak of the rate of change of the distance when I start from the
center, and move toward the boundary. This means that if r is the
euclidean distance from the center,

then the rate of change of the hyperbolic distance along a ray can be
given by a very simple expression, which is

1

1 —r

5 .

Here I supposed that the radius of the circle is equal to 1. So if I start
from the center of the disc and I go toward the boundary along a ray,
then how does the rate of change behave? You see, if r approaches 1, then
r? also approaches 1, and 1 — r? is very small. Then the fraction is very
large. Therefore the rate of change of the distance becomes very large
when I come near the boundary, and hence the distance becomes bigger
and bigger. There is a formula which gives the distance in terms of r, with
the logarithm. Who has heard of the logarithm?

[Several hands go up.]

Ah! Several of you do know. Then I'll give the formula. Those who
don’t know what the logarithm is don’t need to listen. The hyperbolic dis-
tance along a ray is

d = log

1—r"

So the distance becomes larger and larger as we get nearer to the boun-
dary.

You see that this is analogous to Einstein’s thing, and to the way the
world is made up. Suppose we start at the center, and we start moving
toward the boundary, as far as possible. What happens when we go very
far out, in our own universe? We know that the euclidean model fails, we
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know that space is going to get curved, a little like the hyperbolic lines a
while back. And we speed up. Suppose that a ray of light goes in the
same direction. If I measure its speed, then I find 186,000 miles per
second. Now suppose I go faster. If the model was euclidean, then when I
measure again, I should find a smaller value for the speed of light. Right?
Well, the answer is no, not at all! I always find the same value. If two
trains were going at the same speed, in the same direction, then they
would not move with respect to each other. But this does not work the
same way with light. Light always travels at the same speed. And the rea-
son is that as I go faster and faster, then I grow smaller and smaller, and
my measuring apparatus will also grow smaller, and when I measure the
speed of light, then I find a constant value.

In the hyperbolic plane, we meet an analogous phenomenon. Here I
have drawn points at a distance of 1 unit between each other, along a ray.

So how do you know that we don’t live inside something like this? The
further we go, the less we can know what happens on the other side—or
even if it means anything to speak of “another side”.

But we can still raise the question: what kind of universe do we live in?
Then the mathematician creates models, and the physicists figure out
which of those models fit the world we live in. It is not clear what we
mean by “other side”. By conceiving the hyperbolic plane in another way,
not embedded in the ordinary plane, but intrinsically, by itself, there is no
“other side”. One of the possible questions is whether our universe is
embedded in another one. But then we could not have any direct contact
with this other universe, and we would have to deduce its properties only
by its effect on our own universe.

All right, let’s go back to mathematics. I have this model, and I can
make identifications, just like in the euclidean model.

[A hand goes up.]
SERGE LANG. Yes?

GENTLEMAN. You defined the distance with respect to the center, but
can one define the distance also for any two points?
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SERGE LANG. Yes, of course, but it would be much more technical to
do so, and the formula would be more complicated, so I don’t want to do
it. I would need hyperbolic functions to write it down.

OK, so I want to make identifications. I need certain types of motions,
which preserve the hyperbolic distance. As before, I can define transla-
tions. Suppose I am given a hyperbolic line. It gives me a direction, and I
have the notion of hyperbolic distance. Take any point P. Where are its
translations in the direction of this line? Along which curve does the point
P move, in the direction of the line?

AUDIENCE. 77?
SERGE LANG. Well, let 4 and B be the two end points of the hyper-

bolic line, as shown here on the figure. The translates of P in the direction
of the line are going to be on the arc APB.

I can translate in one direction, or in the reverse direction, or iterate
translations, and so on. Translations are examples of motions which
preserve distance. There are others. Do you known which?

A HIGH SCHOOL STUDENT. Rotations, reflections.

SERGE LANG. Exactly. And in the hyperbolic plane, rotations are the
same as in the Euclidean plane. As for reflections I am going to draw a
point P and its reflection with respect to a line.
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I can also draw a triangle, and its reflection with respect to the same line.

The reflection of a point with respect to the center is the same as in the
euclidean case.

LADY. Then the hyperbolic plane has a center?

SERGE LANG. No, the hyperbolic plane by itself does not have a
center, but the model which I gave for it has one. In the hyperbolic plane,
the situation looks the same everywhere, no matter how close you are to
the boundary for the euclidean distance. Given any two points P and Q
there always exists a translation which moves P and Q. One says that the
hyperbolic plane is homogeneous. In the hyperbolic plane, you are always
infinitely far from the boundary. When I represent it by a disc, I choose a
center, just as when I choose an origin for the euclidean plane.

