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To My Family 





The explorer is the person who is lost. 

-Tim Cahill, Jaguars Ripped My Flesh 

When detectives speak of the moment that a crime becomes theirs to 
investigate, they speak of "catching a case," and once caught, a case is 
like a cold: it clouds and consumes the catcher's mind until , like a fever, 
it breaks; or, if it remains unsolved, it is passed on like a contagion, 
from one detective to another, without ever entirely releasing its hold 
on those who catch it along the way. 

-Philip Gourevitch, A Cold Case 





Preface to the Second Ed ition 

This new edition of The Art and Craft of Problem Solving is an expanded, and, I hope, 
improved version of the original work. There are several changes, including : 

• A new chapter on geometry. It is long-as many pages as the combinatorics 
and number theory chapters combined-but it is merely an introduction to the 
subject. Experts are bound to be dissatisfied with the chapter's pace (slow, es­
pecially at the start) and missing topics (solid geometry, directed lengths and 
angles, Desargues 's theorem, the 9-point circle) .  But this chapter is for begin­
ners; hence its title , "Geometry for Americans." I hope that it gives the novice 
problem solver the confidence to investigate geometry problems as agressively 
as he or she might tackle discrete math questions. 

• An expansion to the calculus chapter, with many new problems. 
• More problems, especially "easy" ones, in several other chapters. 

To accommodate the new material and keep the length under control, the problems are 
in a two-column format with a smaller font. But don 't  let this smaller size fool you 
into thinking that the problems are less important than the rest of the book. As with the 
first edition, the problems are the heart of the book. The serious reader should, at the 
very least, read each problem statement, and attempt as many as possible. To facilitate 
this, I have expanded the number of problems discussed in the Hints appendix, which 
now can be found online at www . wi ley . com/col lege / zei  t z .  

I am still indebted to the people that I thanked in the preface to the first edition. In 
addition, I'd like to thank the following people. 

• Jennifer Battista and Ken Santor at Wiley expertly guided me through the revi­
sion process, never once losing patience with my procrastination. 

• Brian Borchers , Joyce Cutler, Julie Levandosky, Ken Monks, Deborah Moore­
Russo, James Stein, and Draga Vidakovic carefully reviewed the manuscript, 
found many errors, and made numerous important suggestions .  

• At the University of San Francisco, where I have worked since 1 992, Dean 
Jennifer Turpin and Associate Dean Brandon Brown have generously supported 
my extracurricular activities, including approval of a sabbatical leave during the 
2005--06 academic year which made this project possible. 

• Since 1 997, my understanding of problem solving has been enriched by my 
work with a number of local math circles and contests . The Mathematical 
Sciences Research Institute (MSRI) has sponsored much of this activity, and 
I am particularly indebted to MSRI officers Hugo Rossi, David Eisenbud, Jim 
Sotiros, and Joe Buhler. Others who have helped me tremendously include Tom 
Rike, Sam Vandervelde, Mark Saul, Tatiana Shubin, Tom Davis, Josh Zucker, 
and especially, Zvezdelina Stankova. 
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And last but not least, I 'd like to continue my contrition from the first edition, and 
ask my wife and two children to forgive me for my sleep-deprived inattentiveness. I 
dedicate this book, with love, to them. 

Paul Zeitz San Francisco, June 2006 

Preface to the First Ed ition 

Why This Book? 

This is a book about mathematical problem solving for college-level novices. By this 
I mean bright people who know some mathematics (ideally, at least some calculus), 
who enjoy mathematics, who have at least a vague notion of proof, but who have spent 
most of their time doing exercises rather than problems. 

An exercise is a question that tests the student 's mastery of a narrowly focused 
technique, usually one that was recently "covered." Exercises may be hard or easy, but 
they are never puzzling, for it is always immediately clear how to proceed. Getting 
the solution may involve hairy technical work, but the path towards solution is always 
apparent. In contrast, a problem is a question that cannot be answered immediately. 
Problems are often open-ended, paradoxical, and sometimes unsolvable, and require 
investigation before one can come close to a solution. Problems and problem solving 
are at the heart of mathematics. Research mathematicians do nothing but open-ended 
problem solving. In industry, being able to solve a poorly defined problem is much 
more important to an employer than being able to, say, invert a matrix .  A computer 
can do the latter, but not the former. 

A good problem solver is not just more employable. Someone who learns how to 
solve mathematical problems enters the mainstream culture of mathematics; he or she 
develops great confidence and can inspire others . Best of all, problem solvers have 
fun; the adept problem solver knows how to play with mathematics, and understands 
and appreciates beautiful mathematics .  

An analogy: The average (non-problem-solver) math student is like someone who 
goes to a gym three times a week to do lots of repetitions with low weights on various 
exercise machines. In contrast, the problem solver goes on a long, hard backpacking 
trip. Both people get stronger. The problem solver gets hot, cold, wet, tired, and 
hungry. The problem solver gets lost, and has to find his or her way. The problem 
solver gets blisters . The problem solver climbs to the top of mountains, sees hitherto 
undreamed of vistas. The problem solver arrives at places of amazing beauty, and 
experiences ecstasy that is amplified by the effort expended to get there . When the 
problem solver returns home, he or she is energized by the adventure, and cannot stop 
gushing about the wonderful experience. Meanwhile, the gym rat has gotten steadily 
stronger, but has not had much fun, and has little to share with others . 

While the majority of American math students are not problem solvers , there does 
exist an elite problem solving culture . Its members were raised with math clubs, and 
often participated in math contests, and learned the important "folklore" problems and 
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ideas that most mathematicians take for granted. This culture is prevalent in parts of 
Eastern Europe and exists in small pockets in the United States. I grew up in New York 
City and attended Stuyvesant High School, where I was captain of the math team, and 
consequently had a problem solver's education . I was and am deeply involved with 
problem solving contests. In high school, I was a member of the first USA team to 
participate in the International Mathematical Olympiad (lMO) and twenty years later, 
as a college professor, have coached several of the most recent IMO teams, including 
one which in 1 994 achieved the only perfect performance in the history of the IMO. 

But most people don 't grow up in this problem solving culture. My experiences 
as a high school and college teacher, mostly with students who did not grow up as 
problem solvers, have convinced me that problem solving is something that is easy 
for any bright math student to learn. As a missionary for the problem solving culture,  
The Art and Craft of Problem Solving is a first approximation of my attempt to spread 
the gospel. I decided to write this book because I could not find any suitable text that 
worked for my students at the University of San Francisco. There are many nice books 
with lots of good mathematics out there, but I have found that mathematics itself is not 
enough. The Art and Craft of Problem Solving is guided by several principles: 

• Problem solving can be taught and can be learned. 
• Success at solving problems is crucially dependent on psychological factors. 

Attributes like confidence, concentration, and courage are vitally important. 
• No-holds-barred investigation is at least as important as rigorous argument. 
• The non-psychological aspects of problem solving are a mix of strategic prin­

ciples, more focused tactical approaches, and narrowly defined technical tools. 
• Knowledge of folklore (for example, the pigeonhole principle or Conway 's 

Checker problem) is as important as mastery of technical tools. 

Reading This Book 

Consequently, although this book is organized like a standard math textbook, its tone 
is much less formal :  it tries to play the role of a friendly coach, teaching not just by 
exposition, but by exhortation, example, and challenge. There are few prerequisites­
only a smattering of calculus is assumed-and while my target audience is college 
math majors, the book is certainly accessible to advanced high school students and to 
people reading on their own, especially teachers (at any level) .  

The book is divided into two parts. Part I i s  an overview of problem-solving 
methodology, and is the core of the book. Part II contains four chapters that can be read 
independently of one another and outline algebra, combinatorics, number theory, and 
calculus from the problem solver's point of view. I In order to keep the book's length 
manageable, there is no geometry chapter. Geometric ideas are diffused throughout 
the book, and concentrated in a few places (for example, Section 4.2) .  Nevertheless, 

I To conserve pages, the second edition no longer uses formal "Part I" and "Part II" labels .  Nevertheless, the 
book has the same logical structure, with an added chapter on geometry. For more information about how to read 
the book, see Section 1 .4. 
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the book is a bit light on geometry. Luckily, a number of great geometry books have 
already been written. At the elementary level, Geometry Revisited [6] and Geometry 
and the Imagination [2 1 ]  have no equals. 

The structure of each section within each chapter is simple : exposition, examples, 
and problems-lots and lots-some easy, some hard, some very hard. The purpose of 
the book is to teach problem solving, and this can only be accomplished by grappling 
with many problems, solving some and learning from others that not every problem is 
meant to be solved, and that any time spent thinking honestly about a problem is time 
well spent. 

My goal is that reading this book and working on some of its 660 problems should 
be like the backpacking trip described above. The reader will definitely get lost for 
some of the time, and will get very, very sore. But at the conclusion of the trip, the 
reader will be toughened and happy and ready for more adventures. 

And he or she will have learned a lot about mathematics-not a specific branch of 
mathematics, but mathematics ,  pure and simple. Indeed, a recurring theme throughout 
the book is the unity of mathematics. Many of the specific problem solving meth­
ods involve the idea of recasting from one branch of math to another; for example, a 
geometric interpretation of an algebraic inequality. 

Teaching With Th is Book 

In a one-semester course, virtually all of Part I should be studied, although not all of 
it will be mastered. In addition, the instructor can choose selected sections from Part 
II . For example, a course at the freshman or sophomore level might concentrate on 
Chapters 1-6, while more advanced classes would omit much of Chapter 5 (except the 
last section) and Chapter 6, concentrating instead on Chapters 7 and 8 .  

This book is aimed a t  beginning students , and I don 't  assume that the instructor i s  
expert, either. The Instructor's Resource Manual contains solution sketches to  most of 
the problems as well as some ideas about how to teach a problem solving course. For 
more information, please visit www . wi ley . com/col lege / z eit z .  

Acknowledgments 

Deborah Hughes Hallet has been the guardian angel of my career for nearly twenty 
years . Without her kindness and encouragement, this book would not exist, nor would 
I be a teacher of mathematics. l owe it to you, Deb. Thanks!  

I have had the good fortune to work at the University of San Francisco, where I 
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to single out a few people for heartfelt thanks :  
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USF in 1 992. I could never have finished this book without his advice and hard 
labor on my behalf. Tristan 's wisdom spans the spectrum from the tiniest IbTp( 
details to deep insights about the history and foundations of mathematics. In 
many ways that I am still just beginning to understand, Tristan has taught me 
what it means to really understand a mathematical truth. 

• Nancy Campagna, Marvella Luey, Tonya Miller, and Laleh Shahideh have gen­
erously and creatively helped me with administrative problems so many times 
and in so many ways that I don 't  know where to begin. Suffice to say that with­
out their help and friendship, my life at USF would often have become grim 
and chaotic. 

• Not a day goes by without Wing Ng, our multitalented department secretary, 
helping me to solve problems involving things such as copier misfeeds to soft­
ware installation to page layout. Her ingenuity and altruism have immensely 
enhanced my productivity. 

Many of the ideas for this book come from my experiences teaching students 
in two vastly different arenas : a problem-solving seminar at USF and the training 
program for the USA team for the IMO. I thank all of my students for giving me the 
opportunity to share mathematics. 

My colleagues in the math competitions world have taught me much about prob­
lem solving. In particular, I 'd like to thank Titu Andreescu, Jeremy Bem, Doug Jun­
greis, Kiran Kedlaya, Jim Propp, and Alexander Soifer for many helpful conversations. 

Bob Bekes, John Chuchel, Dennis DeTurk, Tim Sipka, Robert Stolarsky, Agnes 
Tuska, and Graeme West reviewed earlier versions of this book. They made many 
useful comments and found many errors . The book is much improved because of their 
careful reading. Whatever errors remain, I of course assume all responsibility. 

This book was written on a Macintosh computer, using IbTp( running on the 
wonderful Textures program, which is miles ahead of any other TP( system. I urge 
anyone contemplating writing a book using TP( or IbTp( to consider this program 
(www.bluesky.com) . Another piece of software that helped me immensely was Eric 
Scheide 's indexer program, which automates much of the IbTp( indexing process. His 
program easily saved me a week 's tedium. Contact scheide@usfca.edu for more infor­
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Ruth Baruth, my editor at Wiley, has helped me transform a vague idea into a book 
in a surprisingly short time, by expertly mixing generous encouragement, creative 
suggestions , and gentle prodding . I sincerely thank her for her help, and look forward 
to more books in the future. 

My wife and son have endured a lot during the writing of this book. This is not 
the place for me to thank them for their patience, but to apologize for my neglect. It 
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Chapter 1 

What This Book Is About and How to 
Read It 

1.1 " Exercises" vs. "Problems" 

This is a book about mathematical problem solving. We make three assumptions about 
you, our reader: 

• You enjoy math. 

• You know high-school math pretty well, and have at least begun the study of 
"higher mathematics" such as calculus and linear algebra. 

• You want to become better at solving math problems. 

First, what is a problem? We distinguish between problems and exercises. An 
exercise is a question that you know how to resolve immediately. Whether you get 
it right or not depends on how expertly you apply specific techniques, but you don 't 
need to puzzle out what techniques to use. In contrast, a problem demands much 
thought and resourcefulness before the right approach is found. For example, here is 
an exercise. 

Example 1 .1 .1  Compute 54363 without a calculator. 

You have no doubt about how to proceed-just multiply, carefully. The next ques­
tion is more subtle. 

Example 1 .1 .2 Write 

I I I 1 
""}:2 + 

2 . 3 
+ 

3 ·4 
+ . . .  + 99 . 1 00 

as a fraction in lowest terms. 

At first glance, it is another tedious exercise, for you can just carefully add up all 
99 terms, and hope that you get the right answer. But a little investigation yields 
something intriguing. Adding the first few terms and simplifying, we discover that 

1 1 2 
""}:2 +

2 . 3
= 3"' 

1 



2 CHAPTER 1 WHAT THIS BOOK IS ABOUT AND HOW TO READ IT 

1 1 1 3 
1 . 2 + 2 . 3 + 3 .4 = 4 ' 

1 1 1 1 4 
1 · 2 + 2 · 3 + 3 ·4 + 4 · 5 = 5 ' 

which leads to the conjecture that for all positive integers n, 
1 1 l I n 

- + -+ - + . . . + =--. 1 · 2 2 · 3 3 ·4 n (n + l )  n + l 
So now we are confronted with a problem: is this conjecture true, and if so, how do 
we prove that it is true? If we are experienced in such matters , this is still a mere 
exercise, in the technique of mathematical induction (see page 45) .  But if we are not 
experienced, it is a problem, not an exercise. To solve it, we need to spend some time, 
trying out different approaches. The harder the problem, the more time we need. Often 
the first approach fails .  Sometimes the first dozen approaches fail !  

Here i s  another question, the famous "Census-Taker Problem." A few people 
might think of this as an exercise, but for most, it is a problem. 

Example 1 . 1.3 A census-taker knocks on a door, and asks the woman inside how 
many children she has and how old they are. 

"I have three daughters , their ages are whole numbers, and the product of the ages 
is 36," says the mother. 

"That 's not enough information," responds the census-taker. 
"I'd tell you the sum of their ages, but you 'd still be stumped." 
"I wish you 'd tell me something more." 
"Okay, my oldest daughter Annie likes dogs." 
What are the ages of the three daughters? 

After the first reading, it seems impossible-there isn ' t  enough information to 
determine the ages . That 's why it is a problem, and a fun one, at that. (The answer is 
at the end of this chapter, on page 1 2, if you get stumped. )  

If the Census-Taker Problem is too easy, try this next one (see page 75 for solu­
tion) : 

Example 1 .1 .4 I invite 10 couples to a party at my house. I ask everyone present, 
including my wife, how many people they shook hands with. It turns out that everyone 
questioned-I didn 't  question myself, of course-shook hands with a different number 
of people. If we assume that no one shook hands with his or her partner, how many 
people did my wife shake hands with? (I did not ask myself any questions.) 

A good problem is mysterious and interesting. It is mysterious, because at first you 
don 't know how to solve it. If it is not interesting, you won 't think about it much. If it 
is interesting, though, you will want to put a lot of time and effort into understanding 
it. 

This book will help you to investigate and solve problems. If you are an inex­
perienced problem solver, you may often give up quickly. This happens for several 
reasons. 

• You may just not know how to begin. 
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• You may make some initial progress, but then cannot proceed further. 
• You try a few things, nothing works, so you give up. 

An experienced problem solver, in contrast, is rarely at a loss for how to begin inves­
tigating a problem. He or she l confidently tries a number of approaches to get started. 
This may not solve the problem, but some progress is made. Then more specific tech­
niques come into play. Eventually, at least some of the time, the problem is resolved. 
The experienced problem solver operates on three different levels: 

Strategy: Mathematical and psychological ideas for starting and pursuing 
problems. 
Tactics : Diverse mathematical methods that work in many different settings .  
Tools : Narrowly focused techniques and "tricks" for specific situations. 

1.2 The Three Levels of Problem Solvi ng 

Some branches of mathematics have very long histories, with many standard symbols 
and words. Problem solving is not one of them.2 We use the terms strategy, tactics 
and tools to denote three different levels of problem solving. Since these are not 
standard definitions, it is important that we understand exactly what they mean. 

A Mountaineering Analogy 

You are standing at the base of a mountain, hoping to climb to the summit. Your 
first strategy may be to take several small trips to various easier peaks nearby, so as 
to observe the target mountain from different angles. After this, you may consider a 
somewhat more focused strategy, perhaps to try climbing the mountain via a particu­
lar ridge. Now the tactical considerations begin: how to actually achieve the chosen 
strategy. For example, suppose that strategy suggests climbing the south ridge of the 
peak, but there are snowfields and rivers in our path . Different tactics are needed to 
negotiate each of these obstacles. For the snowfield, our tactic may be to travel early 
in the morning, while the snow is hard. For the river, our tactic may be scouting the 
banks for the safest crossing. Finally, we move onto the most tightly focused level, that 
of tools: specific techniques to accomplish specialized tasks. For example, to cross the 
snowfield we may set up a particular system of ropes for safety and walk with ice axes. 
The river crossing may require the party to strip from the waist down and hold hands 
for balance. These are all tools. They are very specific. You would never summarize, 
"To climb the mountain we had to take our pants off and hold hands," because this was 
a minor-though essential-component of the entire climb. On the other hand, strate­
gic and sometimes tactical ideas are often described in your summary : "We decided 
to reach the summit via the south ridge and had to cross a difficult snowfield and a 
dangerous river to get to the ridge." 

I We wil l  henceforth avoid the awkward "he or she" construction by alternating genders in subsequent chapters. 
2 In fact, there does not even exist a standard name for the theory of problem solving, although George P6lya 

and others have tried to popularize the term heuristics (see, for example, [32]). 
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As we climb a mountain, we may encounter obstacles. Some of these obstacles are 
easy to negotiate, for they are mere exercises (of course this depends on the climber's 
ability and experience). But one obstacle may present a difficult miniature problem, 
whose solution clears the way for the entire climb. For example, the path to the sum­
mit may be easy walking, except for one l O-foot section of steep ice. Climbers call 
negotiating the key obstacle the crux move. We shall use this term for mathematical 
problems as well. A crux move may take place at the strategic, tactical or tool level; 
some problems have several crux moves; many have none. 

From Mountaineering to Mathematics 

Let 's approach mathematical problems with these mountaineering ideas. When con­
fronted with a problem, you cannot immediately solve it, for otherwise, it is not a 
problem but a mere exercise. You must begin a process of investigation . This in­
vestigation can take many forms. One method, by no means a terrible one, is to just 
randomly try whatever comes into your head. If you have a fertile imagination, and a 
good store of methods, and a lot of time to spare, you may eventually solve the prob­
lem. However, if you are a beginner, it is best to cultivate a more organized approach. 
First, think strategically. Don 't try immediately to solve the problem, but instead think 
about it on a less focused level. The goal of strategic thinking is to come up with a plan 
that may only barely have mathematical content, but which leads to an "improved" sit­
uation, not unlike the mountaineer's strategy, "If we get to the south ridge, it looks like 
we will be able to get to the summit." 

Strategies help us get started, and help us continue. But they are just vague outlines 
of the actual work that needs to be done. The concrete tasks to accomplish our strategic 
plans are done at the lower levels of tactic and tool. 

Here is an example that shows the three levels in action, from a 1 926 Hungarian 
contest. 

Example 1.2. 1 Prove that the product of four consecutive natural numbers cannot be 
the square of an integer. 

Solution: Our initial strategy is to familiarize ourselves with the statement of 
the problem, i .e . ,  to get oriented. We first note that the question asks us to prove 
something. Problems are usually of two types-those that ask you to prove something 
and those that ask you to find something. The Census-Taker problem (Example 1 . 1 . 3) 
is an example of the latter type. 

Next, observe that the problem is asking us to prove that something cannot hap­
pen . We divide the problem into hypothesis (also called "the given") and conclusion 
(whatever the problem is asking you to find or prove). The hypothesis is : 

Let n he a natural number. 
The conclusion is :  

n(n + 1 ) (n + 2) (n + 3 )  cannot be the square of an integer. 
Formulating the hypothesis and conclusion isn 't a triviality, since many problems don 't 
state them precisely. In this case, we had to introduce some notation. Sometimes our 
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Perhaps we should focus on the conclusion: how do you go about showing that 
something cannot be a square? This strategy, trying to think about what would im­
mediately lead to the conclusion of our problem, is called looking at the penultimate 
step.3 Unfortunately, our imagination fails us-we cannot think of any easy crite­
ria for determining when a number cannot be a square. So we try another strategy, 
one of the best for beginning just about any problem: get your hands dirty. We try 
plugging in some numbers to experiment with. If we are lucky, we may see a pat­
tern. Let's try a few different values for n. Here 's a table. We use the abbreviation 
f(n) = n (n + 1 ) (n + 2) (n + 3) . 

I f(n) I 2! I 1 2� I 36� I 84� I 1 68� I 1 7 1!� I 
Notice anything? The problem involves squares, so we are sensitized to look for 

squares. Just about everyone notices that the first two values of f(n ) are one less than 
a perfect square. A quick check verifies that additionally, 

f(3 )  = 1 92 - 1 , f(4) = 292 - 1 , f(5 )  = 4 1 2 - 1 , f( 1 O) = 1 3 1 2 - I . 

We confidently conjecture that f(n ) is one less than a perfect square for every n . Prov­
ing this conjecture is the penultimate step that we were looking for, because a positive 
integer that is one less than a pelfect square cannot be a pelfect square since the 
sequence 1 , 4 , 9 , 1 6 , . . .  of perfect squares contains no consecutive integers (the gaps 
between successive squares get bigger and bigger) . Our new strategy is to prove the 
conjecture. 

To do so, we need help at the tactical/tool level. We wish to prove that for each 
n, the product n (n + 1 )  (n + 2) (n + 3) is one less than a perfect square. In other words, 
n(n + 1 )  (n + 2) (n + 3 )  + 1 must be a perfect square. How to show that an algebraic 
expression is always equal to a perfect square? One tactic : factor the expression ! 
We need to manipulate the expression, always keeping in mind our goal of getting a 
square. So we focus on putting parts together that are almost the same. Notice that the 
product of n and n + 3 is "almost" the same as the product of n + I and n + 2, in that 
their first two terms are both n2 + 3n . After regrouping , we have 

[n (n + 3 ) ] [ (n + l ) (n + 2) ]  + 1 = (n2 + 3n ) (n2 + 3n + 2) + I . ( 1 )  

Rather than multiply out the two almost-identical terms, we introduce a little symme­
try to bring squares into focus:  

(n2 + 3n) (n2 + 3n + 2) + 1 = ( ( n2 + 3n + 1 )  - 1 ) ( ( n2 + 3n + 1 )  + 1 ) + 1 . 

Now we use the "difference of two squares" factorization (a tool ! )  and we have 

( (n2 + 3n + 1 )  - 1 ) ( (n2 + 3n + 1 )  + 1 ) + 1 = (n2 + 3n + 1 ) 2 - 1 + 1 

= (n2 + 3n + 1 ) 2 . 

3The word "penultimate" means "next to las!." 
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We have shown that f(n) is one less than a perfect square for all integers n, namely 

f(n) = (n2 + 3n +  1 ) 2 - 1 , 
and we are done. • 

Let us look back and analyze this problem in terms of the three levels. Our first 
strategy was orientation, reading the problem carefully and classifying it in a prelim­
inary way. Then we decided on a strategy to look at the penultimate step that did not 
work at first, but the strategy of numerical experimentation led to a conjecture. Suc­
cessfully proving this involved the tactic of factoring, coupled with a use of symmetry 
and the tool of recognizing a common factorization. 

The most important level was strategic. Getting to the conjecture was the crux 
move. At this point the problem metamorphosed into an exercise ! For even if you 
did not have a good tactical grasp, you could have muddled through. One fine method 
is substitution: Let u = n2 + 3n in equation ( 1 ) . Then the right-hand side becomes 
u (u + 2) + 1 = u2 + 2u + 1 = (u + 1 ) 2 . Another method is to mUltiply out (ugh ! ) .  We 
have 

n( n + 1 )  (n + 2) (n + 3) + 1 = n4 + 6n3 + 1 1  n2 + 6n + 1 . 
If this is going to be the square of something, it will be the square of the quadratic 
polynomial n2 + an + 1 or n2 + an - 1 .  Trying the first case, we equate 

n4 + 6n3 + 1 1  n2 + 6n + 1 = (n2 + an + 1 ) 2 = n4 + 2an3 + (a2 + 2 )n2 + 2an + 1 
and we see that a = 3 works; i .e . ,  n(n + l ) (n + 2) (n + 3 )  + 1 = (n2 + 3n + 1 ) 2 . This 
was a bit less elegant than the first way we solved the problem, but it is a fine method. 
Indeed, it teaches us a useful tool: the method of undetermined coefficients. 

1.3 A Problem Sampler 

The problems in this book are classified into three large families: recreational, contest 
and open-ended. Within each family, problems split into two basic kinds: problems 
"to find" and problems "to prove.,,4 Problems "to find" ask for a specific piece of 
information, while problems "to prove" require a more general argument. Sometimes 
the distinction is blurry. For example, Example 1 . 1 .4 above is a problem "to find," but 
its solution may involve a very general argument. 

What follows is a descriptive sampler of each family. 

Recreational Problems 

Also known as "brain teasers," these problems usually involve little formal mathemat­
ics, but instead rely on creative use of basic strategic principles . They are excellent to 
work on, because no special knowledge is needed, and any time spent thinking about a 

4These two terms are due to George P61ya [32]. 
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recreational problem will help you later with more mathematically sophisticated prob­
lems. The Census-Taker problem (Example 1 . 1 . 3 )  is a good example of a recreational 
problem. A gold mine of excellent recreational problems is the work of Martin Gard­
ner, who edited the "Mathematical Games" department for Scientific American for 
many years . Many of his articles have been collected into books. Two of the nicest are 
perhaps [1 2 ]  and [1 1 ]. 

1.3.1 A monk climbs a mountain. He starts at 8AM and reaches the summit at noon. 
He spends the night on the summit. The next morning, he leaves the summit at 8AM 
and descends by the same route that he used the day before, reaching the bottom at 
noon. Prove that there is a time between 8AM and noon at which the monk was at 
exactly the same spot on the mountain on both days. (Notice that we do not specify 
anything about the speed that the monk travels. For example, he could race at l OOO 
miles per hour for the first few minutes, then sit still for hours ,  then travel backward, 
etc . Nor does the monk have to travel at the same speeds going up as going down. )  

1.3.2 You are in the downstairs lobby of  a house. There are three switches, all in the 
"off' position. Upstairs , there is a room with a lightbulb that is turned off. One and 
only one of the three switches controls the bulb. You want to discover which switch 
controls the bulb, but you are only allowed to go upstairs once. How do you do it? 
(No fancy strings, telescopes, etc . allowed. You cannot see the upstairs room from 
downstairs. The lightbulb is a standard l OO-watt bulb. ) 

1.3.3 You leave your house, travel one mile due south, then one mile due east, then 
one mile due north. You are now back at your house ! Where do you live? There is 
more than one solution; find as many as possible. 

Contest Problems 

These problems are written for formal exams with time limits , often requiring special­
ized tools and/or ingenuity to solve. Several exams at the high school and undergrad­
uate level involve sophisticated and interesting mathematics. 

American High School Math Exam (AHSME) Taken by hundreds of thou­
sands of self-selected high school students each year, this multiple-choice test 
has questions similar to the hardest and most interesting problems on the SAT.5 

American Invitational Math Exam (AIM E) The top 2000 or so scorers on 
the AHSME qualify for this three-hour, I S -question test. Both the AHSME and 
AI ME feature problems "to find," since these tests are graded by machine. 
USA Mathematical Olympiad (USAMO) The top 1 50 AIME participants 
participate in this elite three-and-a-half-hour, five-question essay exam, featur­
ing mostly challenging problems "to prove." 
American Regions Mathematics League (ARML) Every year, ARML con­
ducts a national contest between regional teams of highschool students. Some 

5Recently, this exam has been replaced by the AMC-8, AMC-IO, and AMC-12 exams, for different targeted 
grade levels. 
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of the problems are quite challenging and interesting, roughly comparable to the 
harder questions on the AHSME and AIME and the easier USAMO problems. 

Other national and regional olympiads Many other nations conduct diffi­
cult problem solving contests . Eastern Europe in particular has a very rich 
contest tradition, including very interesting municipal contests, such as the 
Leningrad Mathematical Olympiad.6 Recently China and Vietnam have de­
veloped very innovative and challenging examinations. 

International Mathematical Olympiad (IMO) The top USAMO scorers are 
invited to a training program which then selects the six-member USA team 
that competes in this international contest. It is a nine-hour, six-question essay 
exam, spread over two days.1 The IMO began in 1 959, and takes place in a dif­
ferent country each year. At first it was a small event restricted to Iron Curtain 
countries ,  but recently the event has become quite inclusive, with 75 nations 
represented in 1 996. 

Putnam Exam The most important problem solving contest for American 
undergraduates, a 1 2-question, six-hour exam taken by several thousand stu­
dents each December. The median score is often zero. 

Problems in magazines A number of mathematical journals have problem 
departments, in which readers are invited to propose problems and/or mail in so­
lutions. The most interesting solutions are published, along with a list of those 
who solved the problem. Some of these problems can be extremely difficult, 
and many remain unsolved for years . Journals with good problem departments, 
in increasing order of difficulty, are Math Horizons , The College Mathematics 
Journal, Mathematics Magazine, and The American Mathematical Monthly. 
All of these are published by the Mathematical Association of America. There 
is also a journal devoted entirely to interesting problems and problem solving, 
Crux Mathematicorum, published by the Canadian Mathematical Society. 

Contest problems are very challenging. It is a significant accomplishment to solve 
a single such problem, even with no time limit. The samples below include problems 
of all difficulty levels. 

1 .3.4 (AHSME 1 996) In the xy-plane, what is the length of the shortest path from 
(0, 0) to ( 1 2 , 1 6) that does not go inside the circle (x - 6) 2 + (y - 8 ) 2 = 25? 

1.3.5 (AHSME 1 996) Given that x2 + y2 = 1 4x + 6y + 6, what is the largest possible 
value that 3x + 4y can have? 

1.3.6 (AHSME 1 994) When n standard six-sided dice are rolled, the probability of 
obtaining a sum of 1 994 is greater than zero and is the same as the probability of 
obtaining a sum of S. What is the smallest possible value of S? 

6The Leningrad Mathematical Olympiad was renamed the SI. Petersberg City Olympiad in the mid- 1 990s. 
7 Starting in 1 996, the USAMO adopted a similar format: six questions, taken during two three-hour-long 

morning and afternoon sessions. 
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1.3.7 (AIME 1 994) Find the positive integer n for which 

llog2 1 j  + llog2 2j + llog2 3j + . . . + llog2 nj = 1 994 , 

where lx j denotes the greatest integer less than or equal to x. (For example, l n j = 3 . )  

1.3.8 (AIME 1 994) For any sequence of  real numbers A = (a 1 , a2 , a3 , . . . ) ,  define LlA 
to  be  the sequence (a2 - ai , a3 - a2 , a4 - a3 , . . .  ) whose nth tenn is  an+ 1 - an . Suppose 
that all of the tenns of the sequence Ll (LlA) are 1 ,  and that a 19 = a94 = O. Find a I. 

1.3.9 (USAMO 1 989) The 20 members of a local tennis club have scheduled exactly 
14 two-person games among themselves,  with each member playing in at least one 
game. Prove that within this schedule there must be a set of six games with 1 2  distinct 
players . 

1.3. 10 (USAMO 1 995) A calculator is broken so that the only keys that still work 
are the sin, cos, tan , sin-I, cos-I, and tan-I buttons. The display initially shows 
O. Given any positive rational number q, show that pressing some finite sequence of 
buttons will yield q. Assume that the calculator does real number calculations with 
infinite precision. All functions are in tenns of radians. 

1.3. 11  (Russia 1 995) Solve the equation 

cos ( cos( cos( cosx) ) )  = sin (s in(  sin (sinx) ) ) .  

1.3.12 (IMO 1 976) Detennine, with proof, the largest number that is the product of 
positive integers whose sum is 1 976. 

1.3.13 (Putnam 1 978) Let A be any set of 20 distinct integers chosen from the arith­
metic progression 1 , 4 , 7 , . . .  , 1 00. Prove that there must be two distinct integers in A 
whose sum is 1 04. 

1.3.14 (Putnam 1 994) Let (an ) be a sequence of positive reals such that, for all n, 
an :S a2n + a2n+ I· Prove that :L:= 1 an diverges. 

1.3.15 (Putnam 1 994) Find the positive value of m such that the area in the first quad­
rant enclosed by the ellipse x2/9 + y2 = 1 ,  the x-axis, and the line y = 2x13 is equal to 
the area in the first quadrant enclosed by the ellipse x2/9 + y2 = 1 ,  the y-axis, and the 
line y = mx. 

1.3. 16 (Putnam 1 990) Consider a paper punch that can be centered at any point of the 
plane and that, when operated, removes from the plane precisely those points whose 
distance from the center is irrational. How many punches are needed to remove every 
point? 

Open-Ended Problems 

These are mathematical questions that are sometimes vaguely worded, and possibly 
have no actual solution (unlike the two types of problems described above). Open­
ended problems can be very exciting to work on, because you don 't know what the 
outcome will be. A good open-ended problem is like a hike (or expedition ! )  in an 
uncharted region. Often partial solutions are all that you can get. (Of course, partial 
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solutions are always OK, even if you know that the problem you are working on is a 
formal contest problem that has a complete solution. )  

1 .3 .17 Here are the first few rows of Pascal's Triangle. 

2 
3 3 

4 6 4 
S 1 0 10 S I ,  

where the elements of each row are the sums of pairs of adjacent elements of the prior 
row. For example, 1 0 = 4 + 6. The next row in the triangle will be 

1 , 6 , IS, 20, IS, 6 , 1 .  
There are many interesting patterns in Pascal 's Triangle. Discover as many pat­

terns and relationships as you can, and prove as much as possible . In particular, can 
you somehow extract the Fibonacci numbers (see next problem) from Pascal 's Trian­
gle (or vice versa)? Another question :  is there a pattern or rule for the parity (evenness 
or oddness) of the elements of Pascal 's Triangle? 

1.3.18 The Fibonacci numbers In are defined by 10 = 0, II = 1 and In = In- I + In-2 
for n > 1 . For example, h = 1, 13 = 2 , 14 = 3 , 15 = S, 16 = 8 ,  h = 1 3 , Is = 2 1 . Play 
around with this sequence; try to discover as many patterns as you can, and try to prove 
your conjectures as best as you can. In particular, look at this amazing fact: for n 2: 0, 

f"� �{ ( I +
2
v'5) " - ( 1 -2v'5)} 

You should be able to prove this with mathematical induction (see pp. 4S-S0 and 
Problem 2.3 . 37) , but the more interesting question is, where did this formula come 
from? Think about this and other things that come up when you study the Fibonacci 
sequence. 

1.3. 19 An "ell" is an L-shaped tile made from three 1 x I squares, as shown below. 

Eb 
For what positive integers a , b is it possible to completely tile an a x b rectangle using 
only ells? ("Tiling" means that we cover the rectangle exactly with ells, with no over­
laps.) For example, it is clear that you can tile a 2 x 3 rectangle with ells, but (draw a 
picture) you cannot tile a 3 x 3 with ells. After you understand rectangles, generalize 



1 .4 HOW TO READ THIS BOOK 1 1  

in two directions: tiling ells in more elaborate shapes, tiling shapes with things other 
than ells. 

1.3.20 Imagine a long I x L rectangle, where L is an integer. Clearly, one can pack this 
rectangle with L circles of diameter I ,  and no more. (By "pack" we mean that touching 
is OK, but overlapping is not . )  On the other hand, it is not immediately obvious that 
2L circles is the maximum number possible for packing a 2 x L rectangle. Investigate 
this, and generalize to m x L rectangles. 

1.4 How to Read This Book 

This book is not meant to be read from start to finish, but rather to be perused in 
a "non-linear" way. The book is designed to help you study two subjects : problem 
solving methodology and specific mathematical ideas . You will gradually learn more 
math and also become more adept at "problemsolvingology," and progress in one area 
will stimulate success in the other. 

The book is divided into two parts, with a "bridge" chapter in the middle . Chap­
ters 1 -3 give an overview of strategies and tactics. Each strategy or tactic is discussed 
in a section that starts out with simple examples but ends with sophisticated problems. 
At some point, you may find that the text gets harder to understand, because it requires 
more mathematical experience. You should read the beginning of each section care­
fully, but then start skimming (or skipping) as it gets harder. You can (and should) 
reread later. 

Chapters 5-9 are devoted to mathematical ideas at the tactical or tool level, orga­
nized by mathematical subject and developed specifically from the problem solver's 
point of view. Depending on your interests and background, you will read all or just 
some these chapters . 

Chapter 4 is a bridge between general problem solving and specific mathematical 
topics . It looks in detail at three important "crossover" tactics that connect different 
branches of mathematics. Some of the material in this chapter is pretty advanced, but 
we place it early in the book to give the reader a quick route to sophisticated ideas that 
can be applied very broadly. 

As you increase your mathematical knowledge (from Chapters 5-9), you may 
want to return to the earl ier chapters to reread sections that you may have skimmed 
earlier. Conversely, as you increase your problem solving skills from the early chap­
ters, you may reread (or read for the first time) some of the later chapters . Ideally, you 
will read every page of this book at least twice, and read, if not solve, every single 
problem in it. 

Throughout the book, new terms and specific strategy, tactic and tool names are in 
boldface. From time to time, 

When an important point is made, it is indented and printed in italics. 
like this. 

That means, "pay attention ! "  To signify the successful completion of a solution, we 
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use the "Halmos" symbol, a filled-in square.8 We used a Halmos at the end of Exam­
ple 1.2 . 1 on page 6, and this line ends with one. _ 

Please read with pencil and paper by your side and/or write in the margins ! Math­
ematics is meant to be studied actively. Also--this requires great restraint-try to 
solve each example as you read it, before reading the solution in the text. At the very 
least, take a few moments to ponder the problem. Don 't be tempted into immediately 
looking at the solution. The more actively you approach the material in this book, the 
faster you will master it. And you 'll have more fun . 

Of course, some of the problems presented are harder than other. Toward the end 
of each section (or subsection) we may discuss a "classic" problem, one that is usually 
too hard for the beginning reader to solve alone in a reasonable amount of time. These 
classics are included for several reasons: they illustrate important ideas; they are part 
of what we consider the essential "repertoire" for every young mathematician; and, 
most important, they are beautiful works of art, to be pondered and savored. This 
book is called The Art and Craft of Problem Solving, and while we devote many more 
pages to the craft aspect of problem solving, we don 't want you to forget that problem 
solving, at its best, is a passionate, aesthetic endeavor. If you will indulge us in another 
analogy, pretend that you are learning jazz piano improvisation. It's vital that you 
practice scales and work on your own improvisations, but you also need the instruction 
and inspiration that comes from listening to some great recordings . 

Solution to the Census-Taker Problem 

The product of the ages is 36, so there are only a few possible triples of ages. Here is 
a table of all the possibilities, with the sums of the ages below each triple. 

Aha! Now we see what is going on. The mother's second statement ("I 'd tell you the 
sum of their ages, but you 'd still be stumped") gives us valuable information. It tells 
us that the ages are either ( 1 , 6 , 6) or (2 , 2 , 9 ) ,  for in all other cases, knowledge of the 
sum would tell us unambiguously what the ages are ! The final clue now makes sense; 
it tells us that there is an oldest daughter, eliminating the triple ( 1 , 6 , 6) . The daughters 
are thus 2, 2 and 9 years old. _ 

8Named after Paul Halmos. a mathematician and writer who populanzed Its use. 



Chapter 2 

Strategies for Investigating Problems 

As we 've seen, solving a problem is not unlike climbing a mountain. And for inex­
perienced climbers, the task may seem daunting. The mountain is so steep ! There is 
no trail !  You can 't even see the summit ! If the mountain is worth climbing, it will 
take effort, skill, and, perhaps, luck. Several abortive attempts (euphemistically called 
"reconnaissance trips") may be needed before the summit is reached. 

Likewise, a good math problem, one that is interesting and worth solving, will not 
solve itself. You must expend effort to discover the combination of the right mathe­
matical tactics with the proper strategies. "Strategy" is often non-mathematical . Some 
problem solving strategies will work on many kinds of problems, not just mathematical 
ones. 

For beginners especially, strategy is very important. When faced with a new and 
seemingly difficult problem, often you don 't know where to begin. Psychological 
strategies can help you get in the right frame of mind. Other strategies help you start 
the process of investigation. Once you have begun work, you may need an overall 
strategic framework to continue and complete your solution. 

We begin with psychological strategies that apply to almost all problems. These 
are simple commonsense ideas. That doesn't mean they are easy to master. But once 
you start thinking about them, you will notice a rapid improvement in your ability 
to work at mathematical problems. Note that we are not promising improvement in 
solving problems. That will come with time. But first you have to learn to really work. 

After psychological strategies, we examine several strategies that help you begin 
investigations. These too are very simple ideas, easy and often fun to apply. They 
may not help you to solve many problems at first, but they will enable you to make 
encouraging progress . 

The solution to every problem involves two parts : the investigation,  during which 
you discover what is going on, and the argument, in which you convince others of 
your discoveries. We discuss the most popular of the many methods of formal argu­
ment in this chapter. We conclude with a study of miscellaneous strategies that can be 
used at different stages of a mathematical investigation . 

1 3  
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2.1 Psychological  Strateg ies 

Effective problem solvers stand out from the crowd. Their brains seem to work differ­
ently. They are tougher, yet also more sensitive and flexible. Few people possess these 
laudable attributes, but it is easy to begin acquiring them. 

Mental Toughness : Learn from Polya's Mouse 

We will summarize our ideas with a little story, "Mice and Men," told by George P6lya, 
the great mathematician and teacher of problem solving ( [33 ] ,  p. 75) . 

The landlady hurried into the backyard, put the mousetrap on the 
ground (it was an old-fashioned trap, a cage with a trapdoor) and called 
to her daughter to fetch the cat. The mouse in the trap seemed to un­
derstand the gist of these proceedings; he raced frantically in his cage, 
threw himself violently against the bars , now on this side and then on 
the other, and in the last moment he succeeded in squeezing himself 
through and disappeared in the neighbour's field. There must have 
been on that side one slightly wider opening between the bars of the 
mousetrap . . . I silently congratulated the mouse. He solved a great 
problem, and gave a great example. 

That is the way to solve problems. We must try and try again un­
til eventually we recognize the slight difference between the various 
openings on which everything depends. We must vary our trials so that 
we may explore all sides of the problem. Indeed, we cannot know in 
advance on which side is the only practicable opening where we can 
squeeze through. 

The fundamental method of mice and men is the same: to try, try 
again, and to vary the trials so that we do not miss the few favorable 
possibilities. It is true that men are usually better in solving problems 
than mice. A man need not throw himself bodily against the obstacle, 
he can do so mentally; a man can vary his trials more and learn more 
from the failure of his trials than a mouse. 

The moral of the story, of course, is that a good problem solver doesn 't give up. 
However, she doesn't just stupidly keep banging her head against a wall (or cage ! ) ,  
but instead varies each attempt. But  this is too simplistic . I f  people never gave up on 
problems, the world would be a very strange and unpleasant place. Sometimes you 
just cannot solve a problem. You will have to give up, at least temporarily. All good 
problem solvers occasionally admit defeat. An important part of the problem solver's 
art is knowing when to give up. 

But most beginners give up too soon, because they lack the mental toughness 
attributes of confidence and concentration. It is hard to work on a problem if you 
don 't believe that you can solve it, and it is impossible to keep working past your 
"frustration threshold." The novice must improve her mental toughness in tandem with 
her mathematical skills in order to make significant progress. 
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It isn't hard to acquire a modest amount of mental toughness. As a beginner, you 
most likely lack some confidence and powers of concentration, but you can increase 
both simultaneously. You may think that building up confidence is a difficult and 
subtle thing, but we are not talking here about self-esteem or sexuality or anything 
very deep in your psyche. Math problems are easier to deal with. You are already 
pretty confident about your math ability or you would not be reading this .  You build 
upon your preexisting confidence by working at first on "easy" problems, where "easy" 
means that you can solve it after expending a modest effort. As long as you work on 
problems rather than exercises, your brain gets a workout, and your subconscious gets 
used to success. Your confidence automatically rises. 

As your confidence grows, so too will your frustration threshold, if you gradually 
increase the intellectual "load." Start with easy problems, to warm up, but then work on 
harder and harder problems that continually challenge and stretch you to the limit. As 
long as the problems are interesting enough, you won 't mind working for longer and 
longer stretches on them. At first, you may bum out after 15 minutes of hard thinking. 
Eventually, you will be able to work for hours single-mindedly on a problem, and keep 
other problems simmering on your mental backbumer for days or weeks. 

That 's all there is to it. There is one catch : developing mental toughness takes 
time, and maintaining it is a lifetime task. But what could be more fun than thinking 
about challenging problems as often as possible? 

Here is a simple and amusing problem, actually used in a software job interview, 
that illustrates the importance of confidence in approaching the unknown. 1 

Example 2.1 .1  Consider the following diagram. Can you connect each small box on 
the top with its same-letter mate on the bottom with paths that do not cross one another, 
nor leave the boundaries of the large box? 

B 

Solution : How to proceed? Either it is possible or it is not. The software company 's 
personnel people were pretty crafty here; they wanted to see how quickly someone 
would give up. For certainly, it doesn 't look possible. On the other hand, confidence 
dictates that 

Just because a problem seems impossible does not mean that it is im­
possible. Never admit defeat after a cursory glance. Begin optimistically; 
assume that the problem can be solved. Only after several failed at-

I We thank Denise Hunter for telling us about this problem. 
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tempts should you try to prove impossibility. If you cannot do so, then 
do not admit defeat. Go back to the problem later. 

Now let us try to solve the problem. It is helpful to try to loosen up, and not worry 
about rules or constraints. Wishful thinking is always fun, and often useful. For 
example, in this problem, the main difficulty is that the top boxes labeled A and C are 
in the "wrong" places. So why not move them around to make the problem trivially 
easy? See the next diagram. 

We have employed the all- important make it easier strategy: 

If the given problem is too hard, solve an easier one. 
Of course, we still haven't solved the original problem. Or have we? We can try 

to "push" the floating boxes back to their original positions, one at a time. First the A 
box: 

Now the C box, 

and suddenly the problem is solved ! • 
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There is a moral to the story, of course . Most people, when confronted with this 
problem, immediately declare that it is impossible . Good problem solvers do not, how­
ever. Remember, there is no time pressure. It might feel good to quickly "dispose" of a 
problem, by either solving it or declaring it to be unsolvable, but it is far better to take 
one 's time to understand a problem. Avoid immediate declarations of impossibility; 
they are dishonest. 

We solved this problem by using two strategic principles. First, we used the psy­
chological strategy of cultivating an open, optimistic attitude. Second, we employed 
the enjoyable strategy of making the problem easier. We were lucky, for it turned out 
that the original problem was almost immediately equivalent to the modified easier 
version. That happened for a mathematical reason: the problem was a "topological" 
one. This trick of mutating a diagram into a "topologically equivalent" one is well 
worth remembering. It is not a strategy, but rather a tool, in our language . 

Creativity 

Most mathematicians are "Platonists," believ ing that the totality of their subject al­
ready "exists" and it is the job of human investigators to "discover" it, rather than 
create it. To the Platonist, problem solving is the art of seeing the solution that is al­
ready there . The good problem solver, then, is highly open and receptive to ideas that 
are floating around in plain view, yet invisible to most people . 

This elusive receptiveness to new ideas is what we call creativity. Observing it 
in action is like watching a magic show, where wonderful things happen in surprising, 
hard-to-explain ways. Here is an example of a simple problem with a lovely, unex­
pected solution, one that appeared earlier as Problem 1 .3 . 1 on page 7 . Please think 
about the problem a bit before reading the solution ! 

Example 2.1.2 A monk climbs a mountain. He starts at 8AM and reaches the summit 
at noon. He spends the night on the summit. The next morning, he leaves the summit at 
8AM and descends by the same route that he used the day before, reaching the bottom 
at noon. Prove that there is a time between 8AM and noon at which the monk was at 
exactly the same spot on the mountain on both days. (Notice that we do not specify 
anything about the speed that the monk travels. For example, he could race at 1 000 
miles per hour for the first few minutes, then sit still for hours , then travel backward, 
etc . Nor does the monk have to travel at the same speeds going up as going down. )  

Solution: Let the monk climb up the mountain in whatever way he does i t .  At 
the instant he begins his descent the next morning, have another monk start hiking up 
from the bottom, traveling exactly as the first monk did the day before. At some point, 
the two monks will meet on the trai l .  That is the time and place we want ! _ 

The extraordinary thing about this solution is the unexpected, clever insight of 
inventing a second monk. The idea seems to come from nowhere, yet it instantly 
resolves the problem, in a very pleasing way. (See page 53 for a more "conventional" 
solution to this problem.)  

That 's creativity in action. The natural reaction to seeing such a brill iant, imagi­
native solution is to say, "Wow ! How did she think of that? I could never have done 
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it." Sometimes, in fact, seeing a creative solution can be inhibiting, for even though we 
admire it, we may not think that we could ever do it on our own.  While it is true that 
some people do seem to be naturally more creative than others, we believe that almost 
everyone can learn to become more creative. Part of thi s process comes from cultivat­
ing a confident attitude, so that when you see a beautiful solution, you no longer think, 
"I could never have thought of that," but instead think, "Nice idea! It's similar to ones 
I 've had. Let 's put it to work ! "  

Learn to shamelessly appropriate new ideas and make them your own. 
There 's nothing wrong with that; the ideas are not patented. If they are beautiful ideas, 
you should excitedly master them and use them as often as you can, and try to stretch 
them to the limit by applying them in novel ways. Always be on the lookout for new 
ideas . Each new problem that you encounter should be analyzed for its "novel idea" 
content. The more you get used to appropriating and manipulating ideas, the more you 
will be able to come up with new ideas of your own. 

One way to heighten your receptiveness to new ideas is to stay "loose," to cultivate 
a sort of mental peripheral vision . The receptor cells in the human retina are most 
densely packed near the center, but the most sensitive receptors are located on the 
periphery. This means that on a bright day, whatever you gaze at you can see very 
well .  However, if it is dark, you will not be able to see things that you gaze at directly, 
but you will perceive, albeit fuzzily, objects on the periphery of your visual field (try 
Exercise 2 . 1 . 1 0) .  Likewise, when you begin a problem solving investigation, you are 
"in the dark." Gazing directly at things won 't help. You need to relax your vision and 
get ideas from the periphery. Like P6lya's mouse, constantly be on the lookout for 
twists and turns and tricks. Don 't get locked into one method. Try to consciously 
break or bend the rules. 

Here are a few simple examples, many of which are old classics. As always, don 't  
jump immediately to the solution. Try to solve or at least think about each problem 
first ! 

Now is a good time to fold a sheet of paper in half or get a large index 
card to hide solutions so that you don ' t  succumb to temptation and read 
them before you have thought about the problems! 

Example 2. 1 .3 Connect all nine points below with an unbroken path of four straight 
l ines. 

Solution : This problem is impossible unless you liberate yourself from the artifi­
cial boundary of the nine points. Once you decide to draw lines that extend past this 
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boundary, it is pretty easy. Let the first line join three points, and make sure that each 
new line connects two more points . 

-

Example 2.1.4 Pat wants to take a I .5 -meter-long sword onto a train ,  but the conduc­
tor won 't allow it as carry-on luggage. And the baggage person won 't take any item 
whose greatest dimension exceeds 1 meter. What should Pat do? 

Solution : This is unsolvable if we limit ourselves to two-dimensional space. Once 
liberated from Flatland, we get a nice solution : The sword fits into a 1 x 1 x I -meter 
box, with a long diagonal of VI 2 + 1 2 + 1 2 = J3 > 1 .69 meters . _ 

Example 2.1.5 What is the next letter in the sequence 0, T, T, F, F, S ,  S, E . . . ? 

Solution : The sequence is a list of the first letters of the numerals one, two, three, 
four, . . .  ; the answer is "N," for "nine." _ 

Example 2.1.6 Fill in the next column of the table .  

1 3 9 3 1 1  1 8  1 3  1 9  27 55 
2 6 2 7 1 5  8 1 7  24 34 29 
3 1 5 1 2  5 1 3  2 1  2 1  23 30 

Solution : Trying to figure out this table one row at a time is pretty maddening. 
The values increase, decrease, repeat, etc . , with no apparent pattern. But who said that 
the patterns had to be in rows? If you use peripheral vision to scan the table as a whole 
you will notice some familiar numbers . For example, there are lots of multiples of 
three. In fact, the first few multiples of three, in order, are hidden in the table. 

1 3 9 3 1 1  18 1 3  1 9  27 55 
2 6 2 7 15 8 1 7  24 34 29 
3 1 5 12 5 1 3  21 2 1  23 30 

And once we see that the patterns are diagonal, it is easy to spot another sequence, 
the primes ! 

1 3 9 3 1 1  18 1 3  1 9  27 55 
2 6 2 7 15 8 1 7  24 34 29 
3 1 5 12 5 13 21 2 1  23 30 
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The sequence that is left over is, of course, the Fibonacci numbers (Problem 1 .3 . 1 8) .  
So the next column of the table is 3 1 ,  33 ,  89 .  • 

Example 2.1.7 Find the next member in this sequence.2 

1 , 1 1 ,  2 1 , 1 2 1 1 ,  1 1 1 22 1 ,  . . .  

Solution : If you interpret the elements of the sequence as numerical quantities, 
there seems to be no obvious pattern. But who said that they are numbers? If you look 
at the relationship between an element and its predecessor and focus on "symbolic" 
content, we see a pattern. Each element "describes" the previous one. For example, 
the third element is 2 1 ,  which can be described as "one 2 and one 1 ," i .e . , 1 2 1 1 ,  which 
is the fourth element. This can be described as "one 1 ,  one 2 and two I s ," i .e . ,  1 1 1 22 1 .  
S o  the next member i s  3 1 22 1 1 ("three 1 s ,  two 2s and one 1 "). • 

Example 2.1 .8 Three women check into a motel room that advertises a rate of $27 
per night. They each give $ 1 0  to the porter, and ask her to bring back three dollar bills. 
The porter returns to the desk, where she learns that the room is actually only $25 per 
night. She gives $25 to the motel desk clerk, returns to the room, and gives the guests 
back each one dollar, deciding not to tell them about the actual rate . Thus the porter 
has pocketed $2, while each guest has spent 10  - 1 = $9, a total of 2 + 3 x 9 = $29. 
What happened to the other dollar? 

Solution : This problem is deliberately trying to mislead the reader into thinking 
that the profit that the porter makes plus the amount that the guests spend should add 
up to $30. For example, try stretching things a bit: what if the actual room rate had 
been $O? Then the porter would pocket $27 and the guests would spend $27, which 
adds up to $54 ! The actual "invariant" here is not $30, but $27 , the amount that the 
guests spend, and this will always equal the amount that the porter took ($2) plus the 
amount that went to the desk ($25 ) .  • 

Each example had a common theme: Don 't let self-imposed, unnecessary restric­
tions limit your thinking. Whenever you encounter a problem, it is worth spending a 
minute (or more) asking the question, "Am I imposing rules that I don 't  need to? Can 
I change or bend the rules to my advantage?" 

Nice guys may or may not finish last, but 

Good, obedient boys and girls solve fewer problems than naughty and 
mischievous ones . 

Break or at least bend a few rules. It won 't do anyone any harm, you 'll have fun, and 
you 'll start solving new problems. 

We conclude this section with the lovely "Affirmative Action Problem," originally 
posed (in a different form) by Donald Newman. While mathematically more sophisti-

2We thank Derek Vadala for bringing this problem to our attention. It appears in [421 .  p. 277 . 
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cated than the monk problem, it too possesses a very brief and imaginative "one-liner" 
solution. The solution that we present is due to Jim Propp. 

Example 2.1.9 Consider a network of finitely many balls, some of which are joined 
to one another by wires. We shall color the balls black and white, and call a network 
"integrated" if each white ball has at least as many black as white neighbors, and vice 
versa. The example below shows two different colorings of the same network. The 
one on the left is not integrated, because ball a has two white neighbors (c, d) and only 
one black neighbor (b). The network on the right is integrated. 

b e----{) 8 

C <l--->;) d 

Given any network, is there a coloration that integrates it? 

Solution : The answer is "yes." Let us call a wire "balanced" if it connects two 
differently colored balls. For example, the wire connecting a and b in the first network 
shown above is balanced, while the wire connecting a and c is not. Then our one-line 
solution is to 

Maximize the balanced wires! 
Now we need to explain our clever solution ! Consider all the possible different 

colorings of a given network. There are finitely many colorings, so there must be 
one coloring (perhaps more than one) that produces the maximal number of balanced 
wires. We claim that this coloring is integrated. Assume, on the contrary, that it is not 
integrated. Then, there must be some ball, call it A, colored (without loss of gener­
ality) white, that has more white neighbors than black neighbors . Look at the wires 
emanating from A. The only balanced wires are the ones that connect A with black 
balls. More wires emanating from A are unbalanced than balanced. However, if we 
recolored A black, then more of the wires would be balanced rather than unbalanced. 
Since recoloring A affects only the wires that emanate from A, we have shown that 
recoloring A results in a coloration with more balanced wires than before. That con­
tradicts our assumption that our coloring already maximized the number of balanced 
wires! 

To recap, we showed that if a coloring is not integrated, then it cannot maximize 
balanced wires. Thus a coloring that maximizes balanced wires must be integrated ! _ 

What are the novel ideas in this solution? That depends on how experienced you 
are, of course, but we can certainly isolate the stunning crux move: the idea of max­
imizing the number of balanced wires. The underlying idea, the extreme principle, 
is actually a popular "folklore" tactic used by experienced problem solvers (see Sec­
tion 3.2 below). At first, seeing the extreme principle in action is like watching a 
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karate expert break a board with seemingly effortless power. But once you master it 
for your own use, you will discover that breaking at least some boards isn 't all that 
difficult. Another notable feature of this solution was the skillful use of argument by 
contradiction. Again, this is a fairly standard method of proof (see Section 2 .3 below). 

This doesn't  mean that Jim Propp 's solution wasn't  clever. Indeed, it is one of the 
neatest one-liner arguments we 've ever seen. But part of its charm is the simplicity 
of its ingredients, like origami, where a mere square of paper metamorphoses into 
surprising and beautiful shapes. Remember that the title of this book is The Art and 
Craft of Problem Solving. Craft goes a long way, and this is the route we emphasize, 
for without first developing craft, good art cannot happen. However, ultimately, the 
problem solving experience is an aesthetic one, as the Affirmative Action problem 
shows. The most interesting problems are often the most beautiful; their solutions are 
as pleasing as a good poem or painting. 

OK, back to Earth ! How do you become a board-breaking, paper-folding, arts­
and-crafts Master of Problem Solving? The answer is simple : 

Toughen up, loosen up , and practice. 
Toughen up by gradually increasing the amount and difficulty of your problem solving 
work. Loosen up by deliberately breaking rules and consciously opening yourself to 
new ideas (including shamelessly appropriating them ! ) .  Don 't be afraid to play around, 
and try not to let failure inhibit you. Like P6lya 's mouse, several failed attempts are 
perfectly fine, as long as you keep trying other approaches. And unlike P6lya's mouse, 
you won 't die if you don 't solve the problem. It's important to remember that. Problem 
solving isn 't easy, but it should be fun ,  at least most of the time ! 

Finally, practice by working on lots and lots and lots of problems. Solving them is 
not as important. It is very healthy to have several unsolved problems banging around 
your conscious and unconscious mind. Here are a few to get you started. 

Problems and Exercises 

The first few (2. 1 . 1 D-2. 1 . 1 2) are mental training exercises. You needn 't do them all, but please 
read each one, and work on a few (some of them require ongoing expenditures of time and energy, 
and you may consider keeping a journal to help you keep track). The remainder of the problems 
are mostly brain teasers, designed to loosen you up, mixed with a few open-ended questions to fire 
up your backburners . 

2.1 .10 Here are two fun experiments that you can do 
to see that your peripheral v ision is both less acute yet 
more sensitive than your central v ision. 

1 .  On a clear night, gaze at the Pleiades constella­
tion, which is also called the Seven S isters be­
cause it has seven prominent stars . Instead of 
looking directly at the constellation, try glanc­
ing at the Pleiades with your peripheral v ision; 
i .e . ,  try to "notice" it, while not quite looking at 
it. You should be able to see more stars ! 

2. Stare straight ahead at a wall while a friend 

slowly moves a card with a letter written on it 
into the periphery of your visual field. You will 
notice the movement of the card long before you 
can read the letter on it. 

2.1.1 1 Many athletes benefit from "cross-training," 
the practice of working out regularly in another sport 
in order to enhance performance in the target sport. 
For example, bicycle racers may lift weights or jog. 
While we advocate devoting most of your energy to 
math problems, it may be helpful to diversify. Here a 
few suggestions . 



(a) If English is your mother tongue, try work­
ing on word puzzles. Many daily newspapers 
carry the Jumble puzzle, in which you unscram­
ble anagrams (permutations of the letters of a 
word). For example, djauts is adjust. Try to 
get to the point where the anagrams unscram­
ble themselves unconsciously, almost instanta­
neously. This taps into your mind 's amazing 
ability to make complicated associations. You 
may also find that it helps to read the original 
anagrams backward, upside down, or even ar­
ranged in a triangle, perhaps because this act of 
"restating" the problem loosens you up. 

(b) Another fun word puzzle is the cipher, in which 
you must decode a passage that has been en­
crypted with a single- letter substitution code 
(e.g . ,  A goes to L, B goes to G, etc . )  If you prac­
tice these until you can do the puzzle with lit­
tle or no writing down, you will stimulate your 
association ability and enhance your deductive 
powers and concentration. 

(c) Standard crossword puzzles are OK, but not 
highly recommended, as they focus on fairly 
simple associations but with rather esoteric 
facts. The same goes for sudoku puzzles, be­
cause they involve fairly standard logic. Never­
thess, they are good for building concentration 
and logic skills, especially if you focus on try­
ing to find new solution strategies. But don 't  
get addicted to these puzzles; there are so many 
other things to think about! 

(d) Learn to play a strategic game, such as chess 
or Go. If you play cards, start concentrating on 
memorizing the hands as they are played. 

(e) Take up a musical instrument, or if you used to 
play, start practicing again. 

(f) Learn a "meditative" physical activity, such as 
yoga, tai chi, aikido, etc . Western sports like 
golf and bowling are OK, too. 

(g) Read famous fictional and true accounts of 
problem solving and mental toughness. Some 
of our favorites are The Gold Bug, by Edgar 
Allan Poe (a tale of code-breaking) ;  any Sher­
lock Holmes adventure, by Arthur Conan Doyle 
(masterful stories about deduction and concen­
tration) ;  Zen in the Art of Archery, by Eugen 
Herrigel (a Westemer goes to Japan to learn 
archery, and he really learns how to concen­
trate) ;  Endurance, by Alfred Lansing (a true 
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story of Antarctic shipwreck and the mental 
toughness needed to survive ) .  

2. 1 .12 If you have trouble concentrating for long peri­
ods of time, try the following exercise: teach yoursel f  
some mental arithmetic . First, work out the squares 
from 1 2 to 322 . Memorize this list . Then use the iden­
tity x2 - i = (x - y)  (x + y) to compute squares quickly 
in your head. For example, to compute 872 , we reason 
as fol lows: 

872 - 32 = (87 - 3 ) (87 + 3) 

= 84 · 90 

= 1 0( 80 · 9 + 4 · 9 ) 

= 7560. 

Hence 872 = 7560 + 32 = 7569. Practice this method 
until you can reliably square any two-digit number 
quickly and accurately, in your head. Then try your 
hand at three-digit numbers . For example, 

5772 = 600 . 554 + 232 = 332400 + 529 = 332929. 

This should really impress your friends ! This may 
seem like a silly exercise, but it will force you to fo­
cus, and the effort of relying on your mind 's power of 
visualization or auditory memory may stimulate your 
receptiveness when you work on more serious prob­
lems. 

2.1 .13 It doesn 't  matter when you work on problems, 
as long as you spend a lot of time on them, but do be­
come aware of your routines .  You may learn that, for 
example, you do your best thinking in the shower in 
the morning, or perhaps your best time is after mid­
night while listening to loud music, etc . Find a routine 
that works and then stick to it. (You may discover that 
walking or running is conducive to thought . Try this if 
you haven ' t  before . )  

2. 1 . 14 Now that you have established a routine,  oc­
casionally shatter it . For example, if you tend to do 
your thinking in the morning in a quiet place, try to re­
ally concentrate on a problem at a concert at night, etc. 
This is a corollary of the "break rules" rule on page 20. 

2.1.15 Here 's a fun loosening-up exercise: pick a 
common object, for example, a brick, and list as 
quickly as possible as many uses for this object as you 
can. Try to be uninhibited and silly. 

2.1.16 A nice source of amusing recreational prob­
lems are "lateral thinking" puzzlers. See, for example ,  
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[37] .  These puzzles use mostly everyday ideas, but 
always require a good amount of peripheral vision to 
solve. Highly recommended for warm-up work. 

2.1 .17 In Example 2 . 1 .9 on page 2 1 ,  we proved that 
any coloring which maximizes the number of balanced 
wires wil l be integrated. Is this result "sharp;" i .e . ,  
must  a coloring maximize balanced wires in order to 
be integrated? 

2.1.18 The non-negative integers are divided into 
three groups as follows: 

A = { 0, 3 . 6 , 8 . 9  . . . .  } .  B = { I , 4 , 7 , 1 1 , 1 4 , . . . } ,  

C = { 2 . 5 ,  1 0 ,  1 3 ,  . . . } .  

Explain. 

2.1.19 You are locked in a 50 x 50 x 50-foot room 
which sits on 1 00-foot stilts. There is an open window 
at the comer of the room, near the floor, with a strong 
hook cemented into the floor by the window. So if you 
had a I oo-foot rope, you could tie one end to the hook, 
and cl imb down the rope to freedom. (The stilts are 
not accessible from the window. ) There are two 50-
foot lengths of rope, each cemented into the ceiling, 
about 1 foot apart, near the center of the ceiling. You 
are a strong, agile rope cl imber, good at tying knots, 
and you have a sharp knife .  You have no other tools 
(not even clothes) .  The rope is strong enough to hold 
your weight, but not if i t i s  cut lengthwise. You can 
survive a fal l  of no more than 10 feet. How do you get 
out alive? 

2.1 .20 Compose your own "census-taker" problem. 
Invent a riddle that involves numerical information and 
clues that don 't seem to be clues. 

2.1.21 A group of jealous professors is locked up in 
a room. There is nothing else in the room but penci ls  
and one tiny scrap of paper per person. The profes­
sors want to determine their average (mean, not me­
dian) salary so that each one can gloat or grieve over 
his or her personal situation compared to their peers . 
However, they are secretive people, and do not want to 
give away any personal salary information to anyone 
else. Can they determine the average salary in such a 
way that no professor can discover any fact about the 
salary of anyone but herself? For example, even facts 
such as "three people earn more than $40,000" or "no 
one earns more than $90,000" are not allowed. 

2.1 .22 Bottle A contains a quart of milk and bottle B 

contains a quart of black coffee. Pour a smal l amount 
from B into A, mix wel l ,  and then pour back from A 
into B until both bottles again each contain a quart of 
liquid. What is the relationship between the fraction of 
coffee in A and the fraction of milk in B? 

2.1 .23 Indiana Jones needs to cross a flimsy rope 
bridge over a mile-long gorge. It is so dark that it is im­
possible to cross the bridge without a flashlight. Fur­
thermore, the bridge is so weak that it can only support 
the weight of two people. The party has just one flash­
l ight, which has a weak beam, so whenever two peo­
ple cross, they are constrained to walk together, at the 
speed of the slower person. Indiana Jones can cross the 
bridge in five minutes. His girlfriend can cross in 1 0  
minutes . His father needs 20  minutes, and his father's 
sidekick needs 25 minutes. They need to get everyone 
across safely in one hour to escape the bad guys. Can 
they do it? 

2.1 .24 You have already worked a l ittle bit with Pas­
cal 's Triangle (Problem 1 .3 . 1 7  on page 1 0) .  Find a 
way to get Fibonacci numbers (see Problem 1 . 3 . 1 8  on 
page 1 0) from Pascal 's Triangle. 

2.1 .25 Example 1 . 1 .2 involved the conjecture 

I I l I n 
- + - + - + " ' + -- = -- .  
1 · 2 2 · 3 3 · 4  n (n + I )  n + I 

Experiment and then conjecture more general formu­
las for sums where the denominators have products of 
three terms. Then generalize further. 