OK, let’s go back to identifications. I have rotations, translations, and
reflections, and I can also combine them with each other, iterate them. In
general, these give me all distance-preserving transformations. As I
already said, I shall call them motions for short.

Now I still have to define another notion, that of a group of motions. I
shall say that:

T is a group of motions if:
1) when two motions M, and M, are in I, then their composite
MM, is also in T
2) the inverse of a motion M in I is also in T'.

The composite M| M, is the motion such that, when you apply it to a
point P, you get M (M, (P)). The inverse of a motion which sends P to Q
is the motion which sends Q to P. So now we have the notion of a group
of motions.

I also need the notion of a discrete group. Let’s start with an example,
in the ordinary plane, and with translation. Take a point P, and translate
1t.
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P T(P) T2(P) T3(P)

A STUDENT. The points are all distinct.

SERGE LANG. Yes, and what happens if I take a bounded domain in
the plane?

THE STUDENT. Eventually, the points get out of the domain.

SERGE LANG. That’s right. And I can do the same thing with a group.
I will say that two points P and Q are equivalent with respect to the group
I if there exists a motion M in T such that

0 = M(P).

This is an equivalence. And I say that I' is discrete if, given a point P,
among all the possible motions M(P) with M in T, there is only a finite
number lying in a bounded part of space. Essentially this means that in
any bounded part of space, in any bounded domain, there is only a finite
number of points which are equivalent to P with respect to I'.

To distinguish this new equivalence from rubber equivalence, I have to
mention I explicitly, so I could all it a T"-equivalence for short.

Now suppose that T is discrete. I can identify points like that, with
respect to I'. I can identify all the points which are I'-equivalent to each
other. Then I obtain a new space after having made these identifications.
And I denote this space by

T\ H>.

This space will again be two-dimensional.

I have just done identification in dimension 2. Of course, I can also do
identifications like this in dimension 3. What do we take as a model for
hyperbolic space in dimension 3?

GENTLEMAN. The sphere.

SERGE LANG. Yes, the interior of the sphere, the ball. In dimension 3,
we have H°, which is the ordinary ball, but with a hyperbolic distance
which is analogous to the hyperbolic distance in the plane. When you
move toward the boundary, the distance becomes arbitrarily large.

And in hyperbolic 3-space, what do planes look like?

GENTLEMAN. They are parts of spheres?
SERGE LANG. That’s right.
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And we can also define translations, reflections, etc.

But there is also another way of constructing three-dimensional spaces,
by using something having dimension 1 and something else having
dimension 2. I have already used the product construction before. Now
who can give me another example of a three-dimensional space which we

could use by taking a product?
THE STUDENT. Take a line and a hyperbolic plane.

SERGE LANG. Ah! Very good! That’s precisely what I wanted to get
out of your head. So we have another example, by taking the product of
the hyperbolic plane H? and the line R, which we write as

H?* X R.

This space has the hyperbolic distance on H? and the ordinary distance on
R.

Now we have the fundamental examples

H* and H?> X R.
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And we are ready to make the connection with rubber geometry, and
the rubber equivalence. I am first going to recall a classical theorem on
surfaces. Let’s go back to our polygon, which we take in the hyperbolic
plane. Its sides are hyperbolic line segments, but the polygon is equivalent
to a polygon which we already drew, to construct surfaces by identifying
certain sides of the polygon.

Then the hyperbolic plane can be covered by translations of this
polygon, such that two translations are either disjoint, that is, they have
no points in common, or they meet only along some side.

It’s the same thing as when you cover the euclidean plane with squares,
or rectangles, except that you cannot get a tiling of the euclidean plane by
means of regular octagons, but you can tile the hyperbolic plane with any
regular polygon.

Identifying certain sides as we did before amounts to making
identifications with respect to a group of translations. And one has the
theorem:

Theorem. Let F be a surface, compact, orientable, without boundary,
and not equivalent to the sphere or to the torus. Then there exists a
discrete group I such that the surface F is equivalent to the hyperbolic
plane on which we have identified points with respect to I'. In other
words,
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F ~ T\H>~

Well, this theorem dates back to the 19th century. And nobody, until
Thurston, thought that there could be anything like it in dimension 3. It
was Thurston’s great discovery that there should be an analogous result,
to conjecture it, and to prove it in certain cases. First I am going to state a
result which connects the first part of the talk on rubber geometry, with
the second part on non-euclidean geometry.

We always denote by I" a discrete group of motions, but we suppose in
addition that:

—For any point P, the only motion M in T such that M(P) = P must
be the identity, that is the motion which does not move any point.
—And to keep me honest, that the motions in I" preserve orientation.