2.1 .26 It is possible to draw figure A below without 
lifting your pencil in such a way that you never draw 
the same line twice. However, no matter how hard you 
try, it seems impossible to draw figure B in this way. 
Can you find criteria that will al low you quickly to 
determine whether any given figure can or cannot be 
drawn in this way? 

A B 

2.1 .27 Trick Questions.  All  of the fol lowing problems 
seem to have obvious solutions, but the obvious solu­
tion is not correct .  Ponder and solve ! 



(a) One day Martha said, "I have been alive during 
all or part of five decades." Rounded to the near­
est year, what is the youngest she could have 
been? 

(b) Of all the books at a certain l ibrary, if you se­
lect one at random, then there is a 90% chance 
that it has i l lustrations. Of all the i l lustrations in 
all the books, if you select one at random, then 
there is a 90% chance that it i s  in color. If the 
library has 1 0,000 books, then what is the min­
imum number of books that must contain col­
ored illustrations? 

(c) At least how many times must you flip a fair 
coin before there is at least a 50% probability 
that you will get at least three heads? 

(d) We have two polyhedra ( i .e . ,  solids with polyg­
onal faces), all of whose edges have length 1 :  
a pyramid with a square base, and a tetrahe-
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dron (a tetrahedron is composed of four triangu­
lar faces) . Suppose we glue the two polyhedra 
together along a triangular face (so that the at­
tached faces exactly overlap) .  How many faces 
does the new solid have? 

(e) The picture shows a square cut into two congru­
ent polygons and another square cut into four 
congruent polygons. 

For which positive integers n can a square be 
cut into n congruent polygons? 

The psychological ideas presented above may seem too vague. Perhaps you ask, "How 
can I learn to work hard on problems if ! can 't even get started?" You have already seen 
four very practical strategies that address this :  the penultimate step and get your 
hands dirty strategies in Example 1 .2. 1 ,  and the wishful thinking and make it easier 
strategies in Example 2. 1 . 1 .  There is more to say about these and other ideas that help 
you begin a problem solving investigation. 

As we said earlier, there are two parts to any successful solution: the investigation 
and the argument. Commonly, the investigation is obscured by the polished formal 
solution argument. But almost always, the investigation is the heart of the solution. 
Investigations are often tortuous, full of wrong turns and silly misconceptions. Once 
the problem is solved, it is easy to look over your prolonged investigation and wonder 
why it took you so long to see the light. But that is the nature of problem solving for 
almost everyone : you don 't get rewarded with the flash of insight until you have paid 
your dues by prolonged, sometimes fruitless toil. Therefore, 

Anything that stimulates investigation is good. 
Here are some specific suggestions. 

The First Step: Orientation 

A few things need to be done at the beginning of every problem. 

• Read the problem carefully. Pay attention to details such as positive vs .  nega­
tive, finite vs. infinite, etc . 
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• Begin to classify:  is it a "to find" or "to prove" problem? Is the problem similar 
to others you have seen? 

• Carefully identify the hypothesis and the conclusion. 
• Try some quick preliminary brainstorming: 

Think about convenient notation . 

Does a particular method of argument (see Section 2 .3)  seem plausible? 

Can you guess a possible solution? Trust your intuition ! 

Are there key words or concepts that seem important? For example, might 
prime numbers or perfect squares or infinite sequences play an important 
role? 

When you finish this (and don 't rush ! ) , go back and do it again. It pays to reread 
a problem several times. As you rethink classification, hypothesis and conclusion, ask 
yourself if you can restate what you have already formulated. For example, it may 
seem that the hypothesis is really trivial , and you just repeat it verbatim from the state­
ment of the problem. But if you try to restate it, you may discover new information. 
Sometimes just reformulating hypothesis and conclusion with new notation helps (for 
example, Example 1 .2 . 1 on page 4). Also, notice how restating helps one to solve the 
Census-Taker problem (Example 1 . 1 . 3 on page 2) . More subtly, recall Example 2. 1 .7 
on page 20, which involved the sequence I , 1 1 , 2 1 ,  1 2 1 1 ,  1 1 1 22 1 ,  . . . . Normally, one 
reads a problem silently. But for many people, reciting the sequence out loud is just 
enough of a restatement to inspire the correct solution (as long as a number such as 
" 1 2 1 1 "  is read "one-two-one-one," not "one thousand, two hundred and eleven") . 

When looking at the conclusion of the problem, especially of a "to find" problem, 
sometimes it helps to "fantasize" an answer. Just make something up, and then reread 
the problem. Your fantasy answer is most likely false, and rereading the problem with 
this answer in mind may help you to see why the answer is wrong, which may point 
out some of the more important constraints of the problem. 

Don 't spend too much time on orientation. You are done once you have a clear 
idea of what the problem asks and what the given is. Promising guesses about answers 
or methodology are bonuses, and nothing you should expect. Usually they require 
more intensive investigation. 

I'm Oriented. Now What? 

At this point, you understand what the problem is asking and you may have some 
ideas about what to do next. More often than not, this involves one or more of the four 
basic "startup" strategies that we have seen, penultimate step, get your hands dirty, 
wishful thinking and make it easier. Let 's discuss these in more detail . 

Get Your Hands Dirty : This is easy and fun to do. Stay loose and experi­
ment. Plug in lots of numbers . Keep playing around until you see a pattern. 
Then play around some more, and try to figure out why the pattern you see is 
happening. It is a well-kept secret that much high-level mathematical research 
is the result of low-tech "plug and chug" methods. The great Carl Gauss, widely 
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regarded as one of the greatest mathematicians in history (see page 67), was a 
big fan of this method. In one investigation, he painstakingly computed the 
number of integer solutions to .x2 + y2 ::; 90,000.3 

Penultimate Step: Once you know what the desired conclusion is, ask your­
self, "What will yield the conclusion in a single step?" Sometimes a penultimate 
step is "obvious," once you start looking for one. And the more experienced 
you are, the more obvious the steps are . For example, suppose that A and B are 
weird, ugly expressions that seem to have no connection, yet you must show 
that A = B. One penultimate step would be to argue separately that A 2 B 
AND B 2 A. Perhaps you want to show instead that A I- B. A penultimate step 
would be to show that A is always even, while B is always odd. Always spend 
some time thinking very explicitly about possible penultimate steps. Of course, 
sometimes, the search for a penultimate step fails, and sometimes it helps one 
instead to plan a proof strategy (see Section 2 .3 below). 
Wishful Thinking and Make it Easier: These strategies combine psychology 
and mathematics to help break initial impasses in your work. Ask yourself, 
"What is it about the problem that makes it hard?" Then, make the difficulty 
disappear ! You may not be able to do this legally, but who cares? Temporarily 
avoiding the hard part of a problem will allow you to make progress and may 
shed light on the difficulties .  For example, if the problem involves big, ugly 
numbers, make them small and pretty. If a problem involves complicated alge­
braic fractions or radicals, try looking at a similar problem without such terms. 
At best, pretending that the difficulty isn 't there will lead to a bold solution , 
as in Example 2. 1 . 1  on page 1 5 .  At worst, you will be forced to focus on the 
key difficulty of your problem, and possibly formulate an intermediate ques­
tion, whose answer will help you with the problem at hand. And eliminating 
the hard part of a problem, even temporarily, will allow you to have some fun 
and raise your confidence. If you cannot solve the problem as written, at least 
you can make progress with its easier cousin ! 

Here are a few examples that illustrate the use of these strategies. We will not con­
centrate on solving problems here, just making some initial progress. It is important 
to keep in mind that any progress is OK. Never be in a hurry to solve a problem ! The 
process of investigation is just as important. You may not always believe this, but try : 

Time spent thinking about a problem is always time worth spent. Even 
if you seem to make no progress at all. 

Example 2.2.1 (Russia, 1 995 ) The sequence aO , a 1  , a2 , . . .  satisfies 

1 am+n + am-n = "2 (a2m + a2n ) 
for all nonnegative integers m and n with m 2 n .  If a 1  = 1 ,  determine a 1995 . 

( 1 )  

Partial Solution : Equation ( 1 )  i s  hard to understand without experimentation. 
Let 's try to build up some values of an . First, we keep things simple and try m = n = 0, 

3The answer is 282,697 , in case you are interested. See [2 1 ] ,  p. 33 . 
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which yields ao + ao = ao , so ao = O. Now use the known indices 0, 1 :  plug m = 1 ,  n = 
o into ( 1 )  and we have 2a l = i (a2 + ao )  = azl2 , so a2 = 4a l = 4. More generally, if 
we just fix n = 0, we have 2am = a2m/2 , or a2m = 4am . Now let 's plug in m = 2 , n = 1 :  

1 aU I + a2- 1 = 2 (a4 + a2 ) . 

Since a4 = 4a2 = 4 · 4 = 1 6, we have a3 + al = i ( 1 6 + 4) , so a3 = 9. At this point, we 
are ready to venture the conjecture that an = n2 for all n = 1 , 2 , 3  . . . . If this conjecture 
is true, a likely method of proof will be mathematical induction . See page 45 below 
for an outline of this technique and page 47 for the continuation of this problem. 

Example 2.2.2 (AIME 1 985) The numbers in the sequence 

1 0 1 , 1 04 , 1 09 , 1 1 6 ,  . .  . 
are of the form an = 1 00 + n2 , where n = 1 , 2 , 3 , . . . . For each n, let dn be the greatest 
common divisor 4 of an and an+ I .  Find the maximum value of dn as n ranges through 
the positive integers . 

Partial Solution : Just writing out the first few terms of an leads us to speculate 
that the maximum value of dn is 1 ,  since consecutive terms of the sequence seem to be 
relatively prime. But first, we should look at simpler cases. There is probably nothing 
special about the number 1 00 in the definition of an , except perhaps that 100 = 1 02 . 
Let 's look at numbers defined by an = u + n2 , where u is fixed. Make a table. 

u a l a2 a3 a4 a5 a6 a7 
1 2 5 10 1 7  26 37 50 
2 3 6 1 1  18 27 38 5 1  
3 4 7 1 2  1 9  28 39 52 

We marked with boldface the pair of consecutive terms in each row that had the 
largest GCD (at least the largest for the first seven terms of that row). Notice that when 
u = 1 ,  then a2 and a3 had a GCD of 5. When u = 2, then a4 and a5 had a GCD of 9, and 
when u = 3, then a6 and a7 had a GCD of 1 3 .  There is a clear pattern: we conjecture 
that in general , for any fixed positive integer u, then a2u and a2u+ 1 will have a GCD of 
4u + 1 .  We can explore this conjecture with a little algebra: 

a2u = u + (2u) 2 = 4u2 + u = u( 4u + 1 ) ,  
while 

a2u+ 1  = u +  (2u + 1 ) 2 = 4u2 + 4u +  1 + u  = 4u2 + 5u +  1 = (4u + l ) (u +  1 ) ,  
and, sure enough, a2u and a2u+ 1 share the common factor 4u + 1 .  

This is encouraging progress, but we are not yet done. We have merely shown 
that 4u + 1 is a common factor of a2u and a2u+ I ,  but we want to show that it is the 
greatest common factor. And we also need to show that the value 4u + 1 is the greatest 

4See 3 .2 .4, 3 .2 . 1 7  and Section 7 . 1 for more information about the greatest common divisor. 
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possible GCD value for pairs of consecutive terms . Neither of these items is hard to 
prove if you know some simple number theory tools . We will continue this  problem in 
Example 7 . 1 . 8 on page 227 . 

Example 2.2.3 Lockers in a row are numbered 1 , 2 , 3 , . . . , 1 000. At first, all the lockers 
are closed. A person walks by and opens every other locker, starting with locker #2. 
Thus lockers 2 , 4 , 6 ,  . . .  , 998 ,  1 000 are open. Another person walks by, and changes 
the "state" ( i .e . ,  closes a locker if it i s  open, opens a locker if  it is closed) of every 
third locker, starting with locker #3 . Then another person changes the state of every 
fourth locker, starting with #4, etc . This process continues until no more lockers can 
be altered. Which lockers will be closed? 

Partial Solution : Most likely, there is nothing special about the number 1 000 
in this problem. Let us make it easier : Simplify the problem by assuming a much 
smaller number of lockers , say 1 0, to start . Now get your hands dirty by making a 
table, using the notation "0" for open and "x" for closed. Initially (step 1 )  all 1 0  are 
closed. Here is a table of the state of each locker at each pass . We stop at step 1 0, 
since further passes will not affect the lockers . 

step Locker # 
2 3 4 5 6 7 8 9 1 0  

1 x x x x x x x x x x 
2 x 0 x 0 x 0 x 0 x 0 
3 x 0 0 0 x x x 0 0 0 
4 x 0 0 x x x x x 0 0 
5 x 0 0 x 0 x x x 0 x 
6 x 0 0 x 0 0 x x 0 x 
7 x 0 0 x 0 0 0 x 0 x 
8 x 0 0 x 0 0 0 0 0 x 
9 x 0 0 x 0 0 0 0 x x 
10  x 0 0 x 0 0 0 0 x 0 

We see that the closed lockers are numbered 1 , 4 , 9; a reasonable conjecture is 
that only perfect square-numbered lockers will remain closed in general . We won 't 
prove the conjecture right now, but we can make substantial progress by looking at the 
penultimate step. What determines if a locker is open or closed? After filling out the 
table, you know the answer: the parity (evenness or oddness) of the number of times 
the locker's state changed. A locker is closed or open according as the number of state 
changes was odd or even . Apply the penultimate step idea once more :  what causes a 
state change? When does a locker get touched? Simplify things for a moment, and just 
focus on one locker, say #6. It was altered at steps 1 ,  2, 3 and 6, a total of four times 
(an even number, hence the locker remains open) . Look at locker # 1 0. It was altered 
at steps 1 ,  2, 5 and 1 0. Now i t 's clear: 

Locker #n is altered at step k if and only if k divides n .  
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Hence we have restated our conjecture into an unrecognizably different, yet equivalent, 
form: 

Prove that an integer has an odd number of divisors if and only if it is 
a perfect square. 

There are many ways to think about this particular problem. See the discussion on 
p. 68 and Problem 6. 1 .2 1  for two completely different approaches. 

Example 2.2.4 (LMO 1 988) There are 25 people sitting around a table, and each 
person has two cards. One of the numbers 1 , 2 , 3 , . . .  , 25 is written on each card, and 
each number occurs on exactly two cards. At a signal, each person passes one of 
her cards-the one with the smaller number-to her right-hand neighbor. Prove that, 
sooner or later, one of the players will have two cards with the same numbers . 

Partial Solution : At first, this problem seems impenetrable. How can you prove 
something like this? Small doses of getting our hands dirty and making it easier go 
a long way. Let 's help our understanding by making the problem easier. There is 
probably nothing special about the number 25 , although we are immediately alerted to 
both squares and odd numbers . Let 's try an example with two people. If each person 
has the cards numbered 1 and 2, we see that the pattern is periodic : each person just 
passes the number 1 to her neighbor, and each person always holds numbers 1 and 2. 
So the conclusion is not true for two people. Does parity (evenness or oddness) matter, 

then? Perhaps ! Use the notation -+- to indicate a person holding cards numbered a 
and b. Consider four people, initially holding 

We see that at each turn, everyone will hold a 1 or 2 paired with a 3 or 4. So again, 
the conclusion is not true, and for any even number of people, we can make sure that 
it never is true. For example, if there are 1 0  = 2 · 5 people, just start by giving each 
person one card chosen from { I , 2, . . .  , 5 } and one card chosen from {6 ,  7 ,  . . .  , 1 0 } .  
Then, at every turn, each person holds a card numbered i n  the range 1-5 paired with 
one in the range 6-1 0, so no one ever holds two cards with the same numbers . 

Now we turn our attention to the case where there is an odd number of people. 
Here is an example involving 5 people . 

I ! I i I ; I � I � I 
We arranged the table so that the top row cards are smaller than the bottom row, 

so we know that these are the cards to be passed on the next turn. After that, we sort 
them again so that the top level contains the smaller numbers : 
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1 � 1 � 1 ; 1 ; 1 � 1 (�) 1 j 1 ! 1 ; 1 ; 1 ; 1 
(��9 1 � 1 ! 1 ; 1 ; 1 ; I· 

At this point, we can repeat the process, but before doing so, we observe that 
already the largest number in the top row is at most as big as the smallest number in 
the bottom row. So after we shift the top numbers, we no longer have to sort. We see 
that eventually the number 3 in the top will join the number 3 in the bottom: 

1 � 1 ! 1 ; 1 ; 1 ; 1 (�) 1 ! 1 � 1 ; 1 ; 1 ; 1 
(�) 1 � 1 ! 1 ; 1 � 1 ; 1 (�) 1 � 1 � 1 ; 1 ; 1 ; I ·  

So, what actually happened? We were able to get the two 3 's to coincide, because 
the top and bottom rows stopped "mixing," and there was a 3 in the top and a 3 in the 
bottom. Will this always happen? Can you come up with a general argument? And 
what role was played by the odd parity of 5?  A few more experiments, perhaps with 7 
people, should help you finish this off. 

In the next example, not only do we fail to solve the problem, we explore a conjec­
ture that we know to be false ! Nevertheless, we make partial progress: we develop an 
understanding of how the problem works, even if we do not attain a complete solution. 

Example 2.2.5 (Putnam 1 983) Let f(n) = n + L v'nJ . Prove that, for every positive 
integer m, the sequence 

m ,f(m) , f(f(m) ) , f(f(f(m) ) ) ,  . . .  
contains the square of an integer.5 

Partial Solution: At first, it seems rather difficult. The function f (n) has a strange 
definition and the desired conclusion is also hard to understand. Let 's first get oriented : 
the problem asks us to show that something involving f(m) and squares is true for all 
positive integers m. The only way to proceed is by getting our hands dirty. We need 
to understand how the function f(m) works. So we start experimenting and making 
tables. 

9 
12 

5 Recall that lx J is the greatest integer less than or equal to x. For more information, see page 1 46. 
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The pattern seems simple: f(m) increases by 1 as m increases, until m is a perfect 
square, in which case f(m) increases by 2 (boldface) . Whenever you observe a pattern, 
you should try to see why it is true. In this case, it is not hard to see what is going on. 
For example, if 9 :::; m < 1 6 , the quantity l vrn J has the constant value 3 .  Hence 
f(m) = m + 3  for 9 :::; m < 1 6 . Likewise, f(m) = m + 4  for 1 6 :::; m < 25, which 
accounts for the "skip" that happens at perfect squares. 

Now that we understand f pretty well , it is time to look at repeated iterations of 
this function. Again, experiment and make a table ! We will use the notation 

r(m) = f(f( - · · f(m) · ·  . ) ) ,  (2) 

where the right-hand side contains r fs, and we will indicate squares with boldface. 
Notice that we don 't bother trying out values of m that are squares, since then we 
would trivially be done. Instead, we start with values of m that are one more than a 
perfect square, etc . Also, even when we achieve a perfect square, we continue to fill in 
the table. This an important work habit: 

Don ' t  skimp on experimentation! Keep messing around until you think 
you understand what is going on . Then mess around some more. 

m f(m) F (m) p (m) f4 (m) p (m) r (m) 
5 7 9 1 2 1 5  1 8  22 
6 8 1 0  1 3  16 20 24 
7 9 1 2 1 5  1 8  22 26 
8 1 0  1 3  16 20 24 28 
50 57 64 72 80 88 97 
5 1  58 65 73 81 90 99 
1 0 1  I I I  121 1 32 143 1 54 1 66 
1 02 1 1 2 1 22 1 33 144 1 56 1 68 
1 03 1 1 3 1 23 1 34 145 1 57 169 

Now more patterns emerge. It seems that if m has the form n2 + 1 ,  where n is an 
integer, then f2 (m) is a perfect square. Likewise, if m has the form n2 + 2, then r (m) 
appears to be a perfect square. For numbers of the form n2 + 3 ,  such as 7 and 1 03 ,  it is 
less clear: f6 ( 1 03 )  is a perfect square, yet f(7) is a perfect square while f6 (7) is not. 
So we know that the following "conjecture" is not quite correct: 

lfm = n2 + b, then f2b (m) is a perfect square. 
Nevertheless, the wishful thinking strategy demands that we at least examine this 

statement. After all , we wish to prove that for any m, there will be an r such that r (m) 
is a perfect square. Before we dive into this, let 's pause and consider: what is the chief 
difficulty with this problem? It is the perplexing l vrnJ term. So we should first focus 
on this expression. Once we understand it, we will really understand how f(m) works. 
Define g (m) = l vrnJ . Then what is g(n2 + b) equal to? If b is "small enough," then 
g (n2 + b) = n. We can easily make this more precise, either by experimenting or just 
thinking clearly about the algebra. For what values of m is g(m) = n? The answer: 

n2 :::; m < (n + 1 f = n2 + 2n + 1 . 
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In other words, 

g (n2 + b) = n if and only if 0 :S b < 2n + 1 . 

Now let us look at the "conjecture." For example, consider the case where b = I .  
Then m = n2 + 1 and g (m) = n and 

f(m) = m + g(m) = n2 + 1 + n. 
Iterating the function f once more, we have 

f2 (m) = f(n2 + n + 1 )  = n2 + n + 1 + g(n2 + n + I )  
= n2 + n + 1 + n = n2 + 2n + 1 = (n + 1 f , 

so indeed the "conjecture" is true for b = 1 .  
Now let's look at b = 2. Then m = n2 + 2 and g(m) = n provided that 2 < 2n + 1 ,  

which is true for all positive integers n. Consequently, 

f(m) = m + g(m) = n2 + 2 + n, 
and 

f2 (n2 + 2) = n2 + n + 2 + g(n2 + n + 2) . 
Since n + 2  < 2n + 1 is true for n > 1 ,  we have g(n2 + n + 2) = n and consequently, if 
n >  1 ,  

Now we have discovered something fascinating: if m i s  2 more than a perfect square, 
and m > 1 2 + 2 = 3 ,  then two iterations of f yields a number that is 1 more than a 
perfect square. We know from our earlier work that two more iterations of f will then 
give us a perfect square. For example, let m = 62 + 2 = 38 . Then f(m) = 38 + 6 = 44 
and f(44) = 44 + 6  = 50 and f2 (50) = 64 (from the table) . So f4 (38 )  = 64. The only 
number of the form n2 + 2 that doesn 't work is 1 2 + 2 = 3, but in this case, f (3 )  = 4, 
so we are done. 

We have made significant partial progress. We have shown that if m = n2 + 1 or 
m = n2 + 2, then finitely many iterations of f will yield a perfect square. And we have 
a nice direction in which to work. Our goal is getting perfect squares. The way we 
measure partial progress toward this goal is by writing our numbers in the form n2 + b, 
where 0 :S b < 2n + 1 .  In other words, b is the "remainder." Now a more intriguing 
conjecture is 

If m has remainder b, then f2 (m) has remainder b - 1 .  

If we can establish this conjecture, then we are done, for eventually, the remainder will 
become zero. Unfortunately, this conjecture is not quite true. For example, if m = 7 = 
22 + 3, then f2 (7) = 1 2  = 32 + 3 . Even though this "wishful thinking conjecture" is 
false, careful analysis will uncover something very similar that is true, and this will 
lead to a full solution . We leave this analysis to you . 
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Example 2.2.6 (Putnam 1 99 1 )  Let A and B be different n x n matrices with real en­
tries. If A3 = B3 and A2B = B2 A, can A2 + B2 be invertible? 

Solution : This is the sort of problem that most students shy away from, even 
those who excelled at linear algebra. But it is really not hard at all when approached 
with confidence. First of all, we note the given: A =I- B , A3 = B3 and A2B = B2A. 
The conclusion is to determine if C = A2 + B2 is invertible . Either C is invertible or 
it is not. How do we show that a matrix is invertible? One way is to show that its 
determinant is non-zero. That seems difficult, since the matrices are n x n, where n is 
arbitrary, and the formula for a determinant is very complicated once n � 3. Another 
way to show that a matrix C is invertible is by showing that Chj =I- 0 for each basis 
vector h i , h2 , . . .  , hn .  But that is also hard, since we need to find a basis. 

The hunt for a penultimate step for invertibility has failed. That 's OK; now we 
think about non-invertibility. That turns out to be a little easier: all we need to do is 
find a single non-zero vector v such that Cv = O. Now that is a manageable penultimate 
step. Will it work? We have no way of knowing, but the strategic ideas of wishful 
thinking and make it easier demand that we investigate this path. 

We need to use the given, start with C, and somehow get zero. Once again, wishful 
thinking tells us to look at constructions such as A 3 - B3 , since A 3 = B3 . Starting with 
C = A 2 + B2 , the most direct approach to getting the cubic terms seems fruitful (recall 
that matrix mUltiplication is not commutative, so that B2 A is not necessarily equal to 
AB2 ) :  

(A2 + B2 ) (A - B) = A3 - A2B + B2A _ B3 = A3 - B3 + B2A _ A2B = O. 
Now we are done ! Since A =I- B, the matrix A - B =I- O. Therefore there exists a 

vector u such that (A - B)u =I- O. Now just set v = (A - B)u and we have 

Cv = ( (A2 + B2 ) (A - B)) u = Ou = O. 
Thus A 2 + B2 is always non-invertible . • 

Example 2.2.7 (Leningrad Mathematical Olympiad 1 988) Let p(x) be a polynomial 
with real coefficients . Prove that if 

p(x) - p' (x) - p" (x) + pili (x) � 0 

for every real x, then p (x) � 0 for every real x. 
Partial Solution : If you have never seen a problem of this kind before, it is quite 

perplexing. What should derivatives have to do with whether a function is non-negative 
or not? And why is it important that p (x) be a polynomial? 

We have to simplify the problem. What is the most difficult part? Obviously, 
the compl icated expression p(x) - p' (x) - p" (x) + p"' (x) . Factoring is an important 
algebraic tactic (see page 1 48) .  Motivated by the factorization 

l - x - x2 +x3 = ( l - x) ( I - �) ,  
we write 

p(x) - p' (x) - p" (x) + pili (x) = (p (x) - p" (x) ) - (p (x) - p" (x) ) ' . 
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In other words, if we let q(x) = p(x) - p" (x) , then 

p(x) - p' (x) - p" (x) + pili (x) = q(x) - q' (x) . 

So now we have a simpler problem to examine: 

If q (x) is a polynomial and q (x) - q' (x) 2 0 for all real x, what can we 
say about q (x) ? 

Is it possible as well that q(x) 2 0 for every real x? This may or may not be true, and 
it may not solve the original problem, but it is certainly worth investigating. Wishful 
thinking demands that we look into this . 

The inequality q(x) - q' (x) 2 0 is equivalent to q' (x) ::; q(x) . Consequently, if 
q(x) < 0, then q' (x) must also be negative. Thus, if the graph of y = q(x) ever drops 
below the x-axis (going from left to right), then it must stay below the x-axis, for the 
function q(x) will always be decreasing ! We have three cases . 

• The graph of y = q(x) does cross the x-axis . By the above reasoning, it must 
only cross once, going from positive to negative (since once it is negative, it 
stays negative) .  Furthermore, since q(x) is a polynomial, we know that 

lim q(x) = +00 and lim q(x) = - 00 , 
x� - oo  x� + oo  

because any polynomial q(x) = anXZ + an- 1XZ- 1 + . . . + ao is dominated by its 
highest-degree term anr for large enough (positive or negative) x. Therefore, 
q(x) must have odd degree n and an < O. For example, the graph of the polyno­
mial q(x) = -x7 +x2 + 3 has the appropriate behavior. 

1 0 

5 

- 2 - I  2 3 

-5 

However, this polynomial does not satisfy the inequality q' (x) ::; q (x) : We have 
q(x) = _x7 + x2 + 3 and q' (x) = -7x6 + 2x. Both polynomials are dominated 
by their highest-degree term. When x is a large positive number, both q(x) 
and q' (x) will be negative, but q(x) will be larger in absolute value, since its 
dominant term is degree 7 while the dominant term of q' (x) is degree 6. In 
other words, for large enough positive x, we will have q(x) < q' (x) . Certainly 
this argument is a general one : if the graph of y = q(x) crosses the x-axis, then 
the inequality q' (x) ::; q(x) will not be true for all x. So this case is impossible. 
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• The graph of y = q(x) stays below (or just touches) the x-axis. Then, since q(x) 
is a polynomial , it must have even degree and a negative leading coefficient. 
For example, q(x) = -5x8 - 200 would have the right kind of graph. However, 
the previous argument still applies: for large enough positive x, we will have 
q (x) < q' (x) . So this case is not possible, either . 

• The graph of y = q(x) stays above (or just touches) the x-axis, i .e . ,  q(x) 2 O. 
This case must be true, since we have eliminated the other possibilities !  How­
ever, it is instructive to see why the previous argument doesn 't lead to a con­
tradiction . Now q(x) must have even degree with leading coefficient positive, 
for example, q(x) = xZ + lO has the right kind of graph. But now, q' (x) = 2x. 
When x is a large positive number, q(x) > q' (x) because the leading coefficients 
are positive. That 's the key. 

Anyway, we 've managed to prove a very nice assertion: 

If q (x) is a polynomial with real coefficients satisfying q(x) 2 q' (x) for 
all real x, then q (x) has even degree with a positive leading coefficient, 
and is always nonnegative. 

This fact should give us confidence for wrapping up the original problem. We 
know that q(x) = p(x) - p" (x) has even degree with positive leading coefficient, hence 
the same is true of p(x) . So we have reduced the original problem to a seemingly easier 
one: 

Prove that if p(x) has even degree with positive leading coefficient, and 
p(x) - p" (x) 2 Of or all real x, then p(x) 2 Of or all real x. 

Example 2.2.8 (Putnam 1 990) Find all real-valued continuously differentiable func­
tions f on the real line such that for all x, 

(f(x) ) 2 = foX [ (f(t) f + (f' (t) ) 2 ] dt +  1 990. 

Partial Solution : What is the worst thing about this problem? It contains both 
differentiation and integration . Differential equations are bad enough, but integral­
differential equations are worse ! So the strategy is obvious:  make it easier by differ­
entiating both sides of the equation with respect to x: 

: )f(x) ) 2 = :x (fox [ (f(t) ) 2 + (f' (t ) ) 2] dt + 1 990) . 

The left-hand side is just 2f(x)f' (x) (by the Chain Rule), and the right-hand side 
becomes (f(x) ) 2 + (f' (x) ) 2 (the derivative of the constant 1 990 vanishes). 

Now we have reduced the problem to a differential equation, 

2f(x)f' (x) = (f(x) ) 2 + (f' (x) ) 2 . 
This isn 't pretty (yet), but is much nicer than what we started with. Do you see what 
to do next? 
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For most of these, your task is just to experiment and get your hands dirty and come up with 
conjectures . Do not worry about proving your conjectures at this point . The idea is to stay loose 
and uninhibited, to get used to brainstorming. Some of the questions ask you to conjecture a 
formula or an algorithm. By the latter, we mean a computational procedure that is not a simple 
formula, but nevertheless is fairly easy to explain and carry out. For example, f(n) = VnT is a 
formula but the following is an algorithm: 

Compute the sum of every third digit of the base-3 expansion of n . If the sum is 
even, that is f(n) . Otherwise, square it, and that is f(n ) .  

We will return to many of the problems later and develop more rigorous proofs . But it i s  important 
that you get your hands dirty now and start thinking about them. We reiterate : it is not important 
at this time to actually "solve" the problems. Having a bunch of partially solved, possibly true 
conjectures at the back of your mind is not only OK, it is ideal . "Backburner" problems ferment 
happily, intoxicating your brain with ideas . Some of this fermentation is conscious,  some is not. 
Some ideas will work, others will fail . The more ideas, the better! (By the way, a few of the 
problems were deliberately chosen to be similar to some of the examples . Remember, one of your 
orientation strategies is to ask, "Is there a similar problem?") 

2.2.9 Define f(x) = 1 / ( 1 - x) and denote r iterations 
of the function f by r [see equation (2) on page 32] .  
Compute f I 999 (2000) .  

2.2.10 (Putnam 1 990) Let 

To = 2 ,  TI = 3 , T2 = 6, 

and for n :::: 3, 

The first few terms are 

2 , 3 , 6 , 1 4 , 40, 1 52 , 784, 5 1 68 , 40576, 363392 . 

Find a formula for T" of the form 'ft, = A" + B" , where 
(An ) and (B,, ) are well-known sequences. 

2.2.11  Let N denote the natural numbers 
{ 1 , 2 , 3 , 4 , . . . } .  Consider a function f that satisfies 
f( l )  = 1 , /(2n) = f(n) and f(2n + 1 )  = f(2n) + 1 for 
all n E N. Find a nice simple algorithm for f(n ) .  Your 
algorithm should be a single sentence long, at most. 

2.2.12 Look at, draw, or build several (at least eight) 
polyhedra, i .e . ,  solids with polygonal faces. Below 
are two examples: a box and a three-dimensional "el l" 
shape. For each polyhedron, count the number of ver­
tices (comers) , faces and edges. For example, the box 
has eight vertices, six faces and 12 edges , while the 
ell has 1 2  vertices, eight faces and 1 8  edges. Find a 

pattern and conjecture a rule that connects these three 
numbers. 

2.2. 13 Into how many regions is the plane divided by 
n lines in general position (no two lines parallel; no 
three lines meet in a point)? 

2.2.14 A great circle is a circle drawn on a sphere that 
is an "equator;" i .e . ,  its center is also the center of the 
sphere. There are n great circles on a sphere, no three 
of which meet at any point. They divide the sphere 
into how many regions? 

2.2.15 For each integer n > I ,  find distinct positive 
integers x and y such that 

I I I - + - = - .  x y n 

2.2.16 For each positive integer n, find positive inte­
ger solutions XI , X2 , . . .  , Xn to the equation 

I I I - + - +  . . . + - +  = 1 . 

X I X2 x" X I X2 " ' X" 
2.2. 17 Consider a triangle drawn on the coordinate 
plane, all of whose vertices are lattice points (points 
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with integer coordinates) . Let A , B  and I respec­
tively denote the area, number of boundary lattice 
points and number of interior lattice points of this 
triangle. For example, the triangle with vertices at 
(0, 0) , (2 , 0) , ( 1 , 2 ) has (verify ! )  A = 2, B = 4, 1 = I . 
Can you find a simple relationship between A ,  B and 
I that holds for any triangle with vertices at lattice 
points? 

2.2. 18 (British Mathematical Olympiad 1 996) Define 

q(n) = l l�J J (n = I , 2 , . . . ) . 

Determine (with proof) all positive integers n for 
which q(n) > q(n + I ) . 
2.2.19 Bay Area Rapid Food sel l s  chicken nuggets. 
You can buy packages of seven or packages of I I . 
What is the largest integer n such that there is no way 
to buy exactly n nuggets? Can you generalize this? 

2.2.20 Let n be a positive integer. 

I .  Write down all ordered pairs of integers (a, b ) , 
where 

• I S a < b S n; 
• a + b  > n; 
• a and b are relatively  prime (share no com­

mon divisor besides I ) . 
2. For each ordered pair (a , b) , compute recipro­

cal of the product of the two numbers, in other 
words, compute 1 /  abo 

3. Add up all of these fractions. 

For example, if n = 6, the ordered pairs are 

( 1 , 6) , (5 , 6) , (2 , 5 ) , ( 3 , 5 ) , (4, 5 ) , ( 3 , 4 ) , 
and the corresponding sum i s  

I I I I I I I 
(; + 30 + 10 + 15 + 20 + 12 = 2: .  

Investigate what happens with other values of n ,  and 
conjecture something. 

2.2.21 

(a) Find a nice simple formula for 

1 + 2 + 3 + · · · + n , 
where n is any positive integer. 

(b) Find a nice simple formula for 

1 3 + 23 + 33 + . . . + n3 , 

where n is any positive integer. 

(c) Experiment and conjecture the generalization to 
the above: For each positive integer k, is there a 
nice formula for 

I k + 2k + 3* + · · · + nk? 

2.2.22 Define s( n) to be the number of ways in which 
the positive integer n can be written as an ordered sum 
of at least one positive integer. For example, 

4 = 1 + 3 = 3 + 1 = 2 + 2 = 1 + 1 + 2 
= 1 + 2 + 1 = 2 + 1 + 1  = 1 + 1 + 1 + 1 , 

so s(4) = 8. Conjecture a general formula. 

2.2.23 Find infinitely many positive integer solutions 
to the equation 

2.2.24 Note that 

and 

Investigate, generalize, conjecture .  

2.2.25 (Turkey 1 996) Let 

1 996 J] ( I + nx3n ) = I + a 1 x* ' + a2x*2 + . . .  + amx*m , 
where a l , a2 , . . .  , am are nonzero and k l < k2 < . . .  < 
km · Find a 1 996 . 

2.2.26 The Gallery Problem. The wal ls of a museum 
gallery form a polygon with n sides, not necessarily 
regular or even convex. Guards are placed at fixed lo­
cations inside the gallery. Assuming that the guards 
can turn their heads, but do not walk around, what is 
the minimum number of guards needed to assure that 
every inch of wal l can be observed? When n = 3 or 
n = 4, it is obvious that just one guard suffices. This 
also is true for n = 5, although it takes a few pictures 
to get convinced (the non-convex case is the interest­
ing one) .  But for n = 6, one can create gal leries that 
require two guards. Here are pictures of the n = 5 and 
n = 6 cases. The dots indicate positions of guards .  



Can you discover a general fonnula for the num­
ber of guards,  as a function of n? 

2.2.27 The Josephus Problem. A group of n people 
are standing in a circle, numbered consecutively clock­
wise from I to n. Starting with person #2, we re­
move every other person, proceeding clockwise. For 
example, if n = 6, the people are removed in the order 
2 , 4, 6 , 3 , I ,  and the last person remaining is #5. Let 
j(n) denote the last person remaining. 

(a) Compute j(n) for n = 2 , 3 , . . .  25. 
(b) Find a way to compute j(n) for any positive 

integer n > I . You may not get a "nice" for­
mula, but try to find a convenient algorithm that 
is easy to compute by hand or machine. 

2.2.28 Let g(n) be the number of odd tenns in the row 
of Pascal 's Triangle that starts with I ,  n . . . .  For exam­
ple, g(6) = 4, since the row 

1 , 6 , 1 5 , 20, 1 5 , 6 , I 
contains four odd numbers. Conjecture a fonnula (or 
an easy way of computing) g (n ) . 

2.2.29 (Putnam 1 99 1 )  For each integer n 2': 0, let 
Sen) = n - m2 , where m is the greatest integer with 
m2 :S n. Define a sequence (ak );=O by ao = A and 
ak+ 1 = ak + S(ak ) for k 2': O. For what positive inte­
gers A is this sequence eventually constant? 

2.2.30 Complete the solution started in Exam­
ple 2.2.4. 
2.2.31 Complete the solution started In Exam­
ple 2.2.5. 
2.2.32 Let {x} denote the closest integer to the real 

2.3 Methods of Argument 

2.3 METHODS OF ARG U M ENT 39 

number x. For example, {3 . I }  = 3 and {4 . 7 } = 5. 
Now define fen) := n + {y'n} . Prove that, for every 
positive integer m, the sequence 

f(m ) , f(f(m) ) , f(f(f(m) ) ) ,  . . . 

never contains the square of an integer. (Compare this 
with Example 2.2 .5 on page 3 1 . ) 
2.2.33 Complete the solution started in Example 2.2.7 
on page 34. 

2.2.34 Complete the solution started in Example 2.2.8 
on page 36. 
2.2.35 Cautionary Tales . It is easy to be seduced by 
the ease of experimentation-conjecture. But this is 
only part of mathematical investigation. Sometimes 
a relatively uninfonned investigation leads us astray. 
Here are two examples. There are many other exam­
ples like this; see [ 1 7J for a wonderful discussion. 

(a) Let fen) := n2 + n + 4 1 .  Is fen) a prime for all 
positive integers n? 

(b) Let t en ) be the maximum number of different 
areas that you can divide a circle into when you 
place n points on the circumference and draw 
all the possible line segments connecting the 
points. It is easy to check (verify ! )  that 

t ( I )  = I , t (2 ) = 2, t (3 ) = 4 , t (4) = 8 , t (5 ) = 1 6 . 
The conjecture that t en ) = 2n- 1 is practically 
inescapable. Yet t (6) is equal to 3 1 ,  not 32 
(again, verify ! ) , so something else is going on. 
Anyway, can you deduce the correct fonnula for 
t en ) ? 

As we said earlier, the solution to every problem involves two parts: the investigation, 
during which you discover what is going on, and the argument, in which you convince 
others (or maybe just yourself! ) of your discoveries. Your initial investigation may 
suggest a tentative method of argument. Of course, sometimes a problem divides into 
cases or sub-problems, each of which may require completely different methods of 
argument. 

Arguments should be rigorous and clear. However, "rigor" and "clarity" are both 
subjective terms. Certainly, you should avoid glaring logical flaws or gaps in your rea­
soning. This is easier said than done, of course . The more complicated the argument, 
the harder it is to decide if it is logically correct. Likewise, you should avoid deliber­
ately vague statements, of course, but the ultimate clarity of your argument depends 
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more on its intended audience than anything else. For example, many professional 
mathematicians would accept "Maximize balanced wires ! "  as a complete and clear 
solution to the Affinnative Action problem (Example 2. 1 .9 on page 2 1 ) . 

This book is much more concerned with the process of investigation and discovery 
than with polished mathematical argument. Nevertheless, a brilliant idea is useless 
if it cannot be communicated to anyone else. Furthennore, fluency in mathematical 
argument will help you to steer and modify your investigations.6 

At the very least, you should be comfortable with three distinct styles of argument: 
straightforward deduction (also known as "direct proof'), argument by contradiction, 
and mathematical induction . We shall explore them below, but first, a few brief notes 
about style. 

Common Abbreviations and Stylistic Conventions 

1 .  Most good mathematical arguments start out with clear statements of the hy­
pothesis and conclusion. The successful end of the argument is usually marked 
with a symbol. We use the Halmos symbol, but some other choices are the ab­
breviations 

QED for the Latin quod erat demonstrandum ("which was to be demon­
strated") or the English "quite elegantly done"; 

AWD for "and we 're done"; 

W5 for "which was what we wanted." 

2 .  Like ordinary exposition, mathematical arguments should be complete sen­
tences with nouns and verbs. Common mathematical verbs are 

¥,  � ,  2 ,  < ,  > ,  E ,  C , =* ,  � .  

(The last four mean "is an element of," "is a subset of," "implies" and "is 
equivalent to," respectively. ) 

3 .  Complicated equations should always be displayed on a single line, and labeled 
if referred to later. For example: 

1: e-x2 dx = Vi, (3) 

4. Often, as you explore the penultimate step of an argument (or sub-argument), 
you want to mark this off to your audience clearly. The abbreviations TS and 
ISTS ("to show" and "it is sufficient to show") are particularly useful for this 
purpose. 

5. A nice bit of notation, borrowed from computer science and slowly becoming 
more common in mathematics, is " :=" for "is defined to be." For example, 
A : = B + C introduces a new variable A and defines it to be the sum of the 
already defined variables B and C. Think of the colon as the point of an arrow; 
we always distinguish between left and right. The thing on the left side of 

6This section is deliberately brief. If you would l ike a more leisurely treatment of logical argument and 
methods of proof, including mathematical induction, we recommend Chapters 0 and 4. 1  of ( 1 5 ) .  
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the " : =" is the new definition (usually a simple variable) and the thing on the 
right is an expression using already defined variables .  See Example 2 .3 .3  for 
an example of this notation . 

6. A strictly formal argument may deal with many logically similar cases. Some­
times it is just as clear to single out one illustrative case or example . When this 
happens, we always alert the audience with WLOG ("without loss of general­
ity") . Just make sure that you really can argue the specific and truly prove the 
general . For example, suppose you intend to prove that 1 + 2 + 3 + . . .  + n = 
n (n + 1 )  /2 for all positive integers n .  It would be wrong to argue, "WLOG, let 
n = 5. Then 1 + 2 + 3 + 4 + 5 = 1 5  = 5 · 6/2. QED." This argument is certainly 
not general ! 

Deduction and Symbolic Logic 

"Deduction" here has nothing to do with Sherlock Holmes. Also known as "direct 
proof," it is merely the simplest form of argument in terms of logic . A deductive 
argument takes the form "If P, then Q" or "P===:::;.Q" or "P implies Q." Sometimes the 
overall structure of an argument is deductive, but the smaller parts use other styles .  
If you have isolated the penultimate step, then you have reduced the problem to the 
simple deductive statement 

The truth of the penultimate step ===:::;. The conclusion . 

Of course, establishing the penultimate step may involve other forms of argument. 
Sometimes both p===:::;.Q and Q===:::;.p are true. In this case we say that P and Q are 

logically equivalent, or P {=::} Q. To prove equivalence, we first prove one direction 
(say, P===*Q) and then its converse Q===*P. 

Keep track of the direction of the your implications. Recall that p===:::;.Q is not 
logically equivalent to its converse Q===*P. For example, consider the true statement 
"Dogs are mammals ." This is equivalent to "If you are a dog, then you are a mammal ." 
Certainly, the converse "If you are a mammal, then you are a dog" is not true ! 

However, the contrapositive of P===*Q is the statement (not Q) ===:::;. (not P) , and 
these two are logically equivalent. The contrapositive of the clearly true statement 
"Dogs are mammals" is the true statement "Non-mammals are not dogs". 

Viewed globally, most arguments have a simple deductive structure .  But locally, 
the individual pieces of an argument can take many forms. We tum now to the most 
common of these alternate forms, argument by contradiction . 

Argument by Contradiction 

Instead of trying to prove something directly, we start by assuming that it is false, and 
show that this assumption leads us to an absurd conclusion. A contradiction argument 
is usually helpful for proving directly that something cannot happen .  Here is a simple 
number theory example. 

Example 2.3.1 Show that 

(4) 
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has no positive integer solutions. 

Solution : We wish to show that the equality (4) cannot be true. So assume, to the 
contrary, that (4) is true. If b2 + b + 1 = a2 , then b < a, and a2 - b2 = b + 1 .  As in 
Example 2.2 .7 on page 34, we employ the useful tactic of factoring, which yields 

(a - b) (a + b) = b + l . (5) 

Since a > b 2 1 ,  we must have a - b 2 1 and a + b 2 2 + b, so the left-hand side of (5) 
is greater than or equal to 1 . (b + 2) , which is strictly greater than the right-hand side 
of (5) .  This is an impossibil ity, so the original assumption, that (4) is true, must in fact 
be false. _ 

Here is another impossibility proof, a classical argument from ancient Greece. 

Example 2.3.2 Show that V2 is not rational. 

Solution: Seeking a contradiction, let us suppose that V2 is rational . Then V2 
can be expressed as a quotient of two positive integers (without loss of generality 
we can assume both numerator and denominator are positive) .  Now we shall use the 
extreme principle : of all the possible ways of doing this, pick the quotient for which 
the denominator is smallest. 

Thus we write V2 = alb where a, b E N, where b is as small as possible. This 
means the fraction alb is in "lowest terms ," for if it were not, we could divide both a 
and b by a positive integer greater than 1 ,  making both a and b smaller, contradicting 
the minimality of b. In particular, it is impossible that both a and b are even. 

However, V2 = a I b implies that 2b2 = a2 , so a2 is even (since it is equal to 2 
times an integer) . But this implies that a must be even as well (for if a were odd, a2 
would also be odd), and hence a is equal to 2 times an integer. So we can write a = 2t , 
where t E N. Substituting, we get 

2b2 = a2 = (2t ) 2 = 4t2 , 

so b2 = 2t2 . But now by exactly the same reasoning, we conclude that b is also 
even ! This is impossible, so we have contradicted the original assumption, that V2 
is rational . _ 

Argument by contradiction can be used to prove "positive" statements as well. 
Study the next example. 

Example 2.3.3 (Greece 1 995) If a, b , c , d , e are real numbers such that the equation 

ax2 + (c + b)x + (e + d) = 0 

has real roots greater than 1 ,  show that the equation 

ax4 + bx3 + cx2 + dx + e  = 0 

has at least one real root. 

Solution : The hypothesis is that P(x) := ax2 + (c + b)x+ (e +d) = 0 has real roots 
greater than 1 ,  and the desired conclusion is that Q(x) :=  ax4 + bx3 + cx2 + dx + e = 0 
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has at least one real root. Let us assume that the conclusion is false, i .e . ,  that Q(x) has 
no real roots. Thus Q(x) is always positive or always negative for all real x. Without 
loss of generality, assume that Q(x) > 0 for all real x, in which case a > O. 

Now our strategy is to use the inequality involving Q to produce a contradiction, 
presumably by using the hypothesis about P in some way. How are the two polynomi­
als related? We can write 

Q(x) = ax4 + bx3 + cx2 + dx + e  
= ax4 + (c + b )x2 + (e + d) + bx3 - b2 + dx - d, 

hence 

Q(x) = P(2 ) + (x - l ) (bx2 + d) .  (6) 

Now let Y be a root of P. By hypothesis, y > 1 . Consequently, if we set u := ..;Y, 
we have u > 1 and P(u2 ) = O. Substituting x = u into (6) yields 

Q(u) = P(u2 ) + (u - 1 ) (bu2 + d) = (u - 1 ) (bu2 + d) .  

Recall that we assumed Q always to be positive, so ( u  - 1 )  (bu2 + d )  > O. But we can 
also plug in x = -u into (6) , and we get 

Q( -u) = P(u2 ) + (-u  - 1 ) (bu2 + d) = (-u  - 1 ) (bu2 + d) . 

So now we must have both (u - 1 ) (bu2 +d) > 0 and (-u  - 1 ) (bu2 +d) > O. But this is 
impossible, since u - 1 and -u - 1 are respectively positive and negative (remember, 
u > 1 ) . We have achieved our contradiction , so our original assumption that Q was 
always positive has to be false. We conclude that Q must have at least one real root. _ 

Why did contradiction work in this example? Certainly, there are other ways to 
prove that a polynomial has at least one real root. What helped us in this problem 
was the fact that the negation of the conclusion produced something that was easy to 
work with. Once we assumed that Q had no real roots, we had a nice inequality that 
we could play with fruitfully. When you begin thinking about a problem, it is always 
worth asking, 

What happens if we negate the conclusion ? Will we have something 
that we can work with easily? 

If  the answer is "yes," then try arguing by contradiction . I t  won 't always work, but 
that is the nature of investigation. To return to our old mountaineering analogy, we 
are trying to climb. Sometimes the conclusion seems like a vertical glass wall, but 
its negation has lots of footholds. Then the negation is easier to investigate than the 
conclusion. It's all part of the same underlying opportunistic strategic principle : 

Anything that furthers your investigation is worth doing. 

The next example involves some basic number theory, a topic that we develop in 
more detail in Chapter 7 .  However, it is important to learn at least a minimal amount 
of "basic survival" number theory as soon as possible . We will discuss several number 
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theory problems in this and the next chapter. First let 's introduce some extremely 
useful and important notation. 

Let m be a positive integer. If a - b is a multiple of m, we write 

a = b  (mod m) 

(read "a is congruent to b modulo m"). For example, 

1 0 = 1  (mod 3 ) , 1 7 = 1 02 (mod S ) , 2 = - 1 (mod 3 ) , 32 = 0  (mod 8 ) .  

This notation, invented by  Gauss, i s  very convenient. Here are several facts that you 
should verify immediately: 

• If you divide a by b and get a remainder of r, then a = r (mod b) . 
• The statement a = b (mod m) is equivalent to saying that there exists an integer 

k such that a = b + mk . 
• If a = b (mod m) and c = d (mod m) , then a + c  = b + d  (mod m) and ac = bd 

(mod m) .  

Example 2.3.4 Prove that i f  p i s  prime then, modulo p ,  every nonzero number has a 
unique multiplicative inverse; i .e . ,  if x is not a multiple of p then there is a unique y E 
{ 1 , 2 ,  3 ,  . . .  , p - 1 } such that xy = 1 (mod p) . [For example, if p = 7, the multiplicative 
inverses (mod 7) of 1 , 2 , 3 , 4 , 5 , 6  are 1 , 4 , 5 , 2 , 3 , 6, respectively. ] 

Solution : Let x E { I , 2 , 3 , . . .  , p - I } be non-zero modulo p; i .e . , x is not a mUltiple 
of p. Now consider the (p - I )  numbers 

x, 2x, 3x, . . .  , (p - 1 )x. 

The crux idea: we claim that these numbers are all distinct modulo p. We will show 
this by contradiction. Assume, to the contrary, that they are not distinct. Then we must 
have 

ux = vx (mod p) , (7) 

for u ,  v E { I ,  2 , 3 , . . .  , p - I } with u I- v. But (7) implies that 

ux - vx = (u - v)x = O  (mod p) ; 

in other words, (u - v)x is a multiple of p. But x is not a multiple of p by hypothesis, 
and the value of u - v is non-zero and at most p - 2 in absolute value (since the biggest 
difference would occur if one of x, y were 1 and the other were p - 1 ) . Thus u - v 
cannot be a multiple of p, either. Since p is a prime it is impossible, then, for the 
product (u - v)x to be a multiple of p. That is the contradiction we wanted: we have 
proven that x, 2x, 3x, . . .  , (p - I )x are distinct modulo p. 

Since those p - 1 distinct numbers are also non-zero modulo p (why?), exactly 
one of them has to equal 1 modulo p. Hence there exists a unique y in the set 
{ 1 , 2 , 3 , . . .  , p - l } such that .xy = 1 (mod p) . _ 
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This is a very powerful method for proving assertions that are "indexed" by integers ; 
for example: 

• The sum of the interior angles of any n-gon is 1 80(n - 2) degrees . 
• The inequality n ! > 2n is true for all positive integers n ;:::: 4. 

Each assertion can be put in the form 

P(n) is true/or all integers n ;:::: no , 

where P( n) is a statement involving the integer n and no is the "starting point." There 
are two forms of induction, standard and strong. 

Standard Induction 

Here 's how standard induction works: 

1 .  Establish the truth of P(no ) .  This is called the "base case," and it is usually an 
easy exercise. 

2. Assume that P(n) is true for some arbitrary integer n. This is called the induc­
tive hypothesis. Then show that the inductive hypothesis implies that P( n + 1 )  
is also true. 

This is sufficient to prove P(n) for all integers n ;:::: no , since P(no ) is true by ( 1 )  and 
(2) implies that P( no + 1 )  is true, and now (2) implies that P( no + 1 + 1 )  is true, etc . 

Here 's an analogy. Suppose you arranged infinitely many dominos in a line, cor­
responding to statements P( 1 ) , P (2) , . . . . If you make the first domino fall to the right, 
then you can be sure that all of the dominos will fall, provided that whenever one 
domino falls, it knocks down its neighbor to the right. 

2 3 4 n n+l  

Knocking the first one down is the same as establishing the base case. Showing that 
falling domino knocks down its neighbor is equivalent to showing that P(n) implies 
P( n + 1 )  for all n ;:::: 1 .  

Let 's use induction to prove the two examples above. 

Example 2.3.5 Prove that the sum of the interior angles of any n-gon is 1 80(n - 2) 
degrees. 

Partial Solution : The base case (no = 3) is the well-known fact that the sum of 
the interior angles of any triangle is 1 80 degrees (see 8 .2 .7 for suggestions for a proof). 
Now assume that the theorem is true for n-gons for some n ;:::: 3 .  We will show that this 
implies truth for (n + 1 ) -gons; i .e . ,  the sum of the interior angles of any (n + 1 ) -gon is 
1 80(n + 1 - 2) = 1 80 (n - 1 )  degrees. 
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Let S be an arbitrary (n + 1 ) -gon with vertices VI , V2 , " . , Vn+ l . Decompose S 
into the union of the triangle T with vertices V I , V2 , V3 and the n-gon U with vertices 
V I , V3 , . • •  , VII+ I · 

The sum of the interior angles of S is equal to the sum of the interior angles of T 
(which is 1 80 degrees), plus the sum of the interior angles of U [which is 1 80(n - 2) 
by the inductive hypothesis] . Hence the sum is 1 80 +  1 80(n - 2 ) = 1 80(n - 1 ) ,  just 
what we want. 

We call this a "partial solution" because our argument has a subtle flaw. How do 
we know that we can decompose the polygon as above to extract a triangle "on the 
border?" There 's no problem if the polygon is convex, but if it is concave, as in the 
example, it is not quite obvious that this can always be done. See Problem 3 .2. 1 1 for a 
suggestion . 

Example 2.3.6 Prove that if n is an integer greater than 3 ,  then n ! > 211 . 
Solution : The base case, no = 4, is obviously true: 4 !  > 24 . Now assume that 

n ! > 2n for some n. We wish to use this to prove the "next" case; i .e. we wish to 
prove that (n + I ) !  > 2n+ l . Let 's think strategically : the left-hand side of the inductive 
hypothesis is n ! ,  and the left-hand side of the "goal" is (n + I ) ! .  How to get from 
one to the other? Multiply both sides of the inductive hypothesis by n + 1 ,  of course . 
Multiplying both sides of an inequality by a positive number doesn 't change its truth, 
so we get 

(n + I ) !  > 2n (n + 1 ) .  

This is almost what we want, for the right-hand side of the "goal" is 211+ 1 = 2n · 2, and 
n + 1 is certainly greater than 2; i .e . ,  

(n + I ) !  > 211 (n + 1 ) > 2n . 2 = 2n+ I . 
• 

Induction arguments can be rather subtle . Sometimes it is not obvious what plays 
the role of the "index" n. Sometimes the crux move is a clever choice of this variable, 
and/or a neat method of traveling between P( n) and P( n + 1) . Here is an example. 

Example 2.3.7 The plane is divided into regions by straight lines. Show that it is 
always possible to color the regions with two colors so that adjacent regions are never 
the same color (like a checkerboard). 

Solution : The statement of the problem does not involve integers directly. How­
ever, when we experiment, we naturally start out with one line, then two, etc . ,  so the 
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natural thing to "induct on" is the number of lines we draw. In other words, we shall 
prove the statement P(n) : "If we divide the plane with n lines, then we can color the 
regions with two colors so that adjacent regions are different colors ." Let us call such 
a coloration "good." Obviously, P( I ) is true. Now assume that P(n) is true. Draw in 
the (n + I ) st line, and "invert" the coloration to the right of this line . 

The regions to the left of the line still have a good coloration, and the regions to the 
right of the line also have a good coloration (just the inverse of their original colors). 
And the regions that share borders along the line will, by construction, be differently 
colored. Thus the new coloration is good, establishing P(n + 1 ) .  • 

Strong Induction 

Strong induction gets its name because we use a "stronger" inductive hypothesis . After 
establishing the base case, we assume that for some n, all of the following are true: 

P(no ) , P (no + 1 ) , P (no + 2) , . . .  , P (n ) ,  
and w e  use this assumption t o  prove that P (n  + 1 ) i s  true. Sometimes strong induction 
will work when standard induction doesn 't .  With standard induction, we use only the 
truth of P(n) to deduce the truth of P(n + 1 ) .  But sometimes, in order to prove P(n + 1 ) , 
we need to know something about "earlier" cases. If you liked the domino analogy, 
consider a situation where the dominos have springs that keep them from falling, with 
the springs getting stiffer as n increases. Domino n requires the force not only of the 
nearest neighbor, but of all of the falling neighbors to the left ,  in order to fall .  

OUT first example of strong induction continues the problem we began in Exam­
ple 2.2. 1 on page 27. 

Example 2.3.8 Recall that the sequence aO , a t  , a2 , . . . satisfied at = I and 

I 
am+n + am-n = 2 (a2m + a2n ) (8 ) 

for all nonnegative integers m and n with m 2:: n .  We deduced that ao = 0, a2 = 4 and 
that a2m = 4am for all m, and we conjectured the proposition P(n ) ,  which states that 
an = n2 . 

Solution : Certainly the base case P(O) is true. Now assume that P(k) is true for 
k = 0, 1 ,  . . .  , U . We have [let m = u , n = 1 in (8) above] 

I I au+ t  + au- t = 2 (a2u + a2 ) = 2 (4au + a2 ) = 2au + 2 . 
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Now our stronger inductive hypothesis allows us to use the truth of both P(u)  and 
P(u - l ) , so 

au+ l + (u - 1 ) 2 = 2u2 + 2 , 

and hence 

• 

The previous example needed the truth of P( u) and P( u - I ) .  The next example 
uses the truth of P(k) for two arbitrary values. 

Example 2.3.9 A partition of a set is a decomposition of the set into disjoint subsets. 
A triangulation of a polygon is a partition of the polygon into triangles, all of whose 
vertices are vertices of the original polygon. A given polygon can have many different 
triangulations. Here are two different triangulations of a 9-gon. 

Given a triangulation, call two vertices adjacent if they are joined by the edge of 
a triangle. Suppose we decide to color the vertices of a triangulated polygon. How 
many colors do we need to use in order to guarantee that no two adjacent vertices have 
the same color? Certainly we need at least three colors, since that is required for just a 
single triangle. The surprising fact is that 

Three colors always suffice for any triangulation of a polygon! 

Proof" We shall induct on n, the number of vertices of the polygon. The statement 
P(n ) that we wish to prove for all integers n 2: 3 is 

For any triangulation of an n-gon, it is possible to 3-color the vertices 
(i .e . , color the vertices using three colors) so that no two adjacent ver­
tices are the same color. 

The base case P(3 )  is obviously true. The inductive hypothesis is that 

P (3 ) , P (4) , . . .  , P (n ) 

are all true. We will show that this implies P(n + 1 ) .  Given a triangulated (n + 1 ) ­
gon, pick any edge and consider the triangle T with vertices x, y, z that contains this 
edge. This triangle cuts the (n + 1 ) -gon into two smaller triangulated polygons L and 
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R (abbreviating left and right, respectively). It may tum out that one of L or R doesn 't 
exist (this will happen if n = 4), but that doesn 't  matter for what follows. Color the 
vertices of L red, white, and blue in such a way that none of its adjacent vertices are 
the same color. We know that this can be done by the inductive hypothesis ! 

Note that we have also colored two of the vertices (x and y) of T ,  and one of these 
vertices is also a vertex of R. Without loss of generality, let us assume that x is blue 
and y is white. 

By the inductive hypothesis, it is possible to 3-color R using red, white and blue so 
that no two of its vertices are the same color. But we have to be careful, since R shares 
two vertices (y and z) with T ,  one of which is already colored white. Consequently, 
vertex z must be red. If we are lucky, the coloring of R will coincide with the coloring 
of T. But what if it doesn 't? No problem. Just rename the colors ! In other words, 
interchange the roles of red, blue, and white in our coloring of R. For example, if the 
original coloring of R made y red and z blue, just recolor all of R 's red vertices to be 
white and all blue vertices red. 

We 're done; we 've successfully 3-colored an arbitrarily triangulated (n + I ) -gon 
so that no two adjacent vertices are the same color. So P{n + 1 )  is true. _ 

T 

L 
· 

· 
· 
· 

\ i ,,'/ 
\, :,,1 

y 

R 

Notice that we really needed the stronger inductive hypothesis in this proof. Per­
haps we could have arranged things as in Example 2 .3 .5 on page 45 so that we decom­
posed the (n + 1 ) -gon into a triangle and an n-gon. But it is not immediately obvious 
that among the triangles of the triangulation, there is a "boundary" triangle that we can 
pick. It is just easier to pick an arbitrary edge, and assume the truth of P {k) for all 
k � n. 

Behind the idea of strong induction is the notion that one should stay flexible in 
defining hypotheses and conclusions. In the following example, we need an unusually 
strong inductive hypothesis in order to make progress. 

Example 2.3.10 Prove that 

Solution : We begin innocently by letting P{n) denote the above assertion. P( I )  is 
true, since I /2 � 1 /  V3. Now we try to prove P(n + I ) ,  given the inductive hypothesis 
that P{n) is true. We would like to show that { ( 1 ) ( 3 ) ( 2n - I ) } ( 2n + I ) 1 

2 4 · · ·  2;;- 2n + 2 � y'3n + 3 · 
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Extracting the quantity in the large brackets, and using the inductive hypothesis, it will 
suffice to prove 

1 ( 2n + l ) 1 
y3n 2n + 2  :S J3n + 3 ' 

Unfortunately, this inequality is false ! For example, if you plug in n = I ,  you get 

1 ( 3 ) 1 
v'3 4 :S J6 '  

which would imply V2 :s 4/3, which is clearly absurd. 
What happened? We employed wishful thinking and got burned. It happens from 

time to time. The inequality that we wish to prove, while true, is very weak (i .e . ,  
asserts very little), especially for small n. The starting hypothesis of P( I )  is too weak 
to lead to P(2) , and we are doomed. 

The solution: strengthen the hypothesis from the start. Let us replace the 3n with 
3n + I .  Denote the statement (�) (�) . . . ( 2�: I ) :s � 
by Q(n) . Certainly, Q( I )  is true; in fact, it is an equality ( 1 /2 = 1 /v4), which is about 
as sharp as an inequality can be ! So let us try to prove Q(n + I )  using Q(n) as the 
inductive hypothesis. As before, we try the obvious algebra, and hope that we can 
prove the inequality 

1 ( 2n + l ) 1 
J3n + 1 2n + 2 

:s 
J3n + 4 

. 

Squaring and cross-multiplying reduce this to the alleged inequality 

(3n + 4) (4n2 + 4n + I )  :s 4(n2 + 2n + 1 ) (3n + I ) ,  

which reduces (after some tedious multiplying) to 1 9n :s 20n, and that is certainly true. 
So we are done. _ 

Problems and Exercises 

2.3.1 1  Let a, b , c be integers satisfying a2 + b2 = c2 • 
Give two different proofs that abc must be even, 

(a) by considering various parity cases; 

(b) using argument by contradiction. 

2.3.12 Make sure you understand Example 2 .3 .2 per­
fectly by doing the fol lowing exercises. 

(a) Prove that J3 is irrational. 

(b) Prove that v'6 is irrational . 

(c) If you attempt to prove J49 is irrational by us-

ing the same argument as before, where does 
the argument break down? 

2.3.13 Prove that there is no smallest positive real 
number. 

2.3.14 Prove that log 10 2 is irrational . 

2.3.15 Prove that v'2 + J3 is irrational. 

2.3.16 Can the complex numbers be ordered? In other 
words, is it possible to define a notion of "inequality" 
so that any two complex numbers a + bi and c + di can 



be compared and it can be decided that one is "bigger" 
or one is "smaller" or they are both equal? (Using the 
norm function Ix + iy l = J X2 + y2 is "cheating," for 
this converts each complex number into a real num­
ber and hence eludes the question of whether any two 
complex numbers can be compared. )  

2.3.17 Prove that if a is rational and b is irrational, 
then a + b is irrational . 

2.3.18 True or false and why: If a and b are irrational, 
then ab is irrational . 

2.3.19 Prove the statements made in the discussion of 
congruence notation on page 44. 

2.3.20 Prove the following generalization of Exam­
ple 2 .3 .4 on page 44: 

Let m be a positive integer and let S de­
note the set of positive integers less than 
m that are relatively prime to m, i.e. , 
share no common factor with m other 
than J .  Then for each x E S, there is a 
unique y E m such that xy =- I (mod m) . 

For example, i f  m = 1 2 , then S = { 1 , 5 , 7 ,  I I } .  The 
"multiplicative inverse" modulo 1 2  of each element 
x E S  turns out to be x: 5 · 5  =- I (mod 1 2 ) , 7 · 7  =- I 
(mod 12 ) ,  etc .  

2.3.21 There are infinitely many primes. Of the many 
proofs of this important fact, perhaps the oldest was 
known to the ancient Greeks and written down by Eu­
clid. It is a classic argument by contradiction. We start 
by assuming that there are only finitely many primes 
P I , P2 , P3 , . . .  , PN . Now (the ingenious crux move ! )  
consider the number Q := (P I P2P3 · · ·  PN ) + I .  

Complete the proof! 

2.3.22 (Putnam 1 995) Let S be a set of real numbers 
that is closed under multiplication (that is, if a and b 
are in S, then so is ab) . Let T and U be disjoint sub­
sets of S whose union is S. Given that the product of 
any three (not necessarily distinct) elements of T is in 
T and that the product of any three elements of U is 
in U ,  show that at least one of the two subsets T, U is 
closed under multiplication. 

2.3.23 (Russia 1 995) Is it possible to place 1 995 dif­
ferent natural numbers along a circle so that for any 
two of these numbers, the ratio of the greatest to the 
least is a prime? 

2.3.24 Complete the solution started in Example 1 . 1 .2 
on page I .  
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2.3.25 If you haven 't worked on it already, look at 
Problem 2.2. 1 3  on page 37.  The correct answer is 
(n2 + n + 2 )/2. Prove this by induction. 

2.3.26 It is easy to prove that the product of any three 
consecutive integers is always divisible by 6, for at 
least one of the three integers is even, and at least one 
is divisible by 3. Done ! This is a very easy proof, but 
as an exercise, prove the assertion using induction . It 
is less fun, but good practice. 

2.3.27 Prove that a set with n elements has 2n subsets, 
including the empty set and the set itself. For example, 
the set {a, b , c} has the eight subsets 

0, {a } ,  {b} , {c} ,  {a, b} , {a , e} ,  {b, c } , {a , b , c } . 
2.3.28 Prove the formula for the sum of a geometric 
series :  

an- I + an-2 + . . .  + 1 =  -- . ( an - I ) 
a - I 

2.3.29 Prove that the absolute value of the sum of sev­
eral real or complex numbers is at most equal to the 
sum of the absolute values of the numbers. Note : you 
will need first to verify the truth of the triangle in­

equality , which states that l a + b l :S l a l + Ib l for any 
real or complex numbers a, b. 
2.3.30 Prove that the magnitude of the sum of several 
vectors in the plane is at most equal to the sum of the 
magnitudes of the vectors . 

2.3.31 Show that 7n - I is divisible by 6, for all posi­
tive integers n. 
2.3.32 (Germany 1 995) Let x be a real number such 
that x + x- I is an integer. Prove that � + x-n is an 
integer, for all positive integers n. 
2.3.33 Prove Bernoulli's Inequality , which states 
that if x > - I ,  x i= 0 and n is a positive integer greater 
than I ,  then 

( 1 +xt > I + nx. 
2.3.34 After studying Problem 2.2 . 1 1 on page 37, you 
may have concluded that f(n) is equal to the number 
of ones in the binary (base-2) representation of n . [For 
example, f ( 1 3 )  = 3 ,  since 13 is 1 1 0 I in binary. ] Prove 
this characterization of f(n) using induction. 

2.3.35 (Bay Area Mathematical Olympiad, 2006) 
Suppose that n squares of an infinite square grid are 
colored grey, and the rest are colored white. At each 
step, a new grid of squares is obtained based on the 
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previous one, as fol lows. For each location in the grid, 
examine that square, the square immediately above, 
and the square immediately to the right. If there are 
two or three grey squares among these three, then in 
the next grid, color that location grey; otherwise. color 
it white. Prove that after at most n steps all the squares 
in the grid will be white . 

Below is an example with n = 4. The first grid 
shows the initial configuration, and the second grid 
shows the configuration after one step. 

2.3.36 Prove the conjecture that you made in Prob­
lem 2.2.20. 
2.3.37 The Fibonacci sequence II ' /2 , 13 ,  . . .  was de­
fined in Example 1 .3 . 1 8 .  In the problems below, prove 
that each proposition holds for all positive integers 11 .  

(a) II + 13 +  15 + . . . + 1211- 1 = 1211 ' 
(b) 12 + 14 + . . .  + 1211 = 1211+ I - I . 
(c) 1" < 2" . 

(d) III = � { ( I  +2J5)" - ( I -2J5) ,, } . 
(e) If M is the matrix [ � ] , 

Mil = [ 111+ 1 /,, ] 
/" 1;,- 1 

. 

(f) In+ t !n- I - !1 = ( - 1 )" . 

(g) 1,;+ 1 + I'; = hll+ I . 

then 

2.3.38 If you did Problem 2.2. 1 7  on page 37. you 
probably discovered that if a triangle drawn on the co­
ordinate plane has vertices at lattice points, then I A = 2B + J - 1 .  

2.4 Other Important Strateg ies 

where A .  B and J respectively denote the area, number 
of boundary lattice points and number of interior lat­
tice points of this triangle. This is a special case of 
Pick's Theorem, which holds for any polygon with 
vertices at lattice points (including non-convex poly­
gons). Prove Pick's Theorem with induction. Easy 
version: assume that it is true for triangles (i .e . ,  as­
sume the base case is true). Harder version: prove that 
it is true for triangles first ! 

2.3.39 Here are a few questions about Example 2.3.9 
on page 48, where we proved that the vertices of any 
triangulation can be 3-colored so that no two adjacent 
vertices are the same color. 

(a) Our proof was "nonconstructive," in that it 
showed that the coloring existed, but did not 
show how 10 achieve it. Can you come up with a 
"constructive" proof; i .e. , can you outline a col­
oring algorithm that will work on an arbitrary 
polygon? 

(b) On page 49, we raised the question whether 
any arbitrary triangulation of a polygon has a 
"boundary triangle," i .e. . a triangle that cuts 
the original polygon into two, rather than three, 
pieces. It sure seems obvious. Prove it. 

(c) In the diagram for the triangulation proof, the 
"central" triangle split the polygon into two 
parts, called L and R. What if the central tri­
angle had split the polygon into three parts? 

2.3.40 Consider a 2 1 999 x 2 1 999 square. with a single I x I square removed. Show that no matter where 
the small square is removed. it is possible 10 tile this 
"giant square minus tiny square" with ells (see Exam­
ple 1 .3 . 19  on page 10 for another problem involving 
tiling by ells). 

2.3.41 (IMO 1 997) An n x n matrix (square array) 
whose entries come from the set S = { I .  2, . . .  , 2n- 1 } 
is called a silver matrix if, for each i = I . . . . . n . the ith 
row and the ith column IOgether contain all the mem­
bers of S. Show that silver matrices exist for infinitely 
many values of 11 . 

Many strategies can be applied at different stages of a problem, not just the beginning. 
Here we focus on just a few powerful ideas. Learn to keep them in the back of your 
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mind during any investigation . We will also discuss more advanced strategies in later 
chapters. 

Draw a Picture! 

Central to the open-minded attitude of a "creative" problem solver is an awareness 
that problems can and should be reformulated in different ways . Often, just translating 
something into pictorial form does wonders . For example, the monk problem (Exam­
ple 2. 1 .2 on page 1 7) had a stunningly creative solution. But what if we just interpreted 
the situation with a simple distance-time graph? 

Summlt.....,.-------------..." 

First Day s Path 

Base �-------------� 
BAM Noon 

It's obvious that no matter how the two paths are drawn, they must intersect some­
where ! 

Whenever a problem involves several algebraic variables, it is worth pondering 
whether some of them can be interpreted as coordinates . The next example uses both 
vectors and lattice points. (See Problem 2.2 . 1 7  on page 37 and Problem 2 .3 . 38 on 
page 52 for practice with lattice points . ) 

Example 2.4.1 How many ordered pairs of real numbers (s , t )  with 0 < s , t < 1 are 
there such that both 3s + 7t and 5s + t are integers? 

Solution : One may be tempted to interpret (s , t )  as a point in the plane, but that 
doesn 't  help much. Another approach is to view (3s + 7t , 5s + t ) as a point. For any 
s , t we have 

(3s + 7t , 5s + t ) = ( 3 , 5 ) s + (7 ,  1 ) t . 

The condition 0 < s , t < 1 means that (3s + 7t , 5s + t )  is the endpoint of a vector that lies 
inside the parallelogram with vertices (0 , 0) , (3 , 5 ) ,  (7 , 1 )  and ( 3 , 5 )  + (7 ,  1 )  = ( 1 0 , 6) . 
The picture below illustrates the situation when s = 0.4 ,  t = 0.7 . 
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Since both 3s + 7t and 5s + t are to be integers, (3s + 7t , 5s + t) is a lattice point. Con­
sequently, counting the ordered pairs (s , t )  with 0 < s , t < 1 such that both 3s + 7t and 
5s + t are integers is equivalent to counting the lattice points inside the parallelogram. 
This is easy to do by hand; the answer is 3 1 .  • 

This problem can be generalized nicely using Pick 's Theorem (Problem 2.3 .38 on 
page 52) .  See Problem 2.4.22 below. 

Pictures Don't Help? Recast the Problem in Other Ways! 

The powerful idea of converting a problem from words to pictures is just one aspect of 
the fundamental peripheral vision strategy. Open your mind to other ways of reinter­
preting problems. One example that you have already encountered was Example 2. 1 .7 
on page 20, where what appeared to be a sequence of numbers was actually a sequence 
of descriptions of numbers . Another example was the locker problem (Example 2.2.3 
on page 29) in which a combinatorial question metamorphosed into a number theory 
lemma. "Combinatorics � Number Theory" is one of the most popular and produc­
tive such "crossovers," but there are many other possibilities .  Some of the most spec­
tacular advances in mathematics occur when someone discovers a new reformulation. 
For example, Descartes ' idea of recasting geometric questions in a numeric/algebraic 
form led to the development of analytic geometry, which then led to calculus. 

Our first example is a classic problem. 

Example 2.4.2 Remove the two diagonally opposite comer squares of a chessboard. 
Is it possible to tile this shape with thirty-one 2 x 1 "dominos"? (In other words, every 
square is covered and no dominos overlap.) 

Solution: At first, this seems like a geometric/combinatorial problem with many 
cases and subcases .  But it is really just a question about counting colors . The two 
comers that were removed were both (without loss of generality) white, so the shape 
we are interested in contains 32 black and 30 white squares. Yet any domino, once it 
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is placed, will occupy exactly one black and one white square. The 3 1  dominos thus 
require 3 1  black and 3 1  white squares, so tiling is impossible. _ 

The idea of introducing coloring to reformulate a problem is quite old. Never­
theless, it took several years before anyone thought to use this method on the Gallery 
Problem (Problem 2.2.26 on page 38) .  This problem was first proposed by Victor Klee 
in 1 973,  and solved shortly thereafter by Vaclav Chvatal. However, his proof was 
rather complicated. In 1 978 ,  S. Fisk discovered the elegant coloring argument that we 
present below.7 If you haven 't thought about this problem yet, please do so before 
reading the solution below. 

Example 2.4.3 Solution to the Gallery Problem: If we let g(n)  denote the minimum 
number of guards required for an n-sided gallery, we get g (3 )  = g(4) = g(5 )  = 1 and 
g( 6) = 2 by easy experimentation. Trying as hard as we can to draw galleries with 
"hidden" rooms, it seems impossible to get a 7-sided or 8-sided gallery needing more 
than two guards, yet we can use the idea of the 6-sided, two-guard gallery on page 38  
to  create a 9-sided gallery, which seems to  need three guards. Here are examples of  an 
8-sided and 9-sided gallery, with dots indicating guards. 

If this pattern persists, we have the tentative conjecture that g(n) = Ln/3J . A key 
difficulty with this problem, though, is that even when we draw a gallery, it is hard 
to be sure how many guards are needed. And as n becomes large, the galleries can 
become pretty complex . 

A coloring reformulation comes to the rescue: Triangulate the gallery polygon. 
Recall that we proved, in Example 2 .3 .9 on page 48, that we can color the vertices 
of this triangulation with three colors in such a way that no two adjacent vertices are 
the same color. Now, pick a color, and station guards at all the vertices with that 
color. These guards will be able to view the entire gallery, since every triangle in the 
triangulation is guaranteed to have a guard at one of its vertices ! Here is an example 
of a triangulation of a 1 5-sided gallery. 

7 See [22] for a nice discussion of Chvatal 's proof and [3 1 ]  for an exhaustive treatment of this and related 
problems. 
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This procedure works for all three colors . One color must be used at l n/3 J vertices 
at most (since otherwise, each color is used on more than l n/3 J vertices, which would 
add up to more than n vertices). Choose that color, and we have shown that at most 
l n/3 J guards are needed. 

Thus, g(  n) :::; l n/3 J .  To see that g(  n) = l n/3 J ,  we need only produce an example, 
for each n, that requires l n/3 J guards. That is easy to do; just adapt the construction 
used for the 9-gon above. If l n/3 J = r, just make r "spikes," etc . _ 

The next example (used for training the 1 996 USA team for the IMO) is rather 
contrived. At first glance it appears to be an ugly algebra problem. But it is actually 
something else, crudely disguised (at least to those who remember trigonometry well) . 

Example 2.4.4 Find a value of x satisfying the equation 

5 (VI=X+ v'I +x) = 6x + 8 �. 
Solution : Notice the constants 5 , 6 , 8 and the VI - x2 and VI ± x  terms. It all 

looks like 3-4-5 triangles (maybe 6-8- 1 0  triangles) and trig. Recall the basic formulas :  

sin2 e + cos2 e = 1 ,  . !!.- _ J I - cos e 
SIn 

2 
-

2 '  

!!.- _ J I + cos e 
cos 

2 
-

2 · 

Make the trig substitution x = cos e .  We choose cosine rather than sine, because 
v'I ± cos e is involved in the half-angle formulas, but v'I ± sin e is not. This substitu­
tion looks pretty good, since we immediately get v'I - x2 = sin e, and also 

r,:; J 1 ± cos e v'I ± x = VI ± cos e = v 2 
2 . 

Thus the original equation becomes 

5 v'2 ( sin � + cos �) = 6 cos e + 8 sin e . (9) 
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Now we introduce a simple trig tool : Given an expression of the form a cos 0 + b sin O ,  
write 

a cos O + b sin o = va2 + b2 ( 
2
a 

2
cos O +  

2
b 

2
sin o) . 

va + b  va + b  

This is useful, because 
a 

and 
b 

are respectively the sine and cosine 
va2 + b2 va2 + b2 

of the angle a := arctan(a/b) . 

Consequently, 

a 

acos 0 + b sin O  = Va2 + b2 (sin a cos 0 + cos a sin 0 )  
= Va2 + b2 sin(a + O ) .  

In particular, we have 

sinx + cosx = v'2 sin (x +  �) . 
Applying this, equation (9) becomes (note that V62 + 82 = 1 0) 

5 v'2v'2 sin ( � + �) = 10 (� cos 0 + � sin 0 ) . 
Hence, if a = arctan(3/4) ,  we have 

sin (� + �) = sin(a + 0 ) .  

Equating angles yields 0 = 1r/2 - 2a. Thus 

x =  cos O = sin(2a) = 2 sin a cos a = 2 (�) (�) = ��. • 

Converting a problem to geometric or pictorial forms usually helps, but in some 
cases the reverse is true. The classic example, of course, is analytic geometry, which 
converts pictures into algebra. Here is a more exotic example: a problem that is geo­
metric on the surface, but not at its core. 

Example 2.4.5 We are given n planets in space, where n is a positive integer. Each 
planet is a perfect sphere and all planets have the same radius R. Call a point on the 
surface of a planet private if it cannot be seen from any other planet. (Ignore things 
such as the height of people on the planet, clouds, perspective, etc. Also, assume that 
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the planets are not touching each other. )  It is easy to check that if n = 2, the total 
private area is 4nR2 , which is just the total area of one planet. What can you say about 
n = 3? Other values of n? 

Partial Solution : A bit of experimentation convinces us that if n = 3, the total 
private area is also equal to the total area of one planet. Playing around with larger 
n suggests the same result. We conjecture that the total private area is always equal 
exactly to the area of one planet, no matter how the planets are situated. This appears 
to be a nasty problem in solid geometry, but must it be? The notions of "private" 
and "public" seem to be linked with a sort of duality; perhaps the problem is really 
not geometric but logical. We need some "notation ." Let us assume that there is a 
universal coordinate system, such as longitude and latitude, so that we can refer to the 
"same" location on any planet. For example, if the planets were little balls floating in 
a room, the location "north pole" would mean the point on a planet that is closest to 
the ceiling. 

Given such a universal coordinate system, what can we say about a planet P that 
has a private point at location x? Without loss of generality, let x be at the "north 
pole." Clearly, the centers of all the other planets must lie on the south side of the 
P 's "equatorial" plane. But that renders the north poles of these planets public, for 
their north poles are visible from a point in the southern hemisphere of P (or from the 
southern hemisphere of any planet that lies between). In other words, we have shown 
pretty easily that 

If location x is private on one planet, it is public on all the other planets. 

After this nice discovery, the penultimate step is clear: to prove that 

Given any location x, it must be private on some planet. 8 

We leave this as an exercise (problem?) for the reader. 

The above examples just scratched the surface of the vast body of crossover ideas. 
While the concept of reformulating a problem is strategic, its implementation is tacti­
cal, frequently requiring specialized knowledge. We will discuss several other cross­
over ideas in detail in Chapter 4. 

Change Your Point of View 

Changing the point of view is just another manifestation of peripheral vision. Some­
times a problem is hard only because we choose the "wrong" point of view. Spending 
a few minutes searching for the "natural" point of view can pay big dividends. Here is 
a classic example. 

Example 2.4.6 A person dives from a bridge into a river and swims upstream through 
the water for 1 hour at constant speed. She then turns around and swims downstream 
through the water at the same rate of speed. As the swimmer passes under the bridge, a 

8The sophist icated reader may observe that we are glossing over a technicality: there may be exceptional 
points that do not obey this rule. However, these points form a set of measure zero, which will not affect the 
result. 
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bystander tells her that her hat fell into the river as she originally dived. The swimmer 
continues downstream at the same rate of speed, catching up with the hat at another 
bridge exactly I mile downstream from the first one. What is the speed of the current 
in miles per hour? 

Solution : It is certainly possible to solve this in the ordinary way, by letting x 
equal the current and y equal the speed of the swimmer, etc . But what if we look at 
things from the the hat 's point of view? The hat does not think that it moves. From its 
point of view, the swimmer abandoned it, and then swam away for an hour at a certain 
speed (namely, the speed of the current plus the speed of the swimmer) . Then the 
swimmer turned around and headed back, going at exactly the same speed. Therefore, 
the swimmer retrieves the hat in exactly one hour after turning around. The whole 
adventure thus took two hours , during which the hat traveled one mile downstream. 
So the speed of the current is ! miles per hour. _ 

For another example of the power of a "natural" point of view, see the "Four Bugs" 
problem (Example 3 . 1 .6 on page 65). This classic problem combines a clever point of 
view with the fundamental tactic of symmetry. 

Problems and Exercises 

2.4.7 Pat works in the city and lives in the suburbs 
with Sal. Every afternoon, Pat gets on a train that ar­
rives at the suburban station at exactly 5PM.  Sal leaves 
the house before 5 and drives at a constant speed so as 
to arrive at the train station at exactly 5PM to pick up 
Pat. The route that Sal drives never changes. 

One day, this routine is interrupted, because there 
is a power failure at work. Pat gets to leave early, and 
catches a train which arrives at the suburban station 
at 4PM. Instead of phoning Sal to ask for an earl ier 
pickup, Pat decides to get a l ittle exercise, and begins 
walking home along the route that Sal drives, know­
ing that eventual ly Sal wil l  intercept Pat, and then will 
make a V-tum, and they will head home together in 
the car. This is indeed what happens, and Pat ends up 
arriving at home 10 minutes earl ier than on a normal 
day. Assuming that Pat 's walking speed is constant, 
that the V-tum takes no time, and that Sal 's driving 
speed is constant, for how many minutes did Pat walk? 

2.4.8 Prove, without algebra, that the sum of the first 
n positive odd integers is n2 • 
2.4.9 Two towns, A and B, are connected by a road. 
At sunrise, Pat begins biking from A to B along this 
road, while simultaneously Dana begins biking from B 
to A. Each person bikes at a constant speed, and they 
cross paths at noon. Pat reaches B at 5PM while Dana 

reaches A at I I : 1 5PM .  When was sunrise? 

2.4. 10 A bug is crawling on the coordinate plane from 
(7 ,  I I ) to ( - 1 7 ,  - 3 ) .  The bug travels at constant speed 
one unit per second everywhere but quadrant II (neg­
ative x- and positive y-coordinates), where it travels at � unit per second. What path should the bug take to 
complete its journey in minimal time? General ize ! 

2.4.1 1  What is the first time after 1 2  o 'c lock at which 
the hour and minute hands meet? This is an amus­
ing and moderately hard algebra exercise, well worth 
doing if you never did it before. However, this prob­
lem can be solved in a few seconds in your head if 
you avoid messy algebra and just consider the "natu­
ral" point of view. Go for it! 

2.4.12 Sonia walks up an escalator which is going up. 
When she walks at one step per second, it takes her 
20 steps to get to the top. If she walks at two steps 
per second, it takes her 32 steps to get to the top. She 
never skips over any steps. How many steps does the 
escalator have? 

2.4.13 The triangular numbers are the sums of con­
secutive integers , starting with I .  The first few trian­
gular numbers are 

I , 1 + 2 = 3 , 1 + 2 + 3 = 6, 1 + 2 + 3 + 4 = 1 0  . . . . .  
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Prove that if T is a triangular number, then 8T + 1 is a 
perfect square . You can do this with algebra, of course, 
but try drawing a picture,  instead. 

2.4.14 Once again, you can easily use induction to 
prove the very cool fact that the sum of the first n per­
fect cubes is equal to the square of the nth triangular 
number, but can you do it with a picture,  instead? 

2.4.15 Prove that all positive integers except the pow­
ers of two can be written as the sum of at least two 
consecutive positive integers . Once again, algebra can 
be used, but so can pictures !  

2.4.16 Complete the solution of the Planets problem, 
started in Example 2.4.5 on page 57. 
2.4.17 (Putnam 1 984) Find the minimum value of 

(u - v)2 + (J2 - u2 - �r 
for 0 < u < v'2 and v > o. 
2.4.18 A bug sits on one comer of a unit cube, and 
wishes to crawl to the diagonally opposite comer. If 
the bug could crawl through the cube, the distance 
would of course be 0. But the bug has to stay on the 
surface of the cube. What is the length of the shortest 
path? 

2.4.19 Let a and h be integers greater than one which 
have no common divisors . Prove that 

and find the value of this common sum. 

2.4.20 Let ao be any real number greater than 0 and 
less than 1 . Then define the sequence a I , a2 , a3 , . . . by 
a,,+ I = vr=a;;- for n = 0, 1 , 2 , . . . . Show that 

. 0 - 1  Iim a,, = --- , 
1 1-+00 2 

no matter what value is chosen for ao . 
2.4.21 For positive integers n, define S" to be the min­
imum value of the sum 

�I V(2k - I )2 + af ,  

as the a l , a2 , . . .  , all range through all positive values 
such that 

Find S IO . 
2.4.22 (Taiwan 1 995) Let a, h, c , d be integers such 
that ad - bc = k > 0 and 

GCD(a , h) = GCD(e, d) = 1 .  

Prove that there are exactly k ordered pairs of real 
numbers (X I , X2 ) such that 0 :S XI , X2 < I and both 
aXI  + hX2 and eX I + dX2 are integers . 

2.4.23 How many distinct terms are there when 

( I + x7 + xI 3 ) \OO 

is multiplied out and simplified? 

2.4.24 Several marbles are placed on a circular track 
of circumference one meter. The width of the track and 
the radii of the marbles are negligible. Each marble is 
randomly given an orientation, c lockwise or counter­
clockwise. At time zero, each marble begins to travel 
with speed one meter per minute, where the direction 
of travel depends on the orientation. Whenever two 
marbles collide, they bounce back with no change in 
speed, obeying the laws of inelastic collision. 

What can you say about the possible locations of 
the marbles after one minute, with respect to their orig­
inal positions? There are three factors to consider: the 
number of marbles, their initial locations,  and their ini­
tial orientations. 



Chapter 3 

Tactics for Solving Problems 

Now we tum to the tactical level of  problem solving. Recall that tactics are broadly 
applicable mathematical methods that often simplify problems. Strategy alone rarely 
solves problems; we need the more focused power of tactics (and often highly spe­
cialized tools as well) to finish the job. Of the many different tactics, this chapter will 
explore some of the most important ones that can be used in many different mathemat­
ical settings. 

Most of the strategic ideas in Chapter 2 were plain common sense. In contrast, 
the tactical ideas in this chapter, while easy to use, are less "natural," as few people 
would think of them. Let 's return to our mountaineering analogy for a moment. An 
important climbing tactic is the rather non-obvious idea (meant to be taken literally) :  

Stick your butt out! 

The typical novice climber sensibly hugs the rock face that he is attempting to climb, 
for it is not intuitive to push away from the rock. Yet once he grits his teeth and pushes 
out his rear end, a miracle happens : the component of gravity that is perpendicular to 
the rock rises, which increases the frictional force on his feet and immediately pro­
duces a more secure stance. 

Before After 

Likewise, you may find that some of the tactical ideas below are peCUliar. But once 
you master them, you will notice a dramatic improvement in your problem solving. 

Many fundamental problem-solving tactics involve the search for order. Often 
problems are hard because they seem "chaotic" or disorderly; they appear to be miss­
ing parts (facts, variables, patterns) or the parts do not seem connected. Finding (and 
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using) order can quickly simplify such problems. Consequently, we will begin by 
studying problem-solving tactics that help us find or impose order where there seem­
ingly is none. The most dramatic form of order is our first topic , symmetry. 

Symmetry involves finding or imposing order in a concrete way, for example, by 
reflection. Other tactics find or exploit order, but in more abstract, almost "metaphor­
ical" ways. We shall discuss three such methods of "pseudosymmetry." All of them 
rely on very simple observations that sometimes yield amazingly useful information. 
The first tactic, the extreme principle, which we encountered with the Affirmative 
Action problem (Example 2 . 1 .9 on page 2 1 ) , works by focusing on the largest and 
smallest entities within a problem. Next, the pigeonhole principle stems from the 
nearly vacuous observation that if you have more guests than spare rooms, some of the 
guests will have to share rooms.  Our final tactic, the concept of invariants, shows how 
much information comes your way when you restrict your attention to a narrow aspect 
of your problem that does not change (such as parity). This is an extremely powerful 
idea, fundamental to mathematics, that underlies many seemingly different tactics and 
tools. 

3.1 Symmetry 

We all have an intuitive idea of symmetry; for example, everyone understands that 
circles are symmetrical. It is helpful, however, to define symmetry in a formal way, if 
only because this will expand our notion of it. We call an object symmetric if there are 
one or more non-trivial "actions" that leave the object unchanged. We call the actions 
that do this the symmetries of the object. I 

We promised something formal, but the above definition seems pretty vague. What 
do we mean by an "action"? Almost anything ! We are being deliberately vague, 
because our aim is to let you see symmetry in as many situations as possible. Here are 
a few examples. 

Example 3.1 .1  A square is symmetric with respect to reflection about a diagonal . The 
reflection is one of the several symmetries of the square. Other symmetries include 
rotation clockwise by 90 degrees and reflection about a line joining the midpoints of 
two opposite sides. 

Example 3.1 .2 A circle has infinitely many symmetries, for example, rotation clock­
wise by a degrees for any a. 
Example 3.1 .3 The doubly infinite sequence 

. . .  , 3 , 1 , 4 , 3 , 1 , 4 , 3 , 1 , 4 , . . .  

is symmetrical with respect to the action "shift everything three places to the right (or 
left) ." 

1 We deliberately avoid the language of transformations and automorphisms that would be demanded by a 
mathematically precise definition. 
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Why is symmetry important? Because it gives you "free" information. If you 
know that something is, say, symmetric with respect to 90-degree rotation about some 
point, then you only need to look at one-quarter of the object. And you also know that 
the center of rotation is a "special" point, worthy of close investigation. You will see 
these ideas in action below, but before we begin, let us mention two things to keep in 
mind as you ponder symmetry : 

• The strategic principles of peripheral vision and rule-breaking tell us to look 
for symmetry in unlikely places, and not to worry if something is almost, but 
not quite symmetrical. In these cases, it is wise to proceed as if symmetry is 
present, since we will probably learn something useful. 

• An informal alternate definition of symmetry is "harmony." This is even vaguer 
than our "formal" definition, but it is not without value. Look for harmony, 
and beauty, whenever you investigate a problem. If you can do something that 
makes things more harmonious or more beautiful, even if you have no idea how 
to define these two terms, then you are often on the right track. 

Geometric Symmetry 

Most geometric investigations profit by a look at symmetry. Ask these questions about 
symmetry: 

• Is it present? 
• If not, can it be imposed? 

• How can it then be exploited? 

Here is a simple but striking example. 

Example 3.1.4 A square is inscribed in a circle that is inscribed in a square. Find the 
ratio of the areas of the two squares. 

Solution : The problem can certainly be solved algebraically (let x equal the length 
of the small square, then use the Pythagorean theorem, etc . ) ,  but there is a nicer ap­
proach. The original diagram is full of symmetries. We are free to rotate and/or reflect 
many shapes and still preserve the areas of the two squares. How do we choose from 
all these possibilities? We need to use the hypothesis that the objects are inscribed 
in one another. If we rotate the small square by 45 degrees, its vertices now line up 
with the points of tangency between the circle and the large square, and instantly the 
solution emerges. 
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The small square obviously has half the area of the larger! -

The simplest geometric symmetries are rotational and reflectional . Always check 
to see if rotations or reflections will impose order on your problem. The next example 
shows the power of imposing reflectional symmetry. 

Example 3.1 .5 Your cabin is two miles due north of a stream that runs east-west. Your 
grandmother's cabin is located 1 2  miles west and one mile north of your cabin. Every 
day, you go from your cabin to Grandma's, but first visit the stream (to get fresh water 
for Grandma) . What is the length of the route with minimum distance? 

Solution : First, draw a picture ! Label your location by Y and Grandma's by 
G. Certainly, this problem can be done with calculus, but it is very ugly (you need 
to differentiate the sum of two radicals, for starters) .  The problem appears to have no 
symmetry in it, but the stream is practically begging you to reflect across it! Draw a 
sample path (shown below as Y A followed by AG) and look at its reflection. We call 
the reflections of your house and Grandma's house y' and G', respectively. 

G 

--------�-=�------��-------------- S t r e am 

G '  

While you are carrying water to Grandma, your duplicate i n  an alternate universe 
is doing the same, only south of the stream. Notice that AG = AG', so the length of 
your path would be unchanged if you visited the reflected Grandma instead of the real 
one. Since the shortest distance between two points is the straight line Y BG', the op­
timal path will be Y B followed by BG. Its length is the same as the length of Y BG' , 
which is just the hypotenuse of a right triangle with legs 5 and 1 2  miles. Hence our 
answer is 13 miles. _ 

When pondering a symmetrical s ituation, you should always focus briefly on the 
"fixed" objects that are unchanged by the symmetries. For example, if something is 
symmetric with respect to reflection about an axis, that axis is fixed and worthy of 
study (the stream in the previous problem played that role) .  Here is another example, 
a classic problem that exploits rotational symmetry along with a crucial fixed point. 
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Example 3.1 .6 Four bugs are situated at each vertex of a unit square. Suddenly, each 
bug begins to chase its counterclockwise neighbor. If the bugs travel at 1 unit per 
minute, how long will it take for the four bugs to crash into one another? 

Solution : The situation is rotationally symmetric in that there is no one "distin­
guished" bug . If their starting configuration is that of a square, then they will always 
maintain that configuration. This is the key insight, believe it or not, and it is a very 
profitable one ! 

. . . . . . . . . . . . . . . . . � 

. . . . : · · · · · ·z· � ·
!\o . . . . g ; �. . . . . . '0" 

. . a 9: .  . } · · .'8 e. :� ·, . o  .. 
: � . . . : . . . . � .#� 
:�� b� 
: bug's path 
I 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ 

As time progresses, the bugs form a shrinking square that rotates counterclock­
wise. The center of the square does not move. This center, then, is the only "distin­
guished" point, so we focus our analysis on it. Many otherwise intractable problems 
become easy once we shift our focus to the natural frame of reference; in this case 
we should consider a radial frame of reference, one that rotates with the square . For 
example, pick one of the bugs (it doesn 't  matter which one ! ) ,  and look at the line 
segment from the center of the square to the bug. This segment will rotate counter­
clockwise, and (more importantly) shrink. When it has shrunk to zero, the bugs will 
have crashed into one another. How fast is it shrinking? Forget about the fact that the 
line is rotating. From the point of view of this radial line, the bug is always traveling 
at a 45° angle. Since the bug travels at unit speed, its radial velocity component is j ust 
1 · cos 45° = V2/2 units per minute, i .e . ,  the radial line shrinks at this speed. Since the 
original length of the radial line was V2/2, it will take just 1 minute for the bugs to 
crash. _ 

Here is a simple calculus problem that can certainly be solved easily in a more 
conventional way. However, our method below illustrates the power of the Draw a 
Picture strategy coupled with symmetry, and can be applied in many harder situations . 

I n 
Example 3.1.7 Compute 102 cos2 xdx in your head. 

Solution : Mentally draw the sine and cosine graphs from 0 to 11r, and you will 
notice that they are symmetric with respect to reflection about the vertical line x = i 1r. 
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Thus 

Consequently, the value that we seek is 

• 

The next problem, from the 1 995 IMO, is harder than the others, but only in a 
"technical" way. In order to solve it, you need to be familiar with Ptolemy's Theorem, 
which states 

Let ABCD be a cyclic quadrilateral, i .e. , a quadrilateral whose vertices 
lie on a circle. Then 

AB · CD + AD · BC = AC · BD. 

c 

See Problems 4.2.4 1 , 8 .4. 30, and 8.5 .49 for different ideas for a proof. A key feature 
of cyclic quadrilaterals is the easily verified fact (see page 266) that 

A quadrilateral is cyclic if and only if its opposite angles are supple­
mentary (add up to 180 degrees) . 

Example 3.1 .8 Let ABCDEF be a convex hexagon with AB = BC = CD and DE = 
EF = FA,  such that L.BCD = L.EFA = 1C/3. Suppose G and H are points in the interior 
of the hexagon such that LAGB = L.DHE = 21C/3. Prove that 

AG + GB + GH + DH + HE 2: CF. 

Solution : First, as for all geometry problems, draw an accurate diagram, using 
pencil , compass and ruler. Look for symmetry. Note that BCD and EFA are equilateral 
triangles, so that BD = BA and DE = AE. By the symmetry of the figure, it is seems 
profitable to reflect about BE . Let C' and F' be the reflections of C and F respectively. 
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F 

A tactic that often works for geometric inequalities is to look for a way to compare 
the sum of several lengths with a single length, since the shortest distance between 
two points is a straight line. Quadrilaterals AGBC' and H EF' D are cyclic , since the 
opposite angles add up to 1 80 degrees. Ptolemy 's Theorem then implies that AG · 
BC' + GB . AC' = C' G . AB . Since ABC' is equilateral , this implies that AG + GB = C' G. 
Similarly, DH + HE = H F' . The shortest path between two points is a straight line. It 
follows that 

CF = C'F' � C'G + GH + HF' = AG + GB + GH + DH + HE , 

with equality if and only if G and H both lie on C' F' . • 

Algebraic Symmetry 

Don 't restrict your notions of symmetry to physical or geometric objects. For example, 
sequences can have symmetry, like this row of Pascal 's Triangle : 

1 , 6 , 1 5 , 20, 20, 1 5 , 6 , 1 . 

That 's only the beginning. In just about any situation where you can imagine "pairing" 
things up, you can think about symmetry. And thinking about symmetry almost always 
pays off. 

The Gaussian Pairing Tool 

Carl Friedrich Gauss ( 1 777-1 855) was certainly one of the greatest mathematicians of 
all times. Many stories celebrate his precocity and prodigious mental power. No one 
knows how true these stories are, because many of them are attributable only to Gauss 
himself. The following anecdote has many variants. We choose one of the simplest. 

When Gauss was 1 0, his teacher punished his class with a seemingly tedious sum: 

1 + 2 + 3 + . . .  + 98 + 99 + 1 00. 
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While the other students slowly added the numbers, little Carl discovered a short­
cut and immediately arrived at the answer of 5 ,050. He was the only student to find the 
correct sum. His insight was to notice that 1 could be paired with 1 00, 2 with 99, 3 with 
98, etc . to produce 50 identical sums of 1 0 1 .  Hence the answer of 1 0 1  · 50 = 5050. 
Another, more formal way of doing this is to write the sum in question twice, first 
forward, then backward: 

S = 1 + 2 + . . .  + 99 + 1 00, 
S = 1 00 + 99 + . . . + 2 + 1 . 

Then, of course, 2S = 1 00 · 1 0 1 . The advantage of this method is that it does not 
matter whether the number of terms was even or odd (notice that this is an issue with 
the original pairing method) .  

This is a pretty good trick, especially for a l O-year-old, and it has many appli­
cations. Don 't be restricted to sums. Look for any kind of symmetry in a problem 
and then investigate whether a clever pairing of items can simplify things. First, let 's 
tackle the "Locker problem," which we first encountered in Example 2.2 .3 on page 29. 
Recall that we reduced this problem to 

Prove that d (n ) is odd if and only if n is a perfect square, 

where d(n) denotes the number of divisors of n, including 1 and n. Now we can 
use the Gaussian pairing tool. The symmetry here is that one can always pair a di­
visor d of n with njd. For example, if n = 28, it is "natural" to pair the divisor 2 
with the divisor 14 .  Thus, as we go through the list of divisors of n, each divisor 
will have a unique "mate" unless n is a perfect square, in which case Vn is paired 
with itself. For example, the divisors of 28 are 1 , 2 , 4 , 7 , 14 , 28, which can be rear­
ranged into the pairs ( 1 , 28 ) ,  (2 , 1 4) ,  (4, 7 ) ,  so clearly d(28) is even. On the other 
hand, the divisors of the perfect square 36 are 1 , 2 , 3 , 4 , 6 , 9 , 1 2 , 1 8 , 36, which pair into 
( 1 , 36) , (2 , 1 8 ) ,  ( 3 , 1 2) ,  (4, 9) , (6 , 6) . Notice that 6 is paired with itself, so the actual 
count of divisors is odd (several true pairs plus the 6, which can only be counted once). 
We can conclude that d(n) is odd if and only if n is a perfect square.2 • 

The argument used can be repeated almost identically, yet in a radically different 
context, to prove a well-known theorem in number theory. 

Example 3.1.9 Wilson 's Theorem. Prove that for all primes p, 

(p - l ) !  == - 1 (mod p ) . 

Solution : First try an example. Let p = 1 3 . Then the product in question is 
1 · 2 · 3 · 4 · 5 · 6 · 7 . 8 · 9 · 1 0 · 1 1  . 1 2 . One way to evaluate this product modulo 1 3  would 
be to multiply it all out, but that is not the problem solver's way ! We should look 
for smaller subproducts that are easy to compute modulo p. The easiest numbers to 
compute with are 0, 1 and - 1 .  Since p is a prime, none of the factors 1 , 2 , 3 ,  . . .  p - 1 
are congruent to 0 modulo p. Likewise, no subproducts can be congruent to O. On 
the other hand, the primality of p implies that every non-zero number has a unique 

2A completely different argument uses basic counting methods and parity. See Problem 6. 1 .2 1 on page 1 95 .  
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multiplicative inverse modulo p; i .e . ,  if x is not a mUltiple of p then there is a unique 
y E { I ,  2 , 3, . . . , p  - I } such that xy = 1 (mod p) . (Recall the proof of this assertion in 
Example 2.3 .4 on page 44.) 

Armed with this information, we proceed as in the locker problem: Pair each 
element x E { I ,  2, 3 ,  . . .  , p  - I }  with its "natural" mate y E { I ,  2, 3 ,  . . .  , p  - I } such that 
xy = 1 (mod p) .  For example, if p = 1 3 , the pairs are 

( 1 , 1 ) ,  (2 , 7 ) ,  (3 , 9) ,  (4, 1 0) ,  (5 , 8 ) ,  (6 , 1 1 ) ,  ( 1 2 , 1 2) ,  

and we can rewrite 

1 2 ! = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 1 0 · 1 1 · 1 2  

as 

1 · (2 · 7 ) (3 · 9 ) (4 · 1 0) (5 · 8 ) (6 · 1 1 ) · 1 2 = 1 · 1 · 1 · 1 · 1 · 1 · 1 2 = - 1 (mod 1 3 ) .  

Notice that 1 and 1 2  were the only elements that paired with themselves. Notice also 
that 1 2  = - 1  (mod 1 3 ) .  We will be done in general if we can show that x is its own 
multiplicative inverse modulo p if and only if x = ± 1 .  But this is easy: If J? = 1 
(mod p) , then 

x2 - 1 = (x - l ) (x +  1 )  = 0 (mod p) . 

Because p is prime, this implies that either x - I or x + 1 is a multiple of p; i .e . ,  x = ± 1 
(mod p) are the only possibilities .  _ 

Symmetry in Polynomials and Inequal ities 

Algebra problems with many variables or of high degree are often intractable unless 
there is some underlying symmetry to exploit. Here is a lovely example. 

Example 3.1.10 Solve x4 +.J + J? + x + 1 = o. 
Solution : While there are other ways of approaching this problem (see page 1 26), 

we will use the symmetry of the coefficients as a starting point to impose yet more 
symmetry, on the degrees of the terms. Simply divide by J? : 

1 1 
x2 +x + l + - + z = 0. x x 

This looks no simpler, but note that now there is more symmetry, for we can collect 
"like" terms as follows: 

1 1 � + z + x +  - + 1 = 0. 
x x 

Now make the substitution u := x + ! . Note that 
x 

( 1 )  
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so ( 1 )  becomes u2 - 2 + u + 1 = 0, or u2 + u - 1 = 0, which has solutions 

- 1 ± V5 U =  2 
Solving x + ! = u, we get x2 - ux + 1 = 0, or x 

u ± Ju2 - 4  x = -----2 
Putting these together, we have 

x =  

- 1 ± 0 � ( _ 1 ± V5) 2
_ 

2 ± 2 4 

2 
- 1 ± V5 ± i\1t0 ± 2V5 

4 
• 

The last few steps are mere "technical details." The two crux moves were to 
increase the symmetry of the problem and then make the symmetrical substitution 
u = x +x- 1 • 

In the next example, we use symmetry to reduce the complexity of an inequality. 

Example 3. 1 . 11  Prove that 

(a + b) (b + c) (c + a) 2 8abc 
is true for all positive numbers a, b and c, with equality only if a = b = c. 

Solution : Observe that the alleged inequality is symmetric, in that it is unchanged 
if we permute any of the variables. This suggests that we not multiply out the left side 
(rarely a wise idea ! )  but instead look at the factored parts, for the sequence 

a + b, b + c, c + a  
can be derived by just looking at the term a + b and then performing the cyclic per­
mutation a t---+ b, b t---+ C, C t---+ a once and then twice. 

The simple two-variable version of the Arithmetic-Geometric-Mean inequality 
(see Section 5 .5 for more details) implies 

a + b  2 2vah. 
Now, just perform the cyclic permutations 

and 

c + a  2 2vca· 
The desired inequality follows by multiplying these three inequalities. • 
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It is worth exploring the concept of cyclic permutation in more detail . Given an 
n-variable expression f(x\ , X2 , ' "  , xn ) ,  we will denote the cyclic sum by 

�f(X\ , X2 , . . .  , Xn ) : = 
a 
f(x\ , X2 , · · ·  , xn ) + f(X2 , X3 , ' "  , xn , xd + . . . + f(Xn , X l , ' " , xII - d ·  

For example, if our variables are x, y and z, then 

� x3 = � + y3 + z3 and � xz2 = xz2 + yx2 + zi . 
a a 

Let us use this notation to factor a symmetric cubic in three variables . 

Example 3.1 .12 Factor a3 + b3 + e3 - 3abe. 
Solution : We hope for the best and proceed naively, making sure that our guesses 

stay symmetric. The simplest guess for a factor would be a + b + e, so let us try it . 
MUltiplying a + b + e by a2 + b2 + e2 would give us the cubic terms, with some error 
terms. Specifically, we have 

a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 + (2 ) - � (a2h + h2a) - 3ahc 
a 

= (a + b + c) (a2 + b2 + e2 ) - � (a2b + h2a + abe) 
a 

= (a + b + c) (a2 + b2 + e2 ) - � (ab(a + b +  e ) )  
a 

� (a + h + c) (i' + b2 + c" - � ab) 

= (a + b + e) (a2 + b2 + e2 - ab - he - ac) . 
Notice how the La notation saves time and, once you get used to it, reduces the 

chance for an error. 

Problems and Exercises 

3.1.13 Find the length of the shortest path from the 
point (3 ,5) to the point (8 ,2) that touches the x-axis 
and also touches the y-axis. 

3.1.14 In Example 1 .2. 1 on page 4, we saw that the 
product of four consecutive integers is always one less 
than a square. What can you say about the product 
of four consecutive terms of an arbitrary arithmetical 
progression, e .g . ,  3 . 8 . 1 3  . 1 8? 

3.1.15 Find (and prove) a nice formula for the product 
of the divisors of any integer. For example, if n = 1 2, 
the product of its divisors is 

1 · 2 · 3 · 4 · 6 ·  12 = 1 728 .  

You may want use the d(n ) function (defined in the 
solution to the Locker problem on page 68) in your 
formula. 

3.1.16 How many subsets of the set { I , 2 , 3 , 4  . . . .  , 30}  
have the property that the sum of the elements of the 
subset is greater than 232? 

3.1.17 (Putnam 1 998) Given a point (a , b) with 0 < 
b < a, determine the minimum perimeter of a triangle 
with one vertex at (a , b ) , one on the x-axis , and one 
on the line y = x. You may assume that a triangle of 
minimum perimeter exists. 
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3.1.18 A polynomial in several variables is called 
symmetric if it is unchanged when the variables are 
permuted. For example, 

J(x, y, z) := X2 + i + Z2 + xyz 

is symmetric, since 

J(x, y, z) = J(X, z ,y )  = J(y, x, Z) = J(y, z ,X) 
= J(Z ,x ,y )  = J(Z ,y, X) . 

A polynomial in several variables is called homoge­

neous of degree r if all of the terms are degree r. For 
example, g(x, y) := x2 + 5xy is homogeneous of degree 
2. (The 5xy term is considered to have degree 2, since 
it is the product of two degree- ! terms.) In general, 
the k-variable polynomial g(XI , X2 , . . .  , Xk )  is homoge­
neous of degree r if for all t , we have 

g(tx 1 , tx2 , · · ·  , txk ) = t' g(XI , X2 , · · ·  , Xk ) · 

Given three variables x ,y, z, we define the elementary 

symmetric functions 

SI := x + y + z, 
S2 := xy + yz + zx, 
S3 := xyz. 

The elementary symmetric function Sk is symmetric, 
homogeneous of degree k, and all its coefficients are 
equal to I .  Elementary symmetric functions can be 
defined for any number of variables .  For example, for 
four variables x, y, z ,  w, they are 

S I  := x + y + z + w, 
S2 := xy + xz + xw + yz + yw + zw, 
S3 := xyz + xyw + xzw + yzw, 
S4 : = xyzw. 

(a) Verify that 

x2 + i + z2 = (x + y + z)2 - 2 (xy + yz + zx) 
= si - 2S2 , 

where the Si are the elementary symmetric func­
tions in three variables . 

(b) Likewise, express x3 + y3 + z3 as a polynomial 
in the elementary symmetric functions. 

(c) Do the same for (x + y) (x + z) (y + z) . 

(d) Do the same for xl + yz4 + zx4 + xz4 + yx4 + 
zl · 

(e) Can any symmetric polynomial in three vari­
ables be written as a polynomial in the elemen­
tary symmetric functions? 

(f) Can any polynomial (not necessarily symmet­
ric) in three variables be written as a polynomial 
in the elementary symmetric functions? 

(g) Generalize to more variables. If you are con­
fused, look at the two-variable case (S I := x + 
y, S2 : = xy) .  

(h) What is the relationship, if any, between cyclic 
sums and elementary symmetric functions? 

3.1.19 Consider Example 3 . 1 .6, the Four Bugs prob­
lem. As the bugs travel, they "turn." For example, if 
one bug starts out facing due north, but then gradually 
comes to face due west, it will have turned 90° . It may 
even be that the bugs turn more than 360° . How much 
does each bug turn (in degrees) before they crash into 
each other? 

3.1.20 Consider the following two-player game. Each 
player takes turns placing a penny on the surface of a 
rectangular table . No penny can touch a penny that is 
already on the table. The table starts out with no pen­
nies. The last player who makes a legal move wins. 
Does the first player have a winning strategy? 

3.1.21 A billiard ball (of infinitesimal diameter) 

strikes ray Be at point e, with angle of incidence a 
as shown. The billiard ball continues its path, bounc­
ing off line segments AB and Be according to the 
rule "angle of incidence equals angle of reflection." If 
AB = Be, determine the number of times the ball will 
bounce off the two line segments (including the first 
bounce, at e). Your answer will be a function of a and 

/3 .  

B c 

3.1.22 A projectile is launched from the very center 
of the floor of a rectangular room that is 40 feet wide 
with a very high ceiling. The projectile hits the wall 
at a height exactly 10 feet above the floor, reflects off 
this wall (obeying the "angle of incidence equals an­
gle of reflection" rule) ,  hits the opposite wall, and re­
flects again, finally landing back exactly where it was 



launched, without hitting the ceiling. This is possi­
ble because the projectile does not travel along straight 
lines, but instead travels along parabolic segments due 
to gravity. When the projectile is at its highest point, 
how high above the floor is it? 

3.1 .23 Recall that the ellipse is defined to be the locus 
of all points in the plane, the sum of whose distance 
to two fixed points (the foci) is a constant. Prove the 
reflection property of the ellipse: if a pool table is built 
with an elliptical wall and you shoot a ball from one 
focus to any point on the wall ,  the ball will reflect off 
the wall and travel straight to the other focus. 

3.1 .24 Recall that the parabola is defined to be the lo­
cus of all points in the plane, such that the distance to a 
fixed point (the focus) is equal to the distance to a fixed 
l ine (the directrix) .  Prove the reflection property of the 
parabola: if a beam of light, traveling perpendicular to 
the directrix, strikes any point on the concave side of 
a parabolic mirror, the beam will reflect off the mirror 
and travel straight to the focus. 

3.1.25 A spherical, three-dimensional planet has cen­
ter at (0, 0, 0) and radius 20. At any point (x, y, z) on the 
surface of this planet, the temperature is T (x, y, z) : =  
(x + y)2 + (y - z)2 degrees .  What i s  the average tem­
perature of the surface of this planet? 

3.1 .26 (Putnam 1 980) Evaluate 

r/2 dx 

Jo 1 + ( tanx) v'2 · 

3.1.27 (Hungary 1 906) Let K,L ,M ,N designate the 
centers of the squares erected on the four sides (out­
side) of a rhombus. Prove that the polygon KLMN is a 
square .  

3.1 .28 Sharpen the problem above by showing that the 
conclusion still holds if the rhombus is merely an arbi­
trary parallelogram. 

3.1 .29 (Putnam 1 992) Four points are chosen at ran­
dom on the surface of a sphere.  What is the probability 
that the center of the sphere lies inside the tetrahedron 
whose vertices are at the four points? (It is understood 
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that each point is independently chosen relative to a 
uniform distribution on the sphere . )  

3.1.30 Symmetry in Probability. Imagine dropping 
three pins at random on the unit interval [0, 1 ] .  They 
separate the interval into four pieces .  What is the 
average length of each piece? It seems obvious that 
the answer "should" be 1 /4, and this would be true if  
the probability distributions (mean, standard deviation, 
etc . )  for each of the four lengths are identical. And in­
deed, this is true . One way to see this is to imagine that 
we are not actually dropping three pins on a line seg­
ment, but instead dropping four pins on a circle with 
circumference 1 unit. Wherever the fourth point lands, 
cut the circle there and "unwrap" it to form the unit 
interval . Ponder this argument until it makes sense. 
Then try the next few problems ! 

(a) An ordinary deck of 52 cards with four aces is 
shuffled, and then the cards are drawn one by 
one until the first ace appears . On the average, 
how many cards are drawn? 

(b) (Jim Propp) Given a deck of 52 cards, extract 26 
of the cards at random in one of the (��) possi­
ble ways and place them on the top of the deck 
in the same relative order as they were before 
being selected. What is the expected number of 
cards that now occupy the same position in the 
deck as before? 

(c) Given any sequence of n distinct integers, we 
compute its "swap number" in the fol lowing 
way: Reading from left to right, whenever we 
reach a number that is less than the first num­
ber in the sequence, we swap its position with 
the first number in the sequence. We continue 
in this way until we get to the end of the se­
quence. The swap number of the sequence is 
the total number of swaps. For example, the se­
quence 3 , 4 , 2 ,  I has a swap number of 2, for we 
swap 3 with 2 to get 2 , 4, 3 , 1 and then we swap 
2 with 1 to get 1 , 4 , 3 , 2 . Find the average value 
of the swap numbers of the 7! = 5040 different 
permutations of the integers 1 , 2 , 3 , 4 , 5 , 6 , 7 . 

When you begin grappling with a problem, one of the difficulties is that there are just 
so many things to keep track of and understand. A problem may involve a sequence 
with many (perhaps infinitely many) elements. A geometry problem may use many 
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different lines and other shapes. A good problem solver always tries to organize this 
mass of stuff. A fundamental tactic is the extreme principle: 

If possible, assume that the elements of your problem are "in order." 
Focus on the "largest" and "smallest" elements , as they may be con­
strained in interesting ways. 

This seems almost trite, yet it works wonders in some situations (for example, the 
Affirmative Action problem on page 2 1 ) . Here is a simple example. 

Example 3.2.1 Let B and W be finite sets of black and white points, respectively, in 
the plane, with the property that every line segment that joins two points of the same 
color contains a point of the other color. Prove that both sets must lie on a single line 
segment. 

Solution : After experimenting, it seems that if the points do not all lie on a single 
line, that there cannot be finitely many of them. It may be possible to prove this with 
many complicated diagrams showing that "you can always draw a new point," but this 
isn ' t  easy. The extreme principle comes to the rescue: Assume that the points do not 
all lie on a line. Then they form at least one triangle . Consider the triangle of smallest 
area. Two of its vertices are the same color, so between them is a point of the other 
color, but this forms a smaller triangle-a contradiction ! _ 

Note how the extreme principle immediately cracked the problem. It was so easy 
that it almost seemed like cheating. The structure of the argument used is a typi­
cal one: Work by contradiction; assume that whatever you wish to prove is not true. 
Then look at the minimal (or maximal) element and develop an argument that cre­
ates a smaller (or larger) element, which is the desired contradiction. As long as a 
set of real numbers is finite, it will have a minimum and a maximum element. For 
infinite sets, there may be no extreme values (for example, consider the infinite set 
{ I ,  2 , 1 /2 , 22 , 1 /22 , 23 , 1 /23 , . . .  } , which has neither a minimum nor a maximum el­
ement) , but if the set consists of positive integers , we can use the Well-Ordering 
Principle: 

Every non-empty set of positive integers has a least element. 

Here is another simple example. The tactic used is the extreme principle; the crux 
move is a clever geometric construction . 

Example 3.2.2 (Korea 1 995) Consider finitely many points in the plane such that, if 
we choose any three points A , B , C among them, the area of triangle ABC is always 
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less than 1 .  Show that all of these points lie within the interior or on the boundary of a 
triangle with area less than 4. 

Solution : Let triangle ABC have the largest area among all triangles whose ver­
tices are taken from the given set of points. Let [ABC] denote the area of triangle ABC. 
Then [ABC] < 1 .  Let triangle LMN be the triangle whose medial triangle is ABC. (In 
other words, A, B, C are the midpoints of the sides of triangle LMN below.) 

L 

M 

Then [LMN] = 4 [ABC] < 4. We claim that the set of points must lie on the boundary 
or in the interior of LMN. Suppose a point P lies outside LMN. Then we can connect 
P with two of the vertices of ABC forming a triangle with larger area than ABC, con­
tradicting the maximality of [ABC] . • 

Always be aware of order and maximum/minimum in a problem, and always as­
sume, if possible, that the elements are arranged in order (we call this monotonizing). 
Think of this as "free information." The next example illustrates the principle once 
again that a close look at the maximum (and minimum) elements often pays off. You 
first encountered this as Problem 1 . 1 .4 on page 2. We break down the solution into 
two parts: the investigation, followed by a formal write-up. 

Example 3.2.3 I invite 1 0  couples to a party at my house. I ask everyone present, 
including my wife, how many people they shook hands with . It turns out that everyone 
questioned-I didn 't question myself, of course-shook hands with a different number 
of people. If we assume that no one shook hands with his or her partner, how many 
people did my wife shake hands with? (I did not ask myself any questions.) 

Investigation: This problem seems intractable. There doesn 't  appear to be enough 
information. Nevertheless, we can make it easier by looking at a simpler case, one 
where there are are, say, two couples in addition to the host and hostess . 

The host discovers that of the five people he interrogated, there are five different 
"handshake numbers." Since these numbers range from 0 to 4 inclusive (no one shakes 
with their partner) , the five handshake numbers discovered are 0, 1 , 2 , 3  and 4. Let 's 
call these people PO , p} ,  . . .  , P4 , respectively, and let 's draw a picture, including the 
host in our diagram (with the label H).  
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Po 
• 

It is interesting to look at the two people with the extreme handshake numbers, i .e . ,  
Po and P4 . Consider Po , the "least gregarious" member of the party. He or she shook 
hands with no one. What about the "most gregarious" person, P4? P4 shakes hands 
with everyone possible, which means that everyone except for P4 ' s partner shook P4 's 
hand ! So everyone who is not P4 's partner has a non-zero handshake number. So P4 
and Po must be partners ! 

At this point, we can relax , for we have achieved the crux move. Our instinct tells 
us that probably P3 and PI are also partners . How can we prove this? Let 's try to adapt 
the argument we just used. P3 shook hands with all but one person other than his or 
her partner. PI only shook hands with one person. Do we have any more information? 
Yes:  P4 was the one person that PI shook hands with and one of the people that P3 
shook hands with. In other words, ifwe exclude P4 and his or her partner, Po , then PI 
and P3 play the role that Po and P4 played; i .e . ,  they are respectively the least and most 
gregarious, and by the same reasoning, must be partners (P3 shakes hands with two out 
of the three people PI , P2 , H, and we know that PI doesn 't shake hands with P3 , so the 
only possible person P3 can be partnered with is PI ) .  

Now we are done, for the only people left are P2 and H. They must be partners, 
so P2 is the hostess ,  and she shakes hands with two people . It is easy to adapt this 
argument to the general case of n couples. 

Formal Solution : We shall use induction. For each positive integer n, define the 
statement P(n) to be 

If the host invites n couples , and ifno one shakes hands with his or her 
partner, and if each of the 2n + I people interrogated by the host shook 
a different number of hands ,  then the hostess shook n hands. 

It is easy to check that P ( 1 ) is true by drawing a diagram and working out the only 
logical possibility. We need to show that P ( n) implies P ( n + 1 ) ,  and we 'll be done. So 
assume that P(n) is true for some positive integer n. Now consider a party with n +  1 
couples (other than host and hostess) satisfying the hypotheses (no one shakes with 
partner; all handshake numbers are different) . Then all handshake numbers from 0 to 
2(n + 1 )  = 2n + 2 inclusive will occur among the 2n + 3 people interrogated by the 
host. Consider the person X ,  who shook the maximum number of 2n + 2 hands. This 
person shook hands with all but two of the 2n + 4 people at the party. Since no one 
shakes hands with themselves or their partner, X shook hands with everyone possible. 
So the only person who could be partnered with X had to have been the person Y, who 
shook zero hands, for everyone else shook hands with X and is hence ineligible as a 
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Now, let us remove X and Y from the party. If we no longer count handshakes 
involving these two people, we are reduced to a party with n invited couples, and ev­
eryone 's handshake number (other than the host, about whom we have no information) 
has dropped by exactly 1, since everyone shook hands with X and no one shook hands 
with Y . But the inductive hypothesis P( n) tells us that the hostess at this "abridged" 
party shook n hands. But in reality, the hostess shook one more hand-that of the X 
whom we just removed. So in the party with n + 1 invited guests, the hostess shook 
n + 1 hands, establishing P( n + 1 ) .  • 

Often, problems involve the extreme principle plus a particular argument style, 
such as contradiction or induction. A common tactic is to use the extremes to "strip 
down" a problem into a smaller version, as above. The formal argument then uses 
induction. Here is another example. As above, we break down our solution into an 
informal investigation, followed by a formal write-up. 

Example 3.2.4 (St. Petersburg City Olympiad 1 996) Several positive integers are writ­
ten on a blackboard. One can erase any two distinct integers and write their greatest 
common divisor and least common multiple instead. Prove that eventually the numbers 
will stop changing. 

Investigation : Before we begin, we mention a few simple number theory defini­
tions. See Chapter 7 for more details. 

• For integers a and b, the notation a l b  means "a divides b"; i .e. , there exists an 
integer m such that am = b. 

• The greatest common divisor of a and b is defined to be the largest integer g 
satisfying both g la  and g l b. The notation used is GCD(a, b ) .  Sometimes (a , b) 
is also used. 

• The least common multiple of a and b is defined to be the smallest positive 
integer u satisfying both a l u  and b l u . The notation used is LCM(a , b) . Some­
times [a , b] is also used. We have to specify that the least common multiple is 
positive, otherwise it would be - oo !  

Start with a simple example of two numbers such as 1 0 , 15 . This i s  immediately 
transformed into 5 , 30, which thereafter never changes, since 5 1 30. Here is a more 
complicated example. We will write in boldface the two elements that get erased and 
replaced, 

1 1  
11  
1 
1 

16 30 
2 240 
2 240 
2 24 

72 
72 

792 
7920, 

and once again, the sequence will not change after this, since 

1 1 2 , 2 1 24, 24 1 7920. 

A few more experiments (do them ! )  lead easily to the following conjecture :  
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Eventually, the sequence will form a chain where each element will di­
vide the next (when arranged in order) . Moreover, the least element and 
the greatest element of this chain are respectively the greatest common 
divisor and least common multiple of all the original numhers . 

How do we use the extreme principle to prove this? Focus on the least ele­
ment of the sequence at each stage. In the example above, the least elements were 
1 1 , 2 , 1 , 1 .  Likewise, look at the greatest elements. In our example, these elements were 
72 , 240, 792 , 7290. We observe that the sequence of least elements is non-increasing, 
while the sequence of greatest elements is non-decreasing. Why is this true? Let a < h 
be two elements that get erased and replaced by 

GCD(a, h) , LCM(a, h) . 

Notice that if a l h, then a = GCD(a, b) and h = LCM(a, h) , so the sequence is un­
changed. Otherwise we have GCD( a, h) < a and LCM( a, h) > h. Consequently, if x is 
the current least element, on the next turn, either 

• We erase x and another element y (of course we assume that x does not divide 
y), replacing x with GCD(x, y) < x, producing a new, smaller least element. 

• We erase two elements, neither of which was equal to x. In this case, the smaller 
of the two new elements created is either smaller than x, producing a new least 
element, or greater than or equal to x, in which case x is still the least element. 

A completely analogous argument works for the greatest element, but for now, 
let 's just concentrate on the least element. We know that the least element either stays 
the same or decreases each time we erase-and-replace. Eventually, it will hit rock 
bottom. Why? The maximum possible value that we can ever encounter is the least 
common multiple of the original elements, so there are only finitely many possible 
values for our sequence at each stage. Either eventually the sequence cannot change, 
in which case we 're done-this is what what we wanted to prove--or eventually the 
sequence will repeat. Thus we can distinguish a smallest least element, i .e . , the small­
est possible least element f that ever occurs as our sequence evolves. We claim that f 
must divide all other elements in the sequence in which it appears. For if not, then we 
would have fIx for some element x, and then if we erase-and-replace the pair C ,x, the 
replaced element GCD(f ,x) < f, contradicting the minimality of f. 

Why is this good? Because once the minimal element f is attained, it can be 
ignored, since f divides all the other elements and hence the sequence will not change 
if we try to erase-and-replace two elements, one of which is f. Hence the "active" part 
of the sequence has been shortened by one element. 

This is just enough leverage to push through an induction proof! Let us conclude 
with a formal argument. 

Formal Solution : We will prove the assertion by induction on the number of 
elements n in the sequence. The base case for n = 2 is obvious: a, h becomes 

GCD(a, h) , LCM(a, h) 

which then no longer changes. 
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Now assume the inductive hypothesis that all sequences of length n will eventually 
become unchanging. Consider an (n + 1 ) -e1ement sequence 

U \ , U2 , . . .  , Un , Un+ l · 

We will perform the erase-and-replace operation repeatedly on this sequence, with the 
understanding that we perform only operations that produce change, and at each stage, 
we will arrange the terms in increasing order. We make some simple observations: 

1 . The least element in the sequence at any possible stage is at least equal to the 
greatest common divisor of all of the original elements. 

2. The greatest element in the sequence at any possible stage is at most equal to 
the least common mUltiple of all of the original elements. 

3 .  The least element at any given stage is always less than or equal to the least 
element at the previous stage. 

4. Since we arrange the terms in increasing order, observations ( 1 )  and (2) imply 
that there are only finitely many sequences possible. 

As we perform erase-and-replace operations to the sequence, let £j be the least 
element of the sequence at stage i. There are two possible scenarios. 

• Eventually we will no longer be able to change the sequence, in which case the 
least-element sequence £ 1 , £2 , £3 , . . .  terminates .  

• At some point, say stage k, we will return to a sequence that previously oc­
curred (because of observation (4) above). Then the least-element sequence 
£ I , £2 , £3 , . . .  may be infinite, but £k = £k+ 1 = £k+2 = . .  " due to observation (3) 
above. 

Consequently, for each initial sequence U \ , U2 , . . .  , Un , Un+ l , depending on how it 
evolves, there will be a stage k and a number £ : = £k that is the smallest least element 
that ever occurs at any stage. 

This number £ must divide all the other elements of the sequence at stage k and 
all later stages, for otherwise, we could erase-and-replace £ with another element to 
produce a smaller least element, which contradicts the minimality of £. Therefore, 
once we reach stage k, the least element £ is out of the picture-the only possibility 
for erasing-and-replacing to produce change is to use the remaining n elements. But 
the inductive hypothesis says that eventually, these n elements will no longer change. 
Thus, eventually, our original (n + 1 ) -element sequence will no longer change. _ 

In more complicated problems, it is not always obvious what entities should be 
monotonized, and the Well-Ordering Principle is not always true for infinite sets. In 
situations involving infinite sets, sometimes extremal arguments work, but you need to 
be careful. 

Example 3.2.5 Let f(x) be a polynomial with real coefficients of degree n such that 
f(x) 2 0  for all x E �. Define g (x) : = f(x) + f' (x) + !,, (x) · · ·  + f(n) (x) . Show that 
g(x) 2 0 for all x E �. 
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Solution : There are several things to which we can apply extreme arguments. 
Since f (x) 2 0, we might want to look at the value of x at which f(x) is minimal . First 
we need to prove that this value actually exists, i .e . ,  that there is an Xo E lR such that 
f (xo ) is minimal. [This is not true for all functions, such as f(x) = l /x.] Write 

f(x) = anx" + an_ 1x"- 1  + . . .  + a lx + aO , 
where each ai E lR. Since f(x) is always non-negative, the leading coefficient an must 
be positive, since the leading term an� dominates the value of f(x) when x is a large 
positive or negative number. Moreover, we know that n is even. So we know that 

lim f(x) = lim f(x) = +00,  
x---+ - oo  x---+ + oo  

and consequently, f(x) has a minimum value. Notice that g (x) has the same leading 
term as f(x) so g (x) also has a minimum value. Indeed, g (x) is what we will focus 
our attention on. We wish to show that this polynomial is always non-negative, so 
a promising strategy is contradiction. Assume that g (x) < 0 for some values of x. 
Consider its minimum value, achieved when x = Xo . Then g (xo ) < O. Now, what is the 
relationship between g (x) and f(x) ? Since f(x) is nth degree, r+ 1 (x) = 0 and 

g' (x) = J' (x) + f" (x) + . . .  + f(n) (x) = g (x) - f(x) . 

Consequently, 

g' (xo ) = g (xo ) - f(xo ) < 0, 

since g (xo ) is strictly negative and f(xo ) is non-negative by hypothesis. But this con­
tradicts the fact that g (x) achieves its minimum value at xo , for then g' (xo ) should equal 
zero ! _ 

In the next example, Gaussian pairing plus monotonization help solve a rather 
difficult problem, from the 1 994 IMO in Hong Kong. 

Example 3.2.6 Let m and n be positive integers . Let a l  , a2 ,  . . .  , am be distinct elements 
of { I ,  2, . . .  , n } such that whenever ai + a j � n for some i ,  j, 1 � i � j � m, there exists 
k, 1 � k � m, with ai + aj = ak . Prove that 

a l  + a2 + . . .  + am n + I 
m 2 -2

- · 

Solution : This is not an easy problem. Part of the difficulty is figuring out the 
statement of the problem ! Let us call those sequences that have the property described 
in the problem "good" sequences. In other words, a good sequence is a sequence 
a i , a2 , . . .  , am of distinct elements of { I ,  2, . . .  , n } such that whenever ai + a j � n for 
some i ,  j, 1 � i � j � m, there exists k, 1 � k � m, with ai + a j = ak . Begin by plugging 
in easy values for m and n, say m = 4 , n = 1 00. We have the sequence a l , a2 , a3 , a4 of 
distinct positive integers that may range between 1 and 1 00, inclusive. One possible 
such sequence is 5 , 93 , 1 4 , 99. Is this a good sequence? Note that al + a2 = 98 � 1 00, 
so we need there to be a k such that ak = 98. Alas, there is not. Improving the original 
sequence, we try 5 , 93 , 98 , 99. Now check for pairs that add up to 1 00 or less. There 
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is only one, (5 , 93) , and sure enough, their sum is an element of the sequence. So our 
sequence is good. Now compute the average, and indeed, we have 

5 + 93 + 98 + 99 1 00 +  1 
4 

2 
2 

. 

But why? Let 's try to construct another good sequence, with m = 6, n = 1 00. Start 
with 1 1 , 78 .  Since 1 1  + 78 = 89 ::; 1 00, there must be a term in the sequence that equals 
89. Now we have 1 1 , 78 , 89. Notice that 89 + 1 1  = 1 00 ::; 1 00, so 1 00 also must be in 
our sequence. Now we have 1 1 , 78 , 89, 1 00, and if we include any more small terms, 
we need to be careful. For example, if we included 5 ,  that would force the sequence 
to contain 1 1  + 5 = 1 6 and 78 + 5 = 83 and 89 + 5 = 94, which is impossible, since 
we have only six terms. On the other hand, we could append two large terms without 
difficulty. One possible sequence is 1 1 , 78 , 89 , 1 00, 99 , 90. And once more, we have 

1 1 + 78 + 89 + 100 + 99 + 90 1 0 1  
------:------ > - . 6 - 2 

Again, we need to figure out just why this is happening. Multiplying by 6, we get 

1 0 1  
1 1  + 7 8  + 8 9  + 1 00 +  99  + 90 2 6 ·  2 = 3 . 1 0 1 , 

which strongly suggests that we try to pair the six terms to form three sums, each 
greater than 1 0 1 .  And indeed, that is easy to do: 

1 1  + 78 + 89 + 1 00 + 99 + 90 = ( 1 1 + 1 00) + (78 + 89) + (99 + 90) . 

Can we do this in general? We can hope so. Notice that by hoping this , we are actually 
attempting to prove something slightly stronger. After all ,  it could be that the terms 
don 't  always pair nicely, as they did in this case, but nevertheless, the sum of all the 
terms is always big enough. However, there is no harm in trying to prove a stronger 
statement. Sometimes stronger statements are easier to prove. 