We always suppose that I' satisfies these two extra conditions, even if I
don’t say so explicitly.?

Let T be a group of motions of H°, for instance. Then we can have two
cases.

First case. T\H®is compact.

In this case, the space we get by making identifications with respect to I is
a manifold of dimension 3, compact, and without boundary. This is one
of the ways of obtaining such manifolds.

Second case. T \H® is not compact.

In this case, we have to use not only the notion of distance, but also the
notion of volume which comes along with it. After I identify with respect
to T, it is possible that the space T \H* has finite volume. I will always
suppose that T' denotes a group such that the volume of I' \ H? is finite.

Of course, you can have the same phenomenon in dimension 2. You
can have a polygon whose sides go toward the boundary, and so the
polygon has ends which are arbitrarily far from the center, as on the fol-
lowing figure.

8 This is indeed the case for translations, and these conditions eliminate the possibility of
reflections being in T'.
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But you can have a group of motions I, and even a group of transla-
tions, such that the surface which you obtain by making identifications
with respect to I" has ends which tend to infinity.

The same thing can happen in dimension 3 but it’s too hard to draw.
The parts which tend to infinity are sort of tubes.

Instead of H°, I could also take H*> X R, and consider groups I' such
that T \(H?> X R) is compact, or is non-compact but has finite volume,
with tubes going to infinity. What do these tubes look like?

Theorem. Let T be as above, a discrete group of motions of H> or of
H? X R, and let’s make the identifications with respect to T'. Suppose
that the space you get has finite volume. Then this space is either com-
pact, or is an octopus. Furthermore, T' \ H* is an irreducible octopus.

In this theorem, it is understood that my group I' satisfies the extra
hypotheses I have stated above, for instance the volume of T'\H> or
T \(H? X R) is finite.

A LADY. In addition to the fact that I is discrete?

SERGE LANG. Yes, in addition, it’s an extra hypothesis I have to make.
After the identifications, I have to suppose that the volume is finite.

There is also a converse, which already gives some idea about the
classification of octopusses.

‘Theorem. Every irreducible octopus is equivalent to a space of type
T\H> or T\H?XR).

And so I get back the octopusses! It’s quite extraordinary. We started
from an entirely different point of view, we made identifications in a
geometry with distances, we took motions preserving the distance, and
what do we find? Compact manifolds and octopusses! This is the connec-
tion between the first part with rubber geometry, and the second part with
geometry of distances.

We are now coming to Thurston’s conjecture. We have just seen two
examples, H? and H? X R, which are spaces with distances. I talked
about a well-defined and short list of spaces. It consists of:

R3, s? S? X R H, H? X R,

that’s five, and three others which I don’t write down because it would be
too technical to do so. There are eight of them altogether. Let’s denote by
X any one of these spaces.

Then Thurston’s conjecture can be stated like this.

Conjecture. Let V' be a three-dimensional manifold, compact, without
boundary, and always orientable so we don’t make things too compli-
cated. Suppose that V is irreducible for the sum along spheres. Then V
is equivalent to one of the following cases.
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—There exists a unique X among the eight, and a group T such that
X is compact and V ~ I'\ X.

—V is a finite sum of octopusses, and each octopus is equivalent to
some I'\ X, where X = H*or X = H> X R.

Besides, in the second case, there is a sort of uniqueness. More or less, this
means that if we write ¥ as a minimal sum of octopusses, then the expres-
sions I'\ X which occur in this. sum are essentially uniquely determined,
up to an appropriate equivalence. It would be too technical to make this
precise, and to define exactly what we mean by “essentially”. One would
have to define new equivalences, and this is not the time to do it.

So you see, to get octopusses, all you need is H> or H* X R. This is the
theorem which Thurston’s is trying to prove, and which he has proved to
a large extent.’ ‘

GENTLEMAN. What about Poincaré’s conjecture?

SERGE LANG. S3 is in the list, and T in this case is the identity.
Poincaré’s conjecture is isolated at one end of the list, and there is nothing
you can do about it.

LADY. I have lost sight of something. What is the difference between
R’ and $*

SERGE LANG. R? is not compact, it’s the ordinary euclidean space
around us. But S is like the sphere, it is compact, while R® goes to
infinity.

[A hand goes up.]

SERGE LANG. Yes.

LADY. Can you recall the definition of “discrete”?

SERGE LANG. “Discrete” means that if P is any point and we move P
with all possible motions in I', that is you look at all points M(P) with M
in T, then in any bounded part of space there is only a finite number of
such points.