Let 's try to work out an argument that handles all sequences with m = 6 and n = 
1 00. First monotonize ! This is an important simplification. Assume without loss of 
generality that our sequence is good and that 

a l < a2 < a3 < a4 < as < a6 · 
We have strict inequalities above because each term in a good sequence is distinct, that 
being one of the features of a good sequence. 

We want to see if we can pair the terms so that the sum of each pair is greater than 
or equal to n + 1 .  Let 's pause for a moment and think about strategy. The hypothesis 
is that the sequence is good (and monotonized) ,  and the conclusion that we desire is 
a set of three inequalities. It is hard to prove three different inequalities directly (and 
if n were bigger, then there would be even more) .  A more promising approach is 
contradiction. For then, we need only assume that one of the inequalities fails, and if 
that gets a contradiction, we are done. And not only that, if we assume that two things 
sum to less than n + 1 ,  that means the sum is ::; n, which is involved in the definition 
of a good sequence-very promising, indeed ! So, appealing to the symmetry of the 
monotonized sequence, we will assume that at least one of the sums 

a l + a6 , a2 + as , a3 + a4 
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is less than or equal to n. Let's pick a l + a6 . If this sum is less than or equal to n, 
goodness implies that one of the ak is equal to a l  + a6 . But this is impossible, because 
the ai are positive and monotone. A contradiction ! 

Now try assuming that a2 + as ::; n. Then this sum equals ak for some k between 
I and 6. This sum is strictly greater than as , so we must have a2 + as = a6 . So far, 
no contradiction . But we have not exhausted the hypotheses of goodness. The sum 
al + as is strictly less than a2 + as (by monotonicity); hence al + as = aj for some j 
between I and 6. But aj > as , which forces aj = a6 . But this can 't be, since al + as is 
strictly less than a2 + as = a6 , since all terms are distinct. Another contradiction. 

Likewise, if we assume that a3 + a4 ::; n, goodness will imply that a3 + a4 equals 
either as or a6 . But the sums a l + a4 and a2 + a4 are also ::; n, and greater than a4 , and 
distinct. But this is a contradiction: we have three distinct sums (a3 + a4 , a2 + a4 , and 
a l  + a4) with only two possible values (as and a6) .  

Finally, we can produce a general argument. Before you read i t ,  try to write it up 
on your own. The following argument assumes that n is even. You will need to alter it 
slightly for the case where n is odd. 

Let a i , a2 , . . .  , am be good, and without loss of generality assume that 

We will prove that a l  + a2 + . . .  + am 2 m(n + 1 )  12 by showing the stronger result that 
each of the pairs al + an , a2 + an- l ,  . . .  an/2 , an/2+ 1 is greater than or equal to n + 1 .  
Assume not. Then for some j ::; n12, we must have a j + an-j ::; n. Goodness implies 
that for some k, 1 ::; k ::; m, we have a j + an-j = ak . In fact, k > n - j, because the 
terms are positive and the sequence is monotone increasing. Likewise, each of the j 
sums 

a l + an-j , a2 + an- j , · · ·  , aj , an-j 
is less than or equal to n and distinct, and each greater than an-j .  Goodness implies 
that each of these sums is equal to at for some I > n - j. There are only j - 1 choices 
for I, but there are j different sums. We have achieved our contradiction. _ 

Problems and Exercises 

3.2.7 Imagine an infinite chessboard that contains a 
positive integer in each square. If the value in each 
square is equal to the average of its four neighbors to 
the north, south, west, and east, prove the values in all 
the squares are equal . 

3.2.8 There are 2000 points on a circle, and each point 
is given a number that is equal to the average of the 
numbers of its two nearest neighbors. Show that all 
the numbers must be equal . 

3.2.9 (Bay Area Mathematical Olympiad 2004) A 
tiling of the plane with polygons consists of placing 

the polygons in the plane so that interiors of polygons 
do not overlap, each vertex of one polygon coincides 
with a vertex of another polygon, and no point of the 
plane is left uncovered. A unit polygon is a polygon 
with all sides of length one. 

Il is quite easy to tile the plane with infinitely 
many unit squares. Likewise, it is easy to tile the plane 
with infinitely many unit equilateral triangles. 

(a) Prove that there is a tiling of the plane with in­
finitely many unit squares and infinitely many 
unit equilateral triangles in the same tiling. 



(b) Prove that it is impossible to find a tiling of 
the plane with infinitely many unit squares and 
finitely many (and at least one) unit equilateral 
triangles in the same tiling. 

3.2.10 Suppose you are given a finite set of coins in 
the plane, all with different diameters . Show that one 
of the coins is tangent to at most five of the others . 

3.2.1 1  Fix the proof in Example 2.3 .5 on page 45. 
Show that even a concave polygon has an acute an­
gle that we can use to "snip off' a triangle. Why do we 
need the extreme principle for this? 

3.2.12 (Canada 1 987) On a large, flat field, n people 
(n > I )  are positioned so that for each person the dis­
tances to al l  the other people are different. Each person 
holds a water pistol and at a given signal fires and hits 
the person who is closest. When n is odd, show that 
there is at least one person left dry. Is this always true 
when n is even? 

3.2.13 Our solution to the GCD-LCM problem (Ex­
ample 3 .2.4 on page 77) omitted a proof that the se­
quence eventually forms a chain where each element 
divides the next (when arranged in increasing order). 
Modify the argument to do this (if you understand the 
original argument, you should be able to do this with 
just a tiny bit of work). 

3.2.14 (Russia 1 996) A palindrome is a number or 
word that is the same when read forward and back­
ward, for example, " 1 7667 1 "  and "civic." Can the 
number obtained by writing the numbers from I to n 
in order (for some n > I )  be a palindrome? 

3.2.15 Place the integers 1 , 2 , 3 , . . .  , n2 (without dupli­
cation) in any order onto an n x n chessboard, with 
one integer per square. Show that there exist two ad­
jacent entries whose difference is at least n + I .  (Ad­
jacent means horizontally or vertically or diagonal ly 
adjacent.) 

3.2.16 After experimenting with Problem 2. 1 .26 on 
page 24, you probably have come to the conclusion 
that the only possible configurations are those where 
the degree of each crossing point ( i .e . ,  number of lines 
emanating from the crossing point) is even or those 
where exactly two crossing points have odd degree, 
and in this latter case, the path must begin at one of 
the odd-degree points and end at the other one. Now 
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you are ready to prove this conjecture. Use an extremal 
argument. Consider the longest "legal" path and try to 
argue (by contradiction) that this path includes all the 
lines in your figure .  

3.2.17 The extreme principle in numher theory. In Ex­
ample 3 .2 .4 on page 77, we encountered the notions of 
greatest common divisor and least common multiple . 
Here we mention another simple number theory idea, 
the division algorithm: 

Let a and h he positive integers . h 2 a. 
Then there exist integers q,  r satisfying 
q 2 I and 0 S r < a sueh that 

h = qa + r. 
In other words, if you divide h by a, you get a positive 
integer quotient q with a remainder r that is at least 
zero (equals zero if a lh) but smaller than a. The divi­
sion algorithm is an "obvious" idea, one that you have 
seen since grade school. It is actual ly a consequence 
of the well-ordering principle. 

(a) As a warm-up, prove the division algorithm 
rigorously, by considering the minimum non­
negative value of h - at as t ranges through the 
positive integers . 

(b) Another warm-up: prove (this should take two 
seconds ! )  that if a lh  and a l e , then a l (hx + cy) 
for any integers x, y (positive or negative) .  

(c )  Now show that if a im  and h im , then 
LCM(a, h) lm .  

(d )  Finally, show that for any integers a . h, the 
greatest common divisor of a and h is equal 
to the minimum value of ax + hy, as x and y 
range through all integers (positive and nega­
tive) .  For example, if a = 7 , h = I I , we have 
GCD(7 ,  I I ) = I (since 7 and I I  are primes, they 
share no common divisors except I ) , but also 
1 = ( - 3 ) · 7 + 2 · 1 1 . 

3.2.18 Let P (x) = anx" + an _ l x"- 1 + . . .  + a() be a 
polynomial with integer coefficients and let q be a 
prime . If q is a factor of each of all - I .  all- 2 . . . . .  a l  • a() ,  
but q i s  not a factor of  all , and q2 is not a factor o f  a() , 
then P (x) is irreducible over the rationals; i .e . , P(�\ )  
cannot b e  factored into two non-constant polynomials 
with rational coefficients. 
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3.3 The Pigeonhole Princi ple 

Basic Pigeonhole 

The pigeonhole principle,3 in its simplest incarnation, states the following: 

If you have more pigeons than pigeonholes , and you try to stuff the 
pigeons into the holes , then at least one hole must contain at least two 
pigeons. 

Amazingly, this trivial idea is revered by most mathematicians, for it is at least as 
powerful as the Gaussian pairing trick. For example, the pigeonhole principle played 
a crucial role in the solution of at least a third of the 1 994 Putnam exam problems. A 
few examples will convince you of its power. 

Example 3.3. 1 Every point on the plane is colored either red or blue. Prove that no 
matter how the coloring is done, there must exist two points, exactly a mile apart, that 
are the same color. 

Solution : Just messing around quickly yields a solution. Pick a point, any point. 
Without loss of generality it is red. Draw a circle of radius one mile with this point as 
center. If any point on the circumference of this circle is red, we are done. If all the 
points are blue, we are still done, for we can find two points on the circumference that 
are one mile apart (why?) .  

That wasn 't hard, but that wasn 't  the pigeonhole solution. Consider this :  just 
imagine the vertices of an equilateral triangle with side length one mile. There are 
three vertices, but only two colors available. The pigeonhole principle tells us that two 
vertices must be the same color! _ 

Here is another simple example. 

Example 3.3.2 Given a unit square, show that if five points are placed anywhere in­
side or on this square, then two of them must be at most V2/2 units apart. 

Solution : Partition the unit square into four 1 x 1 squares. By pigeonhole, one 
of these smaller squares must contain at least two points. Since the diagonal of each 
small square is V2/2, that is the maximum distance between the two points. _ 

Quick and beautiful solutions are characteristic of pigeonhole problems. The 
above example was quite simple. Solving most pigeonhole problems is often a three­
part process : 

1 .  Recognize that the problem might require the pigeonhole principle. 
2. Figure out what the pigeons will be and what the holes must be. This is fre­

quently the crux move. 

'The pigeonhole principle is sometimes also cal led the Dirichlet Principle in honor of the 1 9th-century 
mathematician Peter Dirichlet. 
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3. After applying the pigeonhole principle, there is often more work to be done. 
Sometimes the pigeonhole principle yields only the "penultimate step," and 
sometimes just an intermediate result. The skilled problem solver plans for 
this when thinking of a strategy. 

Here 's a simple problem that illustrates the coordination of a good penultimate 
step with the pigeonhole principle. You will use this problem as a building-block in 
many other problems later. 

Example 3.3.3 Show that among any n + 1 positive integers , there must be two whose 
difference is a mUltiple of n. 

Solution : The penultimate step, of course, is realizing that the two desired num­
bers must have same remainder upon division by n. Since there are only n possible 
remainders , we are done. _ 

This next problem is a bit more intricate . Also note the strategic element of con­
fidence present in the solution. This is not a terribly hard problem for those who are 
brave and tenacious. 

Example 3.3.4 (IMO 1 972) Prove that from a set of ten distinct two-digit numbers (in 
the decimal system), it is possible to select two disjoint subsets whose members have 
the same sum. 

Solution : We want to have two subsets have the same sum, so it is reasonable 
to make the subsets be the pigeons, and the sums be the holes. How do we do this 
precisely? First, let 's look at the sums. The smallest possible sum is 10 and the largest 
possible sum is 99 + 98 + 97 + . . .  + 90. Using the Gaussian pairing trick (for practice), 
this is 1 89 · 5  = 945 . Consequently, there are 945 - 10 + 1 = 936 different sums. 

Now we need to count the number of pigeons. The number of subsets (see Sec­
tion 6. 1 )  is just 2 IO = 1 024. Since 1 024 > 936, there are more pigeons than holes, so 
we are done : two of the subsets must have the same sum. 

But are we done? Not quite yet. The problem specifies that the two subsets are 
disjoint ! Don 't panic. It would of course be bad problem solving form to abandon our 
solution at this point, for we have already achieved a partial solution: we have shown 
that there are two different subsets (perhaps not disjoint) that have the same sum. Can 
we use this to find two disjoint subsets with the same sum? Of course . Let A and B be 
the two sets . Divide into cases: 

• A and B are disjoint. Done ! 

• A and B are not disjoint. From each set, remove the elements that they have in 
common. Now we have disjoint sets, but the sums are still the same (why?), so 
we are done ! _ 

You might wonder, "What if, after removing the common elements, we had noth­
ing left from one of the sets?" That is impossible. Why? 
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Intermediate Pigeonhole 

Here is a more elaborate version of the pigeonhole principle, one that is used in practice 
more often than the basic pigeonhole principle described above. [The notation r xl 
(the ceiling of x) means the smallest integer greater than or equal to x. For example, 
r 1r 1 = 4. See page 1 46 for more information. ]  

If you have p pigeons and h holes . then at least one of the holes 
contains at least r p / h 1 pigeons. 

Notice that the basic pigeonhole principle is a corollary of this statement: we have 
p > h, so the quantity r p / h 1 is at least 2. 

Make sure you understand the statement of this "intermediate pigeonhole princi­
ple" by working through several examples. Make sure you understand why the state­
ment is true. 

If you are lucky, a single, beautiful application of a technique will solve your prob­
lem. But generally, we are not so lucky. It is not surprising that some problems require 
multiple applications of the pigeonhole principle. Each time the pigeonhole principle 
is used, information is gained. Here is an example that uses repeated application of the 
intermediate pigeonhole principle. 

Example 3.3.5 (A. Soifer, S .  Slobodnik) Forty-one rooks are placed on a 10 x 1 0  
chessboard. Prove that there must exist five rooks , none of  which attack each other. 
(Recall that rooks attack each piece located on its row or column.) 

Solution : When you see the number 41 juxtaposed with 1 0, you suspect that 
the pigeonhole principle may be involved, since 4 1  is just one more than 4 ·  1 0. Once 
attuned to the pigeonhole principle, we cannot help but notice that r 4 1 / 1 01 = 5, which 
is encouraging, for this is the number of rooks we seek. This of course is not a solution, 
but it does suggest that we probe carefully for one using the pigeonhole principle. 

Let us do so. We seek five rooks that do not attack one another. Two rooks do 
not attack if they are located on different rows and different columns. So we need to 
find five rooks, each living in a different row, and each living in a different column. A 
vague strategy: we need five different rows, each with "lots" of rooks. Then we could 
pick a rook from one row, find another rook in a different column in the other row, 
etc . There are 1 0  rows and 4 1  rooks, so the pigeonhole principle tells us that one row 
must contain at least r 4 1 / 1 01 = 5 rooks. This is a start. Can we apply the pigeonhole 
principle again to get more information? Yes !  What is happening with the other rows? 
We want to find other rows that have lots of rooks. We have isolated one row with at 
least five rooks. Now remove it ! At most, we will remove 10 rooks. That leaves 3 1  
rooks on the remaining nine rows. The pigeonhole principle tells us that one of these 
nine rows must contain at least r3 1 /91 = 4 rooks. 

Now we are on a roll. Removing this row, and "pigeonholing" once more, we 
deduce that there is another row containing at least r2 1 /81 = 3 rooks. Continuing 
(verify ! ) , we see that another row must have at least two rooks, and one more row 
must contain at least one rook. 

Therefore there are five special rows on the chessboard, containing at least 5, 4, 3, 
2 and 1 rooks, respectively. Now we can construct the "pacifistic quintuplet": Start by 
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picking the rook in the row that has at least one rook. Then go to the row with at least 
two rooks. At least one of these rooks will not be in the same column as our first rook, 
so select it as the second rook. Next, look at the row that has at least three rooks. One 
of these three rooks lives neither in the same column as the first or the second rook. 
Select this as our third rook, etc . ,  and we are done ! • 

This rather elaborate problem was a good illustration of both the pigeonhole prin­
ciple and the wishful thinking strategy, i .e. , not giving up. When you think that a 
problem can be attacked with the pigeonhole principle, first try to do the job neatly. 
Look for a way to define pigeons and holes that yields a quick solution. If that doesn 't 
work, don 't give up ! Use the pigeonhole principle once to gain a foothold, then try to 
use it again. Keep extracting information ! 

Advanced Pigeonhole 

The examples here are harder problems. Some are hard because they require other 
specialized mathematical ideas together with the pigeonhole principle. Other problems 
require only basic pigeonhole, but the pigeons and/or holes are far from obvious. 

The number theory problem below uses only basic pigeonhole, but with very clev­
erly chosen pigeons. 

Example 3.3.6 (Colorado Springs Mathematical Olympiad 1 986) Let n be a positive 
integer. Show that if you have n integers, then either one of them is a multiple of n or 
a sum of several of them is a mUltiple of n. 

Solution : We need to show that something is a multiple of n. How can we do this 
with the pigeonhole principle? By Example 3 .3 . 3 ,  you already know the answer: let 
the pigeonholes be the n different possible remainders one can have upon division by 
n. Then if two numbers lie in the same pigeonhole, their difference will be a multiple 
of n. (Why?) 

But in Example 3 .3 .3 ,  we had n + 1 pigeons to place into the n holes. In this 
problem, we have only n numbers. How do we create n + 1 or more pigeons? And 
also, how can we choose pigeons so that the thing that ends up being a multiple of n is 
either one of the original numbers or a sum of several of them? 

If we can answer both of these questions, we will be done. The first question is 
rather mysterious, since we have so little to work with, but the second question has 
a straightforward possible answer: let the pigeons be sums themselves; if we choose 
them carefully, the differences of the pigeons will still be sums. How can that be done? 
Let the numbers in our set be aI , a2 , . . .  , an . Consider the sequence 

Pn a t + a2 + . . . + an ·  
We are using the letter P for pigeons; i .e . ,  Pk denotes the kth pigeon. Notice that for 
any two distinct indices i < j, the difference Pj - Pi will equal the sum ai+ l + ai+2 + 
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. . .  + a j .  So our pigeons have the right behavior, but unfortunately, there are only n of 
them. But that is not as bad as it seems. Sometimes (as in Example 3 .3 .4) you can 
reduce the number of pigeonholes needed by dividing into cases. 

We have n pigeons P I  , P2 , . . .  , Pn . There are two cases. 

• One of the pigeons has a remainder of 0 upon division by n, in which case we 
are done ! (Why?) 

• None of the pigeons has a remainder of 0, so now we have just n - I pigeon­
holes to consider. With n pigeons, two of them must have the same remainder, 
so their difference, a sum of several of the original numbers, will be a mUltiple 
of n, and we are done. _ 

The next example is a famous problem, due to the great Paul Erd6s,4 that is re­
markable because the difficulty is in the pigeonholes, not the pigeons. 

Example 3.3.7 Let n be a positive integer. Choose any (n + I ) -element subset of 
{ I ,  2, . . .  , 2n} .  Show that this subset must contain two integers, one of which divides 
the other. 

Investigation : The language of the problem leads us to try the pigeonhole princi­
ple, fixing the n + 1 numbers in the chosen subset as the pigeons. We need to create 
at most n pigeonholes, since there are n + 1 pigeons. And we want our pigeonholes 
chosen so that if two numbers inhabit the same hole, then one of them must divide the 
other. Each pigeonhole, then, is a set of integers with the property that if a and b are 
any two elements of the set, either a is a multiple of b or b is a multiple of a. 

Let 's try to construct such a set. If the set contains 7,  then all the other numbers 
must be either factors of 7 or mUltiples of 7. Let 's say the next number in the set is 2 1 .  
Then the other numbers now must be either multiples of 2 1  or factors of 7 ,  etc . S o  if 
7 is the smallest number in the set, the set would be a list of numbers of the following 
form: 7, 7a, 7ab, 7abc, 7abcd, . . .  , where a, b ,  c, d, etc . are positive integers . 

Our task, then, is to partition the set { I ,  2, . . .  , 2n} into at most n disjoint sub­
sets with the above property. This is not easy; the best thing to do at this point is 
experiment with small values of n. For example, let n = 5 .  Let 's try to partition 
{ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 O} into five disjoint subsets with the special property. Each set 
has a smallest element, so we need to pick five such "seeds." In striving for a general 
method---one that can be used for other values of n-the only "natural" collection of 
five seeds is 1 , 3 , 5 , 7 , 9 . (The list 2, 4 , 6 , 8 , 1 0  doesn 't include 1 ,  and 1 has to be the 
minimum element of one of the sets, so this list is not a "natural" candidate for our 
seeds . )  

Notice that each seed is odd. To get the remaining numbers, we just  have to 
multiply the seeds by 2. But that won 't quite work, as we will not get all the numbers . 
If we keep on multiplying, though, we get the partition 

{ 1 , 2 , 4 , 8 } ;  { 3 , 6 } ;  { 5 , 1O } ;  {7 } ;  {9} . 

4Erdos, who died in 1 996 at the age of 83 , was the most prol ific mathematician of modem times, having 
authored or co-authored more than 1 ,000 research papers. 
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This set of pigeonholes does the trick. If we choose any six numbers from 

{ 1 , 2 , . . .  , 1 O} ,  

then two of them must be contained in one of the above five sets . Some of the sets ( in 
this case, just two) contain just one element, so the two numbers that "cohabit" a set 
cannot lie in these sets. Therefore the two cohabitors must live in either { 1 , 2 , 4 , 8 }  or 
{ 3 ,  6} or { 5 ,  1 0} ,  and then we are done, for then one of the two cohabitors is a mult iple 
of the other. 

It is easy now to solve the problem in general . 

Formal Solution : Each element of { I ,  2 ,  . . .  , 2n}  can be uniquely written in the 
form 2r q, where q is an odd integer and r is a non-negative integer. Each different 
odd number q defines a pigeonhole, namely all the elements of { 1 , 2 , . . . , 2n }  that have 
the form 2r q for some positive integer r. (For example, if n = 1 00, the value q = 1 1  
would define the pigeonhole { I I ,  22, 44 , 88 ,  1 76} . )  Since there are exactly n odd num­
bers between 1 and 2n, we have defined n sets, and these sets are disjoint (they need 
to be disjoint; otherwise they cannot be "pigeonholes".) So we are done, for by the 
pigeonhole principle, two of the n + 1 numbers will lie in one of our n sets, which will 
force one of the two numbers to be a multiple of the other. _ 

The next problem, from the 1 994 Putnam exam, involves some linear algebra, 
which makes it already pretty difficult. But the fun parts are the two crux moves :  
defining a function, and using the pigeonhole principle with the roots of  a polynomial. 
Both ideas have many applications. 

Example 3.3.8 Let A and B be 2 x 2 matrices with integer entries such that A ,  A + 
B ,A  + 2B ,A  + 3B, and A + 4B are all invertible matrices whose inverses have integer 
entries .  Show that A + 5B is invertible and that its inverse has integer entries. 

Solution : If X is an invertible matrix with integer entries and its inverse also has 
integer entries, then detX = ± 1 .  This follows from the fact that detX and det (X - I ) 
are both integers and that det (X - \ ) = 1 /  detX .  And conversely, if the determinant of 
a matrix with integer entries is ± 1 ,  the inverse also will have integer entries (why?) .  

Now define the function f(t )  := det(A + tB ) .  Since A and B are 2 x 2 matrices with 
integer entries, f(t )  is a quadratic polynomial in t with integer coefficients (verify ! ) . 
Since A ,A  + B ,A  + 2B ,A  + 3B, and A + 4B are all invertible matrices whose inverses 
have integer entries, we know that the five numbers 

f(O) , f( 1 ) ,  f(2) , / (3 ) , /( 4) 

take on only the values 1 or - 1 .  By the pigeonhole principle, at least three of these 
numbers must have the same value; without loss of generality, assume that it is 1 .  Then 
the quadratic polynomial f(t )  is equal to 1 when three different numbers are plugged 
in for t. This means that f(t )  must be the constant polynomial ; i .e . ,  f(t )  == 1 .  There­
fore det(A + 5B) = f(5)  = 1 ,  so A + 5B is invertible and its inverse has integer entries. 

-
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The above problem was mathematically very sophisticated, and not just because 
it used linear algebra. Two other new ideas used were 

• A quadratic polynomial P(x) cannot assume the same value for three differ­
ent values of x. This is really an application of the Fundamental Theorem of 
Algebra (see Chapter 5) .  

• The define a function tool, which is part of a larger idea, the strategy of gener­
alizing the scope of a problem before attacking it. 

We conclude with a lovely argument that includes, among other neat ideas, an 
application of the pigeonhole principle to an infinite set. Please take some time to 
think about the problem before reading its solution. 

Example 3.3.9 Let S be a region in the plane (not necessarily convex) with area 
greater than the positive integer n .  Show that it is possible to translate S (i .e . ,  slide 
without turning or distorting) so that S covers at least n + 1 lattice points. 

Solution : Here is an example. The region S has area 1 .36 units . At first, S covers 
just one lattice point, but it is possible to translate it down and to the right so that it 
covers two lattice points. 
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How do we develop a general argument? We will invent an algorithm that we 
will apply to our example region S which will work for any region. Our algorithm has 
several steps . 
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I .  First, take S and decompose it into finitely many subregions, each lying on its 
own lattice square. In our example, S breaks up into the five regions a, h, c,  d, e. 
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2. Next, "lift" each region up, with its lattice square. Think of each region as a 
picture drawn on a unit square. Stack these squares in a pile, as shown. Now 
imagine that we stick a pin through the squares, so that the pin pierces each 
square in the same place. Because the area of S is greater than 1 ,  it must be 
possible to find a point such that the pin through that point pierces at least 
two subregions. In our example, the pin pierces both a and c. point, then the 
total area of S would be less than or equal to the area of a single unit square. 
Another way to think of it: imagine cutting out the subregions with a scissor 
and trying to stack them all in a unit square, without any overlapping. It would 
be impossible, since the total area is greater than 1 .  (By the same reasoning, 
if the total area were greater than the integer n, it would be possible to find a 
point where the pin pierces at least n + 1 subregions.) 

3 .  Finally, we keep track of the point where our pin pierced the subregions, and 
rebuild S. The points are indicated with black dots . Since the two points are 
located in exactly the same place with respect to the lattice lines, it now is pos­
sible to translate S (in the direction of the arrow), so that both white points lie 
on lattice points, and we 're done ! _ 

Problems and Exercises 

3.3.10 Prove the intermediate pigeonhole principle, 
using argument by contradiction. 

3.3.1 1  Show that in any finite gathering of people, 
there are at least two people who know the same num­
ber of people at the gathering (assume that "knowing" 
is a mutual relationship) . 

3.3.12 Use argument by contradiction to prove the fol­
lowing useful variant of the pigeonhole principle: Let 
a l , a2 , . . . , an be positive integers . If 

(a l + a2 + . . .  + an ) - n + 1 
pigeons are put into n pigeonholes ,  then for some i, 
the statement "The ith pigeonhole contains at least ai 
pigeons" must be true. 

3.3.13 Notice how simple the pigeonhole argument 
was in Example 3 .3 .2 on page 84. What is wrong with 
the following "solution"? 

Place four of the points on the vertices 
of the square; that way they are maxi­
mally separated from one another. Then 
the fifth point must he within v'2/2 of 
one of the other four points, for the fur­
thest from the corners it could he would 
be the center, and that is exactly v'2/2 
units from each corner. 

3.3. 14 Show that the decimal expansion of a rational 
number must eventually become periodic. 

3.3.15 Seven points are placed inside a regular 
hexagon with side length 1 .  Show that at least two 
points are at most one unit apart. 

3.3.16 Inside a 1 x 1 square, 1 0 1 points are placed. 
Show that some three of them form a triangle with area 
no more than 0.0 1 .  
3.3.17 Show that among any n + 2 integers , either 
there are two whose difference is a multiple of 2n, or 
there are two whose sum is divisible by 2n. 

3.3.18 Chose any (n + 1 ) -element subset from 
{ I ,  2, . . .  , 2n} .  Show that this subset must contain two 
integers that are relatively prime. 

3.3.19 People are seated around a circular table at a 
restaurant. The food is placed on a circular platform 
in the center of the table, and this circular platform 
can rotate (this is commonly found in Chinese restau­
rants that specialize in banquets) .  Each person ordered 
a different entree, and it turns out that no one has the 
correct entree in front of him. Show that it is possible 
to rotate the platform so that at least two people will 
have the correct entree.  

3.3.20 Consider a sequence of N positive integers 
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containing n distinct integers . If N ;::: 2n , show that 
there is a consecutive block of integers whose product 
is a perfect square.  Is this inequal ity the best possible? 

3.3.21 (Korea 1 995) For any positive integer m, show 
that there exist integers a, b satisfying 

l a l S m, Ib l S m, 

3.3.22 Show that for any positive integer n,  there ex­
ists a positive multiple of n that contains only the digits 
7 and O. 

3.3.23 To make sure that you understand Exam­
ple 3 .3 .7 ,  explicitly construct the pigeonholes when 
n = 25. Verify that the solution works in this case. 

3.3.24 A chess player prepares for a tournament by 
playing some practice games over a period of eight 
weeks. She plays at least one game per day, but no 
more than I I  games per week. Show that there must 
be a period of consecutive days during which she plays 
exactly 23 games. 

3.3.25 (Putnam 1 994) Prove that the points of an right 
triangle of side length I cannot be colored in four col­
ors such that no two points at distance at least 2 - ,;z 
from each other receive the same color. 

3.3.26 (Bay Area Mathematical Olympiad 2005) Let 
n ;::: 1 2  be an integer, and let PI , P2 , . . .  , Pn , Q be dis­
tinct points in the plane. Prove that for some i, at least 

3.4 I nvariants 

n/6 - I of the distances 

are less than PiQ. 

3.3.27 Example 3 . 3 .5 on page 86 employed the pi­
geonhole principle several times in order to get a solu­
tion. There exists a fantasticalJy simple solution which 
uses just one application of the (intermediate) pigeon­
hole principle. Can you find it? 

3.3.28 The folJowing problems are inspired by the 
very easy Example 3 .3 . 1 .  However, not aU of the vari­
ations below are easy. Have fun !  

(a) Color the plane in  three colors . Prove that there 
are two points of the same color one unit apart. 

(b) Color the plane in two colors . Prove that one 
of these colors contains pairs of points at every 
mutual distance. 

(c) Color the plane in two colors. Prove that there 
will always exist an equilateral triangle with aU 
its vertices of the same color. 

(d) Show that it is possible to color the plane in two 
colors in such a way that there cannot exist an 
equilateral triangle of side I with aU vertices the 
same color. 

(e) Color the plane in two colors . Show that there 
exists a rectangle aU of whose vertices are the 
same color. 

Our discussion of the extreme principle mentioned the importance of extracting key 
information from the chaos that most problems initially present. The strategy is some­
how to "reduce" the problem so as to focus on certain essential entities .  In Section 3.2, 
the tactic to implement this strategy was to focus on extreme values. There are other 
tactics with the same underlying strategy. Here we shall introduce the very rich topic 
of invariants. 

An invariant, as the name suggests, is merely some aspect of a problem-usually 
a numerical quantity-that does not change, even if many other properties do change. 
Here are a few examples. 

Example 3.4. 1 The Motel Room Paradox. Recall Example 2. 1 .8 on page 20, the prob­
lem involving three women who check into a motel room. Let g, p , d be the amount 
the guests spent, the amount the porter pocketed for himself and the amount the motel 
desk received, respectively. Then the quantity 

g - p - d 
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Example 3.4.2 The Power of a Point Theorem. Given a fixed point P and a fixed 
circle, draw a line through P that intersects the circle at X and Y .  The power of the 
point P with respect to this circle is defined to be the quantity PX . PY . 

The Power of a Point theorem (also known as POP) states that this quantity is 
invariant; i .e., it does not depend on the line that is drawn. For example, in the picture 
below, 

PX · PY = PX' · Py' . 

Y' 

You undoubtedly learned this theorem in elementary geometry, at least for the case 
where the point P lies inside the circle. For a proof, see Example 8 .3 . 1 1 .  

Example 3.4.3 Euler 's Formula. You encountered this originally as Problem 2.2 . 1 2  
on page 37, which asked you to conjecture a relationship between the number of ver­
tices, edges and faces of any polyhedron. It turns out that if v, e , and f denote the 
number of vertices, edges and faces of a polyhedron without "holes," then 

v - e + f = 2  

always holds; i .e . ,  the quantity v - e + f is an invariant. This is known as Euler's 
Formula. See Problem 3 .4.40 for some hints on how to prove this formula. 

Example 3.4.4 Symmetry. Even though we devoted the first section of this chapter 
to symmetry, this topic is logically contained within the concept of invariants. If a 
particular object (geometric or otherwise) contains symmetry, that is just another way 
of saying that the object itself is an invariant with respect to some transformation or set 
of transformations. For example, a square is invariant with respect to rotations about 
its center of 0, 90, 1 80 and 270 degrees. 

On a deeper level, the substitution u := x + x- I , which helped solve 

x4 +x3 +.l +x + l = 0 
in Example 3 . 1 . 1 0 worked, because u is invariant with respect to a permutation of 
some of the roots.5 

5This idea is the germ of one of the greatest achievements of 1 9th-century mathematics, Galois theory, which 
among other things develops a systematic way of determining which polynomials can be solved with radicals and 
which cannot. For more information, consult Herstein's wonderful book [20] .  
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Example 3.4.5 Divisibility by Nine. Let s(n) be the sum of the digits of the base-ten 
representation of the positive integer n. Then 

n - s(n)  is always divisible by 9 . 

For example, if n = 1 36, then 

n - s(n) = 1 36 - ( 1 + 3 + 6) = 1 26 = 9 · 14 . 

This was an example of a non-numeric invariant, although we could have recast things 
in a numeric form by saying, for example, that the remainder upon division by 9 of 
n - s( n) is the invariant quantity zero. 

Here is another example of a divisibility invariant. 

Example 3.4.6 At first, a room is empty. Each minute, either one person enters or two 
people leave. After exactly 3 1 999 minutes, could the room contain 3 1000 + 2 people? 

Solution : If there are n people in the room, after one minute, there will be ei­
ther n + 1 or n - 2 people . The difference between these two possible outcomes is 3 .  
Continuing for longer times, we see that 

At any fixed time t, all the possible values for the population of the 
room differ from one another by multiples of 3 .  

In  3 1 999 minutes, then, one possible population of  the room i s  just 3 1 999 people 
(assuming that one person entered each time). This is a multiple of 3, so all the pos­
sible populations for the room have to also be multiples of 3. Therefore 3 1000 + 2 will 
not be a valid population . _ 

The simplest divisibility invariant is parity, which we used in Example 2.2 .3 on 
page 29 and Example 2.2.4 on page 30. Let us explore this concept in more detail .  

Parity 

Integers are divided into two parity classes: even and odd. The even integers are 
divisible by 2, the odds are not. Note that zero is even. The following facts are easy to 
prove rigorously (do it ! )  but should have been known to you since you were little. 

• The parity of a sum of a set of integers is odd if and only if the number of odd 
elements is odd. 

• The parity of a product of a set of integers is odd if and only if there are no even 
elements in the set. 

You may think that parity is a rather crude thing-after all, there are infinitely 
many integers yet only two kinds of parity-yet knowledge of parity is sometimes all 
that is needed, especially if parity is involved in the statement of the problem. Here 
is a fundamental example, a problem that has appeared in many forms. This version 
appeared in the 1 986 Colorado Springs Mathematical Olympiad. 
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Example 3.4.7 If 1 27 people play in a singles tennis tournament, prove that at the 
end of tournament, the number of people who have played an odd number of games is  
even. 

Solution : Many people unsuccessfully approached this problem by assuming that 
the tournament had a particular structure, such as double-elimination or round-robin, 
etc . But the problem doesn 't specify this ! The implication is that no matter how the 
tournament is structured the number of people who have played an odd number of 
games must be even. For example, one possible tournament would be one where no 
one plays any games. Then the number of people who have played an odd number of 
games is zero, which is even, as required. 

There seem to be very few restrictions. Are there any? Yes, each game has exactly 
two people playing in it. In other words, if A plays with B then that game is counted 
twice: once as part of A 's count, and once as part of B 's count. More precisely, if we 
let gi denote the number of games that player i has played at the end of the tournament, 
then the sum 

g l + g2 + g3 + . . .  + g 1 27 
must be even, since this sum counts every game that has been played exactly twice ! 
Notice that this sum is always even, not just at the end of the tournament, but at any 
time ! 

Now we are done; the sum above is even, and is a sum of an odd number ( 1 27) 
of elements. If  an odd number of them were odd, the sum would not  be even. So the 
number of gi that are odd is even. _ 

The next problem came from a 1 906 Hungarian contest. We shall present two so­
lutions;  the first uses parity in a straightforward way and the second cleverly constructs 
another invariant first. 

Example 3.4.8 Let a l , a2 , . . .  , an represent an arbitrary arrangement of the numbers 
1 , 2 , 3 , . . . , n . Prove that, if n is odd, the product 

(a l - l ) (a2 - 2) (a3 - 3 ) · · ·  (an - n) 

is an even number. 
Solution 1 :  It is helpful, of course, to look at a concrete case, say, n = 1 1 . Em­

ploying the penultimate step strategy, we ask ourselves, what will force the product 

(a l - 1 ) (a2 - 2) (a3 - 3 ) · · · (a l l  - 1 1 ) 
to be even? Clearly, it is sufficient to show that one of the numbers 

a l - 1 , a2 - 2 , a3 - 3 , . . .  , a l l  - 1 1  
is even . How to do this? A good strategy is to try a proof by contradiction, since we 
need to show that just one of the numbers above is even, and we don 't  know which 
one. But if we start with the assumption that all of the numbers are odd, we have nice 
specific information to work with. So assume that each of 

a l - l , a2 - 2 , a3 - 3 , . . .  , a l l - l l  
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is odd. Now we can recover the parity of the original aj . We see that six of them, 

are even, while the remaining five, 

are all odd. This is a contradiction, because the aj are a permutation of 1 , 2 , 3 , . . .  , 1 1 , 
and this set contains five even and six odd elements . Clearly this argument extends to 
the general case, for the only special property of 1 1  that we used was the fact that it 
was odd. _ 

Solution 2: The crux move : consider the sum of the terms. We have 

(a ) - I ) + (a2 - 2) + " ' + (an - n) 

= (a ) + a2 + . . .  + an ) - ( 1  + 2 + · · ·  + n ) 

= ( 1 + 2 + · · · + n) - ( 1 + 2 + · · · + n) 

= 0, 

so the sum is an invariant: it is equal to zero no matter what the arrangement. A sum 
of an odd number of integers that equals zero (an even number) must contain at least 
one even number! _ 

Both solutions were nice, but the second was especially clever. Try to incorporate 
the new idea here in future problems. 

Be on the lookout/or "easy" invariants. Check to see if you can rear­
range your problem to get simple numbers such as zero or one. 

Example 3.4.9 Let p) , P2 , . . .  , P) 997 be distinct points in the plane. Connect the points 
with the line segments P) P2 , P2P3 , P3P4 " " , P) 996P) 997 , P) 997P) . Can one draw a line 
that passes through the interior of every one of these segments? 

Solution : It is not obvious that parity is an issue here, but one should always keep 
parity in mind. 

Whenever a problem involves integers, ask yourself if there are any 
parity restrictions . Experiment with different values than the given if 
necessary. 

This problem involves 1 997 points. A few experiments with much smaller num­
bers of points will convince you easily (do it ! )  that it is possible to draw the line if 
and only if the number of points is even. So parity seems to be important. Let us find 
a rigorous argument for a specific case, say seven points. Once again, we will argue 
by contradiction because assuming that we can draw the line gives us lots of specific 
information that we can work with. So, assume there is a line L that passes through 
the interior of each segment. This line cuts the plane into two regions, which we will 
call the "left" and "right" sides of L. Without loss of generality, p) lies on the left side 
of L. This forces P2 to lie on the right side of L, which in tum forces P3 to lie in the 
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left, P4 in the right, etc . The important thing about this sequence is that P7 ends up on 
the left side, along with PI . Therefore L cannot pass through the interior of segment 
PIP7 . a contradiction. 

L 

This argument certainly generalizes. As long as n is odd, then PI and Pn lie on the 
same side of L. • 

The following is a rather sophisticated problem, one that requires a parity analysis 
combined with very resourceful and repeated use of the pigeonhole principle. 

Example 3.4.10 (lMO 1 985) Consider a set of 1 ,985 positive integers, not necessarily 
distinct, and none with prime factors bigger than 23.  Prove that there must exist four 
integers in this set whose product is equal to the fourth power of an integer. 

Solution : We shall present the solution in a terse, sketchy form. It will be up to 
you to fill in the details .  

Every number in this set can be written in the form 

2f1 312 5h714 1 1 f5 1 3f6 1 7h I 9iR 23f9 
, 

where the exponents 11 , 12 ,  . . .  , /9  are non-negative integers . The product of two such 
numbers. 2fl . . .  2319 and 211 1 . . .  23119 • will be a perfect square (square of an integer) if 
and only if the corresponding exponents have the same parity (evenness or oddness). 
In other words, 

(2fl - - . 2319 ) - (211 1  - - - 23119 ) 

will be a perfect square if and only if II and g l have the same parity. 12 and g2 have 
the same parity • . . . •  19 and g9 have the same parity. (Recall that zero is even.) To each 
number in this set there corresponds an ordered 9-tuple of the parities of the exponents. 
For example. the number 2 1035 1 7 1 23 1 1 1  has the 9-tuple (even, odd, even. even, even. 
even. odd, even, odd). 

There are 5 1 2 different 9-tuples possible. By repeated use of the pigeonhole prin­
ciple, we conclude that 1 472 of the integers in our set can be arranged into 736 pairs 
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such that each pair contains two numbers with identical 9-tuples of exponent parity. 
Thus the product of the numbers in each pair is a perfect square. In other words, if we 
let Ci : =  aibi , then every number in the list 

C I , C2 " " , C736 
is a perfect square. Thus each of 

Fl, ,,foi, · · · , JC736 
is an integer with no prime factor greater than 23.  Employing the pigeonhole principle 
once more, we conclude that at least two numbers in the above list share the same 
9-tuple of exponent parity. Without loss of generality, call these .JCk and JCj. Then 
.JCkVCJ is an perfect square; i .e . ,  .JCkVCJ = n2 , for some integer n. Thus CkCj = n4 . 
But CjCk = ajbjakbb so we have found four numbers from our original set of 1 ,985 
integers whose product is the fourth power of an integer. _ 

We conclude our discussion of parity with a famous problem, originally due (in 
a different form) to de Bruijn [7] . At least fourteen different solutions have been dis­
covered, several of which use invariants in different ways (see [46] for a very readable 
account of these solutions). The solution we present, using parity, is perhaps the sim­
plest, and is due to Andrei Gnepp. It is a beautiful solution; we urge you to first think 
about the problem before reading it. That way you will appreciate just how hard the 
problem is and how clever Gnepp 's solution was ! 

Example 3.4.11  A rectangle is tiled with smaller rectangles, each of which has at 
least one side of integral length. Prove that the tiled rectangle also must have at least 
one side of integral length. 

Solution: Here is an example. The large rectangle has been placed on the plane 
with grid lines marked at each unit, so that its lower-left comer is a lattice point. 
Notice that each of the small rectangles has at least one integer-length side, and the 
large 4 x 2 .5 rectangle also has this property. (The circles in the diagram are used in 
our argument; we will explain them below. ) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
· . . . . 
· . . . . 
· . . . . 
· . . . . 
· . . . . 

I I 
.. __ J. ... __ �_-4 ............ . . . . . . . . . .  . 

... -----............ ...-.... -+ ..... . . . . . . . . . . . 

L 
I 
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The first insight is to discover an appropriate penultimate step. Let us call the 
property of having at least one integral side "good." How do we show that the large 
rectangle is good? Orienting it so that the lower-left comer is a lattice point is the key: 

If the rectangle weren ' t  good, then it would have only one lattice point 
corner. But if the rectangle is good, then it will have either two lattice 
point corners (if one dimension was an integer) , or four lattice point 
corners (if both length and width are integers) . 

In other words, parity plays a role : a rectangle with lower-left comer at a lattice 
point is good if and only if the number of comer lattice points is even ! Let us count 
lattice point comers, hoping to show that the number of lattice point comers for the 
big rectangle must be even. 

Of course we must use the hypothesis that each of the smaller rectangles is good. 
Consider the comers of a small rectangle. It may have no lattice point comers, or 
it may have two or four, but can never have just one or three, because of goodness. 
Consequently, if we count the number of comer lattice points on each small rectangle 
and add them up, the sum, which we will call S, will be even. 

But we overcounted some of the lattice points. For example, in the picture above, 
all the corner lattice points are indicated by circles. There are ten rectangles with 
comer lattice points, and each has exactly two comer lattice points, so S = 20. The 
white circles were counted exactly once, the gray ones were counted twice, and the 
black one was counted four times. So another way to count the sum S is 

S = 1 . (# white circles) + 2 . (# gray circles) + 4 . (# black circles) 

= 1 · 2  + 2 · 7  + 4 · 1 = 20. 

In general , when we compute the sum S, we will overcount at some comers . Here 
are two simple observations that are easy to check. 

• We will count a comer point only once, twice or four times-never three times. 
• The only comer points that are counted exactly once are the comers of the large 

rectangle. 

Coloring the lattice point comers as in our example, we see that if w, g,  b denote 
the number of white, gray, and black circles, then 

S = w + 2g + 4b. 

Thus w = S - 2g - 4b is the number of comer lattice points of the large rectangle. And 
since S is even, S - 2g - 4b is also even: the large rectangle must be good ! • 

This solution is quite instructive. A terse outline that an experienced problem 
solver could understand might be, "Orient the large rectangle so that one comer is a 
lattice point, then consider the parity of the number of comer lattice points." There 
were two crux moves to this brilliant solution: first anchoring the lower-left comer 
on a lattice point (yielding "free" information) and then deducing the parity rule for 
goodness. The rest was a fairly standard argument (as you will see in Chapter 6, the 
tactic of counting something in two or more different ways is a pervasive one). 
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Modular Arithmetic and Coloring 

Parity works amazingly well, but it is rather crude. After all , we are reducing the 
infinite universe of integers into a tiny world inhabited by just two entities, "even" and 
"odd." Sometimes we need to explore a more sophisticated world. Examples 3.4.5 and 
3 .4.6 used invariants with nine and three possible values, respectively. These are both 
examples of modular arithmetic, that is, the reduction of our point of view from the 
infinite set of integers to the finite set of possible remainders modulo m, where m is 
chosen cleverly. 

For practice, here 's a quick proof of the assertion in Example 3.4.5 above. You 
may wish to recall the basic properties of congruence from page 44. Without loss of 
generality, let n be a 4-digit number with decimal representation abed. Then 

n = 1 03 a + 1 02b +  l Oe + d. 

Since 1 0  == 1 (mod 9) , we have 1 0'<  == l k = 1 (mod 9) for any nonnegative integer k. 
Consequently, 

n = 1 03a +  1 02b +  l Oe + d  == l · a +  1 · b +  1 ·  e + d  (mod 9) . 

You don 't need to use congruence notation, but it is a convenient shorthand, and it 
may help you to systematize your thinking. The important thing is to be aware of the 
possibility that an invariant may be a quantity modulo m for a properly chosen m. 

Example 3.4.12 A bubble chamber contains three types of subatomic particles: 1 0  
particles o f  type X, 1 1  o f  type Y, 1 1 1  o f  type Z .  Whenever an X- and Y-particle collide, 
they both become Z-particles. Likewise, Y- and Z-particles collide and become X­
particles and X- and Z-particles become Y-particles upon collision. Can the particles 
in the bubble chamber evolve so that only one type is present? 

Solution : Let us indicate the population at any time by an ordered triple (x,y, z) . 
Let 's experiment a bit. We start with the popUlation ( 1 0, 1 1 , 1 1 1 ) . If an X- and Y- par­
ticle then collide, the new popUlation will be (9 , 1 0, 1 1 3 ) . Is there anything invariant? 
Notice that there is still 1 more Y-particle than X-particles, as before. However, where 
there were originally 1 00 more Z's than Y 's, now there are 1 03 more. Doesn 't look 
good, but let 's stay loose and experiment some more. Another X-Y collision yields 
( 8 , 9 , 1 1 5 ) .  The population gap between X and Y is still 1 ,  but the gap between Y 
and Z has grown to 1 06 .  Now let 's have an X-Z collision. Our new population is 
(7 , 1 1 , 1 1 4) . The X-Y gap has grown from 1 to 4, while the Y-Z gap dropped back to 
1 03 .  

If  you are not attuned to  the possibility of  modular arithmetic, the evolution of 
population gaps from 1 to 4 or from 1 00 to 103 to 1 06 back to 1 03 may seem chaotic. 
But by now you have guessed that 

The population gaps are invariant modulo 3 .  

To prove this formally, let (x, y ,  z ) be the population a t  a certain time. Without loss of 
generality, consider an X-Z collision. The new population becomes (x - 1 , y +  2, z - 1 ) 
and you can easily verify that the difference between the X- and Z-populations is 
unchanged, while the difference between the X- and Y-populations has changed by 3 
(likewise for the difference between the Z- and Y-populations). 
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We conclude the solution by noting that the initial population was ( 1 0 ,  I I , I l l ) . 
The X-Y population gap is 1 ,  and hence it must always be congruent to I modulo 3 . 
Thus there is no way that the X- and Y-populations can ever be the same, so these pop­
ulations can never both become zero. The same argument holds for other population 
pairs : it is impossible for two of the populations to become zero. _ 

The use of coloring is related to parity and modular arithmetic, except that we are 
not constrained by the algebraic properties of integers . An example of coloring was 
the domino problem (Example 2.4.2 on page 54) ,  which could have been recast as a 
parity problem. Here is another example, using 1 2  colors. 

Example 3.4. 13 Is is possible to tile a 66 x 62 rectangle with 12 x 1 rectangles? 

Solution : Obviously, any large rectangle that is tiled by 1 2  x I rectangles must 
have an area that is divisible by 1 2. Indeed, 66 · 62 = 1 2 · 34 1 .  So impossibility has not 
yet been ruled out. Nevertheless, experimenting with smaller configurations with the 
same property ( i .e . ,  m x n where neither m nor n is a multiple of 1 2 , yet mn is) leads 
us to conjecture that the 66 x 62 rectangle cannot be tiled with 1 2  x 1 rectangles. 

So let 's assume that there is a tiling, and we shall look for a contradiction. Color 
the squares of 66 x 62 rectangle with 1 2  colors in a cyclic "diagonal" pattern as follows 
(we are assuming that the height is 66 and the width is 62): 

I 1 2  1 1  . . .  I 1 2  
2 I 1 2  . . . 2 1 
3 2 I . . .  3 2 

5 4 3 . . . 5 4 
6 5 4 . . . 6 5 

This coloring has the nice property that any 1 2  x 1 rectangle in the til ing consi sts 
of 1 2  differently colored squares. If the large rectangle can be tiled, it will be tiled 
by 66 . 62/ 1 2  = 34 1 1 2  x I rectangles, and hence the large rectangle must contain 34 1 
squares in each of the 1 2  colors. The important thing is not the number 34 1 ,  but the fact 
that each color occurs in the same number of squares. We will call such a coloration 
"homogeneous." 

Let 's look more closely at the colored 66 x 62 rectangle. We can break it up into 
four sub-rectangles: 

60 x 60 60 x 2 

6 x 60 6 x 2  

It is easy to check that the 60 x 60, 60 x 2 and 6 x 60 sub-rectangles are all homo­
geneous, since each of these sub-rectangles has a dimension that is a multiple of 1 2 . 
But the 6 x 2 sub-rectangle is colored as follows: 
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1 
2 
3 
4 
5 
6 

1 2  
1 
2 
3 
4 
5 

Consequently, the entire large rectangle is not homogeneous, contradicting the as-
sumption that a tiling existed. So the tiling is impossible. _ 

Monovariants 

A monovariant is a quantity that may or may not change at each step of a problem, but 
when it does change, it does so monotonically (in only one direction). Another term 
used for monovariant is semi-invariant. Monovariants are often used in the analysis 
of evolving systems, to show that certain final configurations must occur, and/or to 
determine the duration of the system. Many monovariant arguments also make use 
of the extreme principle (at least the well-ordering principle). Here is a very simple 
example . 

Example 3.4.14 In an elimination-style tournament of a two-person game (for exam­
ple, chess or judo), once you lose, you are out, and the tournament proceeds until only 
one person is left. Find a formula for the number of games that must be played in an 
elimination-style tournament starting with n contestants. 

Solution : The number of people who are left in the tournament is clearly a mono­
variant over time . This number decreases by one each time a game is concluded. 
Hence if we start with n people, the tournament must end after exactly n - 1 games !  _ 

Here is a more subtle problem, one that shows the importance of combining the 
extreme principle with a monovariant. 

Example 3.4.15 The n cards of a deck (where n is an arbitrary positive integer) are 
labeled 1 , 2 , . . . , n. Starting with the deck in any order, repeat the following operation: 
if the card on top is labeled k, reverse the order of the first k cards. Prove that eventually 
the first card will be 1 (so no further changes occur) . 

Investigation: For example, if n = 6 and the starting sequence was 362 1 54, the 
cards evolve as follows: 

362 1 54 ---+ 263 1 54 ---+ 623 1 54 ---+ 45 1 326 ---+ 3 1 5426 

---+ 5 1 3426 ---+ 243 1 56 ---+ 423 1 56 ---+ 1 32456 . 

It would be nice if the number of the card in the 1 st place decreased monoton­
ically, but it didn 't (the sequence was 3 , 2 , 6 , 4 , 3 , 5 , 2 , 4 , O. Nevertheless, it is worth 
thinking about this sequence . We shall make use of a very simple, but important, 
general principle : 
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If there are only finitely many states as something evolves , either a state 
will repeat, or the evolution will eventually halt. 

In our case, either the sequence of 1 st-place numbers repeats (since there are only 
finitely many),  or eventually the 1 st-place number will be I (and then the evolution 
halts) .  We would like to prove the latter. How do we exclude the possibility of repeats? 
After all ,  in our example, there were plenty of repeats ! 

Once again, the extreme principle saves the day. Since there are only finitely 
many possibilities as a sequence evolves, there exists a largest 1 st-place value that 
ever occurs, which we will call LI (in the example above, LI = 6). So, at some point in 
the evolution of the sequence, the 1 st-place number is L I , and thereafter, no 1 st-place 
number is ever larger than L 1 • What happens immediately after LI occurs in the 1 st 
place? We reverse the first L I  cards, so LI appears in the L I  th place. We know that 
the 1 st-place card can never be larger than L I , but can it ever again equal LI ? The 
answer is no; as long as the I st place value is less than LI , the reversals will never 
touch the card in the L I th place. We will never reverse more than the first LI cards 
(by the maximality of LI ) , so the only way to get the card numbered LI to move at all 
would be if we reversed exactly LI places. But that would mean that the 1 st-place and 
LI th-place cards both had the value L I , which is impossible. 

That was the crux move. We now look at all the 1 st-place values that occur after 
L I  appeared in the I st place. These must be strictly less than L I . Call the maximum of 
these values L2 . After L2 appears in 1 st place, all subsequent 1 st-place values will be 
strictly less than L2 by exactly the same argument as before. 

Thus we can define a strictly decreasing sequence of maximum I st-place values. 
Eventually, thi s sequence must hit I ,  and we are done ! 

The above was a little vague. It is instructive to give a more formal argument, 
especially to illustrate careful use of subscripts and notation. 

Formal Solution : Let fi be the value of the I st card after i steps, i = 1 , 2 , . . . . We 
wish to show that fm = I for some m (and consequently, fn = I for all n 2: m). Since 
I :::; f; :::; n, the number 

LI : = max{fi : i 2: I }  

exists. Also define 

t l := min{t : It = LI } ;  

i .e . ,  t l i s  the first step at which the I s t  card i s  equal t o  L I . I n  the example above, L I  = 6 
and t l = 3 .  

We claim that if t > tl , then It < LI . To see this, notice that ft cannot be  greater 
than LI , by the definition of LI . To see that It cannot equal L I , we argue by contra­
diction. Let t be the first step after tl such that It = LI . At step t l , the first LI cards 
were reversed, placing the value LI at the LI th place. For all steps s after tl and before 
t, we have fs < LI , which means that the card with the value L I  at the LI th place was 
not moved. Hence at step t, it is impossible for It = LI , since that means that the 1 st 
and L i th are the same (unless L I  = I ,  in which case we are done). This contradiction 
establishes the claim. 
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Now we define two sequences . For r = 2 , 3 ,  . . .  , define 

Lr := max{Ji : i > tr- t }  and tr : =  min{t > tr- J : fr = Lr } .  

(In our example, L2 = 5 ,  t2 = 6 and L3 = 4 ,  t3 = 8.) As above, we assert that as long 
as Lr > 1 ,  if t > fr , then fr < Lr (for each r 2 I ) . 

Therefore, the sequence LJ  ,L2 , ' "  is strictly decreasing, hence one of the Lr will 
equal 1 , so eventually, fm = 1 for some m. _ 

We will conclude the chapter with a wonderfully imaginative use of monovariants, 
John Conway 's famous "Checker Problem." 

Example 3.4. 16 Put a checker on every lattice point (point with integer coordinates) 
in the plane with y-coordinate less than or equal to zero. The only legal moves are hor­
izontal or vertical "jumping." By this  we mean that a checker can leap over a neighbor, 
ending up two units up, down, right, or left of its original position, provided that the 
destination point is unoccupied. After the jump is complete, the checker that was 
jumped over is removed from the board. Here is an example. 

· . . . . . 

: " 'O 'O O'O" ' � · . . . . . 

: · · ·0 ·0 · 'O " ' � · . . . . . : " 'O 'O'O'O" ' � · . . . . . : " 'O 'O 'O'O " ' � · . . . . . 

. . . . . 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 

hefore jump 

: · · · · · : · · · · · : · · ·0 · · · : · · · · · : 
· . . . . . 

: " 'O 'O" ' f " 'O " ' : · . . . . . 

: " 'O 'O" ' f " 'O " ' [ · . . . . . i " 'O 'O'O'O" ' �  · . . . . . i " 'O 'O'O'O" ' �  · . . . . . 

. . . . . 
' 0  • • • • • • • • • • • • • • • • • • • • • • • • • • • • •  

after jump 

Is it possible to make a finite number of legal moves and get a checker to reach the line 
y = 5? 

Solution : After experimenting, it is pretty easy to get a checker to y = 2, and a 
lot more work can get a checker to y = 3 .  But these examples shed no light on what is 
and what isn't possible. 

The key idea: define a monovariant that assigns a number to each configuration of 
checkers, one that moves in one direction as we approach our goal. 

Without loss of generality, let the destination point be C = (0, 5 ) .  For each point 
(x, y) in the plane, compute its "taxicab distance" (length of the shortest path that 
stays on the lattice grid lines) to C. For example, the distance from (3 , 4) to (0, 5)  is 
3 + 1 = 4. Assign to each point at a distance d from C the value /;d ,  where 

/; = - 1 + 0 
2 

. 
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There are three crucial things about S' . First of all ,  it satisfies 

S'2 + S'  - 1 = 0. 

Also, it is positive. And finally, S' < 1 .  

(2) 

For any (infinite) configuration of checkers , add up all the values assigned to each 
checker on the board. Let us call this the "Conway sum." This, we claim, is our 
monovariant. We need to check a number of things. 

First of all , does this sum exist? Yes; we have infinitely many infinite geometric 
series to consider,6 but luckily, they will converge. Let us compute the Conway sum 
for the starting configuration. The checkers on the y-axis (directly below C) have 
the values S's

, S'6 , . . .  . In general, the checkers on the line x = ±r have the values 
S'S+r , S'6+r , . . . . Hence the Conway sum for the whole "half-plane" is 

00 rS 00 rS+r 
(S's + S'6 + . . .  ) + 2 � (S's+r + S'6+r + . . . ) = -'='- + 2  � -'=' -

r= 1  1 - S' r= 1  1 - S' 
_ 1 ( s 2S'6 ) 
-

1 - S'
S' +

I - S'  

= _
1
_ 

( S'S ( 1 - S' )  + 2S'6 ) 
1 - S' 1 - S'  

= _
1 ( S'S + S'6 )

. 
1 - S' 1 - S' 

Using (2), we observe that 1 - S' = S'2 . Therefore the expression above simplifies to 

S's � S'6 
= S' + S'2 = 1 .  

Thus, the starting configuration has Conway sum 1 ,  and all other configurations will 
have computable Conway sums. 

Next, we must show that the Conway sum is a monovariant. Consider a horizontal 
move that moves a checker away from the destination point C. For example, suppose 
we could jump a checker from (9 , 3 ) ,  which has value S' l l , to ( 1 1 , 3 ) .  What happens 
to the Conway sum? We remove the checkers at (9 , 3 )  and ( 1 0 , 3 )  and create a checker 
at ( 1 1 , 3 ) .  The net change in the Conway sum is 

-S' 1 1  - S' 1 2  + S' 1 3  = S' I I  
( - 1 - S' + S'2 ) .  

But - 1 - S' + S'2 = -2S',  by (2). Consequently, the net change i s  negative; the sum 
decreases. Clearly this is a general situation (check the other cases if you are not sure) : 
whenever a checker moves away from C, the sum decreases . 

On the other hand, if the checker moves toward C, the situation is different. For 
example, suppose we went from (9 , 3 )  to (7 , 3 ) .  Then we remove the checkers at (9 , 3 )  
and ( 8 , 3 )  and create a checker a t  (7 , 3 ) ,  changing the sum by 

- S' 1 1  - S' 1O + S'9 = S'9 ( 1  - S' - S'2 ) = o. 

6See page 1 60 for infonnation about infinite geometric series .  
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That, in fact, is where S came from in the first place ! It was cleverly designed to make 
the sum decrease when you move away from the goal , and not change when you move 
toward it. 

There is one more case: moves that leave the distance to C unchanged, such as, 
for example, a jump from ( 1 , 4) to (- 1 , 4) .  It is easy to check (do it ! )  that moves of 
this kind decrease the Conway sum. 

Thus the Conway sum is a monovariant that starts at a value of 1 and never in­
creases . However, if a checker occupied C, its value would be SO = I ,  so the Conway 
sum would be strictly greater than 1 (since other checkers must be on the board, and 
S > 0). We conclude that it is not possible to reach C. • 

Problems and Exercises 

3.4. 17 (Bay Area Mathematical Olympiad 2006) All 
the chairs in a classroom are arranged in a square n x II 
array (in other words, II columns and II rows), and ev­
ery chair is occupied by a student. The teacher decides 
to rearrange the students according to the fol lowing 
two rules :  

• Every student must move to a new chair. 

• A student can only move to an adjacent chair 
in the same row or to an adjacent chair in the 
same column. In other words, each student can 
move only one chair horizontally or vertically. 

(Note that the rules above allow two students in adja­
cent chairs to exchange places.) Show that this proce­
dure can be done if n is even. and cannot be done if n 
is odd. 

3.4.18 An evil wizard has imprisoned 64 math geeks. 
The wizard announces, "Tomorrow I will have you 
stand in a line, and put a hat on each of your heads. The 
hat will be colored either white or black. You will be 
able to see the hats of everyone in front of you, but you 
will not be able to see your hat or the hats of the peo­
ple behind you. (You are not allowed to tum around.)  
I wi l l  begin by asking the person at  the back of the l ine 
to guess his or her hat color. If the guess is correct, 
that person will get a cookie . If the guess is wrong, 
that person will be killed. Then I will ask the next per­
son in line, and so on. You are only allowed to say the 
single word 'black'  or 'white ' when it is your tum to 
speak, and otherwise you are not allowed to commu­
nicate with each other while you are standing in line. 
Although you will not be able to see the people behind 
you, you will know (by hearing) if they have answered 
correctly or not." 

The geeks are allowed to develop a strategy be­
fore their ordeal begins. What is the largest number of 
geeks that can be guaranteed to survive? 

3.4. 19 Three frogs are placed on three vertices of a 
square. Every minute, one frog leaps over another 
frog, in such a way that the "leapee" is at the midpoint 
of the line segment whose endpoints are the starting 
and ending position of the "leaper." Will a frog ever 
occupy the vertex of the square that was originally un­
occupied? 

3.4.20 Prove that if you add up the reciprocals of a se­
quence of consecutive positive integers, the numerator 
of the sum (in lowest terms) wil l  always be odd. For 

I 1 1 1 1 9 1 examp e, '7 + 8 + 9 = 5ll4 ' 
3.4.21 (Bay Area Mathematical Olympiad 1 999) A 
lock has 16 keys arranged in a 4 x 4 array, each key 
oriented either horizontally or vertically. In order to 
open it, all the keys must be vertically oriented. When 
a key is switched to another position, all the other keys 
in the same row and column automatically switch their 
positions too (see diagram). Show that no matter what 
the starting positions are, it is always possible to open 
this lock. (Only one key at a time can be switched.) 

II I I - I I I 

- 1 -

3.4.22 Inspired by the Divisibility by Nine example 



on page 94, discover and prove a similar statement for 
divisibility by I I . 

3.4.23 Start with a set of lattice points. Each second, 
we can perform one of the fol lowing operations; 

I .  The point (x, y) "gives birth" to the point (x + 
I , y +  I ) . 

2. If x and y are both even, the point (x, y) "gives 
birth" to the point (x/2 , y/2) . 

3 .  The pair of  points (x, y) and (y, z) "gives birth" 
to (x, z) . 

For example, if we started with the single point (9 ,  I ) , 
operation # 1  yields the new point ( 1 0 , 2 ) ,  and then op­
eration #2 yields ( 5 ,  I ) ,  and then nine applications of 
operation #1 give us ( 1 4 , 10 ) ,  and then operation #3 
applied to ( 1 4 , 1 0) and ( 1 0 , 2 )  gives us ( 1 4, 2 ) ,  etc . 

If we start with the single point (7 , 29) ,  is it pos­
sible eventually to get the point ( 3 ,  1 999) ?  

3.4.24 Initially, we  are given the sequence 
1 , 2 , . . .  , 1 00. Every minute, we erase any two num­
bers u and v and replace them with the value uv + u + v. 
Clearly, we will be left with just one number after 99 
minutes. Does this number depend on the choices that 
we made? 

3.4.25 Prove that it is impossible to choose three dis­
tinct integers a, b and c such that 

(a - b) l (b - c) ,  (b - c) l (c - a) ,  (c - a) l (a - b) .  
3.4.26 (Tom Rike) Start with the set {3 , 4 , 1 2 } . You 
are then allowed to replace any two numbers a and b 
with the new pair 0 .6a - 0.8b and 0. 8a + 0 .6b. Can 
you transform the set into {4, 6 ,  1 2 } ? 

3.4.27 Two people take turns cutting up a rectangu­
lar chocolate bar that is 6 x 8 squares in size. You are 
allowed to cut the bar only along a division between 
the squares and your cut can be only a straight line. 
For example, you can tum the original bar into a 6 x 2 
piece and a 6 x 6 piece, and this latter piece can be 
turned into a I x 6 piece and a 5 x 6 piece. The last 
player who can break the chocolate wins (and gets to 
eat the chocolate bar) . Is there a winning strategy for 
the first or second player? What about the general case 
(the starting bar is m x n)? 

3.4.28 Consider a row of 2n squares colored alter­
nately black and white. A legal move consists of 
choosing any contiguous set of squares (one or more 
squares, but if you pick more than one square your 
squares must be next to one another; i .e . ,  no "gaps" 

3.4 INVARIANTS 1 07 

al lowed) ,  and inverting their colors. What is the mini­
mum number of moves required to make the entire row 
be one color? Clearly, n moves wil l  work (for exam­
ple, invert the 1 st square, then the 3rd square, etc . ) ,  but 
can you do better than that? 

3.4.29 Answer the same question as above, except 
now start with a 2n x 2n "checkerboard" and a legal 
move consists of choosing any subrectangle and in­
verting its colors. 

3.4.30 Show that if every room in a house has an even 
number of doors, then the number of outside entrance 
doors must be even as wel l .  

3.4.31 Twenty-three people, each with integral 
weight, decide to play footbal l ,  separating into two 
teams of I I  people, plus a referee. To keep things fair, 
the teams chosen must have equal total weight. It turns 
out that no matter who is chosen to be the referee, this 
can always be done. Prove that the 23 people must all 
have the same weight. 

3.4.32 (Russia 1 995) There are n seats on a merry­
go-round. A boy takes n rides. Between each ride, 
he moves clockwise a certain number of places to a 
new horse. Each time he moves a different number of 
places. Find all n for which the boy ends up riding 
each horse . 

3.4.33 Consider nine lattice points in three­
dimensional space. Show that there must be a lattice 
point on the interior of one of the line segments joining 
two of these points. 

3.4.34 The first six terms of a sequence are 
o 1 2 3 4 5 Each subsequent term is the last digit 
of the

' 
s�� �f the six prev ious terms. In other words, 

the seventh term is 5 ( since 0 + I + 2 + 3 + 4 + 5 = 1 5 ) ,  
the eighth term is 0 (since I + 2 + 3 + 4 + 5 + 5 = 20), 
etc . Can the subsequence 1 3579 occur anywhere in 
this sequence? 

3.4.35 The solution to the checker problem (Exam­
ple 3.4. 1 6) was rather slick, and almost seemed like 
cheating. Why couldn 't you assign any value that you 
wanted to the point C, for example, I O

IOO? Then this 
would assure that you could never get there .  What is 
wrong with this idea? 

3.4.36 Make sure that you really understand how Ex­
ample 3 .4. 1 0  works. For example, exactly how many 
times is the pigeonhole princ iple used in this problem? 
After reading the solution, see how well you can ex­
plain this problem to another person (someone who 
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asks intelligent questions ! ) .  If you cannot explain it to 
his satisfaction, go back and reread the solution, mak­
ing note of the crux moves, auxiliary problems posed 
and solved, etc . A solid understanding of this example 
will help you with the next problem. 

3.4.37 (lMO 1 978) An international society has 
its members from six different countries. The 
list of members contains 1 978 names, numbered 
1 , 2 , . . .  , 1 978 .  Prove that there is at least one mem­
ber whose number is the sum of the numbers of two 
members from his own country, or twice as large as 
the number of one member from his own country. 

3.4.38 (lMO 1 997) An n x n matrix (square array) 
whose entries come from the set S = { I , 2, . . .  , 2n - I } 
is called a silver matrix if, for each i = I ,  . . .  , n ,  the ith 
row and the ith column together contain all elements 
of S. Show that there is no silver matrix for n = 1 997. 

3.4.39 (Taiwan 1 995) Consider the operation which 
transforms the 8-term sequence XI , X2 ,  . . .  , Xg into the 
new 8-term sequence 

Find all 8-term sequences of integers that have the 
property that after finitely many applications of this 
operation, one is left with a sequence, all of whose 
terms are equal. 

3.4.40 Euler's Formula. Consider a polyhedron P. 
We wish to show that v - e + / = 2, where v, e, j are 
respectively the number of vertices, edges and faces 
of P. Imagine that P is made of white rubber, with 
the edges painted black and the vertices painted red. 
Carefully cut out a face (but don 't remove any edges 
or vertices) ,  and stretch the resulting object so that it 
lies on a plane . For example, here is what a cube looks 
like after such "surgery":  

Now we want to prove that v - e + / = I for the new 
object. To do so, start erasing edges and/or vertices, 
one at a time. What does this do to the value of 
v - e + /? What must you end up with? 

3.4.41 If you haven 't  done Problem 2.4.24, now is the 
time to take another look at it. 

3.4.42 (Bay Area Mathematical Olympiad 2(00) Al­
ice plays the following game of solitaire on a 20 x 20 
chessboard. She begins by placing 1 00 pennies, 1 00 
nickels, 1 00 dimes, and 1 00 quarters on the board so 
that each of the 400 squares contains exactly one coin. 
She then chooses 59 of these coins and removes them 
from the board. After that, she removes coins, one at a 
time, subject to the following rules: 

• A penny may be removed only if there are four 
squares of the board adjacent to its square (up, 
down, left, and right) that are vacant (do not 
contain coins) . Squares "off the board" do not 
count towards this four: for example, a non­
comer square bordering the edge of the board 
has three adjacent squares, so a penny in such a 
square cannot be removed under this rule, even 
if all three adjacent squares are vacant. 

• A nickel may be removed only if there are 
at least three vacant squares adjacent to its 
square. (And again, "off the board" squares 
do not count.) 

• A dime may be removed only if there are at 
least two vacant squares adjacent to its square 
("off the board" squares do not count) . 

• A quarter may be removed only if there is at 
least one vacant square adjacent to its square 
("off the board" squares do not count). 

Alice wins if she eventually succeeds in remov­
ing all the coins. Prove that it is impossible for her to 
Win. 



Chapter 4 

Three Im portant Crossover Tactics 

A crossover (first mentioned on page 54) is an idea that connects two or more differ­
ent branches of math, usually in a surprising way. In this chapter, we will introduce 
perhaps the three most productive crossover topics :  graph theory, complex numbers, 
and generating functions. 

We will just scratch the surface of these three very rich topics. Our presentation 
will be a mix of exposition and problems for you to ponder on the spot. You may find it 
worthwhile to read Chapters 5-7 first or at least concurrently, as some of the examples 
below involve relatively sophisticated mathematics. 

4. 1 Graph Theory 

The concept of a graph is very simple : merely a finite collection of vertices and edges. 
The vertices are usually visualized as dots, and the edges as lines that connect some 
or all of the pairs of vertices. If two vertices are connected by an edge, they are called 
neighbors. By convention, graphs do not contain multiple edges (two or more edges 
connecting the same pair of vertices) or loops (an edge connecting a vertex to itself) .  
If there are multiple edges or loops, we use the term multigraph. In the figure below, 
the object on the left is a graph, while its neighbor to the right is a multigraph. 

You have already seen many examples of graphs. The Affirmative Action problem 
(Example 2. 1 .9 on page 2 1 )  can be restated as a problem about graphs as follows. 

Given an arbitrary graph , show that it is possible to color the vertices 
black and white in such a way that each white vertex has at least as 
many black neighbors as white neighbors ,  and vice versa. 

Likewise, the Handshake problem ( 1 . 1 .4) and the solution to the Gallery problem 
(2.4.3) both can be reformulated as questions about graphs, rather than people and 
handshakes or networks of pipes. 

This is what makes graph theory surprisingly useful. Just about any situation in­
volving "relationships" between "objects" can be recast as a graph, where the vertices 

1 09 
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are the "objects" and we join vertices with edges if the corresponding objects are "re­
lated." 

If you 're not yet convinced, look at the following problem. Don 't read the analysis 
immediately. 

Example 4. 1 .1  (USAMO 1 986) During a certain lecture, each of five mathematicians 
fell asleep exactly twice. For each pair of these mathematicians, there was some mo­
ment when both were sleeping simultaneously. Prove that, at some moment, some 
three of them were sleeping simultaneously. 

Partial Solution : Let us call the mathematicians A , B ,C ,D ,E ,  and denote the 
time intervals that each was asleep by A l , A2 , B ,  , B2 , etc . Now define a graph whose 10 
vertices are these time intervals ,  with vertices connected by an edge if the time intervals 
overlapped. There are (�) = 1 0 pairs of mathematicians, I so this graph must have at 
least 1 0  edges . Here is one example, depicting the situation where mathematician A 's 
first nap overlaps with C's first nap and E 's second nap, etc . Notice that A l and A2 
cannot be joined with a vertex, nor can B ,  and B2 , etc . ,  since each mathematician took 
two distinct naps. 

This particular graph contains the cycle CIA I E2B2CI .  By this we mean a closed 
path that "travels" along edges . A cycle is helpful, because it constrains the overlap 
times. It is easiest to see this by "stacking" the intervals .  Here is one possibility. Time 
is measured horizontally. Notice that each nap interval must overlap with its vertical 
neighbor(s) .  

------- cl 

We will show that three different intervals must overlap. Since C, and B2 overlap, and 
CI and A l overlap, we are done if B2 and A l overlap within CI . If they don 't (as in 

I Read Section 6. 1 if you don 't understand the notation (;) . 
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the example above) ,  there will be a gap between the end of B2 and the start of A I .  
However, £2 must straddle this gap, since it overlaps both B2 and A I .  Thus C I , B2 , and 
£2 overlap (likewise, C 1 , £2 , and A I overlap). 

This argument involved a 4-cycle (cycle with four vertices) ,  but a little thought 
(get out some paper and do some experiments ! )  shows that it will work with a cycle 
of any finite length. We have therefore reduced the problem to a "pure" graph theory 
question: 

If a graph has 10 vertices and 10 edges, must it contain a cycle? 

Connectivity and Cycles 

Now that we see how graph theory can completely recast a problem, we shall investi­
gate some simple properties of graphs, in particular the relationship between the num­
ber of vertices and edges and the existence of cycles. The number of edges emanating 
from a particular vertex is called the degree of the vertex. If the vertex is x, the degree 
is often denoted by d (x) . You should easily be able to verify the following important 
fact, often called the handshake lemma (if you want a hint, reread Example 3 .4.7 on 
page 95) .  

In any graph , the sum of the degrees of all the vertices is equal to twice 
the number of edges. 

A graph is connected if every pair of vertices has a path between them. If a 
graph is not connected, one can always decompose it into connected components. For 
example, the graph below has 1 0  vertices, 1 1  edges, and two connected components. 
Observe that the handshake lemma does not require connectivity; in this graph the 
degrees (scanning from left to right, from top to bottom) are 1 , 2 , 1 , 1 , 3 , 3 , 2 , 4, 3 , 2. 
The sum is 22 = 2 . 1 1 .  

A connected graph that contains no cycles is called a tree.
2 For example, the 

following 8-vertex graph is a tree. 

2 A non-connected graph containing no cycles is  called a forest; each of its connected components is a tree. 
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In a tree, we call the vertices with degree 1 leaves .3 

It certainly seems plausible that trees must have leaves. In fact, 

Every tree with two or more vertices has at least two leaves. 

Informally, this is pretty obvious. Since a tree has no cycles, it has to have paths where 
the starting and ending vertex are different. These two vertices will have degree 1 . 
But this is a little vague. Here is a rigorous proof that uses the extreme principle and 
argument by contradiction : 

Given a tree, pick any vertex. Now consider all paths that include this vertex and 
pick the longest one, i .e . ,  the path that contains the most vertices. Since the graph is 
a tree, there are no cycles, so there is no ambiguity here-no path can cross back on 
itself. And also, since trees are connected, we are guaranteed that there are paths to 
begin with. 

Let P : = X l X2 . .  ' Xn denote this longest path, where the Xi are vertices. We claim 
that Xl and Xn must have degree 1 .  Suppose that Xl had degree more than 1 .  Then Xl 
has among its neighbors the vertices X2 and y. Observe that y cannot be any of the 
vertices X3 , X4 , . . .  , Xn , because that would create a cycle ! But if y is not one of these 
vertices, then we could create a longer path YXlX2 . .  ' Xn which contradicts the maxi­
mality of P. Thus d(xJ ) = 1 ,  and a similar argument shows that d(xn ) = 1 .  • 

When is a connected graph a tree? Intuitively, it seems clear that trees are rather 
poor in edges relative to vertices, and indeed, experimentation (do it ! )  suggests very 
strongly that 

For trees , the number of edges is exactly one less than the number of 
vertices . 

This conjecture is a natural candidate for mathematical induction. We shall induct 
on the number of vertices v, starting with v = 2. The only tree with two vertices con­
sists of a single edge joining the two vertices, so the base case is true. Now, assume 
that we know that all trees with v vertices contain v - I edges. Consider a tree T with 
v + 1 vertices. We will show that T has v edges. Pick a leaf (we know that T has 
leaves). Remove this vertex, along with the edge emanating from it. What is left? A 
graph with v vertices that is still connected (since T was connected, and plucking a 

3This tenninology is not quite standard. It is customary to designate one of the degree- l vertices as a "root," 
and indeed there is a whole theory about so-called "rooted trees" that is qu ite important in computer science, but 
wil l  not be discussed here .  See [43] for details . 
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leaf cannot disconnect it), and has no cycles (since T had no cycles, and plucking a 
leaf cannot create a cycle) .  Hence the new graph is a tree. By the inductive hypothesis, 
it must have v - I edges. Thus T has v - I  + 1 = v edges. _ 

4.1.2 Generalize the above by showing that if a collection of disjoint trees (called, of 
course, a forest) has k connected components, e edges and v vertices, then e = v - k. 

4.1.3 Conclude by showing that 

If a graph has e edges and v vertices and e 2 v, then the graph must contain 
a cycle. 

Note that it does not matter whether the graph is connected or not. 

Now we can finish up Example 4. 1 . 1 ,  the problem about the napping mathemati­
cians. The graph in question has 1 0  edges and 1 0  vertices. By 4. 1 . 3 ,  it must contain a 
cycle. 

Eulerian and Hamiltonian Paths 

Problem 2. 1 .26 on page 24 has a simple graph theory formulation: 

Find the conditions on a connected graph (or multigraph) for which it 
is possible to travel a path that traverses every edge exactly once.4 

Such paths are called Eulerian, in honor of the 1 8th-century Swiss mathematician 
who first studied graphs in a formal way. Here are two examples that appeared in 
Problem 2. 1 .26. 

A B 

Graph A (the vertices are not marked with dots, but are simply the places where the line 
segments intersect) has an Eulerian path, while graph B does not. If you draw enough 
graphs (and multigraphs), you are inescapably led to focus on the vertices with odd 
degree. Let v be a vertex with odd degree in a graph that possesses an Eulerian path . 
There are three cases: 

1 .  The path can start at v. 
2. The path can end at v. 
3 .  The path starts and ends elsewhere, or is a closed path (no start or end). This 

is not possible, because whenever the path enters v along an edge, it will need 
to exit v along a different edge. This means that d(v)  is even. 

4More precise language distinguishes between "walks" that avoid repeated edges, called "trails," from walks 
that avoid repeated vertices, called "paths." These distinctions are not needed here, but for a very clear discussion, 
see Chapter 9 of [ 1 5 ] .  
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Therefore if a graph has an Eulerian path, it must have either zero or exactly two odd­
degree vertices. In fact, this is a necessary and sufficient condition. More precisely, 

A connected graph (or multigraph5 ) possesses an Eulerian path if and 
only if it has zero or exactly two odd-degree vertices . In the former 
case, the path is a closed path . In the latter, the path must begin and 
end at the odd-degree vertices . 

It is possible to prove this by induction, and indeed, the argument below can easily 
be rewritten as an induction proof. But it is much more instructive to present a new 
type of argument, an algorithmic proof, in which we give a general recipe for the 
construction of an Eulerian path. 

Consider first a graph with exactly two odd-degree vertices, which we will call 
s and f. Let us try to naively draw an Eulerian path, starting from s. We will travel 
randomly, figuring that we can ' t  lose: if we enter an even-degree vertex, we can then 
leave it, and either this vertex will have no untraveled edges left or an even number of 
them, in which case we can travel through later. 

But this doesn 't  quite work. Consider the following graph (actually, it is a multi­
graph, but we will just use the term "graph" for now; there shouldn 't be any confusion). 
The edges are labeled with upper-case letters, and vertices are labeled with lower-case 
letters . 

c 

B 

S .... ---,-A-..... f 
H 

G 
L 

Starting at vertex s, what if we traversed, in order, edges A , B ,C ,D , E , F, G , H? We 
would be stuck at vertex f, with no way to "backtrack" and traverse the other edges. In 
this case, let us temporarily remove the edges that we have traveled. We are left with 
the subgraph containing the edges I ,J, K, L. This subgraph has four vertices, each 
with even degree. Since the original graph was connected, the subgraph "intersected" 
some of the edges that we removed, for example, at the vertex labeled u. Now let 
us apply the "naive" algorithm to the subgraph, starting at u. We traverse, in order, 
J, K ,L , I .  We ended up back at u, and that is no coincidence. S ince all the vertex 
degrees of our subgraph are even, we cannot get stuck unless we return to our starting 
point. 

So now we can perform "reconstructive surgery" on our original path and get an 
Eulerian path for the entire graph. 

5 As mentioned earlier, we assume that graphs are not multigraphs. When investigating Eulerian paths, multi­
graphs may be relevant, but this is  virtually the only place in this text where they are. 
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1 .  Start at s, as before, and travel along edges A ,  E ,  C until we reach vertex u. 
2. Now travel along the subgraph (edges J, K,  L, I) ,  returning to u. 

3 .  Finish the trip along the edges D ,  E ,  F, G,  H,  reaching vertex f. 

This method will work in general . We may have to repeat the "remove the traveled 
edges and travel the subgraph" step several times (since we could have gotten stuck 
back at the starting point without traversing all of the edges of the subgraph) ,  but since 
the graph is finite, eventually we will finish. _ 

4.1.4 If you aren 't convinced about the argument above, try the algorithm on the fol­
lowing multigraph. Then you will understand the algorithm. 

4.1.5 A directed graph (also called digraph) is a graph (or multigraph) where each 
edge is given a direction (usually indicated by an arrow) .  In other words, a directed 
graph is like a network of one-way streets . Find necessary and sufficient conditions 
for a directed graph or multi graph to have an Eulerian path. 

The "dual" of an Eulerian path is a Hamiltonian path (named after a 1 9th- century 
Irish mathematician), a path that visits each vertex exactly once. If the path is closed, 
it is called a Hamiltonian cycle. While Eulerian paths possess a "complete theory," 
very little is known about Hamiltonian paths .  At present, the necessary and sufficient 
conditions for Hamiltonian paths are unknown. This is unfortunate, because many 
practical problems involve Hamiltonian paths. For example, suppose we want to seat 
people around a table in such a way that no one sits next to someone that she dislikes. 
Then we can make a graph where the people are vertices and we connect edges be­
tween friends. A Hamilton path, if one exists, gives us a seating plan . Many problems 
involving scheduling and optimization of network paths can be recast as searches for 
Hamiltonian paths. 

The following is a rather weak statement that gives a sufficient condition for 
Hamiltonian paths. 

4.1.6 Let G be a graph (not a multigraph) with v vertices . If each vertex has degree at 
least v /2,  then G has a Hamiltonian cycle. 
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This statement is weak, because the hypothesis is so strong. For example, suppose that 
G has 50 vertices. Then we need each vertex to have degree at least 25 in order to 
conclude that a Hamiltonian path exists. 

We urge you to prove 4. 1 .6; note that one of the first things you need to do is show 
that the hypothesis forces G to be connected. 

The Two Men of Tibet 

Our goal has not been a comprehensive study of graph theory, but merely an introduc­
tion to the subject, to give you a new problem-solving tactic and to sensitize you to 
think about recasting problems in terms of graphs whenever possible. If you wish to 
learn more about this subject, there is a huge literature, but [ 1 8] ,  [34] , and [43] are all 
great places to start (especially [ 1 8] ) .  

We will conclude this section with a classic problem that at first does not seem to  
have anything to  do with graphs . 

Example 4.1 .7 The Two Men of Tibet. Two men are located at opposite ends of a 
mountain range, at the same elevation. If the mountain range never drops below this 
starting elevation, is it possible for the two men to walk along the mountain range and 
reach each other's starting place, while always staying at the same elevation? 

Here is an example of a "mountain range." Without loss of generality, it is "piece­
wise linear," i .e . ,  composed of straight line pieces. The starting positions of the two 
men is indicated by two dots. 

At first, it doesn' t  seem too hard. As long as it is legal to walk backward, it is pretty 
easy for the two men to stay at the same elevation. Let us label the "interesting" 
locations on the range (those with elevations equal to the peaks and troughs) with 
letters . 
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j 

s 

Then the black dot walks from a to c, while the white one goes from s to q. Next, the 
black dot walks backward from c to b while the white one goes from q to p, etc . It is 
pretty easy to write out the exact sequence of forward and backward steps to take. 

But why does it work? And how can we guarantee that it will always work, even 
for really complicated mountain ranges (as long as the range does not have any valleys 
that drop below the starting elevation)? Before reading further, take some time to try 
to develop a convincing argument. It's not easy ! Then you will enjoy our graph theory 
solution all the more. 

Solution : As in the diagram above, label all the "interesting" locations .  Let us 
call this set I, so in our example, I = {a,  b, c, . . .  , s  } .  As the dots travel , we can keep 
track of their joint locations with an ordered pair of the form (x, y ) ,  where x indicates 
the black dot 's location and y indicates the white dot's location. Using this notation, 
the progress of the two dots can be abbreviated as 

(a, s) ---+ (c , q) ---+ (b , p)  ---+ (e , m ) ---+ (I, l) ---+ • • •  ---+ (s, a) , 

where the final configuration of (s, a) indicates that the two dots have switched places .  
Now define a graph r whose vertices are all ordered pairs (x, y ) ,  where x, y E I 

and x and y are at the same elevation. In other words, the vertices of r consist of all 
possible legal configurations of where the two dots could be, although it may be that 
some of these configurations are impossible to reach from the starting locations. We 
shall join two vertices by an edge if it is possible to travel between the two configu­
rations in one "step." In other words, the vertex (a, s )  is not joined to (c , q ) ,  but we 
do join (a , s) to (b, r) and (b , r) to (c , q) . Here is an incomplete picture of r, using a 
coordinate system [so the starting configuration (a, s) is at the upper-left comer] . This 
picture is missing many vertices [for example, (a, a) , (b, b) , (c, c) , . . .  ] and not all of the 
edges are drawn from the vertices that are pictured. 

If we can show that there is a path from (a, s) to (s , a ) ,  we'd be done. [Actually, 
the path from (a, s) to (j , j) does the trick, since the graph is symmetrical . ]  Verify the 
following facts. 

1 .  The only vertices of r with degree 1 are (a, s )  and (s , a ) .  
2 .  I f  a vertex i s  of  the form (peak, peak), i t  has degree 4 .  For example, (e, m) has 

degree 4. 
3 .  If a vertex is of the form (peak, slope), it has degree 2. An example is  (e, i) . 
4. If a vertex is of the form (slope, slope), it has degree 2. An example is (d, n) . 
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5. If a vertex is of the form (peak, trough), it is isolated (has degree zero). The 
vertex (g, q) is an example of this. 

Now consider the connected component of r that contains the vertex (a, s ) .  This is a 
subgraph of r [it is not all of r, since (g, q) and (q, g) are isolated] . By the handshake 
lemma (page 1 1 1 ) , the sum of the degrees of the vertices of this subgraph must be 
even. Since the only two vertices with odd degree are (a, s) and (s , a) , this subgraph 
must contain (s , a) as well. Thus there is a path from (a , s) to (s , a) . This argument 
will certainly generalize to any mountain range, so we are done. _ 

s 

r 

q 

p 

o 
n 

m 

k 
j 

h 
g 
f 
e 

.. ., .. - 1 - .. r .. -, .. .. 1- .. T .. - 1 - .. � .. ., .. - 1 - .. r .. -I " .. ,- .. , .. - 1 - .. r" .. ., .. - , 

I I I I I I I I I I I I I I I .. i" .. -. .. .. . - .. 'i .. - . " .. i' .. -. .. " . - .. i" .. -. .. " .- .. "'i .. - . " .. . - .. -. .. ..  

L .. J .. .. _I .. ..  L .. J .. ..  1 _ .. L .. _I .. ..  I .. .. 1 .. _ 1 _ .. ... .. .J .. .. 
I 

I I I I I I I I I I I 
.. .- .. "i .. ..  ,- .. r .. -, .. " .- .. , .. - , " .. .- .. 1 .. ..  I 

I I I I I I - - - - - - - - - - - - - - - -I I I I I I 
.. r .. -, .. ..  ,- .. 'T .. - , " .. ,. .. ., .. .. I 

I I I I I I I .. j" .. -. " .. . - .. i' .. - . " .. i" .. "'i .. ..  

L .. J .. .. _I .. ..  L .. .J .. _ 1 _ .. L .. _I .. ..  1_ .. 1 .. _ I .. ..  L .. J .. ..  I 

d � .. � .. ..  :- .. T .. -: .. ..  :- .. � .. -: .. ..  � .. � .. ..  :- .. T .. -: .. ..  :- .. � .. -: .. ..  � .. � .. ..  
C r" " " " "  , - .. r .. -, .. ..  .- .. , .. - , "  .. r" .. ., .. ..  , - .. r .. -. .. ..  ,- .. 'T .. - , " "  .. ., .. ..  I 

b 
a I I I I I I I I I I I I I I I I I I 

.. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..  - _  .. .. .. .. .. .. .. .. .. .. .. .. ..  - _ .. .. a b c d e f g h j k m n o p  q r s  

In the end, we solved this hard problem with a very simple parity analysis. Of 
course, we first needed the insight of constructing a graph, and the crux move of defin­
ing the vertices and edges in a very clever way. The moral of the story: just about 
anything can be analyzed with graphs !  

Problems and Exercises 

In these problems, a graph is not a multigraph (no loops or multiple edges) unless specifically so 
stated. 

4.1.8 Show that every graph contains two vertices of 
equal degree. 

4.1.9 Given six people, show that either three are mu­
tual friends, or three are complete strangers to one an-

other. (Assume that "friendship" is mutual; i.e., if you 
are my friend then I must be your friend.) 

4.1.10 Seventeen people are at a party. It turns out 
that for each pair of people present, exactly one of 



the following statements is always true : "They haven 't  
met," "They are good friends," or "They hate each 
other." Prove that there must be a trio (3) of people, 
all of whom are either mutual strangers, mutual good 
friends, or mutual enemies. 

4. 1 .11  Show that if a graph has v vertices, each of de­
gree at least (v - 1 )  /2, then this graph is connected. 

4. 1.12 How many edges must a graph with n vertices 
have in order to guarantee that it is connected? 

4. 1.13 A large house contains a television set in each 
room that has an odd number of doors. There is  only 
one entrance to this house. Show that it is always pos­
sible to enter this house and get to a room with a tele­
vision set. 

4.1.14 A bipartite graph is one where the vertices can 
be partitioned into two sets U , v  such that each edge 
has one end in U and one end in V. The figure below 
shows two bipartite graphs. The one on the right is a 
complete bipartite graph and is denoted K4,3 . 

Show that a graph is bipartite if and only if it has no 
odd cycles. 

4.1.15 A group of people play a round-robin chess 
tournament, which means that everyone plays a game 
with everyone else exactly once (chess is a one-on-one 
game, not a team sport) .  There are no draws. 

(a) Prove that it is always possible to l ine up the 
players in such a way that the first player beat 
the second, who beat the third, etc . down to the 
last player. Hence it is always possible to de­
clare not only a winner, but a meaningful rank­
ing of all the players. 

(b) Give a graph theoretic statement of the above. 

(c) Must this ranking be unique? 

4.1.16 (USAMO 1 98 1 )  Every pair of communities in 
a county are linked directly by exactly one mode of 
transportation : bus, train or automobile. All three 
modes of transportation are used in the county with no 
community being serviced by all three modes and no 
three communities being linked pairwise by the same 
mode. Determine the maximum number of communi­
ties in the county. 
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4.1.17 A domino consists of two squares, each of 
which is marked with 0, 1 ,  2, 3 , 4, 5, or 6 dots. Here 
is one example. 

Verify that there are 28 different dominos. Is it possi­
ble to arrange them all in a circle so that the adjacent 
halves of neighboring dominos show the same num­
ber? 

4.1.18 Is it possible for a knight to travel around a 
standard 8 x 8 chessboard, starting and ending at the 
same square, while making every single possible move 
that a knight can make on the chessboard, exactly 
once? We consider a move to be completed if it oc­
curs in either direction. 

4.1.19 Cities el , e2 ,  . . .  , eN are served by airlines 
A " A2 , . . .  , A" .  There is direct non-stop service be­
tween any two cities (by at least one airline) ,  and all 
airlines provide service in both directions. If N � 
2" + 1 ,  prove that at least one of the airlines can of­
fer a round trip with an odd number of landings. 

4.1 .20 (IMO 1 99 1 )  Let G be a connected graph with 
k edges. Prove that the edges can be labeled I ,  . . .  , k 
in some fashion, such that for every vertex of degree 
greater than I ,  the labels of those edges incident to that 
vertex have greatest common divisor 1 . 
4.1.21 (USAMO 1 989) The 20 members of a lo­
cal tennis club have scheduled exactly 14 two-person 
games among themselves, with each member playing 
in at least one game. Prove that within this schedule 
there must be a set of six games with 12 distinct play­
ers. 

4.1.22 An n-cube is defined intuitively to be the graph 
you get if you try to build an n-dimensiom.l cube out of 
wire. More rigorously, it is a graph with 2" vertices la­
beled by the n-digit binary numbers, with two vertices 
joined by an edge if the binary digits differ by exactly 
one digit. Show that for every n � 1 ,  the n-cube has a 
Hamiltonian cycle. 

4.1 .23 Consider a 3 x 3 x 3 cube made out of 27 hol­
low subcubes. The subcubes are connected by doors 
on their faces (so every subcube has six doors, al­
though of course some cubes have doors that open to 
the "outside") . Is is possible to start at the center cube 
and visit every other cube exactly once? 
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4.1 .24 If you place the digits 0, I ,  I ,  0 clockwise on 
a circle, it is possible to read any two-digit binary num­
ber from 00 to I I  by starting at a certain digit and then 
reading clockwise. Is it possible to do this in general? 

4.1.25 In a group of nine people, one person knows 
two of the others, two people each know four others , 
four each know five others , and the remaining two each 
know six others. Show that there are three people who 
all know each other. 

4.1 .26 Devise a graph-theoretic recasting of De 

4.2 Complex N u m bers 

Bruijn's rectangle problem (Example 3 .4. 1 1 on 
page 98) . 
4.1.27 (Bay Area Mathematical Olympiad 2005) 
There are 1 000 cities in the country of Euleria, and 
some pairs of cities are l inked by dirt roads. It is pos­
sible to get from any city to any other city by traveling 
along these dirt roads .  Prove that the government of 
Euleria may pave some of these dirt roads so that ev­
ery city will have an odd number of paved roads lead­
ing out of it. 

Long ago you learned how to manipulate the complex numbers C, the set of numbers 
of the form a + bi, where a, b are real and i = R. What you might not have learned is 
that complex numbers are the crossover artist's dream: like light, which exists simulta­
neously as wave and particle, complex numbers are both algebraic and geometric. You 
will not realize their full power until you become comfortable with their geometric , 
physical nature. This in tum will help you to become fluent in translating between the 
algebraic and the geometric in a wide variety of problems. 

We will develop the elementary properties of complex numbers below mostly as 
a sequence of exercises and problems. This section is brief, meant only to open your 
eyes to some interesting possibilities .6 

Basic Operations 

4.2.1 Basic notation and representation of complex numbers. A useful way to depict 
complex numbers is via the Gaussian or Argand plane. Take the usual Cartesian 
plane, but replace the x- and y-axes with real and imaginary axes, respectively. We 
can view each complex number z = a + bi as a point on this plane with coordinates 
(a , b) . We call a the real part of z and write a = Re z. Likewise, the imaginary 
part Im z is equal to b. We can also think of Re z and Imz as the real and imaginary 
components of the vector that starts at the origin and ends at (a, b) . Hence the complex 
number z = a + bi has a double meaning : it is both a point with coordinates (a , b) 
and simultaneously the vector that starts at the origin and ends at (a, b) . Do keep in 
mind, though, that a vector can start anywhere, not just at the origin, and what defines 
a vector uniquely is its magnitUde and direction . The magnitude of the complex 
number z = a + bi is 

6For much more information, we strongly urge you to read at least the first few chapters of our chief inspi­
ration for this section, Tristan Needham 's Visual Complex Analysis [29] .  This trai l-blazing book is fun to read, 
beautifully i l lustrated, and contains dozens of geometric insights that you will find nowhere else. 
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which is, of course, the length of the vector from the origin to (a, b) . Other terms 
for magnitude are modulus and absolute value, as well as the more informal term 
"length," which we will often use. The direction of this vector is conventionally de­
fined to be the angle that it makes with the horizontal (real) axis, measured counter­
clockwise. This is called the argument of z, denoted arg z. Informally, we also call 
this the "angle" of z. If 0 = arg z, and r = I z l ,  we have 

z = r(cos 0 + i sin 0 ) .  
This i s  called the polar form of z .  A handy abbreviation for cos 0 + i sin 0 i s  Cis 0 ;  
thus we  write 

z = r Cis 0 .  
For example (all angles are i n  radians) , 

57 = 57 Cis O, - 1 2i = 1 2 Cis 
3; ,  1 + i = VlCiS � . 

bi 
a + bi 

a 

4.2.2 Conjugation . If z = a + bi, we define the conjugate of z to be 

z = a - bi. 

Geometrically, z is just the reflection of z about the real axis . 

4.2.3 Addition and Subtraction. Complex numbers add "componentwise," i .e . ,  

(a + bi) + (c + di) = (a + c) + (b + d) i . 

Geometrically, complex number addition obeys the "parallelogram rule" of vector ad­
dition: If z and w are complex numbers viewed as vectors , their sum z + w is the 
diagonal of the parallelogram with sides z and w with one endpoint at the origin. Like­
wise, the difference z - w is a vector that has the same magnitude and direction as the 
vector with starting point at w and ending point at z. Consequently, if Z l , Z2 , • . •  Zn are 
complex numbers that sum to zero, when drawn as vectors and placed end-to- end they 
form a closed polygon. 
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4.2.4 Multiplication. All algebraic manipulations of complex numbers follow the 
usual rules, with the additional proviso that j2 = - 1 .  Hence, for example, 

(2 + 3i) (4 + 5i) = 8 +  l 2i + l Oi + l 5P = -7 + 22i. 

A straightforward use of trigonometric identities verifies that if z = rCis a and w = 
s Cis f3 ,  then 

i .e . ,  

zw = (r Cis a ) (s Cis f3 ) = rs Cis (a + f3 ) ;  

The length of zw is the product of the lengths of z and w, and the angle of 
zw is the sum of the angles of z and w. 

This trigonometric derivation is a good exercise, but is not really illuminating. It 
doesn 't  really tell us why the mUltiplication of complex numbers has this satisfying 
geometric property. Here is a different way to see it. We will do a specific case: 
the geometric action of mUltiplying any complex number z by 3 + 4i. In polar form, 
3 + 4i = 5 Cis e ,  where e = arctan (4/3 ) , which is approximately 0.93 radians. 

1 .  Since i (a + bi) = -b + ai, it follows (draw a picture ! )  that 

"Multiplication by i" means "rotate by n/2 counterclockwise:' 

2 .  Likewise, if a is real , 

"Multiplication by a" means "expand by afactor of a." 

For example, multiplication of a complex vector z by 3 produces a new vector 
that has the same direction, but is three times as long. Multiplication of z by 1 15 
produces a vector with the same direction, but only 1 15 as long. 

3. Multiplying z by 3 + 4i = 5 Cis e means that z is turned into (3 + 4i)z = 3z + 4iz. 
This is the sum of two vectors, 3z and 4iz. The first vector is just z expanded by a 
factor of 3 .  The second vector is z rotated by 90 degrees counterclockwise, then 
expanded by a factor of 4. So the net result (draw a picture ! ! ! ) will be a vector 
with length 5 1 z 1  and angle e + arg z. 
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Clearly this argument generalizes to multiplication by any complex number. 

Multiplication by the complex number rCis e is a counterclockwise rota­
tion by e followed by stretching by the factor r. 

So we have a third way to think about complex numbers . Every complex number is 
simultaneously a point, a vector, and a geometric transformation, namely the rotation 
and stretching above ! 

4.2.5 Division. It is easy now to determine the geometric meaning of z/w, where 
z = rCis a and w = s Cis f3 . Let v = z/w = t Cis y. Then vw = z. Using the rules for 
multiplication, we have 

t s = r, y + f3 = a , 

and consequently 

Thus 

t = r/s, y = a - f3 . 

The geometric meaning of division by rCis e is clockwise rotation by e 
(counterclockwise rotation by - e)  followed by stretching by the factor 1 /  r. 

4.2.6 De Moivre 's Theorem. An easy consequence of the rules for multiplication and 
division is this lovely trigonometric identity, true for any integer n, positive or negative, 
and any real e : 

(cos e + i sin e t = cos ne + i sin ne .  

4.2.7 Exponential Form. The algebraic behavior o f  argument under multiplication and 
division should remind you of exponentiation. Indeed, Euler's formula states that 

Cis e = eiO , 

where e = 2 .7 1 828 . . . is the familiar natural logarithm base that you have encountered 
in calculus. This is a useful notation, somewhat less cumbersome than Cis e ,  and 
quite profound, besides. Most calculus and complex analysis textbooks prove Euler's 
formula using the power series for e,  sin x, and cosx, but this doesn 't really give much 
insight as to why it is true. This is a deep and interesting issue that is beyond the scope 
of this book. Consult [29] for a thorough treatment, and try Problem 4.2 .29 below. 

4.2.8 Easy Practice Exercises. Use the above to verify the following. 

(a) I zwl = I z l lw l and I z/w l = I z l / I w l . 

(b) Re z = ! (z + z) and 1m z = d:z (z - z) . 
(c) zz = Iz 1 2 . 
(d) The midpoint of the line segment joining the complex numbers z, w is (z + w) /2 .  

Make sure you can visualize thi s !  

(e) z + w  = z + w  and zw = zw and z/w = z/w. 
(f) ( 1 + i) l O = 32i and ( 1 - iv'3)5 = 1 6 ( 1 + iV3) . 

(g) Show by drawing a picture that z = {} ( 1 + i) satisfies z2 = i. 
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(h) Observe that if a E C and r E �, the set of points a + reit , where 0 ::; t ::; 21t', 
describes a circle with center at a and radius r. 

(i) Let a , b E  C. Prove-with a picture,  if possible-that the area of the triangle with 
vertices at O, a and b is equal to the one-half of the absolute value of Im (ab) . 

4.2.9 Less Easy Practice Problems. The following are somewhat more challenging. 
Draw careful pictures, and do not be tempted to resort to algebra (except for checking 
your work). 

(a) It is easy to "simplify" 

a - bi 
a + bi a2 + b2 

by multiplying numerator and denominator by a - bi. But one can also verify 
this without any calculation. How? 

(b) I z + w i  ::; I z l + Iw l , with equality if and only if z and w have the same direction or 
point in opposite directions, i .e .  if the angle between them is 0 or 1t'. 

(c) Let z lie on the unit circle; i .e . ,  I z l  = 1 .  Show that 

I l - z l = 2 sin ( ar;z ) 
without computation. 

(d) Let P(x) be a polynomial with real coefficients. Show that if z is a zero of P(x) , 
then z is also a zero; i .e . ,  the zeros of a polynomial with real coefficients come in 
complex-conjugate pairs. 

(e) Without much calculation, determine the locus for z for each of 

Re ( z - I - i ) = 0 and 1m ( z - 1 - i ) = O. z + l + i ' z + l + i 

(f) Without solving the equation, show that all nine roots of (z - I )  1 0 = z l O lie on 
the line Re ( z) = 1 .  

(g) Show that if I z l = I then 

(h) Let k be a real constant, and let a, b be fixed complex numbers . Describe the 
locus of points z that satisfy 

( z - a ) arg 
z - b 

= k. 

4.2.10 Grids to circles and vice versa . The problems below will familiarize you with 
the lovely interplay among geometry, algebra, and analytic geometry when you ponder 
complex transformations. The transformation that we analyze below is an example of 
a Mobius transformation. See [29] for more details. 

(a) Prove the following simple geometry proposition (use similar triangles) . 
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Let AB be a diameter oj a circle with diameter k. Consider a right 
triangle ABC with right angle at B. Let D be the point oj intersection 
(D of. A) oj line AC with the circle. Then 

AD . AC = k2 . 

(b) Consider the transformation J(z) = _
z
_ .  This is a function with complex do-

z - 1 
main and range. Here is computer output (using Mathematica) of what J(z) does 
to the domain (O :S Re (z) :s 2 , -2 :S  1m (z) :s 2) . The plot shows how J(z) trans­
forms the rectangular grid lines. Notice that J appears to transform the rectan­
gular Cartesian grid of the Gaussian plane into circles, all tangent at 1 [although 
the point 1 is not in the range, nor is a neighborhood about 1 ,  since z has to be 
very large in order for J(z) to be close to 1 ] . 

Verify this phenomenon explicitly, without calculation, for the imaginary axis. 

Prove that the function J(z) = _
z
_ transforms the imaginary axis into a circle 

z - 1 
with center at ( � ,  0) and radius � .  Do this two ways. 

1 . Algebraically. Let a point on the imaginary axis be it , where t is any real 
number. Find the real and imaginary parts of JUt ) ;  i .e ,  put J(it )  into the 
form x + yi. Then show that (x - 1 /2) 2 + y2 = 1 /4. 

2. Geometrically. First, show that J(z) is the composition of four mappings, 
in the following order: 

Z f---> - Z f---> -Z, z f---> z + l ,  Z f---> - . Z ' Z 
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In other words, if you start with z and then reciprocate, negate, translate by 
1 and then reciprocate again, you will get J (z ) . 
Next, use this "decomposition" of J(z) plus the geometry lemma that you 
proved above to show that every point z on the imaginary axis is mapped to 
a circle with diameter 1 with center at 1 /2. Draw a good diagram ! 

(c) The "converse" of (b) is true: not only does J(z) transform the Cartesian grid to 
circles, it transforms certain circles to Cartesian grid lines ! Verify this explicitly 
for the unit circle (circle with radius 1 centered at the origin) .  Show that J(z) 
turns the unit circle into the vertical line consisting of all points with real part 
equal to 1 /2. In fact, show that 

( i8 ) 1 1 . (J 
J e = 2" - 2" 1  cot "2 '  

As in (b) , do this in two different ways-algebraically and geometrically. Make 
sure that you show exactly how the unit circle gets mapped into this line. For 
example, it is obvious that - 1 is mapped to 1 /2. What happens as you move 
counterclockwise, starting from - 1  along the unit circle? 

Roots of Unity 

The zeros of the equation y;!l = 1 are called the nth roots of unity.  These numbers have 
many beautiful properties that interconnect algebra, geometry and number theory. One 
reason for the ubiquity of roots of unity in mathematics is symmetry: roots of unity, in 
some sense, epitomize symmetry, as you will see below. (We will be assuming some 
knowledge about polynomials and summation. If you are unsure about this material, 
consult Chapter 5 . ) 

,� • . • , . • . . - - - - - - - - _ _ _ , = c o s600 + i s i n 600 
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4.2. 11  For each positive integer n, there are n different nth roots of unity, namely 

1 , S' , S'2 , S'3 , . . .  , S'n- l , 

where 

S' = Cis 
2n

. 
n 

Geometrically, the nth roots of unity are the vertices of a regular n-gon that is inscribed 
in the unit circle (the set {z E C : I z l  = I } ) with one vertex at 1 . 

4.2. 12 Let S' = Cis 2:: as above. Then for each positive integer n, and for each complex 
number x, 

(a) xn - 1 = (x - 1 )  (x - S') (x - S'2 ) " . (x - S' n- l ) ,  
(b) xn- 1 +xn-2 + . . . + x +  1 = (x - S' ) (x - S'2 ) . . .  (x - S'n- l ) , 
(c) I + S' + S'2 + " . + S'n- l = o. 

Can you see why (c) is true without using the formula for the sum of geometric series? 

Some Applications 

We will conclude this section with a few examples of interesting use of complex num­
bers in several branches of mathematics, including trigonometry, geometry, and num­
ber theory. 

Example 4.2.13 Find a formula for tan (2a) . 

Solution : This can of course be done in many ways, but the complex numbers 
method is quite slick, and works easily with many other trig identities . The key idea is 
that if z = x +  iy, then tan (arg z) = y/x. Let t := tan a and 

Now square z, and we get 

But 

z = 1 + it . 

Z2 = ( 1 + it ) 2 = 1 - t2 + 2it . 

2 2t 
tan (arg z ) = --2 ' 1 - t 

and of course arg z2 = 2a, so we conclude that 

2 tan a 
tan 2a = 2 . 

I - tan a 
• 

Example 4.2.14 (Putnam 1 996) Let Cl and C2 be circles whose centers are 1 0  units 
apart, and whose radii are 1 and 3. Find, with proof, the locus of all points M for which 
there exist points X on C 1 and Y on C2 such that M is the midpoint of the line segment 
XY.  
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Solution: Our solution illustrates a useful application of viewing complex num­
bers as vectors for parametrizing curves in the plane. Consider the general case, illus­
trated in the figure below, of two circles situated in the complex plane, with centers at 
a, b and radii u , v, respectively. Notice that a and b are complex numbers, while u and 
v are real . We are assuming, as in the original problem, that v is quite a bit bigger than 
u. 

The locus we seek is the set of midpoints M of the line segments XY,  where X can be 
any point on the left circle and Y can be any point on the right circle. 

Thus, X = a + ueit and Y = b + veis , where t and s can be any values between 0 
and 2n. We have 

X + Y a + b  ueit + veis 
M = 

-2
- = -

2
- + 

2 
Let us interpret this geometrically, by first trying to understand what 

ueit + veis 

looks l ike as 0 :S s, t :S 2n. If we fix s, then P = veis is a point on the circle with radius 
v centered at the origin. Now, when we add ueit to P, and let t vary between 0 and 2n, 
we will get a circle with radius u,  centered at P (shown as a dotted line below). 

o -----'---..---1 

Now let s vary as well. The small dotted circle will travel all along the circumference 
of the large circle, creating an annulus or filled-in "ring." In other words, the locus of 
points 



is the annulus 

v - u :::; I z l :::; v + u  
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centered at the origin, i .e .  the set of points whose distance to the origin is between 
v - u and v + u. 

Now it is a simple matter to wrap up the problem. S ince 

a + h ueit + veis 
M =

-2- + 2 
our locus is an annulus centered at the midpoint of the line segment joining the two 
centers, i .e . ,  the point (a + h) /2. Call this point c. Then the locus is the set of points 
whose distance from c is between (v - u) /2 and (v + u) /2. (In general, the annulus 
need not be tangent to the circle on the right, as shown below.) _ 

G h -----i 

Example 4.2.15 (Putnam 2003) Let A ,  B and C be equidistant points on the circum­
ference of a circle of unit radius centered at 0, and let P be any point in the circle 's 
interior. Let a, h, c be the distances from P to A, B ,  C respectively. Show that there is 
a triangle with side lengths a, h, c, and that the area of this triangle depends only on 
the distance from P to O. 

Solution: This problem has a nice, elementary solution using complex numbers . 
The equilateral triangle ABC compels us to try cube roots of unity. We will just sketch 
the argument. Please fill in the details .  

1 .  We need to show that there actually is a triangle with side lengths a, b, c. Note 
that this may not be possible in general; for example, suppose a = h = 1 ,  c = 
1 0. Given three line segments of lengths a ,  b, c, one could test to see if they 
formed a triangle by physically moving the line segments around and placing 
them end-to-end to see if they could form a triangle. Use this physical intuition 
(and pictures, most likely) to prove the following lemma. 

Let Z I , Z2 , Z3 he complex numbers with 

IZ I I = a, IZ2 1 = b, IZ3 1 = c. 

Suppose there exist real numbers a, f3 with 0 :::; a, f3 < 2n such that 

Z I + eiaZ2 + eif3 Z3 = O. 



1 30 CHAPTER 4 THREE I M PORTANT C ROSSOVER TACTICS 

Then there is a triangle with side lengths a, b, c. 
2. Let 00 = e27r:i/3 . Without loss of generality, let 0 = 0 (i .e . ,  let the center of the 

circle be placed at the complex origin), and set A = 1 ,  B = 00, C = 002 , and 
p = z, where z is an arbitrary point in the complex plane satisfying Iz l < 1 .  

3 .  Use ( 1 )  to verify that there is a triangle with the indicated side lengths. You 
will need to pick your a,  f3 carefully, but you should use the playwright Anton 
Chekhov 's famous quote for inspiration : "If a gun is on the fireplace mantle in 
the first act, it must go off in the third." 

4. Finally, compute the area of the triangle, using the simple formula you derived 
on page 1 24, and show that this area depends only on Iz l , the distance from P 
to O. 

Example 4.2.16 Let m and n be integers such that each can be expressed as the sum of 
two perfect squares. Show that mn has this property as well. For example, 1 7  = 44 + 1 
and 1 3  = 22 + 32 and, sure enough, 

1 7 · 1 3 = 22 1 = 1 42 + 52 . ( 1 )  

Solution : Let m = a2 + b2 , n = c2 + d2 , where a, b ,  c ,  d are integers . Now con­
sider the product 

z := (a + bi) (c + di) . 

Note that 

I z l = l (a + bi) l l c + di l = V(a2 + b2 ) (c2 + d2 ) . 

Therefore mn = I z 1 2 . But I z l 2 will be a sum of squares of integers, since Re z and Imz 
are integers . Not only does this prove what we were looking for; it gives us an algo­
rithm for computing the values in the right-hand side of equations such as ( 1 ) . • 

Our final example is a surprising problem that shows how roots of unity can be 
used to create an invariant. 

Example 4.2.17 (Jim Propp) Given a circle of n lights, exactly one of which is initially 
on, it is permitted to change the state of a bulb provided one also changes the state of 
every dth bulb after it (where d is a a divisor of n strictly less than n), provided that all 
n/d bulbs were originally in the same state as one another. For what values of n is it 
possible to tum all the bulbs on by making a sequence of moves of this kind? 

Solution : The insight here is to realize that this is not a problem about lights, but 
about roots of unity 

1 , S , S2 , . . .  , Sn- l , 
where S = cos 2:: + i sin 2:: .  Place each light on the unit circle located at a root of 
unity and, without loss of generality, let the light at 1 be on initially. Now, if d < n is 
a divisor of n and the lights at 

Sa , Sa+d , Sa+2d , . . . , Sa+ ( � - l )d 
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have the same state , then we can change the state of these n/ d lights. The sum of these 
is 

sa + sa+d + sa+2d + . . .  + sa+ ( � - l )d = Sa ( 1 + Sd + S2d + . . .  + S ( il - 1 )d ) . 
The terms in parentheses in the right-hand side form a geometric series that sums easily 
and the right-hand side simplifies to 

This surprising fact tells us that if we add up all the roots of unity that are "on," the 
sum will never change, since whenever we change the state of a bunch of lights, they 
add up to zero ! The original sum was equal to 1 ,  and the goal is to get all the lights 
turned on. That sum will be 

1 + S + S2 + . . .  + Sn- l = 
1 - Sn 

= � = 0 =F 1 . 
1 - S 1 - S 

Hence we can never tum on all the lights ! • 

Problems and Exercises 

4.2.18 Use complex numbers to derive identities for 
cos na and sin na, for n = 3 , 4, 5 .  

4.2.19 Test your understanding of Example 4.2. 1 6. 
Given that 17 = 42 + I and 1 0 1 = 1 02 + I ,  mentally 
calculate integers u ,  v such that 1 7 . 1 0 I = u2 + v2 . 

4.2.20 Prove (without calculation, if you can ! )  that 

. .  ( t - s ) . ( H/ ) 
e'l + e'S = 2 cos 2 e' T . 

4.2.21 Show that if x +  � = 2 cos a, then for any inte­
x 

ger n, 

I � + - = 2 cos na . 
xn 

4.2.22 Find (fairly) simple formulas for sin a + 
sin 2a + sin 3a + . . . + sin na and cos a + cos 2a + 
cos 3a + · · ·  + cosna . 
4.2.23 Factor z5 + z + I .  

4.2.24 Solve z6 + z4 + z3 + z2 + I = o. 
4.2.25 Let n be a positive integer. Find a closed-form 
expression for 

. n . 2n . 3n . (n - I ) n  
sm - sm - sm - · · · sm . n n n n 

4.2.26 Consider a regular n-gon that is inscribed in a 
circle with radius I .  What is the product of the lengths 
of all n(n - 1 ) /2 diagonals of the polygon (this in­
cludes the sides of the n-gon)? 

4.2.27 (USAMO 1 976) If P(x) , Q (x) , R (x) , S (x) are 
all polynomials such that 

P(x5 ) + xQ(x5 ) + x2R (x5 ) = (x4 + x3 + x2 + x + I )S(x) ,  

prove that x - I is a factor of P(x) . 

4.2.28 The set of points (x, y) that satisfies x3 - 3xyZ 2: 
3x2y - y3 and x + y = - I is a line segment. Find its 
length. 

4.2.29 (T. Needham) Try to derive Euler's formula 
eil = cos t + i sin t in the following way : 

(a) Assume that the function f(t ) = eil can be dif­
ferentiated with respect to t "in the way that you 
would expect"; in other words, that !, (t ) = ieil . 
(Note that this is not automatic ,  since the range 
of the function is complex ; you need to define 
and check lots of things,  but we will avoid that 
for now-this is an intuitive argument ! )  

(b) I f  you view the variable t as time, and the func­
tion f(t ) as tracing a curve in the complex 
plane, the equation f' (t ) = ieil has a rate-of-
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change interpretation. Recall that mUltiplica­
tion by i means "rotate by 90 degrees counter­
clockwise." Show that this implies that f(t ) is a 
c ircular path. 

(c) Think about the speed at which this circular 
curve t >--> f (t ) is being traced out, and concl ude 
that eit = cos t + i sin t . 

4.2.30 Let Ra ( e )  denote the transformation of the 
plane that rotates everything about the center point a 
by e radians counterclockwise. Prove the interesting 
fact that the composition of Ra ( e )  and Rb (l/J ) is an­
other rotation Rc ( a) .  Find c , a in terms of a, h, e, I/J .  
Does this agree with your intuition? 

4.2.31 Show that there do not exist any equi lateral tri ­
angles in the plane whose vertices are lattice points 
(integer coordinates) .  

4.2.32 Show that the triangle with vertices a, b, c in 
the complex plane is equilateral if and only if 

a2 + h2 + c2 = ah + hc + ca . 
4.2.33 Find necessary and sufficient conditions for the 
two roots of z2 + az + h = 0, plus 0, to form the vertices 
of an equilateral triangle. 

4.2.34 (T. Needham) Draw any quadrilateral, and on 
each side draw a square lying outside the given quadri­
lateral . Draw line segments joining the centers of op­
posite squares. Show that these two line segments are 
perpendicular and equal in length. 

4.2.35 (T. Needham) Let ABC be a triangle, with 
points P, Q, R situated outside ABC so that triangles 
PAC, RCB, QBA are similar to one another. Then the 
centroids (intersection of medians) of ABC and PQR 
are the same point. 

4.2.36 (T. Needham) Draw any triangle, and on each 
side draw an equilateral triangle lying outside the 
given triangle. Show that the centroids of these three 
equilateral triangles are the vertices of an equilateral 
triangle. (The centroid of a triangle is the intersection 
of its medians; it is also the center of grav ity. ) If the 

4.3 Generating Functions 

vertices of  a triangle are the complex numbers a, h, c, 
the centroid is located at (a + h + c)/3 . 
4.2.37 (Hungary 1 94 1 )  Hexagon ABCDEF is in­
scribed in a circle. The sides AB, CD, and EF are all 
equal in length to the radius. Prove that the midpoints 
of the other three sides are the vertices of an equilateral 
triangle. 

4.2.38 (lMO proposal) Let n be a positive integer hav­
ing at least two distinct prime factors. Show that there 
is a permutation (a l , a2 , . . . , an ) of ( l , 2 , . . . , n ) such 
that 

± k cos 
2nak = o. 

k= 1 n 
4.2.39 For each positive integer n, define the polyno­
mial 

Do the zeros of Pn lie inside, outside, or on the unit 
circle I z l = I ?  

4.2.40 (Putnam 1 998) Let s be any arc of the unit cir­
cle lying entirely in the first quadrant. Let A be the 
area of the region lying below s and above the x-axis 
and let B be the area of the region lying to the right of 
the y-axis and to the left of s. Prove that A + B depends 
only on the arc length, and not on the position, of s. 
4.2.41 Ptolemy's Theorem. Let a, h, c, d  be four arbi­
trary complex numbers. Verify the identity 

(a - c) (h - d) = (a - c) (c - d) + (h - c) (a - d) .  
Apply the triangle inequality to deduce Ptolemy's In­

equality from plane geometry (not involving complex 
numbers) :  For any four points A ,B ,C ,D in the plane, 

AC · BD "5. AB · CD +BC ·  DA , 
with equality if and only if the quadrilateral ABCD is 
convex and cyclic ( i .e . ,  is inscribed in a circle) .  The 
equality part, more commonly called Ptolemy's The­
orem, is the trickiest part of this problem. For other 
ways to prove this, see Problems 8 .4.30 and 8 .5 .49. 

The crossover tactic of generating functions owes its power to two simple facts. 

• When you multiply xn by Xl , you get xn+n . 
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• "Local" knowledge about the coefficients of a polynomial or power series f(x) 
often provides "global" knowledge about the behavior of f(x) , and vice versa. 

The first fact is trivial, but it is the technical "motor" that makes things happen, for 
it relates the addition of numbers and the multiplication of polynomials. The second 
fact is deeper, and provides the motivation for doing what we are about to do. 

Introductory Examples 

Before we do anything, though, we need to define our subject. Given a (possibly 
infinite) sequence aO , a )  , a2 , . . .  , its generating function is 

ao + a )x + a2x2 + . . . . 
Here are a few simple examples .  We are assuming that you have a basic understanding 
of sequences, polynomials, and simple summation formulas (Chapter 5), combina­
torics and the binomial theorem (Chapter 6), and infinite series (Chapters 5 and 9). 
If you need to brush up in these areas, you may want to just skim this section now 
and then reread it later. We do not recommend that you avoid this section altogether, 
because the idea of generating functions is so powerful . The sooner you are exposed 
to it, the better. 

Example 4.3. 1 Let I = ao = a )  = a2 = . . . . Then the corresponding generating func­
tion is just 

I + X +� +X3 + . . . . 

This is an infinite geometric series which converges to _
1
_ ,  provided that Ix l < 1 I - x 

(see page 1 60). In general, we don 't worry too much about convergence issues with 
generating functions. As long as the series converges for some values, we can usually 
get by, as you will see below. 

The infinite geometric series used above is ubiquitous in the world of generating 
functions . Make a note of it; we shall call it the geometric series tool . Remember that 
it works both ways: you probably have practice summing infinite geometric series, but 
here 's an example of the reverse direction. Study it carefully. 

_x_ = x = (!) (x _ !� + �x3 _ �x4 + . . .  ) 
2 +x  2 ( 1 - (- 1x) ) 2 2 22 23 . 

Example 4.3.2 For a fixed positive integer n, define the sequence ak = (:) , k = 
0, 1 , 2 , . . .  , n. The corresponding generating function is 

(2) 

by the binomial theorem. If we plug x = 1 into (2), we get the nice identity 
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This identity can of course be proven in other ways (and you should know some of 
them; if not, consult Section 6.2) ,  but notice that our method is both easy and easy to 
generalize. If we let x = - 1 ,  we get a completely new identity, 

These two examples of plugging in a value to get an identity are typical of the 
"local +-+ global" point of view. Globally, the generating function is just the simple 
function ( 1  + x)n . We can plug in any values that we want. But each time we plug in 
a value, we get a new statement involving the coefficients (�) (the local information). 
The key is to move the focus back and forth between the function and its coefficients, 
to get useful information. 

Example 4.3.3 Plugging in values is just one of the global things we can do. Let 's try 
differentiation ! If we differentiate both sides of (2), we get 

Now, if we plug in x = 1 ,  we get the interesting identity 

Recurrence Relations 

So far, we have not used the simple fact mentioned on page 1 32, that xn xn = xn+m. 

Let us do so now, by using generating functions to analyze recurrence relations (see 
Section 6.4 for examples) . 

Example 4.3.4 Define the sequence (an ) by ao = 1 and an = 3an- l + 2 for n = 1 , 2 , . . . . 
Find a simple formula for an . 

Solution : There are several ways to tackle this problem; indeed, the simplest 
approach-one that any problem solver should try first-is to work out the first few 
terms and guess. The first few terms are (verify ! )  

1 , 5 , 1 7 , 53 , 1 6 1 , 485 , . . .  , 

which may lead an inspired guesser (who knows her powers of 3) to conjecture that 
an = 2 . 3n - 1 ,  and this is easy to prove by induction. 

Let 's look at an alternate solution, using generating functions. It is much less 
efficient for this particular problem than the "guess and check" method above, but it 
can be applied reliably in many situations where inspired guessing won 't help. Let 

f(x) :=  ao + a lx + a2.x2 + . . .  = 1 + 5x + 1 7.x2 + . . . 

be the generating function corresponding to the sequence (an ) .  Now look at 

xf(x) = aox +  a 1.x2 + a22 + . . . . 
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This is the generating function of the original sequence, but shifted. In other words, 
the coefficient of XZ in f(x) is an , while the coefficient of XZ in xf(x) is an- I .  Now we 
make use of the relationship between an and an- I .  Since an - 3an- I = 2 for all n 2 I ,  
we have 

f(x) - 3xf(x) = ao + 2(x +� +x3 + . . . ) . 

That looks ugly, but the expression in parentheses on the right-hand side is just an 
infinite geometric series. Thus we have (remember, ao = I )  

2x 
f(x) - 3xf(x) = 1 + 

I - x
. 

The left-hand side is f(x) ( 1  - 3x) , so we can easily solve for f(x) , getting 

1 2x 
f(x) = 

1 - 3x 
+ 

( I - x) ( 1  - 3x) 
x + I 

( 1 - x) ( 1  - 3x) · 

Our goal is somehow to recover the coefficients when f(x) is expanded in a power 
series. If the denominators were just ( 1  - x) or ( 1  - 3x) , we could use the geometric 
series tool . Partial fractions 7 comes to the rescue, yielding 

x + I 
f(x) = 

( l - x) ( 1 - 3x) 
2 

1 - 3x I - x 

Using the geometric series tool on the first term, we get 

And since 

we get 

1 2 1 
-- = I +x + x  + .r + . . .  , 
I - x 

f(x) = 2( 1 + 3x + 32� + 33x3 + . . .  ) - ( 1  + x + � +x3 + . . .  ) 
= 1 + (2 · 3  - I )x + (2 . 32 - I )� + (2 . 33 - 1 )x3 + . . .  , 

from which it follows immediately that an = 2 · 3n - 1 . • 

This method was technically messy, since it involved using the geometric-series 
tool repeatedly as well as partial fractions. But don 't get overwhelmed by the tech­
nical details-it worked because mUltiplying a generating function by x produced the 
generating function for the "shifted" sequence. Likewise, dividing by x will shift the 
sequence in the other direction. These techniques can certainly be used for many kinds 
of recurrences. 

7 If you don't remember this technique, consult any calculus text. The basic idea is  to write ( I �ti 3x) = 
4 + I�X and solve for the unknown constants A and B. 
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Partitions 

Consider the following polynomial product: 

P(x) := (2 + 3x + 1 ) (2 + 2x + 1 )  = x4 + 5x3 + 82 + 5x +  1 . 

How did we compute the coefficient of:xk in P(x) ? For example, the X2 term is the sum 

2 . 1 + 3x . 2x + 1 · 2 = 8x2 , 

so the coefficient is 8 .  In general , to find the :xk term of P(x) , we look at all pairings of 
terms, where one term comes from the first factor and the other comes from the second 
factor and the exponents add up to k. We multiply the pairs , and then add them up, and 
that is our answer. 

Now let us rewrite P(x) as 

(x2 + x + x + x +  1 ) (2 + x + x +  1 ) . (3) 

The product will be unchanged, of course, so for example, the X2 term is still 8X2 . This 
corresponds to the sum 

2 · 1 +x · x +x · x + x · x + x · x + x · x + x · x +  1 · 2 . 

All that really matters here are the exponents; we can list the pairings of exponents by 
the sums 

2 + 0, 1 + 1 , 1 + 1 , 1 + 1 , 1 + 1 , 1 + 1 , 1 + 1 , 0 + 2, 

and all we need to do is count the number of sums (there are eight). Here 's another 
way to think of it. Imagine that the first factor of (3) is colored red and the second 
factor is colored blue. We can reformulate our calculation of the X2 coefficient in the 
following way: 

Assume that you have one red 2 ,  three red 1 s and one red 0; and one 
blue 2, two blue 1 s and one blue O.  Then there are eight different ways 
that you can add a red number and a blue number to get a sum of 2 .  

At  this point, you are probably saying, "So what? ," so  i t  i s  time for an example. 

Example 4.3.5 How many distinct ordered pairs (a, b) of non-negative integers satisfy 

2a + 5b = 1 00? 

Solution : Look at the general case : Let Un be the number of nonnegative ordered 
pairs that solve 2a + 5b = n. Thus Uo = 1 , U I = 0, U2 = 1 , etc . We need to find U IOO . 
Now define 

A (x) = 1 + x2 +x4 +x6 +x8 + " ' , 
B (x) = 1 + x5 +xlO +x1 5 +20 + " ' , 

and consider the product 

A (x)B (x) = ( 1 +2 +x4 + . .  · ) ( 1  +� +xlO + . . .  ) 

= 1 + x2 +x4 +x5 +x6 +x7 +x8 +x9 + 2x1O + . . . . 
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We claim that A (x)B (x) is the generating function for the sequence Uo , U l , U2 , '  . . . This 
isn 't hard to see if you pondered the "red and blue" discussion above: After all , each 
term in A (x) has the form x2a where a is a nonnegative integer, and likewise, each term 
in B(x) has the form �b. Hence all the terms in the product A (x)B (x) will be terms 
with exponents of the form 2a + 5b. Each different pair (a , b) that satisfies 2a + 5b = n 
will produce the monomial XZ in the product A (x)B (x) . Hence the coefficient of XZ will 
be the number of different solutions to 2a + 5b = n. 

Now we use the geometric-series tool to simplify 

Thus 

1 
A (x) = 

1 - x2 and 
1 

B (x) = --5 ' 
I - x 

1 2 3  
( 2 ) (  5 ) = UO + U 1X + U2X + U3X + . . . . 1 - x I - x 

(4) 

In an abstract sense, we are "done," for we have a nice form for the generating 
function. But we haven 't the slightest idea what U I OO equals ! This isn ' t  too hard to 
find. By inspection, we can compute 

Uo = U2 = U4 = Us = U6 = U7 = 1 and U l  = U3 = O. 

Then we transform (4) into 

1 = ( 1  - x2 ) ( 1  - Y ) ( Uo + U 1 x + U2x2 + U3x3 + . . .  ) 
= ( 1  - x2 - Y + x 7 ) ( Uo + U 1 x + U2x2 + U3x3 + . . .  ) . 

(5) 

The l' coefficient of the product of the terms on the right-hand side must be zero 
(if k > 0) . Multiplying out, this coefficient is 

So for all k > 7, we have the recurrence relation 

(6) 

It is a fairly simple, albeit tedious, exercise to compute U I OO by using (5) and (6) . For 
example, 

etc . If you play around with this, you will find some shortcuts (try working back­
ward, and/or make a table to help eliminate some steps), and eventually you will get 
U 100 = 1 1 . • 

The next example does not concern itself with computing the coefficient of a gen­
erating function, but rather solves a problem by equating two generating functions­
one ugly, one pretty. 
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Example 4.3.6 Let n be any positive integer. Show that the set of weights 

1 , 3 , 32 , 33 , 34 , . . .  

grams can be used to weigh an n-gram weight (using both pans of a scale) , and that 
this can be done in exactly one way. 

Solution: For example, if n = 1 0, the n-gram weight is balanced by a I -gram 
weight and a 9-gram weight. The corresponding arithmetic fact is 

1 0 = 1 + 32 . 

If n = 73,  the n-gram weight is joined by a 9-gram weight on one pan, which is bal­
anced by an 8 I -gram weight and a I -gram weight. This corresponds to the statement 

73 + 32 = 34 + 1 ,  

which is equivalent to 

We will be done if we can show that for any positive integer n it is possible to write 
n as a sum and/or difference of distinct powers of 3, and that this can be done in exactly 
one way. It is sort of like base-3 ,  but not allowing the digit 2, and instead admitting the 
"digit" - 1 .  Indeed, playing around with this idea can lead to an algorithm for writing 
n as a sum/and or difference of powers of 3, but it is hard to see why the representation 
will be unique. 

Here 's a generatingfunctionological8 approach: Consider the function 

II (x) := ( 1  +x+x- I ) ( I + x3 + x-3 ) .  
The two factors of II each contain the exponents 0 ,  1 ,  - 1 ,  and 0, 3 ,  -3 ,  respectively. 
When II is multiplied out, we get 

II (x) = 1 +x + x- I +x3 +x4 +x2 +x-3 +x-2 +x-4 . (7) 

Every integer exponent from -4 to 4, inclusive, is contained in this product, and each 
term has a coefficient equal to 1 .  Each of these nine terms is the result of choosing 
exactly one term from the first factor of II and one term from the second factor, and 
then multiplying them (adding their exponents). In other words, the exponents in (7) 
are precisely all possible ways of combining the two numbers 1 and 3 with additions 
and/or subtractions and/or omissions. (By "omissions," we mean that we don 't have 
to include either 1 or 3 in our combination. For example, the combination "+3" omits 
1 . ) 

Let 's move on. Consider 

Jz (x) := ( 1  + x +[ 1 ) ( 1  +x3 +x-3 ) ( I  + x32 +x-3\ 

8The tenn "generatingfunctionology" was coined by Herbert Wilf, in his book of the same name [47] .  We 
urge the reader at least to browse through this beautifully written textbook, which, among its many other channs, 
has the most poetic opening sentence we 've ever seen (in a math book) .  Incidentally, [43] and [38] also contain 
excellent and very clear matenal on generating functions. 
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When multiplied out, each of the resulting 3 . 3 . 3 = 27 terms will be of the form x!1 , 
where a is a sum and/or difference of powers of 3 .  For example, if we mUltiply the 
third term of the first factor by the first term of the second factor by the second term of 
the third factor, the corresponding term in the product is 

(x- I ) ( I ) (x9 ) = x9- 1 . 
What we would like to show, of course, is that the terms in the expansion of h all have 
coefficient 1 (meaning no duplicates) and range from - ( 1  + 3 + 9) to +( 1  + 3 + 9)  
inclusive (meaning that every positive integer between 1 and 13  can be represented as 
a sum/difference of powers of 3) .  We can certainly verify this by mUltiplying out, but 
we seek a more general argument. Recall the factorization (see page 1 48) 

u3 - v3 = (u - v) (  u2 + uv + v2 ) . 
Applying this to the factors of h ,  we have 

h(x) = (xZ +;+ I ) (x6+;:+ I ) (xI 8 +
x
�9 + 1 ) 

I (x3 - I ) (x9 - I ) (xZ7 - I ) = x · x3 . x9 x - I x3 - I x9 - I 
. 