® W.P. Thurston, “Three dimensional manifolds, Kleinian groups, and hyperbolic geometry,”
Bull. Amer. Math. Soc. Vol. 6, 3, (1982).
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That’s what it means, that T' is discrete. Plus the additional hypotheses I
made.

A HIGH SCHOOL STUDENT. And if you take a group which is not
discrete, what do you get?

SERGE LANG. Something disgusting, it’s lousy. [Laughter.] No, it’s
more complicated, it’s not a surface. If the group is not discrete, first you
must ask that it be closed to get something which is half way decent. But
if it’s closed, then the dimension is going to go down. However, if the
group is discrete, then there is lots of space between any two points which
you identify, and the dimension stays the same when you identify points.
If the group is not discrete, then it can give you something horrible—well,
not necessarily horrible, but the dimension goes down. OK, you can look
up what happens in books, to find out what goes on.

GENTLEMAN. A while back, you defined manifolds by using a hyper-
bolic geometry, that is the notion of hyperbolic distance. Was this just to
fix ideas, or does Thurston’s theory depend on the notion of neighbor-
hood, open and closed sets, which are more general notions that that of
hyperbolic distance?

SERGE LANG. When you speak of neighborhoods, you are dealing
precisely with a type of geometry for which there are no distances. I made
a list of eight geometries:

R S3 and S? X R with the ordinary distance;

H? X R with the hyperbolic distance on H? and the ordinary distance
on R;

H? with the hyperbolic distance;

and three other cases, which have more complicated distances, which can’t
be called hyperbolic.'

10 For mathematicians, I include here the description of these three geometries. One of them
is PSL,(R), where the ~ denotes the universal covering space. The last two are groups of
matrices. One of them consists of the matrices

b
¢ |, which is the Heisenberg group.
1

o O -
oS - 8

The other consists of the matrices

a 1 b
0 a~! ¢ |, with a real and positive.
0 0 1

The underlying spaces of these two are equivalent to R, but the distances are different from
the usual euclidean distance.
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THE GENTLEMAN. Then the topological properties of octopusses are
closely tied up with these distances, whereas a priori they should be

independent of them?

SERGE LANG. This is an excellent remark. Thurston’s discovery was
precisely that there was a connection between the two types of notions.
This is what gives a lot of kick to his theory.

THE HIGH SCHOOL STUDENT. Yes, but you should then classify the
discrete groups of the hyperbolic plane, otherwise, it won’t work.

SERGE LANG. [Laughing and very pleased] He is absolutely right.
What’s your name?

THE STUDENT. Paul.

SERGE LANG. Indeed, what have we done here? We reduced
something we didn’t know to something else which we know—or which we
don’t know.

So, in the history of mathematics, it turns out that in certain cases, we
know discrete groups pretty well, but not in other cases. One knows a lot
of things about them, but many remain quite mysterious. But many peo-
ple have worked on them, in the nineteenth century and the twentieth
century. During the last thirty years, there has been a lot of progress
about these groups. We know some of them very well. Similarly, one
knows some three-dimensional manifolds quite well, and others not at all.
So my answer is that, by reducing the study of manifolds to quotients of
geometries with distances by means of discrete groups, one had the
impression of making a huge step forward. My answer is therefore rela-
tive.

You see, in mathematics, it can happen that there are two things we
don’t know anything about, and we prove that one is equivalent to the
other. This does not mean no progress has been made. The problems have
been cut by half. [Laughter.] But this is not quite what happened here.
One knew about three-dimensional manifolds in a certain way. One knew
about discrete groups another way. In some sense, these ways were com-
plementary. By putting them together, Thurston contributed to under-
standing both of them.

This does not mean that I personally know the classification of discrete
groups. It’s not my side of mathematics. I could learn it, but I do some-
thing else. I know some examples, and I could give you several if you
want, but I don’t know them well for the most part. There is no point get-
ting a hang-up about not knowing them. There are lots of things in
mathematics. When one needs something, one can always ask a friend to
explain it, just the way I asked Walter Neumann to explain Thurston’s
theory to me.

GENTLEMAN. Let’s go back to one less dimension. By identifying a
square, you get a torus. But what about the sphere?
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SERGE LANG. S? occurs on the side, you can’t get it by identifyin§
something, at any rate not the way I have described it here. Similarly, S
is on the side. That’s Poincaré’s conjecture, to prove that a three-
dimensional manifold, which is compact, without boundary, and without
holes, is equivalent to S°. This conjecture remains all alone on one side of
the theory. The difficulties which come up in connection with S° are
different from those in connection with octopusses. Poincaré’s conjecture
is irreducible.

GENTLEMAN. And in lower dimension, for S?