After canceling, we are left with 

and thus 

_ _ I (xZ7 - I ) _ xZ6 +xZ5 + . . .  + x+ I h (x) - 1 3 I - 1 3 ' x x - x 

h (x) = xl3 +x1 2 + . . .  +x+ I +x- I +x-2 + . . .  +x- 1 3 , 

which is just what we wanted. We have shown that the weights I ,  3 ,  9 allow us to 
weigh any positive (or negative ! )  integer n less than than or equal to 1 3 ,  and in exactly 
one way (since the coefficients all equal I ) . 

then 

The argument generalizes, of course . For example, if 

= 
_I (xZ7 - I ) (xZ ·27 +x27 + I ) 
x1 3 x - I x27 

I (xZ7 - I ) (x8 1 - I ) = x13 · x27 � x27 - I 

= _1 (�) 
x40 x - I . 
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Now it is clear that the weights 1 , 3 , 32 , . . .  , 3r can be used to weigh any integral 
value from 1 to (Y - 1 ) /2, in exactly one way. As r � 00, we get the limiting case, a 
beautiful identity of generating functions: 

• 

Our final example is from the theory of partitions of integers, a subject first inves­
tigated by Euler. Given a positive integer n, a partition of n is a representation of n 
as a sum of positive integers . The order of the summands does not matter, so they are 
conventionally placed in increasing order. For example, 1 + 1 + 3 and 1 + 1 + 1 + 2 are 
two different partitions of 5 . 
Example 4.3.7 Show that for each positive integer n, the number of  partitions of  n into 
unequal parts is equal to the number of partitions of n into odd parts. For example, if 
n = 6, there are four partitions into unequal parts, namely 

1 + 5 , 1 + 2 + 3 , 2 + 4, 6 . 

And there are also four partitions into odd parts, 

1 + 1 + 1 + 1 + 1 + 1 , 1 + 1 + 1 + 3 , 1 + 5 ,  3 + 3 . 

Solution : Let Un and Vn denote the number of partitions of n into unequal parts 
and odd parts, respectively. It takes practice thinking in a generatingfunctionological 
way, but by now you should have no trouble verifying (even if you had trouble coming 
up with it) that 

U (x) := ( 1  +x) ( 1  +�) ( 1 +x3 ) ( 1  +x4 ) ( 1 +x» . . .  

is the generating function for (un ) . For example, the x6 term in U (x) is equal to 

x . x5 +x .� · x3 +� · x4 +x6 = 4x6 . 
Notice that it is impossible to get a term like � . � ;  i .e . ,  the generating function pre­
vents repeated parts in the partition. 

If you are comfortable with U (x) (please do ponder it until it becomes "obvious" 
to you that it is the correct generating function), you should try to construct V (x) , the 
generating function for (vn ) . The parts can be duplicated, but they all must be odd. For 
example, if we wanted to include the possibility of zero, one, or two 3s in a partition, 
the factor ( 1  +� +x6 ) would do the trick, since x6 = x2-3 plays the role of "two 3s ." 
Following this reasoning, we define the generating function 

V (x) := ( 1 +x+x2 +x3 + . .  · ) ( 1  +x3 +x6 +x9 + . . .  ) ( 1  +x> +xlO +x1 5 + . . .  ) . . . . 
Now, all that "remains" to be done is show that U (x) = V (x) . The geometric series 

tool provides an immediate simplification, yielding 

V (x) =  - -- -- -- . . . ( 1 ) (  1 ) (  1 ) (  1 ) I - x 1 - x3 l - x5 1 - x7 . 
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U (x) = ( 1 +x) ( 1 +x2 ) ( 1  +x3 ) ( 1  +x4 ) ( 1 +x5 ) . . .  

= ( \�:) C =�:) C =�:) ( �  =�) Cl �:50) . . . .  
Notice that in this last expression, we can cancel out all the terms of the form ( 1 _�k ) , 
leaving only 

1 
-( l---x-) (-I---x3=-)-( 1-_-x-=-5 )-( 1-_-x-=7-) .-. . 

= V (x) . • 

Problems and Exercises 

4.3.8 Prove that for any positive integer n, 

4.3.9 Prove that for any positive integers k < m ,  n, 

� 
(�) ( 

m 
.) = (

n + m

) . f;:o J k - J k 

4.3.10 Use generating functions to prove the formula 
for the Fibonacci series given in Problem 1 .3 . 1 8  on 
page 10. 
4.3.1 1  Reread Example 4.3.6. Prove formally by in­
duction that if 

then 

Jr (x) := ( I  + x+[ 1 ) ( 1  +x3 +x-3 ) x 

( I  +�2 +[32 ) . . .  ( I  +�' + x-3' ) ,  

Jr (x) = x" +x"- I + . . .  +x2 + x+ I 
+ x- I +x-2 + . . . + x-a , 

where a = (3'+ 1 - 1 ) /2. 

4.3.12 Here is an alternative way to end Exam­
ple 4.3.7: Show that F (x) is equal to I for all x, where 

F (x) := ( l - x) ( 1  +x) x 

( I -� ) ( I  +�) x 

( I  _ x5 ) ( 1  +� ) x 

( I - x7 ) ( 1  +x4 ) x 

Here are suggestions for two different arguments: 

I .  Try induction by looking at the expansion of the 
first 2n terms of F (x) . It won 't equal I ,  but it 
should equal something that does not have any 
xl< terms for "small" k. The idea is to show that 
as n grows, you can guarantee that there are no 
xl< terms for k = 1 , 2 , . . .  , L, where L is some­
thing that grows as n grows. That does it !  

2 .  Show that F (x) is invariant under the substitu­
tion x >-> x2 • Then keep iterating this substitu­
tion (you may also want to note that the expres­
sions only converge when Ix l < I ) . 

4.3.13 (Putnam 1 992) For nonnegative integers n and 
k, define Q(n , k) to be the coefficient of xl< in the ex­
pansion of ( I  + x+ x2 +� )n . Prove that 

Q(n , k) = ± (�) (k �2 .) . }=o J J 
4.3. 14 Show that every positive integer has a unique 
binary (base-2) representation. For example, 6 is rep­
resented by 1 10 in binary, since I ·  22 + I . 2 1 +0 . 20 = 
6. (This uniqueness can be proven in several ways; you 
are urged to try generating functions here, of course . )  

4.3. 15 The Root oj Unity Filter. Let S = Cis 2: be an 
nth root of unity (see page 126) . 

(a) Show that the sum 

1 + Sk + S2k + S3k + . . .  + S (n- I )k 

equals n or 0, according to whether k is a multi­
ple of n or not. 

In/2J 
( ) (b) Find a simple formula for the sum }: ; . . 

} =o J 
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In/3J ( ) 
(c) Find a simple fonnula for the sum � ; . . 

}=o } 
(d) Generalize ! 

4.3.16 (Leningrad Mathematical Olympiad 1 99 1 )  A 
finite sequence a t , a2 , . . . , an is called p-balanced if 
any sum of the fonn ak + ak+p + ak+2p + . . .  is the 
same for any k = 1 , 2 , . . .  , p. Prove that if a se­
quence with 50 members is p-balanced for each of 
p = 3 , 5 , 7 ,  I I , 1 3 ,  1 7, then all its members are equal 
to zero. 

4.3. 17 Let p( n ) denote the number of unrestricted par­
titions of n. Here is a table of the first few values of 
p (n ) . 

n p (n ) The different sums 
I I 

2 2 1 + 1 , 2  
3 3 1 + 1 + 1 , 1 + 2 , 3 
4 5 I + I + I + I ,  I + I + 2, I + 3 , 2 + 2 , 4  
5 7 I + I + I + I + I ,  I + I + I + 2, 

I + I + 3 , I + 2 + 2, 2 + 3 , I + 4, 5  
Let f(x) be the generating function for p (n ) [ in other 
words, the coefficient of x* in f(x) is p(k) ] .  Explain 
why 

00 I 
f(x) = D I - xn · 

4.3.18 Show that the number of partitions of a posi­
tive integer n into parts that are not multiples of three 
is equal to the number of partitions of n in which there 
are at most two repeats. For example, if n = 6, then 
there are 7 partitions of the first kind, namely 

I + I + I + I + I + I ,  I + I + I + I + 2 , 
1 + 1 + 2 + 2 , 1 + 1 + 4, 1 + 5 , 
2 + 2 + 2 , 2 + 4; 

and there are also 7 partitions of the second kind, 

1 + 1 + 4, 1 + 1 + 2 + 2 , 1 + 2 + 3 , 
1 + 5 , 2 + 4, 3 + 3 , 6 . 

Can you generalize this problem? 

4.3.19 In how many ways can you make change for 
a dollar, using pennies, nickels, dimes, quarters, and 
half-dollars? For example, 1 00 pennies is one way; 
20 pennies, 2 nickels, and 7 dimes is another. Order 
doesn't matter. 

4.3.20 The function ( l - x - x2 - x3 _ x4 - .r; _ x6 ) - t 

is the generating function for what easily stated se­
quence? 

4.3.21 A standard die is labeled 1 , 2 , 3 , 4 , 5 , 6  (one in­
teger per face). When you roll two standard dice, it is 
easy to compute the probability of the various sums. 
For example, the probability of rolling two dice and 
getting a sum of 2 is just 1 /36, while the probability 
of getting a 7 is 1 /6. 

Is it possible to construct a pair of "nonstandard" 
dice (possibly different from one another) with posi­
tive integer labels that nevertheless are indistinguish­
able from a pair of standard dice, if the sum of the dice 
is all that matters? For example, one of these non­
standard dice may have the label 8 on one of its faces, 
and two 3 's . But the probability of rolling the two and 
getting a sum of 2 is still 1 /36, and the probability of 
getting a sum of 7 is still 1 /6. 
4.3.22 Alberto places N checkers in a circle. Some, 
perhaps all, are black; the others are white. (The dis­
tribution of colors is random.)  Betiil places new check­
ers between the pairs of adjacent checkers in Albertos 
ring : she places a white checker between every two 
that are the same color and a black checker between 
every pair of opposite color. She then removes Alber­
tos original checkers to leave a new ring of N checkers 
in a circle. 

Alberto then perfonns the same operation on 
Betiils ring of checkers following the same rules. The 
two players alternately perfonn this maneuver over 
and over again. 

Show that if N is a power of two, then all the 
checkers will eventually be white, no matter the ar­
rangement of colors Alberto initially puts down. Are 
there any interesting observations to be made if N is 
not a power of two? 



Chapter 5 

Algebra 

You probably consider yourself an old hand at algebra. Nevertheless, you may have 
picked up some bad habits or missed a few tricks in your mathematical education. 
The purpose of this chapter is reeducation : We shall relearn algebra from the problem 
solver's perspective. 

Algebra, combinatorics , and number theory are intimately connected. 
Please read thefirst/ew sections o/Chapters 6 and 7 concurrently with 
this chapter. 

5.1 Sets, Numbers,  and Functions 

This first section contains a review of basic set and function notation, and can probably 
be skimmed (but make sure that you understand the function examples that begin on 
page 1 45) .  

Sets 

Sets are collections of elements. If an element x belongs to (is an element of) a set A 
we write x E A.  Sets can be collections of anything (including other sets) .  One way to 
define a set is by listing the elements inside brackets, for example, 

A = {2 ,  3, 8, Vi} .  

A set can contain no elements at all ; this is the empty set 0 = { } .  
Recall the set operations U (union) and n (intersection) .  We define A UB to be the 

set each of whose elements is contained either in A or in B (or in both) . For example, 

{ 1 , 2 , 5 } U { I , 3 , 8 } = { 1 , 2 , 3 , 5 , 8 } .  

Similarly, we define A n B to be the set whose elements are contained i n  both A 
and B, so for example, 

{ 1 , 2 , 5 } n { 1 , 3 , 8 } = { I } . 

If all elements of a set A are contained in a set B, we say that A is a subset of B 
and write A C B. Note that A C A and 0 C A for all sets A .  

1 43 
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We can define "subtraction" for sets in the following natural way: 

A - B := {a E A : a � B} ;  

i n  other words, A - B is the set o f  all elements o f  A which are not elements o f  B .  
Two fundamental sets are the natural numbers N := { I ,  2 ,  3 , 4 , . . .  } and the inte­

gers Z := {O , ± I , ±2 , ±3 ,  ±4, . . .  } . I 

Usually, there is a larger "universal" set U that contains all the sets under our 
consideration. This is usually understood by context. For example, if the sets that we 
are looking at contain numbers, then U equals Z, JR, or C. When the universal set U is 
known, we can define the complement A of the set A to be "everything" not in A; i .e . ,  

A := U - A .  

For example, i f  U = Z and A consists o f  all even integers, then A would consist o f  all 
the odd integers . (Without knowledge of U ,  the idea of a set complement is mean­
ingless; for example, if U was unknown and A was the set of even integers, then the 
elements that are "not in A" would include the odd integers, the imaginary numbers, 
the inhabitants of Paris, the rings of Saturn, etc . )  

A common way to define a set is with "such that" notation. For example, the set 
of rational numbers Q is the set of all quotients of the form alb such that a, b E Z 
and b of. O. We abbreviate "such that" by " I " or " :" ;  hence 

Q := { �  : a , b E Z, b of. O} . 

Not all numbers are rational. For example, .j2 is not rational, which we proved 
on page 42. This proof can be extended, with some work, to produce many (in fact, 
infinitely many) other irrational numbers . Hence there is a "larger" set of values on the 
"number line" that includes Q. We call this set the real numbers JR. One can visualize 
JR intuitively as the entire "continuous" set of points on the number line, while Q and 
Z are respectively "grainy" and "discrete" subsets of JR.2 

Frequently we refer to intervals of real numbers. We use the notation [a, b] to 
denote the closed interval {x E JR : a :s x :s b} .  Likewise, the open interval (a, b) is 
defined to be {x E JR : a < x < b} .  The hybrids [a , b) and (a, b] are defined analogously. 

Finally, we extend the real numbers by adding the new element i, defined to be the 
square root of - 1 ;  i .e . ,  j2 = - 1 .  Including i among the elements of JR produces the set 
of complex numbers C, defined formally by 

C := {a + bi : a , b E JR} .  

The complex numbers possess the important property of  algebraic closure. This 
means that any finite combination of additions, subtractions, multiplications, divisions 
(except by zero) and extractions of roots, when applied to a complex number, will re­
sult in another complex number. None of the smaller sets N, Z, Q or JR has algebraic 

I The letter "Z" comes from the German zahlen, which means "number." 
2There are many rigorous ways of defining the real numbers carefully as an "extension" of the rational num­

ben,. See, for example, Chapter I in [361 .  
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closure. The natural numbers N are not closed under subtraction, Z is not closed under 
division, and neither Ql nor JR is closed under square roots. 

Given two sets A and B (which may or may not be equal) ,  the Cartesian product 
A x B is defined to be the set of all ordered pairs of the form (a, b) where a E A and 
b E  B. Formally, we define 

A x B := { (a , b) : a E A , b  E B} . 

For example, if A = { I ,  2, 3 }  and B = {Paris ,  London} ,  then 

A x B = { (  I ,  Paris) , (2 ,  Paris) , ( 3 ,  Paris) , ( 1 ,  London) , (2 ,  London) ,  ( 3 ,  London) } .  

Functions 

Given two sets A and B, we can assign a specific element of B to each element of A .  
For example, with the sets above, we  can assign Paris t o  both 1 and 2 ,  and London to 
3. In other words, we are specifying the subset 

{ (  1 , Paris) , (2 ,  Paris) , ( 3 ,  London) }  

of A x B. 
Any subset of A x B with the property that each a E A is paired with exactly one 

b E  B is called a function from A to B.  Typically, we write I :  A ---+ B to indicate the 
function whose name is 1 with domain set A and range in the set B. We write I(a) to 
indicate the element in B that corresponds to a E A, and we often call I{a) the image 
of a. Informally, a function 1 is just a "rule" that assigns a B-value I(a) to each A­
value a. Here are several important examples that also develop a few more concepts 
and notations. 

Squaring Define 1 : JR ---+ JR by I(x) = x2 for each x E JR. An alternate no­

tation is to write x !---* x2 or x L x2 . Notice that the range of 1 is not all of JR, 
but just the non-negative real numbers . Also notice that I{x) = 9 has two so­
lutions x = ±3. The set { 3 ,  -3 }  is called the inverse image of 9 and we write 
1- 1 (9) = { 3 , - 3 } .  Notice that an inverse image is not an element, but a set, 
because in general , as in this example, the inverse image may have more than 
one element. 
Cubing Define g : JR ---+ JR by x !---* x3 for each x E JR. In this case, the range is 
all of JR. We call such functions onto. Moreover, each inverse image contains 
just one element (since the cube root of a negative number is negative and the 
cube root of a positive number is positive). Functions with this property are 
called I-to-l (the function 1 above is 2-to- l ,  except at 0, where it is I -to- 1 ) . A 
function like g, which is both I -to- l and onto, is also called a 1-1 correspon­
dence or a bijection . 

Exponentiation and Logarithms Fix a positive real number b i= 1 .  Define 
h : JR ---+ JR by h (x) = lr for each x E JR. The range is all positive real numbers 
(but not zero), so h is not onto. On the other hand, h is I -to- l ,  for if y > 0, then 
there is exactly one solution x to the equation lr = y. We call this solution the 
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logarithm 10gbY' For example, if b = 3, then log3 8 1  = 4 because x = 4 is the 
unique3 solution to 3x = 8 1 .  

Now consider the function x � logbx. Verify that the domain is the positive 
reals, and the range is all reals .  
Floors and Ceilings For each x E JR, define the floor function Lx J to be the 
greatest integer less than or equal to x (another notation for Lx J is [xl , but this 
is somewhat old-fashioned). For example, L3 .7J = 3, L2J = 2, L -2 .4J = -3 .  
Likewise, the ceiling function IX 1 is defined to  be  the smallest integer greater 
than or equal to x. For example, 13 . 1 1 = 4, 1 - 1 . 21 = - 1. For both functions, 
the domain is JR and the range is Z. Both functions are onto and neither is 
1 -to- l .  In fact, these functions are oo-to- l ! 
Sequences If the domain of a function / is the natural numbers N, then the 
range values will be / ( 1 ) , / (2 ) , / (3 ) , . . . . Sometimes it is more convenient to 
use the notation 

/1 ' /2 ' /3 , . . .  , 

in which case the function is called a sequence. The domain need not be N 
precisely; it may start with zero, and it may be finite. Sometimes an infinite 
sequence is denoted by (Ii ) r ,  or sometimes just by (Ii ) .  Since the subscript 
takes on integer values, the conventional letters used are i , j, k , l , m, n.4 

Indicator Functions Let U be a set with subset A .  The indicator function 
of A is denoted by lA and is a function with domain U and range {O, I }  defined 
by 

1 
( ) -

{ O if x Ii A ,  
A x - I if x E A ,  

for each x E U.  For example, i f  U = N and A i s  the set of primes, then lA (9) = ° 
and lA ( 1 7 ) = 1 .  

Problems and Exercises 

5.1 .1  Let A , B  respectively denote the even and odd 
integers (remember, 0 is even). 

(a) Is there a bijection from A to B? 

(b) Is there a bijection from Z to A? 

5.1 .2 Prove that for any sets A , B ,  

(a) 1A (X) lB (X) = 1AnB (X) , 

(b) I - lA (x) = 1X(x) .  

In  other words, the product of two indicator func­
tions is the indicator function of the intersection of the 

two sets, and the indicator function of a set's comple­
ment is the difference of I and the indicator function 
of that set. 

5.1.3 True or false and why: 0 = {0} 

5.1.4 Prove the following "dual" statements, which 
show that, in some sense, both the rational and irra­
tional numbers are "grainy." 

(a) Between any two rational numbers there is an 
irrational number. 

3 If we include complex numbers, the solution is no longer unique. See [29] for more information. 
4 In the pioneering computer programming language FORTRAN, integer variables had to begin with the letters 

I, J, K, L, M, or N (the mnemonic aid was "INteger.") 



(b) Between any two irrational numbers there is a 
rational number. 

5.1.5 The number of elements of a set is called its 
cardinality. The cardinality of A is usually indicated 
by IA I or #A. If IA I = m and IB I = n, then certainly 
IA x BI = mn. How many different functions are there 
from A to B? 

5.1.6 (AIME 1 984) The function f : Z --+ Z satisfies 
f(n) = n - 3 if n � 1000 and f(n) = f(f(n + 5 ) ) if 
n < 1 000. Find f(84) . 
5.1.7 (AIME 1 984) A function f is defined for all real 
numbers and satisfies 

f(2 +x) = f(2 - x) and f(7 +x) = f(7 - x) 
for all real x. If x = 0 is a root of f(x) = 0, what is 
the least number of roots f(x) = 0 must have in the 
interval - 1000 :$ x :$ 1000? 
5.1.8 (AIME 1 985) How many of the first 1 000 posi· 
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tive integers can be expressed in the form 

l2xJ + l4xJ + l6xJ + l8xJ ? 
5.1.9 True or false and why: l JfxJJ = l v'xJ for all 
non·negative x. 
5.1.10 Prove that for all n E N, 

5. 1 . 1 1  Try Problem 2.4. 1 9 on page 60. 
5.1.12 Find a formula for the nth term of the sequence 

1 , 2 , 2 , 3 , 3 , 3 , 4 , 4 , 4 , 4 , 5 , 5 , 5 , 5 , 5 , . . .  
where the integer m occurs exactly m times. 

5.1.13 Prove that 

l n;,20 J + l n;t J + l n;t J + . . . + l n +2:n- ' J = n 

for any positive integer n. 

Algebra is commonly taught as a series of computational techniques. We say "compu­
tational" because there really is no conceptual difference between these two exercises: 

l .  Compute 42 x 57.  
2. Write (4x + 2) (5x + 7)  as a trinomial. 

Both are exercises of routine, boring algorithms. The first manipulates pure numbers 
while the second manipulates both numbers and symbols. We call such mind-numbing 
(albeit useful) algorithms "computations." Algebra is full of these algorithms, and you 
have undoubtedly practiced many of them. What you may not have learned, however, 
is that algebra is also an aesthetic subject. Sometimes one has to slog through messy 
thickets of algebraic expressions to solve a problem. But these unfortunate occasions 
are pretty rare. A good problem solver takes a more confident approach to algebraic 
problems. The wishful thinking strategy teaches her to look for an elegant solution. 
Cultivate this mind set: employ a light, almost delicate touch, keeping watch for oppor­
tunities that avoid ugly manipulations in favor of elegant, often symmetrical patterns. 
Our first example illustrates this . 

Example 5.2.1 If x + y = xy = 3 ,  find x3 + y3 . 

Solution : One way to do this problem-the bad way-is to solve the system 
xy = 3 , x  + y = 3 for x and y (this would use the quadratic formula, and the solutions 
will be complex numbers) and then substitute these values into the expression x3 + y3 . 
This will work, but it is ugly and tedious and messy and surely error-prone. 

Instead, we keep a light touch. Our goal is x3 + y3 , so let 's try for x2 + i as a 
penultimate step. How to get x2 + i? Try by squaring x +  y. 
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32 = (X +y)2 = � + 2xy+l , 
and since .xy = 3, we have � + y2 = 3 . Consequently, 

3 · 3 =  (x + y) (� +l) = .J +�y+.xy2 +l = x3 +l +.xy(x+y) . 
From this, we conclude that 

which is rather surprising . 
Incidentally, what if we really wanted to find out the values of x and y? Here is an 

elegant way to do it. The equation x + y = 3 implies (x + y)2 = 32 , or 

� + 2xy+l = 9. 
Since .xy = 3, we subtract 4.xy = 1 2  from this last equation, getting 

x2 - 2.xy +l = -3 . 
This is a perfect square, and taking square roots gives us 

x - y =  ±iV3. 
This equation is particularly useful , since it is given that x + y = 3 . Adding these 
two equations immediately gives us x = (3 ± iV3) /2, and subtracting them yields 
y = (3 � iV3) /2. Our two solutions for (x, y) are ( 3 + iV3 3 - iV3) ( 3 - iV3 3 + iV3) . • 2 ' 2 ' 2 ' 2 

The Factor Tactic 

Multiplication rarely simplifies things. Instead, you should 

Factor relentlessly. 
The following are basic formulas that you learned in an algebra class. Make sure 

that you know them actively, rather than passively. Notice how Formula 5 .2.4 instantly 
solves Example 5 .2 . 1 ! 

5.2.2 (x +y) 2 = x2 + 2.xy+y2 . 
5.2.3 (x - yf = x2 _ 2xy +y2 . 
5.2.4 (x +  y) 3 = x3 + 3x2y + 3.xy2 + y3 = x3 + y3 + 3.xy(x +  y) . 
5.2.5 (x - y)3 = � - 3x2y + 3.xy2 - y3 = x3 - y3 - 3.xy(x - y) . 
5.2.6 � - y2 = (x - y) (x +  y) . 
5.2.7 XZ - yn = (x - y) (XZ- 1 +XZ-2y + XZ-3y2 + . . .  + yn- l ) for all n. 
5.2.8 XZ + yn = (x + y) (XZ- 1 - XZ-2y+ XZ-3y2 - . . .  + yn- l ) for all odd n (the terms of 
the second factor alternate in sign) .  
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Many problems involve combinations of these fonnulas, along with basic strate­
gies (for example, wishful thinking) ,  awareness of symmetry, and the valuable add 
zero creatively tool.5 Here is an example. 

Example 5.2.9 Factor x4 + 4 into two polynomials with real coefficients. 

Solution : If it weren 't for the requirement that the factors have real coefficients, 
we could just treat x4 + 4 as a difference of two squares (Fonnula 5 .2.6) and obtain 

x4 + 4  = x4 - (-4) = (� ) 2 - (2i) 2 = (� + 2i) (� - 2i) . 
While we cannot use the difference-of-two-squares method directly, we should not 
abandon it just yet, since the expression at hand contains two perfect squares. Un­
fortunately, it is not a difference of two perfect squares. But there are other possible 
perfect squares, and our expression nearly contains them. Use wishful thinking to 
make more perfect squares appear, by adding zero creatively. 

x4 + 4  = x4 + 4x2 + 4 - 4� . 
This was the crux move, for now we have 

x4 + 4� + 4 - 4� = (� + 2)2 - (2x) 2 = (x2 + 2x + 2) (x2 - 2x + 2) . 
This instructive example shows that you should always look for perfect squares, and 
try to create them if they are not already there. 

Manipulating Squares 

Also well worth remembering is how to square a trinomial, not to mention more com­
plicated polynomials. 

Know how to create and recognize perfect squares . 
Toward this end, please leam the following fonnulas actively, not passively ! 

5.2.10 (x + y + z)2 = x2 + y2 + z2 + 2.xy + 2xz + 2yz. 
5.2.11  (x +y + z + w)2 = x2 +y2 + z2 + w2 + 2xy + 2xz + 2xw + 2yz + 2yw + 2zw. 
5.2.12 Completing the square. 

a2 a2 ( a ) 2 ( a
) 2 � +ax = � + ax+ 4 - 4 = x+ 2" - 2" . 

Ponder the completing-the-square fonnula above. One way to "discover" it is by 
recognizing the perfect square that begins with x2 + ax, and then adding zero cre­
atively. Another approach uses simple factoring, followed by an attempt to sym­
metrize the tenns, plus adding zero creatively : 

� + ax  = x(x + a) = (x +  � - �) 
(x +  � + �) = (x+ �r - ( �r · 

5The sister to the add zero creatively tool is the multiply cleverly by one tool. 
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The tactic of extracting squares includes many tools in addition to completing 
the square. Here are a few important ideas. 

5.2.13 (x - y)2 + 4.xy = (x + y)2 . 
5.2.14 Replacing the variables in the equation above by squares yields 

(� -i)2 + 4�i = (x2 +i)2 , 
which produces infinitely many Pythagorean triples; i .e . ,  integers (a, b , c) that satisfy 
a2 + b2 = c2 . (In a certain sense, this method generates all Pythagorean triples. See 
Example 7 .4 .3 on page 242. )  

5.2.15 The following equation shows that if each of two integers can be written as the 
sum of two perfect squares, then so can their product: 

(x2 +i) (a2 + b2 ) = (xa - by)2 + (ya + bx)2 . 
For example, 29 = 22 + 52 and 1 3  = 22 + 32 , and, indeed, 

29 . 1 3  = 1 1 2 + 1 62 . 
It is easy enough to see how this works, but why is another matter. For now, hindsight 
will work: remember that many useful squares lurk about and come to light when 
you manipulate "cross-terms" appropriately (making them cancel out or making them 
survive as you see fit). For a "natural" explanation of this example, see Example 4.2. 1 6  
o n  page 1 30. 

Substitutions and Simplifications 

The word "fractions" strikes fear into the hearts of many otherwise fine mathematics 
students. This is because most people, including those few who go on to enjoy and 
excel at math, are subjected to fraction torture in grade school, where they are required 
to complete long and tedious computations such as 

"S . l " f "  
I 1 0  x2 I I  

Imp I y 
X _ I 

+ 1 7 - x - 1 - 5x + 3 ·  
You have been taught that "simplification" is to combine things in "like terms." 

This sometimes simplifies an expression, but the good problem solver has a more 
focused, task-oriented approach, motivated by the wishful thinking strategy. 

Avoid mindless combinations unless this makes your expressions sim­
pler. Always move in the direction of greater simplicity and/or symme­
try and/or beauty (the three are often synonymous) . 

(There are, of course, exceptions. Sometimes you may want to make an expression 
uglier because it then yields more information. Example 5 .5 . 1 0  on page 1 75 is a good 
illustration of this . ) 

An excellent example of a helpful substitution (inspired by symmetry) was Exam­
ple 3 . 1 . 1 0 on page 69, in which the substitution y = x + 1 /  x reduced the 4th-degree 
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equation x4 + x3 + x2 + x + 1 = 0 to two quadratic equations. Here are a few more 
examples. 

Example 5.2. 16 (AIME 1 983) What is the product of the real roots of the equation 

y. + 1 8x + 30 = 2Jx2 + 1 8x + 45? 

Solution : This is not  a very hard problem. The only real obstacle to immediate 
solution is the fact that there is a square root. The first thing to try, then, is to eliminate 
this obstacle by boldly substituting 

y = Jx2 + 1 8x + 45 . 
Notice that if x is real , then y must be non-negative. The equation immediately simpli­
fies to 

i - 15 = 2y, 
which factors nicely into (y - 5 ) (y +  3 ) = O. Reject the root y = -3 (since y must be 
non-negative) ;  substituting the root y = 5 back into the original substitution yields 

x2 + 1 8x + 45 = 52 
or 

y. + 1 8x + 20 = O. 

Hence the product of the roots is 20, using the relationship between zeros and coeffi­
cients formula (see page 1 68) . • 

Example 5.2. 17 (AIME 1 986) Simplify 

( Vs + J6 + 0) ( Vs + J6 - 0) ( Vs - J6 + 0) ( -Vs + J6 + 0) . 
We could mUltiply out all the terms, but it would take a long time, and we'd probably 
make a mistake. We need a strategy. If this expression is to simplify, we will probably 
be able to eliminate radicals . If we multiply any two terms, we can use the difference 
of two squares formula (5 .2.6) and get expressions which contain only one radical. For 
example, the product of the first and second terms is 

( Vs + J6 + 0) ( Vs + J6 - 0) = ( Vs + J6) 2 _ ( 0) 2 

Likewise, the product of the last two terms is 

= 5 + 6 + 2v'30- 7  
= 4 + 2v'30. 

(0+ (Vs- J6) )  (0 - (Vs - J6) )  = 7 - (5 - 2v'30+6) = -4 + 2v'30. 

The final product, then, is 

(4 + 2v'30) ( -4 + 2v'30) = 4 ·  30 - 1 6 = 104. • 
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Example 5.2.18 (AIME 1 986) Solve the system of equations 

2x1 +X2 +X3 +X4 +x5 = 6 
Xl + 2x2 +X3 +X4 +X5 = 1 2  
Xl +X2 + 2x3 +X4 +X5 = 24 

Xl +X2 +X3 + 2x4 +X5 = 48 

Xl +X2 +X3 +X4 + 2x5 = 96. 

Solution: The standard procedure for solving systems of equations by hand is to 
substitute for and/or eliminate variables in a systematic (and tedious) way. But notice 
that each equation is almost symmetric ,  and that the system is symmetric as a whole. 
Just add together all five equations; this will serve to symmetrize all the coefficients : 

6 (Xl +X2 +X3 +X4 +X5 ) = 6 ( 1 + 2 + 4 + 8 + 1 6 ) , 
so 

Xl +X2 +X3 +X4 +X5 = 3 1 . 
Now we can subtract this quantity from each of the original equations to immediately 
get Xl = 6 - 3 1 , X2 = 1 2  - 3 1 ,  etc . _ 

You have seen the define a function tool in action in Example 3 .3 .8 on page 89 
and in Example 5 .4.2 on page 1 67 . Here is another example, one that also employs a 
large dose of symmetry. 

Example 5.2.19 Show, without multiplying out, that 

b - c c - a a - b  (a - b) (b - c) (a - c) 
-- + -- +-- = . 

a b c  abc 

Solution: Even though it is easy to mUltiply out, let us try to find a more elegant 
approach. Notice how the right-hand side factors . We can deduce this factorization by 
defining 

b - c c - x x - b 
f(x) := -

x
- + -

b
- + -

c
- ' 

Notice that f(b) = f(c) = O. By the factor theorem, if we write f(x) as a quotient of 
polynomials 

f(x) = P
b
(x) 

, X c 
then P(x) must have X - b and X - c as factors. Also, it is clear that P(x) has degree 3 . 
Plugging in  X = a into f(x) , we conclude that 

b - c  c - a a - b  (a - b) (a - c)R(a) 
-

a
- + -

b
- + -

c
- = 

abc ' 

where R(x) is a linear polynomial. By symmetry, we could also define the function 

x - c c - a a - x g (x) := - +-+-, 
a X c 
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and we have g (a) = g(e) = 0, yielding the factorization 

b - e e - a a - b  (b - a) (b - e)Q(a) 
-a- +-b- + -e- = abc ' 

where Q(x) is a different linear polynomial. We conclude that 

b - e  e - a a - b ( (a - b) (b - e) (e - a) ) --+--+-- =K , a b c abc 
for some constant K. Plugging in values (for example, a = 1 ,  b = 2 ,  e = 3) establishes 
that K = - 1 .  • 

Example 5.2.20 (Putnam 1 939) Let x3 + b;(2 + ex + d = 0 have integral coefficients 
and roots r, s, t. Find a polynomial equation with integer coefficients written in terms 
of a, b, e, d whose roots are r3 , s3 , t3 . 

Solution: An incredibly ugly way to do this would be to solve for r, s, t, in terms 
of a, b, e and then construct the cubic polynomial (x - r3 ) (x - s3 ) (x - t3 ) .  Instead we 
define p(x) := x3 + b;(2 + ex + d and note that 

p(�) = 0  
is satisfied by x = r3 , s3 , t3 . We must thus convert 

into an equivalent polynomial equation. Cubing comes to mind, but what should we 
cube? Cubing anything but a binomial is too painful. If we put the radicals on one side 
and the non-radicals on the other, we have 

( 1 )  

and now cubing both sides will remove all of the radicals. We shall employ the more 
useful form of 5 .2.4, which states that 

(x +y) 3 = x3 +y3 + 3xy(x +y) , 

and cubing both sides of ( 1 )  yields 

_ (x + d) 3 = (b�9)3 + (e�)3 + 3b�e�(b� + e�) 
= b3;(2 + e3x + 3bex(b�+ e�) . 

On the surface, this does not look like much of an improvement, since the right- hand 
side still contains radicals. But ( 1 )  allows us to substitute - (x + d) for those pesky 
radicals ! Our equation becomes 

_ (x + d)3 = b3.x2 + e3x - 3bex(x + d) , 

a cubic with integral coefficients. • 
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Example 5.2.21 (AIME 1 986) The polynomial 1 - x +x2 - ..J  + . . . + xI 6 _ xI 7 may 
be written in the form ao + a ly + a2y2 + a3y3 + . . .  + aI 6y I 6 + a17yI 7 , where y = x+ 1 
and the aiS are constants. Find the value of a2 . 

Solution: Using our active knowledge of the factorization formulas, we recognize 
immediately that 

1 8 1 1 _ x+� _ x3 + . . .  +xI6 _ xI 7 = _ x -
. x - ( - l )  

(Alternatively, we could have used the formula for the sum of a geometric series .) 
Substituting y = x + 1 ,  we see that the polynomial becomes6 

_ (Y _ 1�I 8 - 1 
= _ � (y 1 8 _ (\8) y I 7 + C;) y I6 _ . . .  + 1 - 1) 
= _y1 7 + (\8) y I6 - . . .  + C�)i - C!)y + C�) · 

Thus 

• 

The following problem appeared in the 1 972 IMO. Its solution depends on sym­
metry and the careful extraction of squares, but more than anything else, on confidence 
that a reasonably elegant solution exists. It is rather contrived, but quite instructive. 

Example 5.2.22 Find all solutions (XI , X2 , X3 , X4 , X5 ) of the system of inequalities 

(xi - X3X5 ) (X� - X3X5 ) � 0 
(� - X4XI ) (.xi - X4XI ) � 0 
(x� - X5X2 ) (� - X5X2 ) � 0 
(x� - XIX3 ) (X� - XIX3 ) � 0 
(x� - X2X4 ) (xi - X2X4 ) � 0 

where Xl , X2 , X3 , X4 , X5 are real numbers . 

Solution : This problem is pretty intimidating, but notice that it is cyclically sym­
metric: each inequality has the form 

(xT - Xi+2Xi+4 ) (xT+ I - Xi+2Xi+4 ) , 
where the indices are read modulo 5 .  For example, if i = 3 ,  then the inequality becomes 

(x� - X5X2 ) (X� - X5X2 ) � O. 

When the left-hand sides are multiplied out, we will get a total of 20 terms: all 
m = 10 "perfect square" terms of the form qX] (i -I- j) as well as 1 0 "cross-terms," 

five of the form -qxi+ IXi+3 and five of the form -qxi+2Xi+4 . 

6 If you are not famil iar with the binomial theorem, read Section 6. 1 .  
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These tenns look suspiciously like they came from squares of binomials . For 
example, 

(XIX2 - XIX4 ) 2 = xTx� - 2xTx2X4 +xT� 

produces two of the perfect square tenns and one cross-tenn. Our strategy : Write the 
sum of left-hand sides in the fonn 

1 ( 2 2 2 ) "2 Y I +Y2 + · · · + Y I O , 

where each Yk produces a different cross-tenn, and all the perfect square terms are 
exactly duplicated. And indeed, after some experimentation, we have 

s 
o � }:. (x7 - Xi+2Xi+4 ) (x7+ 1 - Xi+2Xi+4 ) 1= 1 

1 � ( 2 2) = "2 4.  (XiXi+ 1 - XiXi+3 ) + (Xi- IXi+ 1 - Xi- IXi+3 ) . 

1= 1 
Since we have written 0 as greater than or equal to a sum of squares, the only solution 
is when all the squares are zero, and this implies that 

XI = X2 = X3 = X4 = Xs · 
Consequently, the solution set to the system of inequalities is 

{ (u , u , u , u , u ) : u E lR} .  • 

The final example looks at a tricky inequality. We don 't solve it, but a nice substi­
tution makes it at least somewhat more tractable. 

Example 5.2.23 (IMO 1 995) Let a, b , e  be positive real numbers such that abc = 1 . 
Prove that 

Partial Solution : We will not solve this problem just yet, but point out an alge­
braic simplification that must be done. What is the worst thing about this problem? It 
is an inequality involving fairly ugly fractions. Wishful thinking tells us that it would 
be nicer if the fractions either were less ugly or did not exist at all .  How can this be 
achieved? There is a pretty obvious substitution - but only obvious if you have the 
idea of substitution in the forefront of your consciousness. The substitution is 

X = 1 la ,y = 1 /b , z  = l ie, 
which transfonns the original inequality (use the fact that xyz = 1) into 

x2 y2 z2 3 
-+- +-- > - .  y + z  z +x x+ y - 2 

This inequality is still not that easy to deal with, but the denominators are much less 
complicated, and the problem has been reduced in complexity. See Example 5 .5 .23 
for continuation. 
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Problems and Exercises 

5.2.24 (AIME 1 987) Find 3.?l if x, y are integers 
such that l + 3x2l = 30x2 + 5 17 . 
5.2.25 Find all positive integer solutions (x, y) to 

(a) x2 - l = 20. 
(b) xy + 5x + 3y = 200. 

5.2.26 (Mathpath 2006 Qualifying Quiz) Suppose 
that a, b, c ,  d are real numbers such that 

Show that 

a2 + b2 = I 
c2 + d2 = I 
ac + bd = 0. 

a2 + c2 = I 
b2 + d2 = I 
ab + cd = 0 . 

This problem can get very messy, but doesn 't have to. 
Strive to find an elegant and complete solution. 

5.2.27 (AIME 1 988) Find the smallest positive inte­
ger whose cube ends in 888 (of course, do this without 
a calculator or computer) . 

5.2.28 Find the minimum value of xy + yz + xz, given 
that x, y, z are real and x2 + l + z2 = 1 .  No calculus, 
please ! 

5.2.29 (AIME 1 99 1 )  Find x2 + l if x, y E N  and 

xy + x+ y = 7 1 ,  .?y +xi = 880. 
5.2.30 Find all integer solutions (n , m) to 

n4 + 2n3 + 2n2 + 2n + I = m2 . 

5.3 Sums and Products 

Notation 

5.2.31 (AIME 1 989) Assume that XI , X2 , . . .  , X7 are 
real numbers such that 

Xl + 4X2 + 9X3 + 1 6x4 + 25x5 + 36x6 + 49x7 = I 
4Xl + 9X2 + 1 6x3 + 25x4 + 36x5 + 49x6 + 64X7 = 1 2  
9Xl + 1 6x2 + 25x3 + 36x4 + 49x5 + 64X6 + 8 1x7 = 1 23 . 
Find the value of 

5.2.32 Show that each number in the sequence 

49, 4489, 444889, 44448889, . . . 
is a perfect square. 

5.2.33 (Crux Mathematicorum, June/July 1 978) Show 
that n4 - 20n2 + 4 is composite when n is any integer. 

5.2.34 If x2 + l + z2 = 49 and X + y + z = x3 + y3 + 
z3 = 7, find xyz. 
5.2.35 Find all real values of X that satisfy ( 1 6x2 -
W + (9x2 - 1 6) 3 = (25x2 - 25) 3 . 
5.2.36 Find all ordered pairs of positive integers (x,y ) 
that satisfy x3 - y3 = 72 1 .  
5.2.37 (Crux Mathematicorum, April 1 979) Deter­
mine the triples of integers (x, y, z) satisfying the equa­
tion 

x3 + y3 + z3 = (x + y + z)3 . 
5.2.38 (AIME 1 987) Compute 

( 1 04 + 324) (224 + 324) · · ·  (584 + 324) 
(44 + 324) ( 1 64 + 324) . . .  (524 + 324) . 

The upper-case Greek letters L (sigma) and II (pi) are used respectively for sums 
n n 

and products. We abbreviate the sum XI + X2 + . . . + xn by ,6 Xi · Likewise, [lXi 

indicates the product XIX2 " · Xn • The variable i is called the index, and can of course 
be denoted by any symbol and assume any upper and lower limits, including infinity. 
If the indices are not consecutive integers, one can specify them in other ways. Here 
are a few examples. 
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• � d2 = 1 2 + 22 + 52 + 1 02 , since d l l O  underneath the summation symbol means 
lito 
"d ranges through all divisors of 1 0." 

f1 p2 4 9 25 49 . .  7 • -- = - . - . - . - . . .  an mfimte product 
p pnme p2 - 1 3 8 24 48 ' 

. 

• }: /(i , j) = /(3 , 4) + /(3 , 5 )  + /(4, 5 ) .  
39<j$.5 

If the index specifications are understood in the context of a problem, they can certainly 
be omitted. In fact, often the indices get in the way of an informal, but clear, argument. 
For example, 

is a reasonable, albeit technically incorrect way to write the square of a multinomial . 
The precise notation is 

Make sure that you understand the subscript 1 :S i < j :S n .  Carefully verify (look 
at examples where n = 2 , 3 ,  etc .) that 

� XiX j = 2 ( }: XiX j) . 
if.j 19<j$.n 

1 5,i,j$.n 
Also verify that a summation with subscript 1 :S i < j :S n has (�) terms (you have 
been reading Chapter 6, right?) .  

Arithmetic Series 

An arithmetic sequence is a sequence of consecutive terms with a constant differ­
ence; i .e. , a sequence of the form 

a, a + d, a + 2d, . . . .  

An arithmetic series is a sum of an arithmetic sequence. The sum of an arithmetic 
sequence is a simple application of the Gaussian pairing tool (see page 67 in Sec­
tion 3 . 1 ) . Consider an arithmetic series of n terms with first term a and last term f. We 
write the sum twice (d is the common difference) : 

S = a + (a + d) + . . .  + (f - d) + f, 

S = f + (f - d) + . . .  + (a + d) + a. 

7There are infinitely many primes. See Problem 2.3 .2 1 on page 5 1 and Section 7. 1 . Incidentally, the value of 
this infinite product is  '/t2 /6. See Example 9 .4.8 on page 349. 
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Upon adding, we immediate deduce that 

the intuitively reasonable fact that the sum is equal to the average value of the terms 
multiplied by the number of terms. It is no coincidence that another term for "average" 
is arithmetic mean. 

Geometric Series and the Telescope Tool 

A geometric sequence is exactly like an arithmetic sequence except that now the 
consecutive terms have a common ratio; i .e . ,  the sequence has the form 

2 3 a, ar, ar , ar , . . . .  

The Gaussian pairing tool is no help for summing geometric series, because the terms 
are not additively symmetric. However, the wonderful telescope tool comes to the 
rescue. Consider a geometric series of n terms with first term a and common ratio r 
(so the last term is arn- l ) . Rather than write the sum S twice, we look at S and rS: 

S = a + ar + ar2 + . . .  + arn- l , 

rS = ar + ar2 + ar3 + . . .  + arn . 

Observe that S and rS are nearly identical , and hence subtracting the two quantities 
will produce something very simple. Indeed, 

S - rS = a - ar + ar - ar2 + ar2 
- ar3 + . . .  + arn- l 

- arn , 

and all terms cancel except for the first and the last. (That 's why it's called "telescop­
ing," because the expression "contracts" the way some telescopes do.) We have 

and solving for S yields 

S - rS = a - arn , 

a - arn 
S -

-­

- l - r . 

Geometric series crop up so frequently that it is probably worth memorizing this for­
mula. In any event, the crux move-the telescope tool-must be mastered. 

There are many ways to telescope a series. With the geometric series above, we 
created two series that were virtually the same. The next series, one that you first saw 
as Example 1 . 1 .2 on page 1 ,  requires different treatment. 

Example 5.3.1 Write 

1 1 1 1 
1 · 2 

+ 
2 · 3 

+ 
3 · 4 

+ . . .  + 
99 · 1 00 

as a fraction in lowest terms. 

Solution: Notice that each term can be written as 
1 1 1 

k(k + 1 )  k 
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The entire sum is ( 1 _ �) + (� _ �) + (� _ �) + . . .  + (� _ _  
1 ) 2 2 3 3 4  99 1 00 ' 

1 
and all terms cancel except for the first and last. Our sum reduces to 1 - 1 00 '  • 

The hard part above was discovering that each term could be written in a way that 
telescopes. Will this always work? Sadly, no. The important thing is to be aware of 
the possibility for telescoping, which is really just an application of the adding zero 
creatively tool. And quite often, a telescoping attempt won 't work perfectly, but will 
reduce the complexity of a problem. 

Example 5.3.2 Find a formula for the sum of the first n squares. 

Solution : In other words, we seek a formula for 
n 

1 2 + 22 + 32 + . .  · + n2 = � / . 
J= l 

If we were to get lucky as we did with the previous example, we'd discover a magical 
sequence U l , U2 , . . .  with the property that 

uk+ l - Uk = k2 . 
Then we'd be done; telescoping yields 

n n � / = � (Uj+ l - Uj ) = (U2 - ud + (U3 - U2 ) + . . . + (un+ ! - un ) = Un+ l - U l · 
J= ! J= ! 

But we need not get perfect telescoping. We just need to find a sequence Uk so that 
consecutive differences look more or less like what we want. This is really nothing 
more than pursuing a wishful thinking strategy. In this vein, let 's experiment with 
some simple sequences. The first thing to try is the naive guess Uk : =  k2 . We get 

Uk+ 1 - Uk = k2 + 2k + 1 - k2 = 2k + 1 . 
The quadratic terms canceled, leaving only a linear expression. The next guess, of 
course, is to try Uk : =  k3 , which yields 

Uk+ 1 - Uk = (k + 1 )  3 - k3 = k3 + 3k2 + 3k + 1 - k3 
= 3k2 + 3k + 1 . 

This is not quite k2 , but it will do quite nicely, for now the telescope methods yields 

n n � (3/ + 3j + 1 ) = � (Uj+ l - Uj ) = Un+ l - U l = (n + 1 ) 3 - 1 3 = n3 + 3n2 + 3n . 
J= l J= l 

In other words, 
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n n 
and we can solve for }; p. We still need to sum the arithmetic series }; (3 j + I ) ,  but 

J= ! J= ! 
we already have a formula for this ! Verify that 

};n .2 n (n + l ) (2n + l )  
} -

J= ! 
- 6 

. 

Sometimes telescoping won 't work with what you start with, but the introduction 
of a single new term will instantly transform the problem. We call this the catalyst 
tool. Once you see it, you will never forget it and will easily apply it to other problems. 

Example 5.3.3 Simplify the product 

Solution : Call the product P and consider what happens when we multiply P by 
I - l la. The "catalyst" is the simple difference of two squares formula (x -y) (x+y) = 
x2 - i. 

Hence 

1 - l 1a2 1 0 1  
P = ---'--,--

1 - l la 
• 

Infinite Series 

Series with infinitely many terms is more properly a calculus topic , and you will find 
more information in Chapter 9. For now, let us note a few elementary ideas. An infinite 
series converges or diverges if its sum is finite or infinite, respectively. You may recall 
the formula for the convergent infinite geometric series: 

2 a 
a + ar + ar + . . .  = -- ,  

l - r 
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valid if and only if I r l < I .  This is a simple consequence of the formula for a finite 
geometric series. 

There are many ways to determine whether a given series converges or diverges. 
The simplest principles, however, are 

• If }:ak < 00 (Le. ,  the series converges) and the ak dominate all but a finite 
number of the hk (Le. ,  ak 2 hk for all but a finite number of values of k), then 
}: hk < 00 • 

• Likewise, if }:ak = 00 (Le. ,  the series diverges) and the hk dominate all but a 
finite number of the ab then }: hk = 00 .  

In  other words, the simplest strategy when dealing with an  unknown infinite series 
is to find a known series to compare it to. One fundamental series that you should 
know well is the harmonic series 

1 I I 
1 + 2 + 3 + 4 + . . . . 

Example 5.3.4 Show that the harmonic series diverges. 

Solution : We will find some crude approximations for partial sums of this series .  
Notice that 

1 I 1 I 2 I 
3 + 4 2 4 + 4 = 4 = 2 ' 

since 1 and ! both dominate ! .  Likewise, 

and 

In general, for each n > 1 ,  

1 1 1 1 4 1 
5 + "6 + 7 + 8 2 8 = 2 

1 1 1 8 1 
- + - + . . .  + -

> 
- = - . 9 1 0 1 6 - 1 6  2 

1 I 1 1 
2n + 1 

+ 
2n + 2 

+ . . .  + 
2n + 2n 2 2 ' 

since each of the 2n terms are greater than or equal to 2n� I ' Therefore, the entire 
harmonic series is greater than or equal to 

which clearly diverges. 

1 1 1 1 
1 + 2 + 2 + 2 + 2 + " "  

The key idea used above combines the obvious fact that 

1 1 
- < ­a - h 

• 

with the nice trick of replacing a "complicated" denominator with a "simpler" one. 
This is an example of the many-faceted massage tool-the technique of fiddling with 



1 62 CHAPTER 5 ALGEBRA 

an expression, with whatever method works (adding zero, multiplying by one, adding 
or subtracting a bit, etc . ) ,  in order to make it more manageable (yet another idea in­
spired by the wishful thinking strategy). Here is another example. 

Example 5.3.5 The zeta function � (s) is defined by the infinite series 

I 1 1 � (s) := - + - + - +  . . . . I S 2S 3s 

When s = I ,  this becomes the harmonic series and diverges.8 

Show that � (s) converges for all s 2 2. 

Solution : This is a routine exercise using the integral test from calculus, but it is 
much more instructive to use first principles. First of all ,  we note that even though the 
problem asks us to prove a statement about infinitely many values of s, we need only 
show that � (2 ) < 00, since if s > 2 we have 

1 1 - > ­
k2 - kS 

for all positive integers k and consequently the convergence of � (2) will imply the 
convergence of � (s) for all larger values of s. 

But how to show that � (2) converges? The general term is l /k2 ; we must search 
for a similar series that we know something about. We already "own" a nicely telescop­
ing series whose terms are the reciprocals of quadratics, Example 5 .3 . 1 on page 1 58, 
the series 

n I l  
�
! k( k + 1 ) 

= 1 -
n + 1 . 

Certainly the infinite series converges (to 1 ) , and now we would be done if 1 /  k2 were 
less than 1 / (k(k +  1 ) ) . But the inequality goes the wrong way ! 

Not to worry : We can write shift the summation index and get 

Now we can use 

n I l  n+ ! 1 �
! k(k + l ) = 2: + �2 (k - l )k '  

1 1 
k2 < k(k - l ) ' 

for all positive integers k, to conclude that 
n I l  
k
�
2 k2 

< 1 -
n + 1 . 

So the sum (starting from k = 2) converges, and therefore the entire sum converges as 
well . _ 

S It turns out that ' (s) has many rich properties, with wonderful connections to combinatorics and number 
theory. Consult Chapter 2 of [47] as a starting point. 
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When we are concerned about convergence, the first few terms do not matter at all .  In 
fact, the first few trillion terms do not matter ! Don 't forget this neat idea of shifting 
the index of summation to suit our purposes . 

Problems and Exercises 

5.3.6 Find a formula for the product of the terms of a 
geometric sequence. 

5.3.7 Find a formula for the sum 

and generalize. 

5.3.8 Find a formula for 

I I I -- + -- + . . . + . 1 · 2 · 3  2 · 3 · 4  n(n + l ) (n + 2) 
Can you generalize this? 

5.3.9 Find a formula for 

1 · 2 · 3 + 2 · 3 · 4 + · · · + n (n + 1 ) (n + 2) .  

Can you generalize this? 

5.3. 10 Observe that l v'44 J = 6, l vi 4444 J = 66. 
Generalize and prove. 

5.3. 1 1  (AIME 1 983) For { I ,  2, 3, . . .  , n } and each of 
its nonempty subsets a unique alternating sum is de­
fined as follows: Arrange the numbers in the subset in 
decreasing order and then, beginning with the largest, 
alternately subtract and add successive numbers. (For 
example, the alternating sum for { I ,  2, 4, 6, 9} is 9 -
6 + 4  - 2 + I = 6 and for {5 } it is simply 5 . ) For each 
n, find a formula for the sum of all of the alternating 
sums of all the subsets. 

5.3.12 Prove that 

This is just a fancy way of saying that if you consider 
each x in U and write down a I whenever x lies in A, 
then the sum of  these I s will of  course be  the number 
of elements in A. 
5.3.13 Find the sum 1 . l ! + 2 ·  2 ! + . . .  + n . nL 
5.3.14 Find a formula for the sum 

n k �I (k + I ) ! · 

n 
5.3. 15 Evaluate the product J] cos ( 2k (J ) • 

n I 
5.3.16 Find the sum � -I - . 

g2 0gk u  
5.3. 17 (AIME 1 996) For each permutation 
al , a2 , a3 ,  . . .  , a w  of the integers 1 , 2 , . . .  , 10 ,  form the 
sum 

Find the average value of all of these sums. 

5.3. 18 Try Problem 1 .3 .8 on page 9, if you haven't 
done it already. 

5.3.19 (Canada 1 989) Given the numbers 
1 , 2 , 22 , • . •  , 2n- 1 , for a specific permutation 
a = XI , X2 , . . .  , Xn of these numbers we define 
S I (a) = xl , S2 (a) = XI + X2 , . . .  and Q(a) = 
S I (a)S2 (a) · · · Sn (a) . Evaluate }; 1 /Q(a) , where the 
sum is taken over all possible permutations. 

5.3.20 A 2-inch elastic band is fastened to the wall 
at one end, and there 's a bug at the other end. Ev­
ery minute (beginning at time 0), the band is instan­
taneously and uniformly stretched by I inch, and then 
the bug walks I inch toward the fastened end. Wil l  the 
bug ever reach the wall? 

5.3.2 1 Let S be the set of positive integers which do 
not have a zero in their base- 1 O  representation; i .e . ,  

S = { l , 2 , . . . , 9 , I l ,  12, . . . , 1 9 , 2 1 ,  . . .  } . 

Does the sum of the reciprocals of the elements of S 
converge or diverge? 

5.3.22 Example 5.3 .5 on page 1 62 showed that 
, (2) < 00. Use "massage" to show that, in fact, , (2) < 
2. Then improve your estimate further to show that 
, (2) < 7/4. (The exact value for , (2) is 1C2/6. See 
Example 9.4.8 on page 349 for a sketch of a proof. ) 

5.3.23 (Putnam 1 977) Evaluate the infinite product 
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5.3.24 Can you generalize the idea used in Exam­

ple 5 .3 .2 on page 1 59? 

1 995 1 
VIri· Find �1 f(k) ·  

5.3.25 (AIME 1 995) Let f(n) be the integer closest to 

5.4 Polynomials 

There is much more to polynomials than the mundane operations of adding, subtract­
ing, mUltiplying and dividing. This section contains a few important properties of 
polynomials to review and/or learn. 

First, some notation and definitions. Let A be a set of numbers that is closed under 
addition and multiplication. Define 

A [x] = {ao + a lx + a2.x2 + . . . + an.tt : ai E A , n = 0, 1 , 2 , 3 , . . . } 

to be the set of polynomials with coefficients in A .  The most common coefficient sets 
that we use are Z, Q, JR and C. Occasionally we may use Zn , the integers modulo n 
(see page 230). We call each expression of the form ajxi a term or monomial. 

When writing an arbitrary polynomial , follow the convention of labeling ai as the 
coefficient of xi . Consistent notation is clear and helps to avoid errors and confusion 
with complicated manipulations. We define the degree of a polynomial to be the 
highest exponent with a non-zero exponent. This coefficient is also called the leading 
coefficient. If this coefficient is I ,  the polynomial is called monic. The coefficient ao 
is called the constant term. 

Polynomial Operations 

Much of your early algebra education was devoted to adding, subtracting, multiply­
ing, and dividing polynomials. We won 't insult your intelligence by reviewing the first 
two operations, but it is worthwhile to think about multiplication and division. Mul­
tiplication is pretty easy, but it is important to use good notation. Make sure that you 
understand the following notation, by mUltiplying out a few examples by hand. 

If A (x) = }:aixi , B (x) = }: bixi and C(x) = }: Cixi = A (x)B (x) , then 

Cj = aobj + a \ bj- l + . . .  + ajbo = }: asbt . 
s+t=j; 
s,t::::O 

Polynomials can be divided just like integers, and the result will be a quotient 
and remainder. More formally, polynomials with coefficients in Z, Q, JR, C and Zn all 
have a division algorithm that is analogous to the integer version (Problem 3 .2 . 1 7) :  

Let f(x) and g (x) be polynomials in K [x] , where K is one ofZ, Q, JR, C 
or Zn . Then 

f(x) = Q(x)g(x) +R (x) , 

where Q (x) , R (x) E K[x] and the degree of R (x) is less than the degree 
of g (x) . We call Q (x) the quotient and R (x) the remainder. 
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For example, let f(x) = x3 + x2 + 7 and g(x) = x2 + 3 .  Both polynomials are in 
Z[x] . By doing "long division," we get 

x3 + x2 + 7 = (x2 + 3 ) (x +  1 )  + (-3x + 4) ,  

so Q (x) = x +  I and R(x) = -3x + 4 .  The important thing i s  that the quotient Q (x) is 
also in Z[x] , i .e . ,  also has integer coefficients. We may take the division algorithm for 
granted, but it is a very important property of polynomials, as well as integers. 

Example 5.4. 1 (AIME 1 986) What is the largest integer n for which n3 + 1 00 is di­
visible by n + 1 O? 

Solution : Using the division algorithm, n3 + 100 = (n + 1 O) (n2 - I On + 100) -
900, so 

n3 + 1 00 
= n2 

_ I On + 1 00 _ 
900 

. 
n + 1O n + 1 O 

If n3 + 1 00 is to be divisible by n + 1 0, then n��O must be an integer. The largest 
positive n for which this is true is n = 890, of course. _ 

The Zeros of a Polynomial 

It is always nice to solve a polynomial equation; undoubtedly you know the quadratic 
formula, which states that if 

cd- + bx + c  = 0, 

then 

x =  
2a 

While this formula is useful, it is far more important to remember how it was derived, 
by using the complete the square tool .  We will review this with a simple example. 

x2 + 6x - 5 = 0 {=:::} x2 + 6x = 5 {=:::} x2 + 6x + 9 = 14 .  

Thus (x + 3f = 1 4, so x + 3  = ± JI4, etc . 
But often the exact zeros of a polynomial are difficult or impossible to determine,9 

and in fact, sometimes the exact zeros are not all that important, but rather indirect 
information is what is needed. Thus it is important to understand as much as possible 
about the relationship between the zeros of a polynomial and other properties. Here 
are a few useful principles . 

9Formulas for the zeros of any cubic or quartic polynomial were discovered in the 1 6th century, and Abel 

proved in the 1 9th century, that it is impossible, in general, to find an "elementary" formula for the zeros of all 

5th- or higher-degree polynomials. See [4 1 ]  for a very readable account of this. 
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The Remainder Theorem 

If the polynomial P(x) is divided by x - a the remainder will be P(a) . 

For example, divide x3 - 2.x + 3 by x + 2 and get (after some work) 

x3 - 2.x + 3  2 1 
--....,.---- = .r - 2.x + 2 - --; 

x + 2  x + 2  
i .e . ,  the quotient is y. - 2x + 2 and the remainder is - 1 .  And indeed, 

(_2 ) 3 - 2( -2)  + 3  = - 1 . 

To see why the Remainder Theorem is true in general, divide the polynomial P(x) by 
x - a, getting quotient Q(x) with remainder r. Using the division algorithm, we write 

P(x) = Q(x) (x - a) + r. 
The above equation is an identity; i .e . ,  it is true for all values of x. Therefore we are 
free to substitute in the most convenient value of x, namely x = a. This yields P(a) = r, 
as desired. Please make a note of this substitute convenient values tool. It has many 
applications ! 

The Factor Theorem 

If a is a zero of a polynomial P(x) , then x - a must be a factor; i .e. , 
P(x) is a product ofx - a and another polynomial. 

This follows immediately from the Remainder Theorem. 

The Fundamental Theorem of Algebra 

The Factor Theorem above tells us that x - a is a factor of the polynomial P(x) if a 
is a zero. But how do we know if a polynomial even has a zero? The Fundamental 
Theorem of Algebra guarantees this :  

Every polynomial in C [x] has at least one complex zero. 

This theorem is quite deep and surprisingly hard to prove. Its proof is beyond the 
scope of this book. 1 0 

A corollary of the Fundamental Theorem (use the result of Problem 5 .4.6 below) 
is that any nth-degree polynomial has exactly n complex zeros, although some of the 
zeros may not be distinct. Thus we have the following factored form for any polyno­
mial : 

anx" + an_ 1x"- 1 + . . . + ao = an (x - rl ) (x - r2 ) ' " (x - rn ) ,  (2) 

where the ri are the zeros, possibly not all distinct. 
If zeros are not distinct, we say that they have multiplicity greater than 1 .  For 

example, the 8th-degree polynomial 

(x - 1 ) (x - 2i) (x + 2i) (x - 7) 3 (x + 6 )2 

IOFor an elementary but difficult proof, see [9]. For a much simpler but less elementary argument, see [29] .  
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has eight zeros, but only five distinct zeros. The zero 7 appears with multiplicity 3 and 
the zero -6 has multiplicity 2. 

Here is an example that uses an analysis of zeros combined with clever substitution 
and the define a function tool that you encountered in Example 3 .3 . 8  on page 89. 

Example 5.4.2 (USAMO 1 975) If P(x) denotes a polynomial of degree n such that 
P(k) = k/(k + 1 )  for k = 0, 1 , 2 , . . .  , n, determine P(n + 1 ) .  

Solution : Go back to the Factor Theorem. A reinterpretation of this theorem from 
a problem solver's perspective is 

To know the zeros of a polynomial is to know the polynomial. 

In other words, if you don 't know the zeros of the polynomial under consideration, 
either expend some effort to find them, or shift your focus to a new polynomial whose 
zeros are apparent. In our case, knowing that P(k) = k/ (k + 1 )  does not tell us anything 
about the zeros of P(x) , since k/ (k + 1 )  is neither zero nor a polynomial . We eliminate 
both difficulties simultaneously by mUltiplying by (k + 1 )  and subtracting: 

(k +  I )P(k) - k = 0. 

We have information about the zeros of another polynomial, namely the (n + 1 ) -degree 
polynomial 

Q(x) :=  (x + I )P(x) - x. 

Clearly the zeros of Q(x) are just 0, 1 , 2 ,  . . .  , n, so we can write 

(x + 1 )P (x) - x  = Cx(x - I ) (x - 2) · · ·  (x - n) , 

where C is a constant that must be determined. Since the above equation is an identity, 
true for all x values, we can plug in any convenient value. The values x = 0, 1 ,  . . .  , n 
don 't work, since they make the right-hand side equal to zero. The left-hand side 
contains the troublesome term (x + 1 )P(x) , so clearly our choice should be x = - 1 .  
Plugging this in yields 

1 = C( - I ) ( -2) ( -3 ) · · · ( - (n + I ) ) , 

so 

( _ 1 )n+ ! 
C = -'::--'--:-:--:-

(n + I ) ! 

Finally, we can plug in x = n + 1 ,  and we have 

so 

( 1 ) n+ ! ( 1 ) n+ ! 
(n + 2)P(n + 1 )  - n - I = 

(
:

+ I ) ! 
(n + I ) n · · · 1 = 

(
:

+ I ) ! 
(n + I ) !  = ( - I t+ ! , 

n + I + ( - 1 ) n+ ! 
P( n + 1 )  = --n

-
+
-'-

2
----'-- • 
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Relationship Between Zeros and Coefficients 

If we multiply out the right-hand side of equation (2) on page 1 66, we can get a series 
of expressions for the coefficients of the polynomial in terms of its zeros. This seems 
like a pretty complicated and tedious job, so let us approach it gingerly. To see what is 
going on, let us look at a very simple polynomial, a monic quadratic (without loss of 
generality, all of the polynomials we will consider will be monic) with zeros r and s. 
Then, following equation (2), we can write our polynomial as 

� + a lx + ao = (x - r) (x - s) . 
The right-hand side is equal to � - rx - sx + rs, and if we equate terms with those on 
the left-hand side, we get 

a l = - (r + s) ,  ao = rs . 
Since in general we will need to mUltiply out more complicated expressions, let us 
think about how we just did this easy one. We used "FOIL I I ," which really just means 
"multiply every monomial in (x - r) with every monomial in (x - s) ." In other words, 
we computed 

(x - r) (x - s) = (x + ( -r ) ) (x + ( -s ) )  = x · x + ( -r) · x + x ·  ( -s) + (-r) · ( -s) . 
The same procedure works when we multiply out more complicated expressions. 

For example, consider 

x3 + a2� + a lx + ao = (x - q) (x - r) (x - s) . 
After mUltiplying out the right-hand side, but before collecting like terms, we will have 
2 · 2 · 2  = 8 terms, since we multiply each monomial in (x - q) with each monomial in 
(x - r) with each monomial in (x - s) , and each term has just two monomials in it. In 
other words, each of the eight terms in (x - q) (x - r) (x - s) represents a three-element 
choice, one element chosen from x or -q, one chosen from x or -r and one chosen 
from x or -so 

So what kind of terms can we get? If our three choices are all x, we end up with the 
term x3 . There are three ways that we can choose two xs and one constant, producing 
the terms -q� ,  -rx2 , -sx2 . Likewise, there are three ways in which we can choose 
just one x and two constants, producing qrx , qsx, rsx. Finally, there is just one way 
to chose no xs, the term -qrs. This is eight terms in all , and collecting like terms we 
have 

x3 + a2� + a lx + aO = (x - q) (x - r) (x - s) 

= x3 - (q + r + s)� + (qr + qs + rs)x - qrs. 
Equating like terms, we see that 

a2 = - (q + r + s) ,  a l = qr + qs + rs , ao = -qrs. 
Let us do one more example, this time a monic quartic polynomial with zeros 

p, q , r, s . We write our polynomial as 

x4 + a3x3 + a2� + alx + ao = (x - p) (x - q) (x - r) (x - s) . 

I I  This stands for "first, outer, inner, last." 
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Using the same reasoning, the right-hand side will have 1 6  monomial terms (before 
collecting like terms), each formed by one choice of x or -p, x or -q, etc . For exam­
ple, the terms using exactly two xs will also have exactly two constants . How many 
such terms will there be? 1 2 The number of ways that you can pick two different el­
ements from the set {p, q, r, s} ; i .e . ,  (i) = 6 terms. Working out all the terms, we 
have 

(x - p) (x - q) (x - r) (x - s) = x4 
- (p + q +  r + s)x3 

+ (pq + pr + ps + qr + qs +  rs)� 
- (pqr + pqs + prs + qrs)x + pqrs . 

Equating like terms, we have 

a3 = - (sum of the zeros) 

a2 = + (sum of all products of two different zeros)  

a I = - (sum of all products of three different zeros)  

ao = + (product of the zeros) ,  

where it is understood that "different" here has a purely symbolic meaning; i .e .  we 
multiply only zeros with different labels, such as p and q, even if their numerical 
values are the same. 

Finally, we see the pattern, and can write the formulas in general : 

Let r l , r2 , . . .  , r  n be the zeros of the monic polynomial 

� + an- I�- I + . . .  + ao = O. 

Thenfor k = 1 , 2 , . . .  , n ,  
ak = (- I t-k (sum of all products ofn - k different zeros) 
an 

= ( _ I )n-k � L.J ri l  ri2 . . .  rin_k · 
1 5) 1 <h< · · - < in-k 5,n 

These formulas are very important, and should be committed to memory. The 
imprecise language "sum of all products . . .  " is easier to remember, but do take the 
time to understand how the careful use of subscripts rigorously formulates the sums. 
Also note the role of the power of - 1 .  We use the convenient fact that ( _ 1 ) k is equal 
to + 1 if k is even, and - 1 if k is odd. 

Let 's come down to earth from this abstract discussion by looking at a concrete 
example. 

Example 5.4.3 (USAMO 1 984) The product of two of the four zeros of the quartic 
equation 

is -32. Find k. 

1 2You 've looked at Section 6. 1 ,  right? 
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Solution : Let the zeros be a, b, e, d. Then the relationship between zeros and 
coefficients yields 

a + b + e + d  = 1 8 , 
ab + ae + ad + be + bd + ed = k, 

abc + abd + aed + bed = -200, 
abed = - 1 984. 

Without loss of generality, let ab = -32. Substituting this into abed = - 1 984 yields 
cd = 62, and substituting this in tum yields the system 

a + b + e + d  = 1 8  
30 + ae + ad + be + bd = k 

-32e - 32d + 62a + 62b = -200 

(3) 
(4) 
(5) 

Let us think strategically. We need to compute k, not the values a, b , e, d. A 
penultimate step is evaluating ae + ad + be + bd. Notice that this factors : 

ae + ad + be + bd = a(e + d) + b(e + d) = (a + b) (e + d) .  

While we 're at it, let 's factor (5) as well : 

-32(e + d) + 62 (a + b) = -200. 

Now it should be clear how to proceed. We need only find the two values u := a + b 
and v :=  e + d. Equations (3) and (5) become the system 

u + v = 1 8 ,  
62u - 32v = -200, 

which can be easily solved (u = 4, v = 14) .  Finally, we have 

k = 30 + 4 . 1 4  = 86. 

Rational Roots Theorem 

• 

Suppose that P(x) E Z[x] has the zero x = 2/3 . Does this give you any information 
about P(x) ? By the Factor Theorem, 

P(x) = (x - �) Q(x) , 

where Q(x) is a polynomial. But what kind of coefficients does Q(x) have? All that we 
know for sure are that the coefficients must be rational. However, if x - � is a factor, 
then 3 (x - � )  = 3x - 2 will also be a factor, so we can write 

P(x) = (3x - 2)S(x) , 

where S(x) = Q(x) /3 .  We know that P(x) has integer coefficients; can we say the 
same thing about S(x) ? Indeed we can; this is Gauss's Lemma: 
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If a polynomial with integer coefficients can be factored into polyno­
mials with rational coefficients, it can also be factored into primitive 
polynomials with integer coefficients . 

(A polynomial with integer coefficients is called primitive if its coefficients share no 
factors . For example, 3x2 + 9x + 7 is primitive while 1 O.x2 - 5x + 1 5  is not .) See 
Problem 7 . 1 .30 for some hints on proving Gauss's Lemma. 

Since P(x) factors into the product of (3x- 2) and another polynomial with integer 
coefficients, the coefficient of the leading term of P(x) must be a multiple of 3 and the 
coefficient of the final term must be a multiple of 2. 

In general , assume that a polynomial P(x) with integral coefficients has a rational 
zero x = alb, where a and b are in lowest terms. By the Factor Theorem and Gauss 's 
Lemma, 

P(x) = (bx - a)Q(x) , 

where Q(x) is a polynomial with integer coefficients. This immediately gives us the 
Rational Root Theorem: 

If a polynomial P(x) with integral coefficients has a rational zero x = 

alb, where a and b are in lowest terms, then the leading coefficient of 
P(x) is a multiple of b, and the constant term of P(x) is a multiple of a. 

In practice, the Rational Root Theorem is used not just to find zeros but also to 
prove that zeros are irrational . 

Example 5.4.4 If .x2 - 2 has any rational zeros alb (in lowest terms), we must have 
b l l and a 1 2. Therefore the only possible rational zeros are ±2. Since neither 2 nor -2 
are zeros, we can conclude that .x2 - 2 has no rational zeros. This is another way to 
prove that V2 is irrational ! 

We can generalize the above reasoning when applied to monic polynomials .  It is 
an interesting criterion for irrationality, and should be noted as a tool: 

Any rational zero of a monic polynomial must be an integer. Con­
versely, if a number is not an integer but is a zero of a monic poly­
nomial, it must be irrational. 1 3 

We shall conclude the section with a rather hard problem which uses the monic 
polynomial tool above plus several other ideas . 

Example 5.4.5 Prove that the sum 

\hOO I 2 + 1 + Vl O022 + 1 + . . .  + V20002 + 1 

is irrational. 

Solution : Our strategy is two-pronged: first, to show that the sum in question is 
not an integer, and second, to show that it is a zero of a monic polynomial. 

1 3This statement can also be proven directly, without using the rational roots theorem (Problem 5 .4. 13) .  If you 
are stumped, look at Example 7. 1 .7 on page 226. 
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For the first step, observe that if n > 1 ,  then n < J n2 + 1 < n + 1 /  n. The first 
inequality is obvious, and the second follows from n2 + 1 < n2 + 2 < (n + 1 /  n)2 . Let 
us call the sum in question S. Then 

S = 100 1  + 81 + 1 002 + lh + . . .  + 2000 + 81000 , 
where each 8i lies between 0 and 1 / 100 1 .  Consequently, 

o < 81 + lh + . . .  + 81000 < 1 ,  

so S is not an integer. 
Next, we will show that S is a zero of a monic polynomial. More generally, we 

shall prove that for all positive integers n, the quantity 

Val + Ja2 + . . .  + JGn 
is a zero of a monic polynomial if each ai is an integer that is not a perfect square. We 
proceed by induction. If n = 1 ,  the assertion is true because y'aI is a zero of the monic 
polynomial x2 - a l . Now assume that 

Y = Val + Ja2 + . . .  + JGn 
is a zero of the monic polynomial P(x) = x + cr- 1x'·- 1 + . . .  + co . We will produce a 
monic polynomial that has x = Y + v'an+ 1 as a zero. We have 

0 =  P(y) = P(x - v'an+d = (x - v'an+ I Y + Cr- I (x - Jan+ l y- 1 + . . . + co . 
Notice that the expansion of each (x - v'an+ I ) k term can be separated into terms that 
have integer coefficients and terms with coefficients equal to an integer times v'an+ 1 . 
Thus we have 

0 =  P(x - Jan+d = x + Q(x) + Jan+ IR (x) , 
where Q(x) and R(x) are polynomials with integer coefficients, each of degree at most 
r - 1 .  Putting the radicals on one side of the equation yields 

x + Q (x) = -Jan+ IR (x) , 

and squaring both sides leads to 

x2r + lXQ(x) + (Q(x) ) 2 - an+ 1 (R (x) ) 2 = O. 

The term with highest degree is x2r . Since all coefficients are now integers, we have 
produced a monic polynomial with x = Y + Jan+ 1 as a zero, as desired. _ 

Problems and Exercises 

5.4.6 Prove that a polynomial of degree n can have at 

most n distinct zeros. 

5.4.7 Use Problem 5 .4.6 to prove a nice application 

called the identity principle, which states that if two 

degree-d polynomials f (x) , g (x) are equal for d + I 

different x-values, then the two polynomials are equal. 

5.4.8 Prove that if a polynomial has real coefficients, 

then its zeros come in complex conjugate pairs; i .e . ,  if 

a + hi is a zero, then a - hi is also a zero. 



5.4.9 Find the remainder when you divide x8 1 +x49 + 
x25 +x9 +x by x3 - x. 

5.4.10 Let p(x) = x6 + x5 + . . .  + 1 .  Find the remain­
der when p(x7 ) is divided by p (x) . 

5.4. 1 1  (Gerald Heuer) Find an easier solution to Ex­
ample 5.4.3 on page 1 69 by first showing that the quar­
tic polynomial factors into the two quadratics (x2 + 
ax - 32) (x2 + bx - 62) .  

5.4. 12 Find a polynomial with integral coefficients 
whose zeros include v'2 + v'5. 
5.4.13 Prove that if a monic polynomial has a rational 
zero, then this zero must in fact be an integer. 

5.4.14 Let p(x) be a polynomial with integer coeffi­
cients satisfying p(O) = p( I )  = 1 999. Show that p has 
no integer zeros. 

5.4.15 Let p(x) be a I 999-degree polynomial with in­
teger coefficients that is equal to ± 1 for 1 999 different 
integer values of x. Show that p(x) cannot be factored 
into the product of two polynomials with integer coef­
ficients. 

5.4. 16 (Hungary 1 899) Let r and s be the roots of 

x2 - (a + d )x +  (ad - be) = O. 

Prove that r3 and s3 are the roots of 

i - (a3 + d3 + 3abc + 3bcd )y +  (ad - bc )3 = O. 

5.4. 17 Let a, b, c  be distinct integers . Can the poly­
nomial (x - a ) (x - b) (x - c) - I be factored into the 
product of two polynomials with integer coefficients? 

5.5 Inequal ities 
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5.4. 18 Let p(x) be a polynomial of degree n, not nec­
essarily with integer coefficients. For how many con­
secutive integer values of x must a p(x) be an integer 
in order to guarantee that p(x) is an integer for all in­
tegers x? 

5.4. 19 (lMO 1 993) Let f(x) = x" + 5x"- 1 + 3 where 
n >  I is an integer. Prove that f(x) cannot be expressed 
as the product of two polynomials, each of which has 
all its coefficients integers and degree at least I .  

5.4.20 (USAMO 1 977) If a and b are two roots of 
x4 + x3 - I = 0, prove that ab is a root of x6 + x4 + 
x3 - x2 - 1 = 0. 

5.4.21 (Canada 1 970) Let P(x) = Xl + al1_ 1 xn- 1 + 
. . .  + a lx + ao be a polynomial with integral coeffi­
cients. Suppose that there exist four distinct integers 
a, b, c, d with Pta)  = P (b ) = P(c)  = P (d ) = 5 . Prove 
that there is no integer k with P(k)  = 8 .  

5.4.22 (USAMO 84)  P (x) is a polynomial of  degree 
3n such that 

P(O) = P(3 )  
P ( I )  = P(4) 
P(2)  = P(5)  
and 

Determine n. 

P (3n ) 
= P(3n - 2) 
= P(3n - l ) 

2 ,  
I ,  
0 ,  

P (3n + I )  = 730. 

5.4.23 (American Mathematical Monthly, October 
1 962) Let P (x) be a polynomial with real coefficients. 
Show that there exists a nonzero polynomial Q (x) with 
real coefficients such that P (x)Q (x) has terms that are 
all of a degree divisible by 1 09 . 

Inequalities are important because many mathematical investigations involve estima­
tions, optimizations, best-case and worst-case scenarios, limits , etc . Equalities are 
nice, but are really quite rare in the "real world" of mathematics .  A typical example 
was the use of rather crude inequalities to establish the divergence of the harmonic 
series (Example 5 .3 .4 on page 1 6 1 ) . Another example was Example 2 .3 . 1 on page 4 1 ,  
where we proved that the equation b2 + b + 1 = a2 had no positive integer solutions by 
showing that the alleged equality was, in fact, an inequality. 

Here is another solution to that problem, one that uses the tactic of looking for 
perfect squares: the equation b2 + b + 1 = a2 asserts that b2 + b + 1 is a perfect square. 
But 
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SO b2 + b + 1 lies strictly between two consecutive perfect squares. An impossibility ! 
These examples used very simple inequalities. It is essential that you master them, 

as well as a few more sophisticated ideas. 

Fundamental Ideas 

Let us begin with a brief review of the basic ideas, many of which we will present as a 
series of statements that are problems (exercises?) for you to verify before moving on. 

Basic Arithmetic 

The following are pretty simple, but you should ponder them carefully to make sure 
that you really understand why they are true. Do pay attention to the signs of your 
variables !  

5.5. 1 Addition. I f  x :2: y and a :2: b ,  then x + a :2: y + b. 
5.5.2 Multiplication . If x :2: y and a :2: 0, then ax :2: ay. Conversely, if a < 0, then 
ax :=:;  ay. 
5.5.3 Reciprocals. If x :2: y, then 1 /  x :=:;  l /y , provided that both x and y have the same 
sign. 

5.5.4 Distance interpretation of absolute value. The set 

{x : lx - a l = b} 

consists of all points x on the real number line 14 that lie within a distance b of the point 
a. 

G rowth Rates of Functions 

It is important to understand the hierarchy of growth rates for the most common func­
tions. The best way to learn about this is to draw lots of graphs . 

5.5.5 Any quadratic function of x will dominate any linear function of x, provided that 
x is "large enough." For example, 

0.00 1� > l 00000x + 20000000 

is true for all x > 109 . 
5.5.6 By the same reasoning, JCl will "eventually dominate" l' provided that a > b > O. 

5.5.7 Likewise, if a is any positive number, and b > 1 ,  then lr eventually dominates 
JCl .  (In other words, exponential functions grow faster than polynomial functions.) 

5.5.8 Conversely, if a is any positive number, and b > 1 ,  then JCl eventually dominates 
logb x. 

1 4you have probably noticed that we are restricting our attention to real numbers. That is because it is not 
possible to define z > 0 in a meaningful way when z is complex. See Problem 2.3 . 1 6 on page 50. 
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In summary, the hierarchy of growth rates, from slowest to highest, is 

logarithms, powers, exponents .  

Simple Proofs 

Of the many ways of proving inequalities, the simplest is to perform operations that 
create logically equivalent but simpler inequalities. More sophisticated variants in­
clude a little massage, as well. Here are some examples. 

Example 5.5.9 Which is larger, V19 + V99, or JW + V98? 

Solution : We shall use the convention of writing a question mark (?) for an 
alleged inequality. Then we can keep track. If the algebra preserves the direction of 
the alleged inequality, we keep using the question mark. If instead we do something 
that reverses the direction of the alleged inequality (for example, taking reciprocals of 
both sides), we change the question mark to an upside-down question mark (,,) . So we 
start with 

V19 + V99 ? VW + V98. 

Squaring both sides yields 

1 9 + 2)19 · 99 + 99 ? 20 + 2V20 · 98 + 98 ,  

which reduces to 

This of course is equivalent to 

1 9 · 99 ? 20 · 98 . 

At this point we can just do the calculation, but let 's use our factoring skills: Subtract 
1 9  . 98 from both sides to get 

1 9 · 99 - 1 9 · 98 ? 98 , 

which reduces to 

1 9  ? 98 . 

Finally, we can replace the "?" with " < " and we conclude that 

V19 + V99 < VW + V98. 

E 5 5 10 h· h · b· 1 998 1 999 ? 
xample • .  W IC IS Igger, 

1 999 
or 

2000 
. 

• 

Solution : This can be done in many ways; here is an argument that uses the define 
a function tool. Let 

x 
f(x) := - . x + l 
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Now our problem is equivalent to determining the relative order of f( 1 998) and f( 1 999) . 
How does this function grow? We have 

x 1 
f(x) =

x + 1
=

1 + 1 ' (6) 
x 

and now it is easy to check that as x > 0 increases, the 1 /  x term decreases, causing f{x) 
to increase (all we are using is the fundamental principle 5 .5 .3  that says informally, "If 
the denominator increases, the fraction decreases, and vice versa"). In other words, 
f{x) is monotonically increasing for positive x. 

In any event, f( 1 998) < f( 1 999) .  • 

Notice how we actually made an expression uglier in (6) . The right-hand side of 
(6) is certainly unpleasant from a typographical standpoint, but it makes it much easier 
to analyze the behavior of the function. 

Here are a few more for you to try on your own.  Most are fairly easy exercises. 

5.5 .11  Let al , a2 , ' " , an be real numbers . Prove that if '2. ar = 0, then a ) = a2 = . . .  = 
an = 0. 
5.5.12 The average principle. Let a l , a2 , . . .  , an be real numbers with sum S. Prove 
(as rigorously as you can ! )  that either the ai are all equal, or else at least one of the ai 
is strictly greater than the average value S / n and at least one of the ai is strictly less 
than the average value. 

5.5.13 The notation n ! (k) means take the factorial of n k times. For example, n ! (3 ) 
means ( (n ! ) ! ) ! .  Which is bigger, 1 999 ! (2000) or 2000 ! ( 1 999l ?  

1 0 1 999 + 1 1 0 1998 + 1 
5.5.14 Which is bigger, 

1 02000 + 1 
or 

1 0 1 999 + 1 
? 

5.5. 15 Which is bigger, 2oo0 ! or 1 0002oOO? 

5.5.16 Which is larger, 1 999 1999 or 20oo1998 ? 

The AM-G M Inequality 

Return to Example 5 . 5 . 1 0  on page 1 75 .  The alleged inequality 

1 998 1 999 
? 

1 999 2000 
is equivalent (after mUltiplying both sides by ( 1 999 · 2000) to 

1 998 · 2000 ? 1 9992 . 
Your intuition probably tells you that the question mark should be replaced with "< ," 

for the left-hand side is the area of a rectangle that is not quite a square, while the 
right-hand side is the area of a square with the same perimeter as the rectangle (namely 
4 . 1 999). It makes sense that given a fixed amount of fencing, the rectangle of max­
imum area is a square. Indeed, you have probably done this problem as an easy cal­
culus exercise. The underlying principle is very simple mathematically-calculus is 
definitely not needed-yet amazingly fruitful. 
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Consider the following equivalent formulation. Let x,y be positive real numbers 
with sum S = x + y. Then the maximum value of the product xy is attained when x and 
y are equal, i .e . ,  when x = y = S /2. In other words, we assert that (�) 2 

= 
(x:y) 2 

2 xy. 

It is a simple matter to prove this .  We will place a question mark over the " :S; "  to 
remind ourselves that it is an "alleged" inequality until we reduce it to an equivalent 
one that we know is true. The algebra is simple stuff that we have seen before : 

(x + y) 2 ? 

4 2 xy  

is equivalent to 

? 
(x +y) 2 � 4xy. 

Thus 
? 

x2 + 2xy + i � 4xy. 

Subtracting 4xy from both sides yields 

? 
x2 - 2xy +i � 0, 

and now we can remove the question mark, for the left-hand side is the square (x ­
y)2 , hence always non-negative. We have proven the inequality, and moreover, this 
argument also shows that equality occurs only when x = y, for only then will the 
square equal zero. 

This inequality is called the Arithmetic-Geometric Mean Inequality,  often ab­
breviated as AM-GM or AGM, and is usually written in the form 

X;y 
2 y'XY. 

Recall that the left-hand side is the arithmetic mean of x and y, while the right-hand 
side is called the geometric mean. A succinct way to remember this inequality is that 

The arithmetic mean of two positive real numbers is greater than or 
equal to the geometric mean , with equality only if the numbers are 
equal. 

We can extract more information from our algebraic proof of AM-GM. Since (x + 
y)2 2 4xy and (x +y)2 - 4xy = (x - y)2 , we can write 

S2 - 4P = D2 , 

where S, P, D are respectively the sum, product, and difference of x and y. If we let x 
and y vary so that their sum S is fixed, we see that the product of x and y is a strictly 
decreasing function of the distance between x and y. (By distance, we mean Ix - y l . )  
This is so useful, we shall name it the symmetry-product principle: 
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As the distance between two positive numbers decreases , their product 
increases , provided that their sum stays constant. 

This agrees with our intuition: As a rectangle becomes more "squarish," i .e . ,  more 
symmetrical , it encloses area more "efficiently." 

Here is a nice geometric proof of AM-GM. Let AC be the diameter of a circle, and 
let B be any point on the circle. Recall that ABC will be a right triangle. Now locate 
point D so that BD is perpendicular to AC. 

A "--------':--------------� C 
x y 

Then triangles ABD and BCD are similar; hence 

x g 
g y 

Thus g = VXY, the geometric mean of x and y. Indeed, that 's why it is called a geo­
metric mean ! 

Now, let the point B move along the circle, with D moving as well so that BD stays 
perpendicular to AC. It is clear that BD is largest when D is at the center of the circle, 
in which case x and y are equal (to the length of the radius). Moreover, as D moves 
towards the center, x and y become closer in distance, and BD increases .  

The AM-GM inequality is true for any finite number of variables. Let 

XI , X2 , · · · , Xn 

be positive real numbers, and define the arithmetic mean An and geometric mean Gn 
respectively by 

The general version of AM-GM asserts that An 2 Gn , with equality if and only if 
XI = X2 = . . .  = xn · 

There are many ways to prove this (see Problem 5 .5 .26 on page 1 86 for hints about 
an ingenious induction proof) . We shall present a simple argument that uses two strate­
gic ideas : an algorithmic proof style, plus a deliberate appeal to physical intuition. We 
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begin by restating AM-GM with its equivalent "sum and product" formulation. 
1 5 

5.5.17 AM-GM Reformulated. Let XI , X2 , . . .  , Xn be positive real numbers with product 
P = X IX2 · ·  · Xn and sum S = a l + a2 + . . .  + an . Prove that the largest value of P is 
attained when all the Xi are equal, i .e . ,  when 

S XI = X2 = . . . = Xn = - . n 

Solution : Imagine the n positive numbers XI , X2 , . . .  , Xn as physical points on the 
number line, each with unit weight. The balancing point (center of mass) of these 
weights is located at the arithmetic mean value A := Sin . Notice that if we move the 
points around in such a way that they continue to balance at A, that is equivalent to 
saying that their sum stays constant. 

Our strategy, inspired by the symmetry-product principle, is to consider situations 
where the Xi are not all equal and show that we can make them "more equal" and 
increase their product without changing their sum. If the points are not all clustering 
at A, then at least one will be to the left of A (call it L) and another (call it R) will be 
to the right of A. 1 6 Of these two points, move the one that is closest to A right up to A, 
and move the other so  that the balancing point of  the two points hasn't  changed. In  the 
figure below, the arrowpoints indicate the new positions of the points. 

- - - - - - - - � « - - - - - - - -

• • 
L A R 

Notice that the distance between the two points has decreased, but their balancing 
point is unchanged. By the symmetry-product principle, the product of the two points 
increased. Since the sum of the two points was unchanged, the sum of all n points has 
not changed. We have managed to change two of the n numbers in such a way that 

• one number that originally was not equal to A became equal to A; 
• the sum of  all n numbers did not change; 

• the product of the n numbers increased. 

Since there are finitely many numbers, this process will end when all of them are 
equal to A; then the product will be maximal . _ 

The proof is called "algorithmic" because the argument used describes a concrete 
procedure that optimizes the product in a step-by-step way, ending after a finite number 
of steps. Another distinctive feature of this proof was that we altered our point of view 
and recast an inequality as an optimization problem. This is a powerful strategy, well 
worth remembering. 

1 5This simple idea of refonnulating AM-GM is not very well known. Our treatment here is inspired by Kazari ­
noff's wonderful monograph [25 ] ;  this short book is highly recommended. 

1 60bserve that this is a neat "physical" proof of the average principle (5 .5 . 1 2) .  
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The AM-GM inequality is the starting point for many interesting inequalities. 
Here is one example (see the problems for several more). 

Example 5.5.18 Let a l , a2 , . . .  , an be a sequence of positive numbers . Show that 

(a l + a2 + · · · + an ) (� + � + . . . + �) 2: n2 , 
a l a2 an 

with equality holding if and only if the ai are equal . 

Solution : First, make it easier by examining a simpler case . Let 's try to prove 

( 1 I ) ? 
(a + b) � + b 2 4. 

Multiplying out, we get 

or 

a b ? 
1 + - + - + 1 > 4 

b a - , 

a b ? 
- + - > 2 .  
b a -

This inequality is true because of AM-GM: 

It is worth remembering this result in the following form: 

1 
If x > 0, then x + - 2: 2, with equality if and only if x = 1 .  

x 

Returning to the general case, we proceed in exactly the same way. When we 
multiply out the product 

n n 1 �I aj �I ak ' 

we get n2 terms, namely all the terms of the form 
aj 

1 k , '5. j, '5. n . ak 
For n of these, j = k, and the term equals 1 .  The remaining n2 - n terms can be paired 
up in the form 

aj ak - + - , 1 '5. j < k '5. n . ak aj 

(Note that the expression " 1  '5. j < k '5. n" ensures that we get every pair with no 
duplications . )  Applying AM-GM to each of these pairs yields 
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Thus the n2 terms can be decomposed into n terms that equal 1 and (n2 - n) /2 
pairs of terms, with each pair greater than or equal to 2. Consequently, the entire sum 
is greater than or equal to 

n2 - n 2 n . l + -
2
- · 2 = n . 

Massage, Cauchy-Schwarz, and Chebyshev 

• 

There are many, many kinds of inequalities, with literally hundreds of different the­
orems and specialized techniques. We will briefly look at three important "interme­
diate" ideas : more about massage, the Cauchy-Schwarz inequality, and Chebyshev 's 
inequality. 

Perhaps the most important inequality tactic is massage, which we encountered 
earlier (for example, the discussion of harmonic series in Example 5 . 3 .4 on page 1 6 1 ) . 
The philosophy of massage is to "loosen up" an expression in such a way that it even­
tually becomes easier to deal with. This is not restricted to inequalities, of course . 
Sometimes the first stage of massage seemingly worsens the difficulty. But that is 
temporary, much like physical massage, which can be rather painful until your mus­
cles magically relax. Here is an instructive example that combines massage with its 
frequent partner, telescoping. 

1 0000 1 
Example 5.5. 19 Let A = � r.;. .  Find l A J without a calculator. 

n= 1 y n 

Solution : In other words, we must estimate A to the nearest integer. We don 't 
need an exact value, so we can massage the terms, perturbing them a bit ,  so that they 
telescope. We have 

1 2 2 - = - < = 2(Vn - vn=t) 
Vn 2Vn Vn + vn=t ' 

where we rationalized the denominator in the last step. Likewise, 

In other words, 

1 2 
r.;. > v'n+T Vn = 2 (  v'n+T - Vn) . 

y n n + l +  n 

1 
2 (  v'n+T - Vn) < Vn < 2 (  Vn - vn=t) .  

That was the crux move, for we have bounded the term 1 /  Vn above and below by 
terms that will telescope when summed. Indeed, we have 

1 0000 � 2 (  v'n+T - Vn) = 2v'IOOO I - 2 
n= 1 

and 
1 0000 � 2( Vn - vn=t) = 2JlOOOO - v'O. 
n= 1 
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We conclude that 

1 0000 1 
2VlOOO I - 2 < 

n�1 vn < 2VlOOOO. 

This tells us that l A J is either 1 98 or 1 99. We can easily refine this estimate, because 
the original trick of bracketing 1 /  vn between 2 (v'n+T - vn) and 2 ( vn - vn=t) 
was pretty crude for small values of n. For example, when n = 1 ,  we ended up using 
the "estimate" that 

2( v'2 - I )  < 1 < 2V1. 

The lower limit is not too bad, but the upper limit is a silly overestimate by exactly 1 .  
So let 's not use it ! Start the summation at n = 2 and write 

1 0000 1 
A = I +  � tv; .  

n=2 y n 

Now we estimate 

The lower limit in the above expression is a little bit larger than 1 97 ,  while the upper 
limit is 1 98 .  Thus we conclude that A is between 1 98 and 1 99, so l A J = 1 98 .  • 

The Cauchy-Schwarz Inequality 

Let a l , a2 , . . .  , an and b l , b2 , . . .  , bn be sequences of real numbers . The Cauchy-Schwarz 
inequality states that 

with equality holding if and only if a J /b l = az/b2 = . . . = an /bn . If n = 1 ,  this in­
equality reduces to two-variable AM-GM. If n = 3, the inequality (using friendlier 
variables) is 

(7) 

for all real a, b, c, x, y, z. 

5.5.20 Prove (7) by multiplying out efficiently and looking at cross-terms and using 
two-variable AM-GM whenever possible. This method generalizes to any value of n. 

Another way to prove (7) uses the simple but important tool that 

A sum of squares of real numbers is non-negative, and equal to zero if 
and only if all the numbers are zero. 
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O :S  (ay - bxf + (az - cx)2 + (bz - cy)2 . 
This is equivalent to 

2 (abxy + acxz + bcyz) :S a2i + b2� + a2i + c2� + b2z2 + c2i . (8) 

Adding 

(ax) 2 + (by) 2 + (cz) 2 

to both sides of (8) yields (7). This argument generalizes; it is true not just for n = 3 .  

5.5.21 Convince yourself that this method generalizes, by  writing i t  out for the n = 4 
case. Your starting point will be a sum of six squares. 

Even though the Cauchy-Schwarz inequality is a fairly simple consequence of 
AM-GM, it is a powerful tool, because it has so many "degrees of freedom." For 
example, if we let a = b = c = 1 in (7) ,  we get the appealing inequality 

(x + y + z)2 < � 2 2 
3 

- +y  + z  . 

We can derive another useful inequality from Cauchy-Schwarz if the variables are 
positive. For example, if a, b, c, x, y, z > 0, then 

(9) 

is a simple consequence of (7)-just replace a by va, etc . This inequality (which of 
course generalizes to any n) comes in quite handy sometimes, because it is a surprising 
way to find the lower bound of the product of two often unrelated sums. 

Here is a more interesting example that uses (9). 

Example 5.5.22 (Titu Andreescu) Let P be a polynomial with positive coefficients. 
Prove that if 

p (�) 2 P�X) 

holds for x = 1 then it holds for every x > O. 

Solution : Write P(x) = Uo + U IX + U2x2 + . . . + unx" .  When x = 1 ,  the inequality 
is just P( l )  2 l /P( l ) , or 

which reduces to 

Uo + U I + U2 + . . .  + Un 2 1 

since the coefficients are positive. We wish to show that 
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for all positive x. Since x and the Uj are positive, we can define the real sequences 

ao = yfuO,al = Ju I /x, a2 = 
VU2/x2 , . . .  , an = Junlxn 

and 

bo = yfuO, b l = yUIX,b2 = JU2x2 , . . .  , bn = Junxn . 
Notice that 

for each i . Hence when we apply the Cauchy-Schwarz inequality to the aj and bj 
sequences, we get 

UO + U I + U2 + · · · + Un � p (�) P(X) . 

But Uo + U I + U2 + . . .  + Un 2 I ,  so we conclude that 

p (�) P(x) 2 l . • 

Here is another example, a solution to the IMO problem started with Exam­
ple 5 .2 .23 on page I SS .  

Example 5.5.23 (lMO 1 995) Let a, b, c be  positive real numbers such that abc = l . 
Prove that 

1 1 1 3 
---=--- + + > - . a3 ( b + c) b3 ( e + a) e3 ( a + b) - 2 

Solution : Recall that the substitutions x = l la, y = l ib , z = l ie transform the 
original problem into showing that 

x2 y2 z2 3 -+-+- > - ( 1 0) y + z  z +x x+y - 2 '  

where xyz = l . 
Denote the left-hand side of ( 1 0) by S. Notice that 

S =  ( Jy
x
+ z

) 2 + (J:+x
) 2 + ( Jx

z
+y

) 2 , 

and thus Cauchy-Schwarz implies that 

S (u2 + v2 + w2 ) 2 ( �+  �+  �)2 , yy + z  y Z +x yx+y ( 1 1 )  

for any choice of u , v, w. I s  there a helpful choice? 
Certainly U = Jy + z, v = J z + x, w = J x + y is a natural choice to try, since this 

immediately simplifies the right-hand side of ( 1 1 )  to just (x + y + z)2 . But better yet, 
with this choice we also get 



5.5 I N EQUALIT I ES 1 85 

Thus ( 1 1 )  reduces to 

2S (x + y + z) ;:::: (x + y + z) 2 , 
which in tum is equivalent to 

2S ;:::: (x +y + z) .  
But by AM-GM, we have 

x +y + z ;:::: 3� = 3 , 
since xyz = 1 .  We conclude that 2S ;:::: 3 ,  and we can rest. 

Chebyshev's Inequal ity 

• 

Let ai , a2 , . . .  , an and b l , b2 , . . .  , bn be sequences of real numbers that are monotonic in 
the same direction. In other words, we have a l � a2 � . . .  � an and b l � b2 � . . .  � bn 
(or we could reverse all the inequalities) .  Chebyshev 's inequality states that 

In other words, if you order two sequences, then the average of the products of corre­
sponding elements is at least as big as the product of the averages of the two sequences. 

Let us try to prove Chebyshev 's inequality, by looking at a few simple cases . If 
n = 2, we have (using nicer variables) the alleged inequality 

2 (ax + by) ;:::: (a + b) (x + y) . 
This is equivalent to 

ax + by ;:::: ay + bx, 
which is equivalent to 

(a - b) (x - y) ;:::: 0, 

which is true, since the sequences are ordered (thus a - b and x - y will be the same 
sign and their product is non-negative). 

If n = 3 ,  we are faced with verifying the truth of 

3 (ax+ by + ez) ;:::: (a + b + e) (x +y + z) ,  
where a � b � e and x � y � z. Inspired by the previous case, we subtract the right­
hand side from the left-hand side and do some factoring in order to show that the 
difference is positive . When we subtract, three terms cancel and we are left with the 
1 2  terms 

� - � + � - m + � - � + � - � + Q - cr + Q - ry 
Rearrange these into the sum 

(� + by) - (ay + bx) + (ax + ez) - (ax + ex) + (by + ez) - (bz + ey) ,  
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which equals 

(a - b) (x - y) + (a - c) (x - z) + (b - c) (y - z) , 

and this is positive. If you ponder this argument, you will realize that it generalizes to 
any value of n. 

Chebyshev 's inequality is much less popular than either AM-GM or Cauchy­
Schwarz, but it deserves a place on your toolbelt. In particular, the argument that 
we used to prove it can be adapted to many other situations. 

Problems and Exercises 

5.5.24 Show that 

I I I 
1 +  - + - + - + . . .  < 3 . 

1 !  2 !  3 !  

(You have probably learned i n  a calculus course that 
this sum is equal to e ::::: 2.7 1 8 .  But that 's cheating ! 
Use "low-tech" methods.) 

5.5.25 Reread the argument about the monotonicity of 
the function in Example 5 . 5 . 1 0  on page 175 .  How does 
this relate to the symmetry-product principle? 

5.5.26 Rediscover Cauchy's ingenious proof of the 
AM-GM inequality for n variables with the following 
hints. 

(a) First use induction to prove that AM-GM is true 
as long as the number of variables is a power of 
2. 

(b) Next, suppose that you know that AM-GM was 
true for four variables ,  and you want to prove 
that it was true for three variables . In other 
words, you wish to prove that 

x + y + Z > ,r;:;;;; 
--

3
- _ y xyz ( 1 2) 

for all positive x, y, z, and you are allowed to use 
the fact that 

a + b + c + d  > \!abcd 
4 - ( 1 3) 

for all positive a, b, c, d. Can you think of some 
clever things to substitute for a, b, c, d in ( 1 3) 
that will transform it into ( 1 2)? 

(c) Generalize this method to devise a way to go 
backward from the 2' -variable AM-GM case 
down to AM-GM with any smaller number of 
variables (down to 2r- I ) . 

5.5.27 For which integer n is l in closest to 

VI ,OOO,OOO - y'999,999? 

No calculators, please ! ( + I ) n 5.5.28 Prove that n! < T , for n = 2, 3 , 4 , . . . . 

5.5.29 (IMO 1976) Determine, with proof, the largest 
number that is the product of positive integers whose 
sum is 1 976. Hint: try an "algorithmic" approach. 

5.5.30 Example 3 . 1 . 1 2  on page 71 demonstrated the 
factorization 

a3 + b3 + c3 - 3abc = 

(a + b +  c) (a2 + b2 + c2 - ab - bc - ac) . 

Use this to prove the AM-GM inequality for three vari­
ables. Does this method generalize? 

5.5.31 Show that 

_I « �) (�) . . . ( 2n - I ) < _I . J4rl - 2 4 2n ffn 
5.5.32 Let a I , a2 , . . . , an be a sequence of positive 
numbers . Show that for all positive x, 

( a l + a2 + " ' + an ) n (x+a t } (x+a2 ) ' "  (x+an ) � x +  
n 

5.5.33 Find all ordered pairs of positive real numbers 
(x , y) such that xY = y. Notice that the set of pairs of 
the form (t , t ) where t is any positive number is not the 
full solution, since 24 = 42 • 
5.5.34 Show that 

vai + bi + �+ " ' + � 2 

V(a l + a2 + · · · + an )2 + (b l + b2 + · · · + bn )2 

for all real values of the variables, and give a condition 
for equality to hold . Algebraic methods will certainly 
work, but there must be a better way . . .  



5.5.35 If you have studied vector dot-product, you 
should be able to give a geometric interpretation of the 
Cauchy-Schwarz inequality. Think about magnitudes,  
cosines, etc . 

5.5.36 Here 's another way to prove Cauchy-Schwarz 
that employs several useful ideas : Define 

f(t) := (a l t + bd + (a2t + bd + · · · + (ant + bn )2 . 

Observe that f is a quadratic polynomial in t . It is pos­
sible that f(t) has zeros, but only if a l /b l = a2/b2 = . . .  = anlbn . Otherwise , f(t ) is strictly positive . Now 
use the quadratic formula, and look at the discriminant. 
It must be negative; why? Show that the negativity of 
the discriminant implies Cauchy-Schwarz. 

5.5.37 Give a quick Cauchy-Schwarz proof of the in­
equality in Example 5 .5 . 1 8 .  

5.5.38 Let a i , a2 , . . . , an b e  positive, with a sum o f  1 .  n 
Show that � aT � l in. 

1 = 1  
5.5.39 If a ,  b ,  c > 0 ,  prove that 

(a2b + b2c + c2a) (ab2 + bc2 + ca2 ) � 9a2b2c2 . 
5.5.40 Let a, b, c  � O. Prove that 

5.5.41 Let a, b, c, d � O. Prove that 

I I 4 1 6  64 
- + - + - + - > . a b c  d - a + b + c + d  
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5.5.42 (USAMO 1983) Prove that the zeros of 

x5 + ax4 + bx3 + cx2 + dx + e = 0 
cannot all be real if 2a2 < 5b. 
5.5.43 Let x, y, z > 0 with xyz = 1 .  Prove that 

x + y + z  S � +i + z2 . 
5.5.44 Let x, y, z � 0 with xyz = 1 .  Find the minimum 
value of 

� + _y_ + _z_ . y + z  x + z  x+ y 
5.5.45 (IMO 1 984) Prove that 

O S  yz + zx+xy -2xyz S 7/27, 
where x, y and z are non-negative real numbers for 
which x + y + z = 1 .  

5.5.46 (Putnam 1968) Determine all polynomials 
with all coefficients equal to 1 or - I  that have only 
real roots. 

5.5.47 Let a l , a2 , . . . , an be a sequence of positive 
numbers, and let bl , b2 , . . .  , bn be any permutation of 
the first sequence. Show that 

� + a2 + . . . + an > n .  
b l b2 bn -

5.5.48 Let a l , a2 , . . . , an and b l , b2 , . . .  , bn be increas­
ing sequences of real numbers and let XI , X2 , . . •  , Xn be 
any permutation of bl , b2 , . . . , bn . Show that 

� aibi � � aixi . 



Chapter 6 

Combinatorics 

6.1  I ntrod uction to Counting 

1 88 

Combinatorics is the study of counting. That sounds rather babyish, but in fact count­
ing problems can be quite deep and interesting and have many connections to other 
branches of mathematics .  For example, consider the following problem. 

Example 6.1 .1  (Czech and Slovak 1 995) Decide whether there exist 1 0,000 1 0-digit 
numbers divisible by 7, all of which can be obtained from one another by a reordering 
of their digits. 

On the surface, it looks like a number theory problem. But it is actually just a 
question of carefully counting the correct things. We will solve this problem soon, on 
page 204, but first we need to develop some basic skills. 

Our first goal is a good understanding of the ideas leading up to binomial the­
orem. We assume that you have studied this subject a little bit before, but intend to 
review it and expand upon it now. Many of the concepts will be presented as a se­
quence of statements for you to verify before moving on. Please do not rush; make 
sure that you really understand each statement ! In particular, pay attention to the tiniest 
of arithmetical details : good combinatorial reasoning is largely a matter of knowing 
exactly when to add, multiply, subtract, or divide. 

Permutations and Combinations 

Items 6 . 1 .2-6. 1 . 1 2  introduce the concepts of permutations and combinations, and use 
only addition, multiplication, and division. 

6.1.2 Simple Addition. If there are a varieties of soup and b varieties of salad, then 
there are a + b possible ways to order a meal of soup or salad (but not both soup and 
salad). 

6.1.3 Simple Multiplication. If there are a varieties of soup and b varieties of salad, 
then there are ab possible ways to order a meal of soup and salad. 
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6.1.4 Let A and B be finite sets that are disjoint (A n B = 0).  Then 6. 1 .2 is equivalent 
to the statement 

IA U B I = IA I + IB I · 

6.1.5 Notice that 6. 1 .3 is equivalent to the statement 

IA x B I = IA I · IB I , 

for any two finite sets A and B (not necessarily disjoint) . 

6.1.6 A permutation of a collection of objects is a reordering of them. For example, 
there are six different permutations of the letters ABC, namely ABC, ACB, BAC, 
BCA, CAB, CBA. There are 5 · 4 · 3 · 2 ·  1 = 1 20 different ways to permute the letters in 
"HARDY." You probably know that n · (n - 1 ) · · · 1 is denoted by the symbol n ! , called 
"n factorial." You should learn (at least passively) the values of n! for n :::; 1 0. (While 
you are at it, learn the first dozen or so of all the common sequences:  squares, cubes, 
Fibonacci, etc .) 

6.1.7 Permutations of n things taken r at a time. The number of different three-letter 
words we could make using the nine letters in "CHERNOBYL" is 9 . 8 . 7 = 504 . In 
general, the number of distinct ways of permuting r things chosen from n things is 

n . (n - l )  . . .  (n - r + l ) . 1 

This product is also equal to 
(n :

!
r ) ! 

and is denoted by P(n , r) .  

6.1.8 But what about permutinp the letters in "GAUSS"? At first you might think the 
answer is 5 ! ,  but it is actually � .  Why? 

6.1.9 Furthermore, explain that the number of different permutations of "PARADOX­
ICAL" is IJ ! , not I� ! . Why? 

6.1.10 Likewise, verify that "RAMANUJAN" has ii different permutations. State a 
general formula. Check with small numbers to make sure that your formula works. 

We shall call the formula you got in Problem 6. 1 . 1 0  the Mississippi formula, 
since an amusing example of it is computing the number of permutations in "MISSIS­
SIPPI," which is, of course, 4Mi! . The Mississippi formula is easy to remember by 
doing examples, but let 's write it out formally. This is a good exercise in notation and 
also helps clarify just what we are counting. Here goes:  

We are given a collection of balls that are indistinguishable except for 
color. If there are ai balls of color i ,for i = 1 , 2 , . . .  , n ,  then the number 
of different ways that these balls can be arranged in a row is 

(a l + a2 + . . .  + an ) ! 
a l !a2 ! " · an ! 

1 Notice that the product ends with (n - r +  I ) and not (n - r) .  This is a frequent source of minor errors, known 
to computer programmers as "OBOB," the "off-by-one bug." 
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The Mississippi formula involves both multiplication and division. Let 's examine 
the role of each operation carefully, with the example of "PARADOXICAL." If all of 
the letters were different, then there would be nine possible choices for the first letter, 
eight for the second, seven for the third, etc . ,  yielding a total of 

9 x 8 x 7 x . . .  x I = 9 ! 

different possible permutations. We multiplied the numbers because we were counting 
ajoint event composed of nine sub-events, respectively, with 9 , 8 , 7 , . . .  , I choices. But 
the letters are not all different; there are three indistinguishable A's .  Hence the value 9 !  
has overcounted what we  want. Pretend for a moment that we  can distinguish the A's 
by labeling them A I , A2 , A3 . Then, for example, we would count CA 1 LPORA2A3XID 
and CA3LPORA I A2XID as two different words, when they are really indistinguish­
able. We want to count the word CALPORAAXID just once, but we will count it 
3 ! = 6 times since there are 3 !  ways of permuting those three A's. In other words, we 
are uniformly overcounting by a factor of 3 ! ,  and can rectify this by dividing by 3 ! .  
That i s  why the correct answer i s  13V , In general , 

To count the number of ways a joint event occurs , multiply together the 
number of choices for each sub-event. To rectify uniform overcounting, 
divide by the overcounting factor. 

6.1 . 11  Let 's apply the Mississippi formula to an n-letter string consisting of r Os and 
(n - r) I s  (also known as an n-bit string). Verify that the number of permutations 
would be 

n ! 
r ! (n - r) ! ' 

This is often denoted by (�) ("n choose r") and is also called a binomial coefficient. 

For example, the number of distinct permutations of "0000 1 1 1 " is G) = 3T�! = 35 .  

6.1 .12  Combinations of n things taken r at a time. Here is a seemingly different 
problem: We are ordering a pizza, and there are eight different toppings available (an­
chovies, garlic, pineapple, sausage, pepperoni, mushroom, olive, and green pepper). 
We would like to know how many different pizzas can be ordered with exactly three 
toppings. In contrast to permutations, the order that we choose the toppings does not 
matter. For example, a "sausage-mushroom-garlic" pizza is indistinguishable from a 
"mushroom-garlic-sausage" pizza. 

To handle this difficulty, we proceed as we did with the Mississippi problem. If the 
order did matter, then the number of different pizzas would be the simple permutation 
P (8 ,  3 ) ,  but then we are uniformly overcounting by a factor of 3 ! .  So the correct answer 
IS 

Notice that 

P(8 , 3 )  
3 !  

P (8 , 3 )  
= 

� = (8)
. 3 ! 5 ! 3 !  3 



6 . 1  I NTRODUCTION TO COU NTI NG 1 91 

In general , the number of ways you can select a subset of r distinct elements from 
a set of n distinct elements, where the order of selection doesn ' t matter, is (n) P(n , r) n ! 

r 
= -r

-
! 
- = 

(n - r) ! r ! · 
( 1 )  

This is called a combination . If the order does matter, then the number of ways is 
P(n, r) and it is called a permutation . 

For example, the number of different ways to pick a three-person committee out of 
a 30-person class is e30) .  However, if the committee members have specific roles, such 
as president, vice-president, and secretary, then there are P(30, 3) different committees 
(since the committee where Joe is president, Karen is VP, Tina is secretary is not the 
same as the committee where Joe is secretary, Tina is VP, Karen is president) . 

Incidentally, it makes sense to define binomial coefficients involv ing the number 
zero. For example, ( 10°) = 1 ,  because there is only one way to choose a committee with 
no people. This interpretation will be consistent with the formula in ( 1 )  if we define O ! 
to equal 1 .  

The interpretation of the binomial coefficient as a permutation divided by a fac­
torial leads to a nice computational shortcut. Notice that it is much easier to compute 
( V )  as 

1 1  . 1 0 · 9 ·  8 
= 1 1  . 5 . 3 . 2 = 330 

1 · 2 · 3 · 4 
than it would be to compute 1 1  ! / (4 !7 ! ) . 

Combinatorial Arguments 

Keeping a flexible point of view is a powerful strategy. This is especially true with 
counting problems where often the crux move is to count the same thing in two differ­
ent ways. To help develop this flexibility, you should practice creating "combinatorial 
arguments." This is just fancy language for a story that rigorously describes in English 
how you count something. Here are a few examples that illustrate the method. First we 
state something algebraically, then the combinatorial story that corresponds to it. Pay 
attention to the building blocks of "algebra to English" translation, and in particular, 
make sure you understand when and why multiplication rather than addition happens, 
and vice versa. 

7 x 6  

1 2 + 6 + 5 

If there are seven choices of pasta and six choices 
of sauces, there are 7 x 6 ways of choosing a pasta 
dinner with a sauce . 

If the things you are counting fall into three mutu­
ally exclusive classes, with 1 2  in the first, six in the 
second, five in the third class, then the total number 
of things you are counting is 1 2  + 6 + 5 .  

I f  you are eating a five-course dinner, with seven 
choices per course, you can order 75 different din­
ners . 
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c�) 
P( IO , 4) 

s · c:) 
c:) C20) 
(7) + C;) 
G�) = (�) 

The number of ways of choosing a team of four peo­
ple out of a room of 1 0 people (where the order that 
we pick the people does not matter) . 

The number of ways of choosing a team of four peo­
ple out a room of 1 0 people, where the order does 
matter (for example, we choose the four people, and 
then designate a team captain, co-captain, mascot, 
and manager) . 

The number of ways you can choose a team of five 
people chosen from a room of 1 3  people, where you 
are designating the captain. 

The number of different teams of eight girls and two 
boys, chosen from a pool of 1 7  girls and 1 0 boys. 

The number of ways of picking a team of three or 
four people, chosen from a room of 17 people. 

Each selection of 1 0 winners from a group of 1 7  is 
simultaneously a selection of seven losers from this 
group. 

6.1.13 The Symmetry Identity. Generalizing the last example, observe that for all 
integers n, r with n 2: r 2: 0, we have 

This can also be verified with algebra, using the formula from 6. 1 . 1 1 ,  but the combi­
natorial argument used above is much better. The combinatorial argument shows us 
why it is true, while algebra merely shows us how it is true. 

Pascal's Triangle and the Binomial Theorem 

6.1.14 The Summation Identity. Here is a more sophisticated identity with binomial 
coefficients : For all integers n, r with n 2: r 2: 0, 

Algebra can easily verify this, but consider the following combinatorial argument: 
Without loss of generality, let n = 1 7 ,  r = 1 0. Then we need to show why 
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Let us count all I I -member committees formed from a group of 1 8  people. Fix one 
of the 1 8  people, say, "Erika." The I I -member committees can be broken down into 
two mutually exclusive types: those with Erika and those without. How many include 
Erika? Having already chosen Erika, we are free to chose 1 0  more people from the 
remaining pool of 1 7 .  Hence there are Gb) committees that include Erika. To count 
the committees without Erika, we must choose 1 1  people, but again out of 1 7 ,  since 
we need to remove Erika from the original pool of 1 8 . Thus ( :  D committees exclude 
Erika. The total number of I I -member committees is the sum of the number of com­
mittees with Erika plus the number without Erika, which establishes the equality. The 
argument certainly works if we replace 1 7  and 1 0  with n and r (but it is easier to follow 
the reasoning with concrete numbers) . _ 

6.1.15 Recall Pascal's Triangle, which you first encountered in Problem 1 .3 . 1 7  on 
page 1 0. Here are the first few rows. The elements of each row are the sums of pairs 
of adjacent elements of the prior row (for example, 1 0  = 4 + 6) . 

2 
3 3 

4 6 4 
5 1 0  1 0  5 

Pascal 's Triangle contains all of the binomial coefficients: Label the rows and 
columns, starting with zero, so that, for example, the element in row 5 ,  column 2 is 1 0. 
In general , the element in row n, column r will be equal to (�) . This is a consequence 
of the summation identity (6. 1 . 1 4) and the fact that 

for all n. Ponder this carefully. It is very important. 

6.1.16 When we expand (x +  y)n , for n = 0, 1 , 2 , 3 , 4 , 5 , we get 

(x +  y)o 1 ,  
(x + y) 1 x + y, 
(x +yf .? + 2xy +y2 , 
(x + y) 3 x3 + 3.?y + 3xy2 +y3 , 
(x +  y)4 x4 + 4x3y +  6x2y2 + 4.xy3 + y4 , 
(x + y) 5 � + 5x4y + 1 Ox3y2 + 1 Ox2y3 + 5.xy4 + y5 . 

Certainly it is no coincidence that the coefficients are exactly the elements of Pascal 's 
Triangle. Indeed, in general it is true that the coefficient of X yn-r in (x + y)n is equal 
to (�) . You should be able to explain why by thinking about what happens when you 
mUltiply (x + y)k by (x + y) to get (x + y )k+ I . You should see the summation identity 
in action and essentially come up with an induction proof. 
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6.1.17 The Binomial Theorem. Formally, the binomial theorem states that, for all 
positive integers n, 

Expanding the sum out gives the easier-to-read formula 

(x + yt = (�)� + G)�- ly +  G)�-2l + . . .  + C:  
l)xyn- 1 + C)yn . 

(Finally we see why (�) is called a binomial coefficient ! )  

6.1.18 A Combinatorial Proof of the Binomial Theorem. We derived the binomial the­
orem above by observing that the coefficients in the multiplication of the polynomial 
(x + y) k by (x + y) obeyed the summation formula. Here is a more direct "combina­
torial" approach, one where we think about how mUltiplication takes place in order to 
understand why the coefficients are what they are. Consider the expansion of, say, 

(x + y) 7 = (x+ y) (x+ y) . . .  (x+y) .  
, J 

v 

7 factors 

When we begin to multiply all this out, we perform "FOIL" with the first two factors, 
getting (before performing any simplifications) 

(x2 + yx +xy +l) (x +y)5 . 
To perform the next step, we multiply each term of the first factor by x, and then 
multiply each by y, and then add them up, and then multiply all that by (x + y)4 . In 
other words, we get (without simplifying) 

(x3 + y� +xyx + lx + �y + yxy +xy2 +y3 ) (x+ y)4 . 
Notice how we can read off the "history" of each term in the first factor. For example, 
the term xy2 came from multiplying x by y and then y again in the product (x+ y) (x+  
y) (x +  y) . There are a total of 2 x 2 x 2 = 8 terms, since there are two "choices" for 
each of the three factors . Certainly this phenomenon will continue as we multiply out 
all seven factors and we will end up with a total of 27 terms. 

Now let us think about combining like terms. For example, what will be the 
coefficient of x3y4? This is equivalent to determining how many of the 27 unsimplified 
terms contained 3 xs and 4 ys. As we start to list these terms, 

xxxyyyy, xxyxyyy, xxyyxyy, . . .  
we realize that counting them is just the "Mississippi" problem of counting the permu­
tations of the word "XXXYYYY." The answer is 3il! , and this is also equal to G) . 
6.1.19 Ponder 6 . 1 . 1 8  carefully, and come up with a general argument. Also, work 
out the complete mUltiplications for (x + y)n for n up to 1 0. If you have access to a 
computer, try to print out Pascal 's Triangle for as many rows as possible. Whatever 
you do, become very comfortable with Pascal 's Triangle and the binomial theorem. 
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Strategies and Tactics of Counting 

When it comes to strategy, combinatorial problems are no different from other math­
ematical problems. The basic principles of wishful thinking, penultimate step, make 
it easier, etc . ,  are all helpful investigative aids. In particular, careful experimentation 
with small numbers is often a crucial step. For example, many problems succumb to 
a three-step attack: experimentation, conjecture, proof by induction. The strategy of 
recasting is especially fruitful : to counteract the inherent dryness of counting, it helps 
to visualize problems creatively (for example, devise interesting "combinatorial argu­
ments") and look for hidden symmetries. Many interesting counting problems involve 
very imaginative multiple viewpoints, as you will see below. 

But mostly, combinatorics is a tactical game. You have already learned the funda­
mental tactics of multiplication, division, addition, permutations, and combinations. In 
the sections below, we will elaborate on these and develop more sophisticated tactics 
and tools. 

Problems and Exercises 

6.1 .20 Find a combinatorial explanation for the fol­
lowing facts or identities. 

(a) C;) = 2 (;) + n2 • 
(b) (2n + 2) = ( 2n ) + 2 (2n) + ( 2n ) . n + 1  n + 1 n n - I 

6.1.21 Define d(n) to be the number of divisors of a 
positive integer n (including I and n) . 

(a) Show that if 

is the prime factorization of n, then 

d(n) = (e , + l ) (e2 + I ) · · ·  (et + I ) .  
For example, 360 = 23325 ' has ( 3  + 1 ) (2 + 
I )  ( I  + I )  = 24 distinct divisors. 

(b) Complete the solution of the Locker problem 
(Problem 2.2.3) ,  which we began on page 29. 

6.1.22 Use the binomial theorem and the algebraic 
tactic of substituting convenient values to prove the 
following identities (for all positive integers n) : 

(a) (�) + G) + (;) + . . .  + (:) = 2n . 

(b) (�) - G) + (;) _ . . . + (- I t (:) = 0. 

6.1.23 Show that the total number of subsets of a set 
with n elements is 2n . Include the set itself and the 
empty set. 

6.1.24 Prove the identities in 6. 1 .22 again, but this 
time using combinatorial arguments. 

6.1.25 (Russia 1 996) Which are there more of among 
the natural numbers between I and 1 ,000,000: num­
bers that can be represented as a sum of a perfect 
square and a (positive) perfect cube, or numbers that 
cannot be? 

6.1.26 (AIME 1 996) Two of the squares of a 7 x 7 
checkerboard are painted yellow, and the rest are 
painted green. Two color schemes are equivalent if 
one can be obtained from the other by applying a rota­
tion in the plane of the board. How many inequivalent 
color schemes are possible? 

6.1.27 Eight boys and nine girls sit in a row of 1 7 
seats . 

(a) How many different seating arrangements are 
there? 

(b) How many different seating arrangements are 
there if all the boys sit next to each other and 
all the girls sit next to each other? 

(c) How many different seating arrangements are 
there if no child sits next to a child of the same 
sex? 

6.1 .28 How Many Marriages? 

(a) In a traditional village, there are 10 boys and 10 
girls. The village matchmaker arranges all the 
marriages. In how many ways can she pair off 
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the 20 children? Assume (the village is tradi­
tional) that all marriages are heterosexual ( i .e . ,  
a marriage is a union of a male and a female; 
male-male and female-female unions are not al­
lowed) .  

(b)  In a not-so-traditional village, there are 1 0  boys 
and 10 girls. The village matchmaker arranges 
al l the marriages. In how many ways can she 
pair off the 20 children, if homosexual mar­
riages (male-male or female-female) as well as 
heterosexual marriages are allowed? 

(c) In another not -so-traditional village, there are 
10 boys and 1 0  girls , and the village match­
maker arranges all the marriages,  allowing, as in 

6.2 Partitions and B ijections 

(b ) ,  same-sex marriages. In addition, the match­
maker books 1 0  different honeymoon trips for 
each couple, choosing from 1 0  different des­
tinations (Paris, London, Tahiti, etc . )  In how 
many ways can this be done? Notice that now, 
you need to count not only who is married to 
who, but where these couples get to go for their 
honeymoon. 

6.1 .29 If you understood the binomial theorem, you 
should have no trouble coming up with a multino­

mial theorem. As a warm-up, expand (x + y + z)2 and 
(x + y + z) 3 . Think about what make the coefficients 
what they are. Then come up with a general formula 
for (X l + X2 + . . .  +Xn )' . 

We stated earlier that combinatorial reasoning is largely a matter of knowing exactly 
when to add, mUltiply, subtract, or divide. We shall now look at two tactics, often used 
in tandem. Partitioning is a tactic that deliberately focuses our attention on addition, 
by breaking a complex problem into several smaller and simpler pieces. In contrast, the 
encoding tactic attempts to count something in one step, by first producing a bijection 
(a fancy term for a I -to- l correspondence) between each thing we want to count and 
the individual "words" in a simple "code." The theory behind these tactics is quite 
simple, but mastery of them requires practice and familiarity with a number of classic 
examples. 

Counting Subsets 

A partition of a set S is a division of S into a union of nonempty mutually exclusive 
(pairwise disjoint) sets. We write 

S = A l UA2 U . .  · UAr , Ai nAj = 0, i # J. 

Another notation that is sometimes used is the symbol U to indicate "union of pairwise 
disjoint sets." Thus we could write 

r 
S = A l UA2 U . .  · UAr = U Ai 

i= l 
to indicate that the set S has been partitioned by the Ai . 

Recall that l S I denotes the cardinality (number of elements) of the set S. Obviously 
if S has been partitioned by the Ai , we must have 

lS I = IA l l + IA2 1 + . . .  + IAr l , 

since there is no overlapping. 
This leads to a natural combinatorial tactic : Divide the thing that we want to count 

into mutually exclusive and easy-to-count pieces. We call this tactic partitioning. For 
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example, let us apply this method to Problem 6. 1 .23 ,  which asked us to prove that a 
set of n elements has 2n subsets. Denote the set of subsets of the set S by sub(S ) . For 
example, if S = {a, b, c} , then 

sub(S) = {0, {a} , {b} , { c} , {a , b} , {a , c} , {b , c} , {a , b , c} } . 

Let gk denote the collection of subsets of S that have k elements .2 The 6j naturally 
partition sub(S ) , since they are mutually disjoint. In other words, 

sub(S) = go u gl U g2 U g3 ·  

The cardinality of 6j is just (D , since counting the number of i-element subsets is 
exactly the same as counting the number of ways we can choose i elements from the 
original set of three elements . This implies that 

I sub(S) 1 = I go l + WI I + I g2 1 + I g3 1  = (�) + G) + G) + G) · 

In general , then, if lS I = n, the number of subsets of S must be 

(�) + G) + G) + . . .  + G) ' 
N ow we must prove that this sum is equal to 2n . This can be done by induction, but 

we will try another approach, the encoding tactic . Instead of partitioning the collection 
of subsets into many classes , look at this collection as a whole and encode each of its 
elements (which are subsets) as a string of symbols. Imagine storing information in a 
computer. How can you indicate a particular subset of S = {a ,  b , c} ? There are many 
possibilities, but what we want is a uniform coding method that is simple to describe 
and works essentially the same way for all cases . That way it will be easy to count. 
For example, any subset of S is uniquely determined by the answers to the following 
yes/no questions : 

• Does the subset include a? 
• Does the subset include b? 
• Does the subset include c? 

We can encode the answers to these questions by a three-letter string that uses only 
the letters y and n .  For example, the string yyn would indicate the subset {a , b} . 
Likewise, the string nnn indicates 0 and yyy indicates the entire set S. Thus 

There is a bijection between strings and subsets . 

In other words, to every three-letter string there corresponds exactly one subset, and to 
every subset there corresponds exactly one string. And it is easy to count the number 
of strings; two choices for each letter and three letters per string means 23 different 
strings in all . 

2We often use the word "collection" or "class" for sets of sets, and conventionally denote them with script 
letters. 
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This method certainly generalizes to sets with n elements, so we have proven that 
the number of subsets of a set with n elements is 2n . Combining this with our previous 
partitioning argument, we have the combinatorial identity 

I sub (S ) 1 = (�) + G) + G) + . . .  + G) = 2n . 
Let us look at a few more examples that explore the interplay among encoding, 

partitioning, and the use of combinatorial argument. 
Example 6.2.1 Prove that for all positive integers n, 

(2) 

Solution: One approach, of course, is to ignore the combinatorial aspect of the 
identity and attack it algebraically. We must compute }:r r (�) . Since we understand 
the simpler sum }:r C) , it might be profitable to try to remove the difficult r factor 
from each term of (2) : 

f r (�) = f r ! (�� r) ! r= 1 r= 1 

n rn ! = 
r�1 r(r - l ) ! (n - r) ! 
n n !  = 

r�1 (r - l ) ! (n - r) ! 
n n(n - l ) !  = 

r�1 (r - l ) ! (n - r) ! 

= n2n- l . 
The algebraic manipulations used here may seem to come out of thin air, but they 

are motivated by strategy. We start with a complicated sum, and deliberately strive to 
make its terms look like a simpler sum that you already know. Since the right-hand 
side of (2) is n2n- l , it is plausible to see if the left-hand side can merely be turned 
into n times a simpler sum that equals 2n- l . This is just another example of using the 
wishful thinking and penultimate step strategies, perhaps the most useful combination 
in problem solving. And do note the careful use of factoring to extract, for example, 
(n - I ) !  from n ! ,  as well as the use of the interesting identity G) = � G = ! ) . 

While this algebraic proof is elegant and instructive, in a sense it is an empty 
argument, for the terms in (2) obviously have combinatorical meaning that we have 
ignored. Let us now prove it with combinatorial reasoning. 
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The left-hand side of (2) is a sum, so we interpret it as a partitioning of a large 
set. Each term has the form r (�) , which can be interpreted as the number of ways you 
choose an r-person team from a pool of n people, and designate a team leader. The 
entire left-hand side is the total number of ways of picking a team of any size (between 
1 and n) with a designated leader. 

The right-hand side counts the same thing, but with an encoding interpretation: 
Suppose we number the n people from 1 to n in alphabetical order. First we pick a 
leader, which we encode by his or her number (ranging from 1 to n) . Then we place 
the remaining n - 1 people in alphabetical order, and either include them on the team 
or not, encoding our action with the letters y or n. For example, suppose n = 1 3 .  
The string I l nynnnnnnnyyy indicates a team with 5 people, led by #1 1 and also 
including #2, # 10, # 1 2, and # 1 3 .  This method codes every possible team-with-Ieader 
uniquely, and the number of such strings is equal to n2n- 1 , since there are n choices 
for the first place in the string (notice that this spot may be occupied with a multi-digit 
number, but what we are counting is choices, not digits) , and two choices for each of 
the remaining n - 1 places. _ 

Information Management 

Proper encoding demands precise information management. The model of storing 
information in a computer compels one not to waste "memory" with redundant infor­
mation. Here are a few examples of how and how not to organize information. 
Example 6.2.2 Suppose that you wanted to count the number of permutations of the 
word "BOOBOO." We already know that the answer is 2?�! from the Mississippi for­
mula. How to encode this? There are six "slots" in which to place letters . Each 
permutation is uniquely determined by knowing in which 2 slots one places the letter 
B, since it is understood that the remaining four slots will be occupied by O's . In 
other words, there is a bijection between choices of two slots from the six slots and 
permutation of the letters . Thus our answer is (�) , which of course equals 21�! . A com­
mon error is to count choosing slots for Bs and choosing slots for Os as independent 
choices, yielding the erroneous answer m (�) . 

It is hard to avoid all errors of this kind, but try to think carefully about "freedom 
of choice": ask yourself what has already been completely determined from previous 
choices. In this case, once we choose the slots for the B 's, the locations of the O's are 
determined and we have no freedom of choice. 
Example 6.2.3 Suppose we have three different toys and we want to give them away 
to two girls and one boy (one toy per child) . The children will be selected from four 
boys and six girls. In how many ways can this be done? 

Solution : The numerical answer is 360. Here are two different approaches. 

1 .  Ignore order at first, but don 't ignore sex : Then there are (i) ways to pick the 
single boy and m ways to pick the two girls . Thus there are (i) . (�) ways 
of picking one boy and two girls . But this does not distinguish between, say, 
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"Joe, Sue, Jane" and "Jane, Joe, Sue." In other words, we need to correct for 
order by multiplying by 3 ! (since we give away the toys, which are different, 
in order) . So the answer is (i) . m · 3 ! .  • 

2 .  Include order from the start: First, pick a boy (we can do this in (i) ways) . 
Then, pick a toy for this boy (three ways). Then, pick the two girls, but count­
ing order (P( 6 , 2) = 6 · 5  ways). The answer is then P( 6 , 2) . (i) · 3 . • 

Example 6.2.4 Suppose again that we have three different toys and we want to give 
them away (one toy per kid) to three children selected from a pool of four boys and six 
girls, but now we require that at least two boys get a toy. In how many ways can this 
be done? 

Solution: Beginners are often seduced by the quick answers provided by encoding 
and attempt to convert just about any counting problem into a simple multiplication or 
binomial coefficient. 

The following argument is wrong, but not obviously wrong. Imagine that the toys 
are ordered (for example, in order, we give away a video game, a doll, a puzzle). We 
first pick a boy to get the video game (four choices) . Then another boy gets the doll 
(three choices) . Then we give the puzzle to one of the eight remaining kids (eight 
choices) . The number of ways we can do this is just 4 · 3 · 8 . Of course, we need to 
correct for sex bias. With this method, we are guaranteeing that only boys get the 
video game and the doll. The puzzle is the "leftover" toy. So, to make the count fair, 
and symmetrical, we multiply by 3 ,  for the three different leftover toy possibilities. 
(We don 't multiply by 3 !  = 6, since the order of the pick of the two has already been 
incorporated into our count. ) Anyway, this yields 4 · 3 · 8 · 3  = 288, which is too large ! 
Why? 

The problem is the "leftover" toy. Sometimes a boy gets it, sometimes a girl . If a 
girl gets the leftover toy, the count is OK. But if a boy gets it, we will be overcounting 
by a factor of three. To see this , imagine that the puzzle is the leftover toy and we 
picked (in order) "Joe, Bill , Fred." Then Joe gets the video game, Bill gets the doll, 
and Fred gets the puzzle . Now, let the video game be the overflow toy. We will still 
end up counting a choice where Fred gets the puzzle, Bill gets the doll, and Joe gets 
the video game as a different choice ! If a girl ended up with the overflow toy, there 
wouldn 't be an overcount. For example, if Joe gets the video game, Bill gets the doll, 
and Sue gets the puzzle, and then later we made the video game the overflow toy, the 
new count would give Sue the video game, which is certainly a different choice ! 

This is confusing ! How do you guard against such subtle errors? There is no 
perfect solution, but it is crucial that you check your counting method by looking at 
smaller numbers, where you can directly count the choices. And also, in this case, let 
the language ("at least") clue you in to other methods. Whenever you see "at least," 
you should investigate partitioning.3 This gives an easy and reliable solution, for there 
are two cases : 

3 Also. you should consider the tactic of counting the complement (page 207) .  
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1 .  There are exactly two boys, and one girl chosen. Arguing as we did in 6.2.3 
above, there are (i) ways to pick the boys, and (�) ways to pick a girl , and 
then we must correct for order by multiplying by 3 ! .  

2 .  There are exactly three boys. There will be just P(4, 3 )  choices (since order 
matters) . 

The final answer is just the sum of these two, or 

G) G) 3 !  + P(4, 3 )  = 6 · 6 · 6 + 24 = 240, 

which indeed is smaller than the incorrect answer of 288 .  • 

Example 6.2.5 The Hockey Stick Identity. Consider the "hockey stick" outlined in 
Pascal 's Triangle below. 