SERGE LANG. For S% no problem, one knows the answer since the
19th century, that a surface of dimension 2, without holes, without boun-
dary, and orientable, is equivalent to S2.

GENTLEMAN. And one can get it from a representation of the
plane . ..
SERGE LANG. No. .. euh... what kind of representation?

GENTLEMAN. With the disc H>.

SERGE LANG. And with discrete groups? No. There is a theorem
which says no. If you take the disc, with the Poincaré-Lobatchevski
geometry, and you take a discrete group of motions, and you make
identifications, then you will never find something equivalent to S This
is a theorem. Are you a mathematician?

GENTLEMAN. No.

SERGE LANG. Anyway, it’s clear. A mathematician would have known
the answer. [Laughter.] Oh no, no! No kidding, the question was very
relevant, it is quite remarkable how well you react.

LADY. But Poincaré described two such geometries, it seems to me.

SERGE LANG. Well, we are coming back to the gentleman’s question a
while ago. He said one could put many distances on the same space.
There is not only the distance I mentioned, in the hyperbolic plane, when
the rate of change of the distance is 1/(1 — r?). There are many other
ways of defining distances. There is an infinite number of such ways. The
study of such distances is called differential geometry. It consists in study-
ing all possible ways of defining distances, and of introducing certain
equivalences and classifying the distances up to such equivalences. But to
do this would require an entire course in differential geometry. You are
right, the subject is wide open in many directions.

LADY. But concretely, there is no realization . . .

SERGE LANG. Ah, concretely. But what one person finds concrete,
another person will find abstract. It’s entirely relative to your own brain,
to what you know, to your talent in mathematics, to your intelligence, to
your tastes, to your feelings. It’s entirely relative. There is no absolute
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notion of what is concrete and what is abstract. For instance, what you
might have found too abstract yesterday or today, could become concrete
for you tomorrow.

If I draw enough octopusses, they will appear very concrete to you, it’s
a question of habit, partly. It depends on circumstances. There is no abso-
lute answer. Of course, a mathematician could do something which others
don’t understand. The others could have the psychological reaction to find
that it’s too abstract, and they would say that instead of saying: “I don’t
understand.”

LADY. It has no reality.
SERGE LANG. “Reality” where?
LADY. Physical.

SERGE LANG. Oh! The world of physics is much more extensive than
you think. First, you know that if you take the three spatial dimensions,
plus the time dimension, you already get four dimensions. And if you go
very far, what do you find? Do you find octopusses? You find four-
dimensional things? It could already have physical reality. Where do you
stop with your physical reality? In what kind of space do we live? Is it
curved? Is it an octopus? Is it something like H°, or the ball with another
metric? It’s the physicist’s business to find which space, and what kind of
metric. It’s for the physicist to choose between different models, which
have been discovered by mathematicians, or to construct new ones which
might fit better. Usually, people think that our space is homogeneous.
Maybe this is not the case.

Take a point which wanders in space. Besides its spatial coordinates,
there is a time coordinate, but there is also the speed, acceleration, curva-
ture, which give me other parameters, other numbers, other dimensions.
Take an electron which moves in space. At the same time, it turns, it wig-
gles, that gives me other dimensions. It’s complicated to give a model for
the electron, or even to know if the notion of electron makes sense. To
describe those things that wiggle, elementary particles, you need other
models, which may come precisely from differential geometry, among
other things. Physics doesn’t stop in any particular place! It’s not just the
physics of the drawings I can do here on the blackboard. And for other
physical phenomena, maybe I need other models, which will appear too
abstract for you today.

LADY. Yes, of course [and the lady makes a gesture which shows that
she has understood that those mathematical models which can be used in
physics may come from any theory, no matter how abstract or advanced it
may be]).

SERGE LANG. So, a good physicist is somebody who won’t be scared
by complicated models, who won’t be chicken, who will seek his models
in what engineers find too abstract. Except that the physicist will find a
good model, and he will win. He will make it in the history of science pre-



GREAT PROBLEMS OF GEOMETRY AND SPACE 127

cisely because he will liberate himself from the intellectual constraints of
his colleagues, and will make concrete what others found too abstract. In
other words, there are no limits. The only limits are for each individual,
those of his own brain, his own temperament, his own tastes . . .

[Serge Lang stops here and catches his breath.]

Ouf! [Laughing] Some marathon!

[Warm applause. After three and a half hours, there remain about 100
persons in the room.]

Well, so this is goodbye. It doesn’t happen every day, it’s unique, to
have been able to stay here like this for three and a half hours, with an
audience like you. It’s unique. I really appreciate it a lot. I was really
pleased.