1 1 

1 5 5 1 

The sum of the elements in the handle is equal to the element in the blade; i .e . , 
1 + 2 + 3 + 4 = 10 .  

This works for any parallel "hockey stick" of any length or location that begins at the 
border of the triangle. For example, 1 + 3 + 6 = 1 0  and 1 + 4 + 1 0  + 20 = 35 (check 
that this one works by writing in the next few rows of the triangle). In general, if we 
start at row s and continue until row t, we have 

Why is this true? 
Solution: Consider a specific example, say 1 + 3 + 6 + 10 = 20. We need to 

explain why 

(�) + (�) + (�) + (�) = (�) . 
The simple sum suggests partitioning : Let us look at all three-element subsets (which 
we will ca1l 3-sets) chosen from a set of six elements , and see if we can break them up 
into four "natural" classes. 

Write the six-element set as {a, b, c , d, e, f} and follow the natural convention that 
subsets are written in alphabetic order. This tactic is a simple and natural way to 
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get "free" information and is just another example of monotonizing (see page 75). 
Since we are counting combinations and not permutations, order is irrelevant as far as 
counting is concerned, but that doesn 't mean that we cannot impose useful order on 
our own. 

Following this convention , let us lis t all 20 different 3-sets as three-letter "words." 
And of course, we will list them in alphabetical order ! 

abe, abd, abe, ab/, aed, aee, ae/, ade, ad/, ae/," 
bed, bee, be/, bde, bd/, be/," 
ede, ed/, eel; 
de! 

The solution practically cries out: Classify subsets by their initial letter! 
Of the 20 different 3-sets, m = 1 0  of them begin with the letter a, since we are 

fixing the first letter and still have to choose two more from the remaining five letters 
available (b through f). If we start with the letter b, we must still chose two more, but 
have only four choices available (e through I), so we have (i) possibilities. Similarly, 
m = 3 of the 3-sets start with e and just one ( m )  starts with d. (No 3-sets can start 
with e or I since the letters in each word are in alphabetical order.) 

By now you should have a good understanding of why the hockey stick identity 
is true. But let us write a formal argument, just for practice. Note the careful use of 
notation and avoidance of "OBOB." 

We shall show that 

(3) 

holds for all positive integers I 2 r. Let us consider all (r  + 1 ) -element subsets of the 
set { 1 ,  2 ,  . . .  , f  + 1 } . For j = 1 , 2 , . . .  , f  - r + 1 ,  let tffj denote the collection of these 
subsets whose minimal element is j. The tffj partition the collection of (r + 1 ) -element 
subsets, so 

If the minimal element of an (r + 1 ) -element subset is j, then the remaining r 
elements will be chosen from the range j + 1 ,  j + 2, . . .  , I  + 1 .  There are (f + 1 )  - (j + 
1 )  + 1 = I - j + 1 integers in this range, so consequently 

Summing this as j ranges from 1 to I - r + 1 yields (3) . • 

Balls in Urns and Other Classic Encodings 

The following well-known problem crops up in many different forms. 



6.2 PARTITIONS AND BIJ ECTIONS 203 

Example 6.2.6 Imagine a piece of graph paper. Starting at the origin draw a path to 
the point ( 1 0, 1 0) that stays on the grid lines (which are one unit apart) and has a total 
length of 20. For example, one path is to go from (0, 0) to (0, 7 )  to (4, 7 )  to (4 , 1 0) 
to ( 1 0, 1 0) .  Another path goes from (0, 0) to ( 1 0, 0) to ( 1 0, 1 0) .  How many possible 
different paths are there? 

Solution : Each path can be completely described by a 20-1etter sequence of U 's 
and R 's, where "U" means "move one unit up" and "R" means "move one unit to the 
right." For example, the path that goes from(O, 0) to (0 , 7 ) to (4, 7 )  to (4, 1 0) to ( 1 0, 10) 
would be described by the string 

UUUUUUURRRRUUURRRRRR . '--v-""-v-"-..,.....-� 
7 4 3 6 

Since the path starts at (0, 0) , has length 20, and ends at ( 1 0, 1 0) ,  each path must have 
exactly I O U 's and l O R 's . Hence the total number of paths is just a simple Mississippi 
problem, whose answer is 

20 ! (20) 
1 O ! 1 O ! = 1 0 . • 

The next example can be done by partitioning as well as encoding, although the 
encoding solution is ultimately more productive. 
Example 6.2.7 How many different ordered triples (a , h , e) of non-negative integers 
are there such that a + h + e = 50? 

Solution : We will present two completely different solutions, the first using par­
titioning, the second using encoding. First, it is easy to see that for each non-negative 
integer n, the equation a + h = n is satisfied by n + 1 different ordered pairs (a ,  h ) ,  
namely 

(O , n) , ( l , n - 1 ) ,  (2 , n - 2) , . . .  , (n , O) . 
So we can partition the solutions of a + h + e = 50 into the disjoint cases where c = 

O , e  = l , e  = 2 , . . . , e = 50. For example, if e = 1 7 , then a + h = 33 so there will be 34 
different ordered triples (a, h, 1 7 ) that satisfy a + h + e = 50. Our answer is therefore 

5 1 · 52 1 + 2 + 3 +  . . · + 5 1  = -2-' 

The problem was solved easily by partitioning, but encoding also works. To see 
how, let us replace 50 with a smaller number, say, 1 1 , and recall how we first learned 
about addition in first or second grade. You practiced sums like "3 + 6 + 2 = I I " by 
drawing sequences of dots: 

• • • • • • • • • • • • 

Each ordered triple (a, h , e) of non-negative integers that sum to 1 1  can be thought of 
as an allocation of 1 1  dots, separated by two plus signs. The triple (3 , 6 , 2) can be 
encoded by the string • • •  + • • • • • •  + • • . Zero is not a problem; we encode it with 
no dots . Hence + + • • • • • • • • • • •  corresponds to (0, 0, 1 1 )  and • • • • •  + + • • • • • •  
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corresponds to (5 , 0 , 6 ) . This method uniquely encodes each triple with a string of 1 3 
symbols containing two + symbols and 1 1  • symbols. There are eD ways of counting 
these strings (for each string is uniquely determined by which 2 of the 1 3 possible slots 
we place the + symbol) . 

Finally, replacing 1 1  with 50, we see that the answer is (52) 
= 
52 · 5 1 

• 
2 2 '  

This is of course just one example of a general tool, the balls in urns formula: 
The number of different ways we can place b indistinguishable balls 
into u distinguishable urns is 

The balls in urns formula is amazingly useful, and turns up in many unexpected 
places. Let us use it, along with the pigeonhole principle (Section 3 .3) ,  to solve Ex­
ample 6. 1 . 1  on page 1 88 . Recall that this problem asked whether there exist l O,OOO 
l O-digit numbers divisible by 7, all of which can be obtained from one another by a 
reordering of their digits. 

Solution : Ignore the issue of divisibility by 7 for a moment, and concentrate on 
understanding sets of numbers that "can be obtained from one another by a reorder­
ing of their digits." Let us call two numbers that can be obtained from one another in 
this way "sisters ," and let us call a set that is as large as possible whose elements are 
all sisters a "sorority." For example, 1 ,  1 1 1 , 233 , 999 and 9, 929, 3 1 3 , 1 1 1  are sisters 
who belong to a sorority with 4l3�2! members, since the membership of the sorority is just the number of ways of permuting the digits. The sororities have vastly different 
sizes. The most "exclusive" sororities have only one member (for example, the soror­
ity consisting entirely of 6, 666, 666, 666) yet one sorority has 10 ! members (the one 
containing 1 , 234, 567, 890) . 

In order to solve this problem, we need to show that there is a sorority with at 
least 1 0,000 members that are divisible by 7. One approach is to look for big sororities 
(like the one with lO ! members) , but it is possible (even though is seems unlikely) that 
somehow most of the members will not be mUltiples of 7. 

Instead, the crux idea is that 
It is not the size of the sororities that really matters , but how many 
sororities there are. 

If the number of sororities is fairly small, then even if the multiples of 7 are dispersed 
very evenly, "enough" of them will land in some sorority. 

Let 's make this more precise: Suppose it turned out that there were only 100 
sororities (of course there are more than that) . There are l l O l O /7 J = 1 ,428 ,57 1 ,428 
mUltiples of seven. By the pigeonhole principle, at least one sorority will contain 
p ,428 ,57 1 ,428/ l OOl multiples of seven, which is way more than we need. In any 
event, we have the penultimate step to work toward : compute (or at least estimate) the 
number of sororities. 
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We can compute the exact number. Each sorority is uniquely determined by its 
collection of 10 digits where repetition is allowed. For example, one (highly exclusive) 
sorority can be named "ten 6s," while another is called "three 4s, a 7, two 8s, and 
four 9s." So now the question becomes, in how many different ways can we choose 
10 digits, with repetition allowed? Crux move #2: this is equivalent to putting 10 
balls into 1 0 urns that are labeled 0, 1 , 2 , . . .  , 9 . By the balls i n urns formula, this is 
e:) = 92,378 . 

Finally, we conclude that there will be a sorority with at least 
f I ,428 ,57 1 ,428 /92,378l = 1 5 ,465 

members . This is greater than 1 0,000, so the answer is "yes." • 

Problems and Exercises 

6.2.8 (Jim Propp) Sal the Magician asks you to pick 
any five cards from a standard deck.4 You do so, and 
then show them to Sal 's assistant Pat, who places one 
of the five cards back in the deck and then puts the re­
maining four cards into a pile. Sal is blindfolded, and 
does not witness any of this. Then Sal takes off the 
blindfold, takes the pile of four cards, reads the four 
cards that Pat has arranged, and is able to find the fifth 
card in the deck (even if you shuffle the deck after Pat 
puts the card in the deck). Assume that neither Sal nor 
Pat has supernatural powers, and that the deck of cards 
is not marked. How is the trick done? Harder version : 
you (instead of Pat) pick which of the five cards goes 
back into the deck. 

6.2.9 Eight people are in a room. One or more of 
them get an ice-cream cone. One or more of them get 
a chocolate-chip cookie. In how many different ways 
can this happen, given that at least one person gets both 
an ice-cream cone and a chocolate-chip cookie? 

6.2.10 How many subsets of the set { 1 ,  2, 3 , 4, . . .  , 30} 
have the property that the sum of the elements of the 
subset is greater than 232? 
6.2. 1 1  How many strictly increasing sequences of 
positive integers begin with I and end with l Ooo? 

6.2. 12 Find another way to prove the Hockey Stick 
Identity (Example 6.2.5 on page 20 1 ) , using the sum­
mation identity (6. 1 . 1 4) . 
6.2. 13 For any set, prove that the number of i t s  subsets 

with an even number of elements is equal to the num­
ber of subsets with an odd number of elements. For ex­
ample, the set {a, b, c} in the problem above has four 
subsets with an even number of elements (the empty 
set has 0 elements, which is even), and four with an 
odd number of elements. 

6.2. 14 In how many ways can two squares be selected 
from an 8-by-8 chessboard so that they are not in the 
same row or the same column? 

6.2. 15 In how many ways can four squares, not all in 
the same row or column, be selected from an 8-by-8 
chessboard to form a rectangle? 

6.2. 16 In how many ways can we place r red balls and 
w white balls in n boxes so that each box contains at 
least one ball of each color? 

6.2. 17 A parking lot for compact cars has 1 2  adjacent 
spaces, and eight are occupied. A large sport-utility 
vehicle arrives, needing two adjacent open spaces. 
What is the probability that it will be able to park? 
Generalize ! 

6.2.18 Find a nice formula for the sum 

Can you explain why your formula is true? 

6.2.19 How many ways can the positive integer n can 
be written as an ordered sum of at least one positive 

4A standard deck contains 52 cards. 1 3 denominations (2 , 3 , . . .  , IO , J , Q , K , A) in each of four suits 
(0, <::I , "', .),  
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integer? For example, 

4 = 1 + 3 = 3 + 1 = 2 + 2 = 1 + 1 + 2 
= 1 + 2 + 1 = 2 +  1 + 1 =  1 + I + 1 + I ,  

so when n = 4, there are eight such ordered partitions. 
6.2.20 Ten dogs encounter eight biscuits. Dogs do 
not share biscuits ! Verify that the number of different 
ways that the biscuits can be consumed will equal 

(a) ( �) if we assume that the dogs are distinguish­
able, but the biscuits are not; 

(b) 108 if we assume that the dogs and the biscuits 
are distinguishable (for example, each biscuit is 
a different flavor) . 

6.2.21 In Problem 6.2.20 above, what would the an­
swer be if we assume that neither dogs nor biscuits are 
distinguishable? (The answer is not I ! ) 

6.2.22 When (x + y + z) 1999 is expanded and like 
terms are collected, how many terms will there be? 
[For example, (x + y)

2 
has three terms after expansion 

and simplification. ]  

6.2.23 Find a formula for the number of different or­
dered triples (a , b, c) of positive integers that satisfy 
a + b + c  = n. 
6.2.24 Let S be a set with n elements. In how 
many different ways can one select two not neces­
sarily distinct or disjoint subsets of S so that the 
union of the two subsets is S? The order of selec­
tion does not matter; for example, the pair of sub­
sets {a, c } ,  {b, c , d , e , J} represents the same selection 
as the pair {b, c , d , e ,J } , {a, c } .  
6.2.25 (AIME 1988) I n  an office, at various times dur­
ing the day, the boss gives the secretary a letter to type, 
each time putting the letter on top of the pile in the sec­
retary 's in-box. When there is time, the secretary takes 
the top letter off the pile and types it. There are nine 
letters to be typed during the day, and the boss delivers 
them in the order 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 . 

While leaving for lunch, the secretary tells a col­
league that letter 8 has already been typed, but says 
nothing else about the morning's typing. The col­
league wonders which of the nine letters remain to be 
typed after lunch and in what order they will be typed . 
Based upon the above information, how many such 
after-lunch typing orders are possible? (That there are 
no letters left to be typed is one of the possibilities . )  

6.2.26 (AlME I983) A gardener plants three maple 

trees,  four oak trees and five birch trees in a row. He 
plants them in random order, each arrangement being 
equally l ikely. Find the probability that no two birch 
trees are next to one another. 

6.2.27 (AIME 1 983) Twenty-five people sit around a 
circular table. Three of them are chosen randomly. 
What is the probability that at least two of the three 
are sitting next to one another? 

6.2.28 We are given n points arranged around a cir­
cle and the chords connecting each pair of points are 
drawn. If no three chords meet in a point, how many 
points of intersection are there? For example, when 
n = 6, there are 1 5  intersections. 

6.2.29 Given g girls and b boys, how many different 
ways can you seat these people in a row of g + b seats 
so that no two boys sit together? There are two differ­
ent interpretations : one where you do not distinguish 
among individual girls and between individual boys 
(i .e . ,  you would not consider the seating arrangements 
"Becky, Sam, Amy, Tony" and "Amy, Tony, Becky, 
Sam" as different), and one where you do distinguish 
among individuals. Answer the question for each in­
terpretation. Find a general formula, and prove why 
your formula is correct. 

6.2.30 The balls in urns formula says that if you are 
order h hats from a store that sells k different kinds of 

hats, then there are (k + : - I ) different possible or­

ders . Use a partitioning argument to show that this is 

also equal to rtl C) C = : ) . 

6.2.31 Use a combinatorial argument to show that for 
all positive integers n , m , k  with n and m greater than 
or equal to k, 

{. (�) ( m .) = (n + m) . �o } k - } k 

This is known as the Vandermonde convolution for­

mula. 
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6.2.32 In Example 6.2.4 on page 200, the incorrect 
argument overcounted by 48. Account exactly for this 
discrepancy. 

6.2.33 As defined in Problem 4.3. 1 7  on page 1 42, let 
p(n) denote the number of unrestricted partitions of n . 
Show that p(n) 2 2 lv'nJ for all n 2 2. 

6.2.34 (Putnam 1 993) Let f!lJn be the set of subsets 
of { l ,  2, . . .  , n  }. Let c( n , m ) be the number of func­
tions f :  f!lJn ..... { 1 , 2 , . . .  , m } such that f(A n B) = 
min{f(A ) , j(B ) } .  Prove that 

m 
c (n , m ) = � jn . 

} = 1 

6.3 The Pri nciple of Inclusion-Excl usion 

The partitioning tactic makes a pretty utopian assumption, namely that the thing we 
wish to count can be nicely broken down into pairwise disjoint subsets. Reality is often 
messier, and new tactics are needed. We shall explore a number of ways of dealing 
with situations where sets overlap and overcounting is not uniform. 

Count the Complement 

By now you are used to the strategy of changing your point of view. A particular 
application of this in counting problems is 

If the thing you wish to count is confusing, try looking at its complement 
instead. 

Example 6.3.1 How many n-bit strings contain at least one zero? 
Solution : Counting this directly is hard, because there are n cases, namely, exactly 

one zero, exactly two zeros, . . . .  This is certainly not impossible to do, but an easier 
approach is to first note that there are 2n possible n-bit strings, and then count how 
many of them contain no zeros . There is only one such string (the string containing n 
I s) . So our answer is 2n - 1 .  • 

Example 6.3.2 Ten children order ice-cream cones at a store featuring 3 1 flavors . 
How many orders are possible in which at least two children get the same flavor? 

Solution : We shall make the humanistic assumption that the children are distin­
guishable. Then we are counting a pretty complex thing. For example, one order 
might be that all the children order flavor #6. Another order might specify that child 
#7 and child #9 each order flavor # 1 2  and children #1 -4 order flavor #29, etc. Let us 
first count all possible orders with no restrictions; that is just 3 1 1 0 ,  since each of the 
1 0  kids has 3 1 choices. Now we count orders where there is no duplication of flavor; 
that is just 3 1 x 30 x 29 x . . .  x 22 = P(3 1 ,  1 0) . The answer is then the difference 
3 1 1 O - P(3 1 , 1 O) . • 

PIE with Sets 

Sometimes the complement counting tactic fails us, because the complement is just 
as complicated as the original set. The principle of inclusion-exclusion (PIE) is a 
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systematic way to handle these situations. 
In simplest fonn, PIE states that the number of elements in the union of two sets is 

equal to the sum of the number of elements in the sets minus the number of elements 
in their intersection. Symbolically, we can write this as 

IA U B I  = IA I + IB I - IA n B I ·  

It i s  easy to see why this i s  true: Adding IA I and IB I overcounts the value of IA U B I . 
This overcounting is not unifonn; we did not count everything twice, just the elements 
of A n B. Consequently, we can correct for overcounting by subtracting IA n B I .  

A bit of experimenting quickly leads t o a conjecture for the general case of PIE 
with n sets. 

6.3.3 Verify that for three sets, PIE is 

IA U B u C I = IA I + IB I + IC I - ( IA n B I  + IA n c l  + IB n C I ) + IA n B n c l ·  

6.3.4 Verify that for four sets, PIE is 

IA U B U C U D I  = 

+ ( IA I + IB I + IC I + ID I )  

- ( IA n B I  + IA n c l  + IA n D I + IB n c l + IB n D I + IC n D I )  
+ ( IA n B n C i + IA n C n D I + IA n B n D I + I B  nC n D I )  

- IA n B n c n D I · 

In general , we conjecture 

The cardinality of the union of n sets = 

+ (sum of the cardinalities of the sets ) 
- (sum of the cardinalities of all possible intersections of two sets) 
+ (sum of the cardinalities of all possible intersections of three sets) 

± (the cardinality of the intersection of all n sets) , 

where the last tenn is negative if n is even, and positive is n is odd. 
It is pretty easy to explain this infonnally. For example, consider the following 

diagram, which illustrates the three-set situation. 
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Visualize each set as a rubber disk. The cardinality of the union of the sets corre­
sponds to the "map area" of the entire shaded region. However, the shading is in three 
intensities. The lightest shading corresponds to a single thickness of rubber, the in­
termediate shading means double thickness, and the darkest shading indicates triple 
thickness. The map area that we desire is just the single-thickness area. If we merely 
add up the areas of the three disks, we have "overcounted"; the light area is OK but the 
medium-dark area has been counted twice and the darkest shading area was counted 
three times. To rectify this, we subtract the areas of the intersections A n B , A n C, B n C.  
But now we have undercounted the darkest area A nB nC  - i t was originally counted 
three times, but now has been subtracted three times. So we add it back, and we are 
done. It makes sense that in the general case, we would alternate between adding and 
subtracting the different thicknesses. 

This argument is attractive, but hard to generalize rigorously to n sets. Let us 
attempt a rigorous proof of PIE, one that illustrates a nice counting idea and useful 
notation. Let our sets be A l ,A2 , ' . .  ,An and let Sk denote the sum of the cardinalities of 
all possible intersections of k of these sets. For example, 

and 

S I = IA I I + IA2 1 + " ' + IAn l = � IAi l  
1 ::; 1::; 11 

S2 = IA I nA2 1 + IA I nA3 1 + . . .  + IAn- 1 nA1I 1 = � IAi n Aj l · 1 ::; I< j::;n 
Notice the subscript notation. (Take some time to study it carefully, perhaps by writing 
out several examples.) The condition I ::; i < j ::; n gives us all G) possible combi­
nations of two different indices, with no repeats. For example, IA3 n A7 1 appears just 
once in the sum, since IA7 nA3 1 is not allowed. In general , 

Sk = � IAi \ n Ai2 n · · · n Ah l · 1 ::;i \ < i2 < · · - <h ::;n 
With this notation, PIE becomes the statement 

IA 1 U A2 U . . .  U An I = S 1 - S2 + S3 - . . .  + ( - I ) 11 - 1 SII ' (4) 

To prove this, let x E A l U A2 U . . .  U All be an arbitrary element of the union of the 
n sets. This element x is counted exactly once by the left-hand side of (4), since the 
left-hand side means "the number of elements in the union of the n sets." Thus, if we 
can show that the right-hand side of (4) also counts the element x exactly once, we wil l 
be done.5 

Let r be the number of sets that x is a member of. For example, if x E A3 and no 
other set, then r = 1 .  Certainly, r can range between I and n, inclusive . Let us see how 
many times each Sk counts the element x. When S 1 is computed, each element in each 
set Ai is counted. Thus the element x is counted exactly r times, once for each set it is 
a member of. To compute S2 , we count the elements in each set of the form Ai n A j ,  
i ::; j. The only sets that are relevant to us are the r sets that x is a member of. There 

5 Notice the new counting idea: to see if a combinatorial identity is true, examine how each side of the equation 
counts a representative element. 
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will be G) intersections of pairs of these sets, and for each of them, we will count x 

once. Hence S2 counts x exactly G) times . In general, Sk counts the element x exactly 
(D times. If k > r, then Sk is a sum of cardinalities of intersections of k > r sets, and 
none of these sets can contain x, which only lies in r sets ! And of course, Sr counts x 
exactly once (i .e . , (�) times), since there is only one intersection of r sets that actually 
contains x. 

We have reduced PIE, then, to proving the identity 

Recall that r = m and I = (�) , so the above equality has the equivalent formulation 

(�) - G) + (;) + " . + ( - l y G) = 0, (5) 

which was part of problem 6. 1 .22 . One can prove equation (5) easily in at least three 
different ways. Try them all ! 

• Induction plus the summation identity (6. 1 . 14 ) of Pascal 's Triangle; 
• A direct examination of the elements in Pascal 's Triangle, using the symmetry 
identity (6 . 1 . 1 3) and the summation identity; 

• The slickest way, perhaps: Just expand 0 = ( 1 - 1 Y with the binomial theorem 
and you immediately get (5) !  

I n any event, now that we know that (5) i s true, we have proven PIE. • 

A few examples will convince you of the power in PIE. The key to approaching 
these problems is a flexible attitude about whether to count something or its comple­
ment. 

Example 6.3.5 How many five-card hands from a standard deck of cards contain at 
least one card in each suit? 

Solution : First note that there are e5
2) possible hands, since the order of the cards 

in a hand is immaterial . Whenever you the words "at least," you should be alerted to 
the possibility of counting complements . Which is easier to compute : the number of 
suits containing no diamonds, or the number of suits containing at least one diamond? 
Certainly the former is easier to calculate; if there are no diamonds, then there are only 
52 - 1 3 = 39 cards to choose from, so the number of hands with no diamonds is ei) .  
This suggests that we define as our "foundation" sets C, D ,  H,  S to be the sets of hands 
containing no clubs, diamonds, hearts, spades, respectively. Not only do we have 

Ie ! = ID I = IH I = l S I = c:) ,  
but the intersections are easy to compute as well. For example, D n H is the set of 
hands that contain neither diamonds nor hearts . There are 52 - 2 . 1 3 = 26 cards to 
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ID n H I = C56) .  
By similar reasoning, ID n H n S I = ei) .  Notice that e n D  n H n S = 0, since it is 
impossible to omit all four suits ! 

These sets are not just easy to compute with, they are useful as well, because 
e u D u H u S  consists of all hands for which at least one suit is absent. That is exactly 
the complement of what we want! 

Thus we will use PIE to compute Ie u D u H U S I , and subtract this result from 
es2) . We have 

where 

S )  = IC I + ID I + IH I + lS I , 
S2 = le n D I + le n H I + le n s l + ID n H I + ID n s l + IH n S I , 
S3 = le n D n H I + le n D n s l + le n H n s l + ID n H n s l ,  
S4 = le nD nH n s l · 

In other words, 

The combination of PIE with counting the complement is so common that it is 
worth noting (and verifying) the following alternative formulation of PIE. 

6.3.6 Complement PIE. Given N items, and k sets A )  , A2 , . . .  ,Ab the number of these 
items that lie in none of the A j is equal to 

N - S) + S2 - S3 + . . .  ± Sb 

where Si is the sum of the cardinalities of the intersections of the A j 's taken i at at time, 
and the final sign is plus or minus, depending on whether k is even or odd. 

The next example combines "Complement PIE" with other ideas, including the 
useful encoding tool invent a font, whereby we temporarily "freeze" several symbols 
together to define a single new symbol. 
Example 6.3.7 Four young couples are sitting in a row. In how many ways can we 
seat them so that no person sits next to his or her "significant other?" 

Solution : Clearly, there are 8 !  different possible seatings. Without loss of gener­
ality, let the people be boys and girls denoted by b ) , b2 , b3 , b4 , g )  , g2 , g3 , g4 , where we 
assume that the couples are bi and gi, for i = 1 , 2 , 3 , 4. Define Ai to be the set of all 
seatings for which hi and gi sit together. To compute lAd ,  we have two cases: either 
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bi is sitting to the left of gi or vice versa. For each case, there will be 7! possibili­
ties, since we are permuting seven symbols: the single symbol bigi (or gibi ) ,  plus the 
other six people. Hence IA i I = 2 . 7 !  for each i. Next, let us compute IAi n A j I . Now 
we are fixing couple i and couple j, and letting the other four people permute freely. 
This is the same as permuting six symbols, so we get 6 ! .  However, there are 22 = 4 
cases, since couple i can be seated either boy-girl or girl-boy, and the same is true for 
couple j. Hence IA i nAj l = 4 ·  6 ! .  By the same reasoning, IA i nAj nAk l = 23 . 5 !  and 
IA I nA2 nA3 nA4 1 = 24 . 4 ! .  Finally, PIE yields 

IA I UA2 UA3 UA4 1 = 4 · 2 · 7 ! - G) 4 . 6 !  + G) 23 · 5 ! _ 24 · 4 ! ,  

where the binomial coefficients were used because there were (i) ways of intersecting 
two of the sets, etc . Anyway, when we subtract this from 8 ! ,  we get the number of 
permutations in which no boy sits next to his girl, which is 1 3 ,824. 

PIE with Indicator Functions 

We're not done with PIE yet. By now you should feel comfortable with the truth of 
PIE, and you may understand the proof given above, but you should feel a bit baftled 
by the peculiar equivalence of PIE and the fact that ( 1  - 1 Y = O. We shall now present 
a proof of the complement formulation of PIE (6.3 .6), using the "binary" language of 
indicator functions . 

Recall that the indicator function of A (see page 1 46) is denoted by lA and is a 
function with domain U (where U is a "universal set" containing A) and range {O, I } 
defined by 

1 (x) = { O �fx 9t A , A 
1 If x E A ,  

for each x E U.  For example, i f U = N and A = { 1 , 2 , 3 , 4 , 5 } ,  then lA (3 )  = 1 and 
lA ( 1 7 )  = O. 

Also recall that for any two sets A , B, the following are true (this was Problem 5 . 1 .2 
on page 1 46) :  

lA (X) lB (X) = lAnB (x) . 
1 - 1A (X) = lX(x) . 

(6) 

(7) 

In other words, the product of two indicator functions is the indicator function of 
the intersection of the two sets and the indicator function of a set 's complement is just 
one subtracted from the indicator function of that set. 

Another easy thing to check (Problem 5 .3 . 1 2  on page 1 63) is that for any finite set 
A, 

(8) 

This is just a fancy way of saying that if you consider each x in U and write down a 
" I " whenever x lies in A,  then the sum of these " 1 "s will of course be the number of 
elements in A.  
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Let us apply these simple concepts to get a new proof of the complement form of 
PIE (6.3 .6) . Let the universal set U contain N elements , and without loss of generality, 
suppose that we have just four sets A I , A2 , A3 , A4 . Define No to be the number of 
elements in U that have none of these properties. In other words, No is counting the 
number of elements of U that are not in any of A I , A2 , A3 , A4. Define the function g(x) 

by 
g(x) := ( l - lA I (x) ) ( I - lA2 (X) ) ( I - lA

3
(X) ) ( I - lA

4
(X) ) . 

Then, by applying equations (6) and (7) we see (verify ! ) that g(x) = INo (x) and thus 
(8) implies that (verify ! ) 

In other words, 

No = " g(x) .  
xti; 

No = " ( I - lA I (x) ) ( I - lA
2 (X) ) ( I - lA

3 (X) ) ( I - lA
4
(X) ) .  

xti; 
When we multiply out the four factors in the right-hand side, we get 

No = + " I 
xti; 

- " ( lA I (x) + lA
2 (X) + lA

3
(X) + lA

4
(X) )  

xti; 
+ " ( lA I (X) lA

2 (
x) + lA I (X) lA

3 
(x) + lA I (X) lA

4 
(x) 

xti; 
+ lA

2 (X) lA
3 (

x) + lA
2 
(X) lA

4 
(x) + lA

3 
(X) lA

4 
(x) ) 

- " ( lA I (X) lA2 (X) lA
3 (

x) + lA I (X) lA
2 (X) lA

4 
(x) 

xti; 
+ lA I (X) lA

3 
(X) lA

4 (
x) + lA

2 
(X) lA

3 
(X) lA

4 (
x) ) 

+ " (lA I (X) lA
2
(x) lA

3
(x) lA

4
(X) ) .  

xti; 
If we apply equations (6), (7) and (8) , we see that this ugly sum is exactly the same as 

No = N 
S l  

+ S2 , 
S3 

+ S4 
using the notation of (6 .3 .6) .  In other words, we just demonstrated the truth of PIE for 
four sets. The argument certainly generalizes , for it uses only the algebraic fact that 
the expansion of 

( l - a) ( l - b) ( l - c) · · ·  
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is equal to the alternating sum 
1 - (a + b + . . .  ) - (ab + ac + . . .  ) + . . . . • 

Problems and Exercises 

6.3.8 In Example 6.3 .2 on page 207, we assumed that 
the children are distinguishable. But if we are just 
counting ice cream orders , then the children are not. 
For example, one order could be "Three cones of fla­
vor # 16, seven of flavor #28 ." How many such orders 
are there in this case? 

6.3.9 What is wrong with the following "solution" to 
Example 6.3.17 

The first person can of course be cho­
sen freely, so there are eight choices. The 
next person must not be that person 's 
partner, so there are six available. The 
third person cannot be the second per­
son 's partner, so there are five choices .  
Thus the product is 

8 · 6 · 5 · 4 · 3 · 2 · 1 · 1 , 
since the last two slots have no freedom 
of choice. 

6.3.10 How many integers between 1 and 1000, inclu­
sive, are divisible by neither 2, 3 , or 5? 

6.3.1 1  (USAMO 72) A random number generator 
randomly generates the integers 1 , 2 , . . .  , 9  with equal 
probability. Find the probability that after n numbers 
are generated, the product is a multiple of 1 0. 
6.3.12 How many nonnegative integer solutions are 
there to a + b + c + d = 1 7 , provided that d � 1 2? 
6.3.13 Let a i , a2 , . . . , an be an ordered sequence of n 
distinct objects. A derangement of this sequence is a 
permutation that leaves no object in its original place. 
For example, if the original sequence is 1 , 2 , 3 , 4, then 

6.4 Recurrence 

2 , 4 , 3 , 1  is not a derangement, but 2 , 1 , 4 , 3  is. Let Dn 
denote the number of derangements of an n-element 
sequence. Show that 

D = n ! ( I - � + � - . . . + (- I )n �) . n I ! 2 !  n !  

6.3.14 Use a combinatorial argument (no formulas ! )  
to  prove that 

n! = ± (;)Dn-r , r=O 
where Dk is defined in the problem above. 

6.3.15 Consider 10 people sitting around a circular 
table. In how many different ways can they change 
seats so that each person has a different neighbor to 
the right? 

6.3. 16 Imagine that you are going to give n kids ice­
cream cones,  one cone per kid, and there are k dif­
ferent flavors available. Assuming that no flavors get 
mixed, show that the number of ways we can give out 
the cones using all kfiavors is 

kn - G) (k - l t  + G) (k - 2t - G) (k - 3t+ 

. . . + (- I )k G) on . 

6.3.17 (IMO 89) Let a permutations n of 
{ I ,  2, . . .  , 2n } have property P if 

I n (i) - n(i + l ) 1  = n  

for at least one i E [2n - 1 ] .  Show that, for each n, there 
are more permutations with property P than without it. 

Many problems involving the natural numbers require finding a formula or algorithm 
that is true for all natural numbers n. If we are lucky, a little experimenting suggests 
the general formula, and we then try to prove our conjecture. But sometimes the 
problem can be so complicated that at first it is difficult to "globally" comprehend it. 
The general formula may not be at all apparent. In this case, it is still possible to gain 
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insight by focusing on the "local" situation, the transition from n = 1 to n = 2, and 
then, more generally, the transition from n to n + I .  Here is a very simple example . 

Tiling and the Fibonacci Recurrence 

Example 6.4. 1 Define a domino to be a I x 2 rectangle. In how many ways can an 
n x 2 rectangle be tiled by dominos? 

Solution: Let tn denote the number of tilings for an n x 2 rectangle . Obviously 
tl = I ,  and it is easy to check that t2 = 2, since there are only the two possibilities 
below. 

rn a  
Consider f7 . Let us partition all the tilings of the 7 x 2 rectangle into two classes : 

• Class V contains all tilings with a single vertical domino at the right end. l _ u , u � m ;u u , uT U I I 
6 

• Class H contains all other tilings. If the right end isn 't a vertical domino, then 
it has to be two horizontal dominos. 1 _ u "u u � m " u ' mt-----ll 

5 

This is definitely a partition, since each and every tiling must be in one of these classes, 
and they do not share any elements . Class V contains t6 members : Take any tiling of 
a 6 x 2 rectangle, append a vertical domino on the right, and you get a class V tiling 
of a 7 x 2 rectangle. Likewise, there are t5 tilings in class H. In other words, we have 
shown that t7 = t6 + t5 . This argument certainly generalizes, so we have the recurrence 
formula 

tn+ l = tn + tn- I , n = 2, 3 ,  . . . . (9) 

Have we solved the problem? Yes and no. Formula (9), plus the boundary values 
t l = I ,  t2 = 2, completely determine tn for any value of n, and we have a simple al­
gorithm for computing the values: just start at the beginning and apply the recurrence 
formula ! The first few values are contained in the following table. 
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These values are precisely those of the Fibonacci numbers (see Problem l .3 . l 8  on 
page 1 0) .  Recall that the Fibonacci numbers In are defined by 10 = 0, Ii = I and 
In = In- I + In-2 for n > 1 .  The Fibonacci recurrence formula is the same as (9); only 
the boundary values are different. But since h = I = t l and 13 = 2 = t2 , we are guar­
anteed that tn = In+ 1 for all n. So the problem is "solved," in that we have recognized 
that the tiling numbers are just Fibonacci numbers . _ 

Of course you may argue that the problem is not completely solved, as we do not 
have a "simple" formula for tn (or In ) . In fact, Problem l .3 . l 8  did in fact state the 
remarkable formula 

( 1 0) 

which holds for all n 2 O. 
Let 's verify this formula, deferring for now the more important question of where 

it came from. In other words, let 's figure out the how of it, ignoring for now the why 
of it. All that we need to do is show that ( 1 0) satisfies both the Fibonacci recurrence 
formula and agrees with the two boundary values 10 = 0, II = I . The last two are easy 
to check. And verifying the recurrence formula is a fun algebra exercise: Define 

1 + v's 
a := --2- ' 

Note that 

1 - v's 
f3 := -2

- '  

a + f3 = I , af3 = - I ,  
so both a and f3 are roots of the quadratic equation (see page 1 68) 

2 - x - 1 = 0. 
In other words, both a and f3 satisfy 

This means that if we define a sequence by gn := an , it will satisfy the Fibonacci 
recurrence ! For any n 2 0, we have 

gn+ 1 = an+ 1 = an- l a2 = an- I (a +  I ) = an + an- I = gn + gn- I . 
Likewise, if we define hn :=  f3n , this sequence will also satisfy the recurrence. Indeed, 
if A and B are any constants , then the sequence 

Un := Aan +Bf3n 

will satisfy the recurrence, since 

Un+ 1 = Aan+ 1 +BW+ I = A (an + an- I ) + B (W + W- I ) = Un + Un- l · 



Thus, in particular, if we define In := � (an - W) , 
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then In+ I = In + In- I .  Since this also satisfies the boundary values, it must generate 
the entire Fibonacci sequence. _ 

While it is nice to have a "simple" formula that generates the Fibonacci sequence, 
knowing the recurrence formula is almost as good, and sometimes it is impossible or 
extremely difficult to get a "closed-form" solution to a recurrence. A few problems at 
the end of this section discuss some methods for solving recurrences,6 but for now, let 
us just concentrate on discovering some interesting recurrence formulas. 

The Catalan Recurrence 

In the example below, we will discover a complicated recurrence formula that turns up 
in surprisingly many situations. 

Example 6.4.2 The idea of a triangulation of a polygon was introduced in Exam­
ple 2 .3 .9 on page 48. Compute the number of different triangulations of a convex 
n-gon. 

Partial Solution : Experimentation yields t3 = l , t4 = 2 , t5 = 5. For example, here 
are the five different triangulations for a convex pentagon : 

Let 's move on to 6-gons, trying to discover a connection between them and smaller 
polygons. Fix a base, and consider the four possible vertices that we can draw a 
triangle from: 

Notice that these four pictures partition the triangulations. The first picture yields t5 
new triangulations (corresponding to all the ways that the pentagon above the dotted 
line can be triangulated), while the second yields t4 triangulations (the only choice 
involved is triangulating the quadrilateral) .  Continuing this reasoning, we deduce that 

t6 = t5 + t4 + t4 + t5 = 14 ,  

6 Also see Section 4.3 for another general method for solving and analyzing recurrences. 
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which you can check by carefully drawing all the possibilities. 
Before we rest, let's look at the 7-gon case. The triangulations are partitioned by 

the five cases below : 

000' 0' 0  

I I  " 
, . • I 

: ' . , ...
. .... :

,: � 
I , • • • • 

, 

. , 

, . . 

� 

� 
"

"

. . 

,/ 
\, 

, : . ' 
� 

. . . . .
. . . 

. . . . . . . . . . . : . . . . ... ... :: � . . . . . .  . 

The first picture yields t6 triangulations and the second yields t5 ,  but the third picture 
gives rise to t4 . t4 triangulations, since we are free to choose any triangulation in each 
of the two quadrilaterals on either side of the dotted triangle. The general situation is 
that each picture dissects the 7-gon into three polygons, one of which is the specified 
triangle with fixed base, and the other two may or may not involve choices. The other 
two polygons may include a "degenerate" 2-gon (for example, the first and last pic­
tures) or a triangle, and in both cases this provides no new choices. But otherwise, we 
will be free to choose and will need to multiply to count the total number of triangula­
tions for each picture . If we include the "degenerate" case and define t2 to equal 1 ,  we 
have the more consistent equation 

and in general, 

tn = t2tn- l  + t3tn-2 + . . .  + tn- l t2 = � tutv , 
u+v=n+ l 

( 1 1 )  

where the indices of summation are all pairs u ,  v that add up to n + 1 ;  we need no 
further restrictions as long as we accept the sensible convention that tu = 0 for all 
u � 1 .  

Now that we have a recurrence plus boundary values, we have "solved" the prob­
lem, at least in a computational sense, since we can calculate as many values of tn as 
we would like. _ 

Here is a table of the first few values. 

The sequence 1 , 1 , 2 , 5 , 14 ,  . . .  is known as the Catalan numbers (according to some 
conventions, the index starts at zero, so if Cr denotes the rth Catalan number, then 
tr = Cr-2) .  Recurrence formulas such as ( 1 1 )  may seem rather complicated, but they 
are really straightforward applications of standard counting ideas (partitioning and 
simple encoding) .  Algebraically, the sum should remind you of the rule for mUltiplying 
polynomials (see page 1 64), which in turn should remind you of generating functions 
(Section 4 .3) .  

Example 6.4.3 Use generating functions to find a formula for Cn . 
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Solution : Define the generating function 

f(x) = CO +CIX +C2X2 + . . . . 
Squaring, we have 

f(x)2 = CoCo + (CICO +COCJ )x+ (C2CO +CICI +COC2 )� + ' "  = CI +C2X+C3� + " "  
This implies that 

Xf(X)2 = f(x) - Co = f(x) - 1 . 
Solving for f(x) by the quadratic formula yields 

f(x) = 1 ± VI=4X . 2x 
A bit of thinking about the behavior as x approaches 0 should convince you that the 
correct sign to pick is negative, i .e . 

f(x) - 1 - VI=4X -
2x . 

Now all that remains is to find a formula for Cn by expanding f(x) as a power 
series. We need the generalized binomial theorem (see Problem 9 .4. 1 2  on page 353) , 
which states that 

Thus, 

( I  )a 
� (a ) (a - I ) . .  · (a - n + l )  n +y  = 1 + , y .  
n_ 1 n . 

JI - 4x = I + }:  ( � ) ( � - I ) . . .  ( � - n + I ) (-4xt 
n?: 1 n ! 

= 1 + }: (
_ I )n-d l ) ( 1 ) (3 ) (5;- ," (2n - 3) 

(-4)n.x" 
n?: 1 2 n . 

= 1 _ 
(2x) � ( 1 ) (3 ) (5 ) · · ·  (2n - 3)2n- 1  (n - I ) ! .x"- I 

n nfl (n - I ) ! (n - I ) ! 

= 1 - (2x) � ( 1 ) (3 ) (5 ) . . .  (2n - 3) (2 ) (4) (6) . . .  (2n - 2) .x"_ 1 
n nfl (n - 1 ) ! (n - I ) ! 

= 1 _ ( 2X) }: (2n
� 

2)xn- l . n n?: 1 n 1 
Finally, we have 

f(x) = 1 - VI=4X = ! }: (2n - 2).x"- 1 , 
2x n n?: 1 n - I 

and the coefficient of .x" is 

1 (2(n + l ) - 2) 
n + l (n + I ) - 1 . 
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Thus we can conclude that 

en = 
_1 (2n) .  n +  1 n 

• 

For a fascinating, purely combinatorial derivation of this formula, see [ 1 6] ,  pp. 345-
346. 

Problems and Exercises 

In the problems below, you should notice, among other things, the ubiquity of Fibonacci- and 
Catalan-style recurrences .  

6.4.4 Consider a language whose alphabet has  just 
one letter, but in which words of any length are al­
lowed. Messages begin and end with words, and when 
you type a message, you hit the space bar once be­
tween words. How many different messages in this 
language can be typed using exactly n keystrokes? 

6.4.5 For a set S of integers, define S + 1 to be {x + 1 : 
X E S} .  How many subsets S of { I ,  2, . . . , n } satisfy 
S U (S + 1 )  = { I  , 2 , . . .  , n}? Can you generalize this? 

6.4.6 Find the number of subsets of { I ,  2 ,  . . .  , n} that 
contain no two consecutive elements of { I ,  2, . . . , n } .  
6.4.7 Find the maximum number of regions i n  the 
plane that are determined by n "vee"s. A vee is the 
union of two distinct rays that share the same starting 
point. 

6.4.8 Fix positive a, b, c. Define a sequence of real 
numbers by Xo = a, XI = b, and xn+ I = CXnXn- l .  Find 
a nice formula for Xn . 
6.4.9 For each n 2 1 ,  we call a sequence of n (s and n 
)s "legal" if the parentheses match up, somehow. For 
example, if n = 4, the sequence «)OO) is legal, but 
O(»(O is not. Let en denote the number of legal ar­
rangements for the 2n parentheses. Find a recurrence 
relation for en . 
6.4.10 How many ways can you tile a 3 x n rectangle 
with 2 x 1 dominos? 

6.4. 1 1  (Putnam 1 996) Define a selfish set to be a set 
that has its own cardinality (number of elements) as an 
element. Find, with proof, the number of subsets of 
{ I ,  2, . . . , n} that are minimal selfish sets, that is, self­
ish sets none of whose proper subsets is selfish. 

6.4. 12 In Pascal's Triangle below, examine the sum 

along each dotted line. 

• •  
•. : : . . : ·1 · . 1 ··. : .

.
.
.
.
.
.
. ·2":": : : : :  1 . · .  

I . . . 3 · · · g . . . 
. 1 · : 

. · . · 4 .
. 
· · · 

. . · 6 · 
. 

4 
. }" . · · ·5 · 1 0  1 0  5 

Make a conjecture and prove it. 

6.4. 13 Let u (n ) denote the number of ways in which 
a set of n elements can be partitioned. For example, 
u (3 ) = 5, corresponding to 

{a, b , c } ; 
{a, c } , {b } ; 

{a, b } , {c} ; {a} , {b, c} ; 
{a} , {b } , {c} . 

Find a recurrence relation for u (n) . You might hope 
that u (4) = 14 , suggesting a Catalan-style recurrence, 
but unfortunately, u(4) = 1 5 .  
6.4.14 A movie theater charges $5 for a ticket. The 
cashier starts out with no change, and each customer 
either pays with a $5 bill or offers a $ 10  bill (and gets 
change) .  Clearly, the cashier will be in trouble if there 
are too many customers with only $ 10  bills. It turns 
out that there were 2n customers, and the cashier never 
had to turn anyone away, but after dealing with the last 
customer, there were no $5 bills left in the cash regis­
ter. Let Wn denote the number of different ways this 
could have happened. Find a recurrence for Wn . 
6.4.15 The number of derangements Dn was defined 
in Problem 6.3 . 1 3 .  Show that 

and use this to prove by induction the formula given in 
6.3 . 1 3 . 



Stirling Numbers 
Problems 6.4. 1 6--6.4.22 develop a curious "dual" to 

the Binomial Theorem. 

6.4. 16 For n, k positive integers with n � k, define { � } (called the Stirling numbers of the second 

kind)7 to be the number of different partitions of a set 
with n elements into k non-empty subsets. For exam-

ple, { � } = 6, because there are six three-part parti­

tions of the set {a, b , c , d } , namely 

{a} , {b} , {c, d } ; 
{b} , {e} , {a, d } ; 

{a} , {c } , {b , d } ; 
{b} , {d } ,  {a , c } ; 

Show that for all n > 0, 

(a) { � } = 1 .  
(b) { � } = 2�- 1 - 1 .  

(c) { n : l } = G) ' 

{a } , {d} ,  {b, c } ; 
{c} , {d} , {a, b} . 

6.4. 17 Find a combinatorial argument to explain the 
recurrence 

6.4. 18 Imagine that you are going to give n kids ice­
cream cones, one cone per kid, and there are k dif­
ferent flavors available. Assuming that no flavors get 
mixed, show that the number of ways we can give out 
the cones using all k flavors is 

6.4. 19 The previous problem should have reminded 
you of Problem 6.3 . 1 6, which stated that number of 
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ways to give n kids ice-cream cones, one cone per kid, 
using all of k different flavors avai lable , is 

It' - G) (k - 1 t + G) (k - 2 t - G) (k - 3)" + 

. . . + ( _ I )k G)on . 
Please do this now (using PIE), if you haven't  already. 

6.4.20 Combine the two previous problems, and you 
get a nice formula for the Stirling numbers of the sec­
ond kind. It is not closed-form, but who's complain­
ing? 

{ n } = � {. ( - I ) ' (k) (k - r)" . 
k k .  r�O r 

6.4.21 Returning to the ice-cream cone problem, now 
consider the case where we don 't care whether we use 
all k flavors . 

(a) Show that now there are k" different ways to 
feed the kids (this is an easy encoding problem 
that you should have done before) .  

(b )  Partition these kn possibilities by the exact num­
ber of flavors used. For example , let A I denote 
the set of "feedings" in which just one flavor is 
used; clearly IA I I  = k.  Show that in general , 

IAr l = { ; } P(k ,  r ) . 

6.4.22 The Stirling Number "Dual" of the Binomial 
Theorem. For positive integers r, define 

X-- := x(x - I ) · · · (x - r +  I ) . 
(Thus X-- is the product of r terms) . Use the prev ious 
problems to show that 

7 See [ 1 6] ,  Chapter 6, for information about Stirling numbers of the first kind. 



Chapter 7 

Number Theory 

Number theory, the study of the integers Z, is one of the oldest branches of mathe­
matics, and is a particularly fertile source of interesting problems that are accessible at 
many levels. This chapter will very briefly explore a few of the most important topics 
in basic number theory, focusing especially on ideas crucial for problem solvers. The 
presentation is a mix of exposition and problems for you to solve as you read. It is 
self-contained and does not assume that you have studied the subject before, but if you 
haven't ,  you may want to consult an elementary text such as [45] to learn things in 
more depth or at a more leisurely pace. 

Several number theory topics were discussed in earlier chapters . If you read them, 
great. If not, the text below will remind you to read (or reread ! )  them at the appropriate 
times. 

We will denote the integers (positive and negative whole numbers including zero) 
by Z, and the natural numbers (positive whole numbers) by N. In this chapter we 
will follow the convention that any Roman letter (a through z) denotes an integer. 
Furthermore, we reserve the letters p and q for primes. 

7.1 Pri mes and Divis ib i l ity 

222 

If alb is an integer, we say that b divides a or b is a factor or divisor of a. We also say 
this with the notation 

b la ,  

which you read "b divides a." Equivalently, there exists an integer m such that a = bm . 

The Fundamental Theorem of Arithmetic 

Undoubtedly, you are familiar with the set of prime numbers . A number n is prime if 
it has no divisors other than 1 and n. Otherwise, n is called composite. By convention, 
1 is considered neither prime nor composite, so the set of primes begins with 

2 , 3 , 5 , 7 , 1 1 , 1 3 , 1 7 , 23 , 29 , 3 1 ,  . . . . 

It is not at all obvious whether this sequence is finite or not. In turns out that 
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There are infinitely many primes. 

This was Problem 2 .3 .2 1 on page 5 1 ,  but in case you did not solve it, here is the 
complete proof, a classic argument by contradiction known to the ancient Greeks and 
written down by Euclid. This proof is one of the gems of mathematics. Master it. 

We start by assuming that there are only finitely many primes PI , P2 , P3 , . . .  , PN .  
Now (the ingenious crux move ! )  consider the number Q := (P I P2P3 ' " PN ) + 1 .  Either 
it is prime, or it is composite. The first case would contradict the hypothesis that PN 
is the largest prime, for certainly Q is much greater than PN . But the second case also 
generates a contradiction, for if Q is composite, it must have at least one prime divisor, 
which we will call p. Observe that P cannot equal PI ,  P2 , " "  PN , for if you divide Q 
by any of the Pi , the remainder is 1 .  Consequently, P is a new prime that was not in 
the list PI , P2 , . . .  , PN ,  contradicting the hypothesis that this was the complete list of 
all primes. _ 

7.1 .1  There is a tiny gap in our proof above. We made the blithe statement that Q had 
to have at least one prime factor. Why is this true? More generally, prove that every 
natural number greater than 1 can be factored completely into primes .  For example, 
360 = 23 . 32 · 5 . Suggestion : use strong induction, if you want to be formal . 

In fact, this factorization is unique, up to the order in which we write the primes.  
This property of unique factorization is called the Fundamental Theorem of Arith­
metic (FTA) . I We call the grouping of factors into primes the prime-power factor­
ization (PPF) . An ugly, but necessary, notation is sometimes to write a number n in 
"generic" PPF: 

n - pe 1 pe2 . . .  pet 
- I 2 t · 

You probably are thinking, "What is there to prove about the FTA? It's obvious." 
In that case, you probably also consider the following "obvious : "  

Let x, y be integers satisfying 5x = 3y. Then 3 1x and 5 1y. 

But how do you prove this rigorously? You reason that 5x is a multiple of 3 and 
since 3 and 5 are different primes, x has to contain the 3 in its PPF. This reasoning 
depended on the FTA, for if we did not have unique factorization, then it might be 
quite possible for a number to be factored in one way and have a 5 as one of its primes 
with no 3, and factored another way and have a 3 as one of its primes, without a 5 .  

Example 7.1.2 Not convinced? Consider the set E := {O, ±2 ,  ±4, . . .  } that contains 
only the even integers . 

• Notice that 2 , 6 ,  1 0 , 30 are all "primes" in E since they cannot be factored in E .  
• Observe also that 

60 = 2 . 30 = 6 . 1 0; 

I "PTA" is also used to abbreviate the Fundamental Theorem of Algebra. 
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in other words, 60 has two completely different E-prime factorizations, and 
consequently, if x , y  E E satisfy 2x = l Oy, even though 2 and 1 0  are both E­
primes, we cannot conclude that 1 0 Ix, 2 Iy. After all, x could equal 30, and y 
could equal 6. In this case, x is not a multiple of 1 0  in E ,  since 30 is an E­
prime. Likewise y is not a multiple of 2. 

This example is rather contrived, but it should convince you that the FfA has real 
content. Certain number systems have unique factorization, and others do not. The 
set Z possesses important properties that make the FfA true. We will discover these 
properties and construct a proof of the FfA in the course of this section, developing 
useful problem-solving tools along the way. 

GCD, LCM, and the Division Algorithm 

Given two natural numbers a, b, their greatest common factor, written (a , b) or some­
times as GCD (a, b) , is defined to be the largest integer that divides both a and b. 
For example, (66, 1 50) = 6 and ( 100, 250) = 25 and (4096 , 999) = 1 .  If the GCD of 
two numbers is 1 ,  we say that the two numbers are relatively prime. For example, 
(p, q) = 1 if P and q are different primes. We will frequently use the notation a ..l  b 
in place of (a, b) = 1 .  Likewise, we define the least common multiple, or LCM, of 
a and b to be the least positive integer that is a multiple of both a and b. We use the 
notation [a , b] or LCM (a, b) . 2 

7.1.3 Here are some important facts about GCD and LCM that you should think about 
and verify. [You may assume the truth of the FfA, if you wish, for (a) , (b) , and (c) .] 

(a) a ..l  b is equivalent to saying that a and b share no common primes in their PPFs. 

(b) If a = pr 1 p�2 . . .  p�' and b = p{l p{2 . . .  pf' (where some of the exponents may be 
zero) ,  then 

(a, b) = p�in (e l ,tI l p�in (e2 ,h )  . . .  p�in (e" f, )
, 

[ b] max (e l ,tI l max (e2 ,h ) max (e" f, )  a, = P I P2 . . .  PI . 

For example, the GCD of 360 = 23 . 32 . 5 and 1 597050 = 2 . 33 . 52 . 7 . 1 32 is 
2 1 . 32 . 5 1 . 7° . 1 3° = 90. 

(c) (a , b) [a , b] = ab for any positive integers a, b. 
(d) If g la and g l b, then g lax + by, where x and y can be any integers. We call a 

quantity like ax + by a l inear combination of a and b. 
(e) Consecutive integers are always relatively prime. 

(f) If there exist integers x, y such that ax + by = 1 ,  then a ..1 b. 
7.1.4 Recall the division algorithm, which you encountered in Problem 3 .2 . 1 7  on 
page 83 .  

2We can also define OCD and LCM for more than two integers. For example, (70, 1 00, 225 ) = 5 and 
[ 1 , 2 , 3 , 4, 5 , 6 , 7 , 8 , 9J = 2520. 



7 . 1  P R I MES AND D IV IS IB I LITY 225 

Let a and b be positive integers , b 2 a. Then there exist integers q ,  r satis­
fying q 2 1 and 0 ::; r < a such that 

b = qa + r. 
(a) If you haven 't proven this yet, do so now (use the extreme principle) . 

(b) Show by example that the division algorithm does not hold in the number system 
E defined in Example 7 . 1 .2 on page 223 . Why does it fail? What is E missing 
that Z has? 

7.1.5 An important consequence of the division algorithm, plus 7 . 1 .3 (d), is that 

The greatest common divisor of a and b is the smallest positive linear com­
bination of a and b. 

For example, (8 , 1 0) = 2, and sure enough, if x, y range through all integers (pos­
itive and negative) , the smallest positive value of 8x + 1 0y is 2 (when, for example, 
x = - 1 ,y = 1 ) . Another example: 7 .-l 1 1 , which means there exist integers x, y such 
that 7x + l ly = 1 .  It is easy to find possible values of x and y by trial and error; 
x = -3 ,  y = 2 is one such pair. 

Let 's prove 7 . 1 .5 ;  it is rather dry but a great showcase for the use of the extreme 
principle plus argument by contradiction. Define u to be the smallest positive linear 
combination of a and b and let g := (a , b) . We know from 7 . 1 . 3 (d) that g divides any 
linear combination of a and b, and so certainly g divides u. This means that g ::; u. We 
would like to show that in fact, g = u. We will do this by showing that u is a common 
divisor of a and b. Since u is greater than or equal to g, and g is the greatest common 
divisor of a and b, this would force g and u to be equal . 

Suppose, on the contrary, that u is not a common divisor of a and b. Without loss 
of generality, suppose that u does not divide a. Then by the division algorithm, there 
exists a quotient k 2 1 and positive remainder r < u such that 

a = ku + r. 
But then r = a - ku is positive and less than u. This is a contradiction, because r is also 
a linear combination of a and b, yet u was defined to be the smallest positive linear 
combination ! Consequently, u divides a, and likewise u divides b. So u is a common 
divisor; thus u = g. • 

This linear combination characterization of the GCD is really quite remarkable, 
for at first one would think that PPFs are needed to compute the GCD of two numbers . 
But in fact, computing the GCD does not rely on PPFs; we don 't need 7 . 1 .3 (b) but can 
use 7 . 1 .5 instead. In other words, we do not need to assume the truth of the FTA in 
order to compute the GCD. 

7.1.6 Here is another consequence of 7 . 1 .5 :  

If p is a prime and p lab, then p i a  o r  p l b . 
We shall prove this without using the FTA. Let us argue by contradiction. Assume 

that p divides neither a nor b. If p does not divide a, then p .-l a, since p is a prime. 
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Then there exist integers x, y such that px + ay = 1 .  Now we need to use the hypothesis 
that p lab. Let 's get ab into the picture by multiplying the last equality by b: 

pxb + aby = b. 
But now we have written b as the sum of two quantities, each of which are multiples 
of p. Consequently, b is a multiple of p, a contradiction. _ 

Finally, we can prove the FTA. Statement 7 . 1 .6 is the key idea that we need. Let 's 
avoid notational complexity by considering a concrete example. Let n = 23 . 76. How 
do we show that this factorization is unique? First of all ,  we can show that n couldn 't  
contain any other prime factors . For suppose that, say, 1 7 1 n .  Then repeated applica­
tions of 7 . 1 .6 would force the conclusion that either 1 7 1 2 or 1 7 1 7 ,  which is impossible, 
as no two different primes can divide one another. The other possibility is that n has 
2 and 7 as factors , but there is a factorization with different exponents; for example, 
maybe it is also true that n = 28 . 73 . In this case we would have 

23 . 76 = 28 . 73 , 
and after dividing out the largest exponents of each prime that we can from each side, 
we get 

73 = 25 . 
This reduces to the first case: we cannot have two factorizations with different primes.  
You should check with a few more examples that this argument can be completely 
generalized. We can rest; FTA is true. _ 

This important property of integers was a consequence of the division algorithm, 
which in tum was a consequence of the well-ordering principle and the fact that 1 is 
an integer. That 's all that we needed ! 

Here is a simple application of FTA-style reasoning-a solution to Problem 5 .4. 1 3  
on page 173 .  

Example 7.1.7 Recall that polynomial with integer coefficients i s  called monic i f  the 
term with highest degree has coefficient equal to 1 .  Prove that if a monic polynomial 
has a rational zero, then this zero must in fact be an integer. 

Solution : Let the polynomial be f(x) := x" + an- 1x"- 1 + . . . + alx + aO . Let u/v 
be a zero of this polynomial .  The crux move: without loss of generality, assume that 
u .1 v. Then we have 

un an_ I Un- 1 al U  
- + + · · · + - + ao = O . o 0- 1 V 

The natural step now is to get rid of fractions, by multiplying both sides by � .  This 
gives us 

or 
n ( n- I n- I n) U = - an- I u v + · · ·  + a l uv + aov . 
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Since the right-hand side is a multiple of v, and v shares no factor with un , we must 
conclude that v = ± 1 ;  i .e . ,  u/v is an integer. _ 

Now that we understand GCD well, let us finish up an old problem that we started 
in Example 2.2 .2 on page 28 .  

Example 7.1.8 (AIME 1 985) The numbers in  the sequence 

1 0 1 , 1 04 , 1 09 , 1 1 6 ,  . .  . 

are of the form an = 1 00 + n2 , where n = 1 , 2 , 3 , . . . . For each n, let dn be the greatest 
common divisor of an and an+ I .  Find the maximum value of dn as n ranges through 
the positive integers . 

Solution : Recall that we considered the sequence an :=  u + n2 , where u was fixed, 
and after some experimentation discovered that a2u , a2u+ 1 seemed fruitful, since a2u = 

u(  4u + 1 )  and a2u+ 1 = (u + 1 )  (4u + 1 ) .  This of course means that 4u + 1 is a common 
factor of a2u and a2u+ l . In fact, since consecutive numbers are relatively prime (7 . 1 .3 ) ,  
we have 

( a2u , a2u+ . ) = 4u + 1 . 

It remains to show that this is the largest possible GCD. Make the abbreviations 

a := an = u + n2 , b := an+ I = U + (n + l ) 2 , g := (a, b) . 

Now we shall explore profitable l inear combinations of a and b, with the hope that we 
will get 4u + 1 .  We have 

b - a  = 2n + 1 . 

This is nice and simple, but how do we get rid of the n? Since a = u + n2 , let 's build 
the n2 term. We have 

and thus 

2a - n (b - a) = 2u - n. 

Doubling this and adding it back to b - a yields 

2 (2a - n(b - a) ) + (b - a) = 2 (2u - n) + (2n + 1 )  = 4u + 1 . 

In other words, we have produced a linear combination of a and b [specifically, the 
combination (3 + 2n)a + ( 1  - 2n)b] that is equal to 4u + 1 .  Thus g l (4u + 1 ) ,  no matter 
what n equals. Since this value has been achieved, we conclude that indeed 4u + 1 is 
the largest possible GCD of consecutive terms. _ 

Notice that we did not need clairvoyance to construct the linear combination in 
one fell swoop. All it took was some patient "massage" moving toward the goal of 
eliminating the n. 
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Problems and Exercises 

7.1.9 Write out a formal proof of the FfA. 

7.1.10 Review Example 3 .2.4 on page 77, an inter­
esting problem involving GCD, LCM and the extreme 
principle. 

7.1 .11  Prove that the fraction (n3 + 2n ) / (n4 + 3n2 + I ) 
is in lowest terms for every positive integer n. 
7.1.12 The Euclidean Algorithm. Repeated use of the 
division algorithm allows one to easily compute the 
GCD of two numbers. For example, we shall compute 
(333 , 5 1  ) : 

333 = 6 · 5 1  + 27; 
5 1  = I . 27 + 24; 
27 = 1 · 24 + 3 ; 
24 = 8 · 3 + 0. 

We start by dividing 333 by 5 1 .  Then we divide 5 1  by 
the remainder from the previous step. At each succes­
sive step, we divide the last remainder by the previous 
remainder. We do this until the remainder is zero, and 
our answer-the GCD-is the final non-zero remain­
der (in this case, 3 ) . 

Here is another example. To compute (89, 24 ) , 
we have 

so the GCD is I .  

8 9  = 3 · 24 + 17 ; 
24 = 1 · 1 7 + 7; 
1 7 = 2 · 7 + 3 ; 
7 = 2 · 3 + 1 ; 

This method is called the Euclidean Algorithm. 

Explain why it works ! 

7.1.13 Linear Diophantine Equations. Since 1 7 1. I I , 
there exist integers x. y such that 1 7x + I ly = I .  For 
example, x = 2, y = -3 work. Here is a neat trick 
for generating more integer solutions to 1 7x+ 1 1y= I :  
Just let 

x = 2 + l l t ,  y = -3 - 1 7t ,  

where t i s  any integer. 

(a) Verify that x = 2 + I l t , y = -3 - 1 7t will be a 
solution to 1 7x + I ly = I ,  no matter what t is. 
This is a simple algebra exercise, and is real ly 

just a nice example of the add zero creatively 
tool. 

(b) Show that all integer solutions to 1 7x + I ly = I 
have this form; i .e . ,  if x and y are integers sat­
isfying 1 7x +  I ly = I ,  then x = 2 +  I l t , y = 
-3 - 1 7t for some integer t . 

(c) It was easy to find the solution x = 2 ,y = -3 
by trial and error, but for larger numbers we 
can use the Euclidean algorithm in reverse. For 
example, use the example in Problem 7 . 1 . 1 2  to 
find x, y such that 89x + 24y = I .  Start by writ­
ing I as a l inear combination of 3 and 7; then 
write 3 as a linear combination of 7 and 1 7 ; etc . 

(d) Certainly if x = 2 ,y = -3 is a solution to 1 7x+ 
I ly = I ,  then x = 2u , y = -3u i s  a solution 
to 1 7  x + I I  y = u. And as above, verify that 
all solutions are of the form x = 2u + I l t , y = 
-3u - 1 7t . 

( e )  This method can certainly be  generalized to  any 
linear equation of the form ax + by = c, where 
a, b, c are constants. First we divide both sides 
by the GCD of a and b; if this GCD is not a di­
visor of c there cannot be solutions. Then we 
find a single solution either by trial and error, or 
by using the Euclidean algorithm. 

(f) To see another example of generating infinitely 
many solutions to a diophantine equation, look 
at the problems about Pell 's Equation (7.4. 1 7-
7 .4.22). 

7.1.14 Consider the set F := {a + bH , a , b  E Z} . 
Define the norm function N by  N(a + bH) = a2 + 
6b2 • This is a "natural" definition; it is just the square 
of the magnitude of the complex number a + biV6, and 
it is a useful thing to play around with, because its val­
ues are integers . 

(a) Show that the "norm of the product is equal to 
the product of the norm"; i .e . ,  if a , f3 E F , then 
N(af3 ) = N(a)N(f3 ) .  

(b) Observe that i f  a E F i s  not an integer (i .e . .  i f  it 
has a non-zero imaginary part), then N (a)  � 6. 

(c) An F -prime is an element of F that has no fac­
tors in F other than I and itself. Show that 2 
and 5 are F -primes. 

(d) Show that 7 and 3 1  are not F -primes. 



(e) Likewise, show that 2 - R and 2 + R are 
F-primes. 

(f) Conclude that F does not possess unique factor­
ization. 

7.1.15 Prove that consecutive Fibonacci numbers are 
always relatively prime. 

7.1.16 It is possible to prove that (a , b) [a , b] = ab 
without using PPF, but instead just using the defini­
tions of GCD and LCM. Try it! 

7.1.17 (USAMO 1 972) Let a, b, e E N. Show that 

[a , b , eJ 2 (a , b, ci 
[a, b] [b, e] [c, a] (a, b) (b, e) (c , a) ' 

7.1.18 Show that the sum of two consecutive primes 
is never twice a prime. 

7.1.19 Is it possible for four consecutive integers to be 
composite? How about five? More than five? Arbitrar­
ily many? 

7. 1.20 Show that 

I I I 1 + - + - +  . .  · + -2 3 n 

can never be an integer. 

7.1.21 Show that (�) is a multiple of p for all 0 < 
k < p. 
7.1.22 Show that lOoo ! ends with 249 zeros. Gener­
alize ! 

7.1 .23 Let r E N. Show that (�") is a multiple of p 
for O < k < pr o 
7.1.24 Show that if n divides a single Fibonacci num­
ber, then it will divide infinitely many Fibonacci num­
bers . 

7.1.25 Prove that there are infinitely many primes 
of the form 4k + 3; i .e . ,  that the sequence 
{ 3 , 7 , 1 1 , 1 9 , . . .  } is infinite. 

7.1.26 Prove that there are infinitely many primes of 
the form 6n - 1 .  
7.1.27 (Bay Area Mathematical Olympiad 1 999) 
Prove that among any 12 consecutive positive integers 
there is at least one which is smaller than the sum of 
its proper divisors . (The proper divisors of a positive 
integer n are all positive integers other than I and n 
which divide n. For example, the proper divisors of 1 4 
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are 2 and 7. ) 
7.1 .28 (Bay Area Mathematical Olympiad 2000) 
Prove that any integer greater than or equal to 7 can be 
written as a sum of two relatively prime integers , both 
greater than 1 .  For example, 22 and IS are relatively 
prime, and thus 37 = 22 + 15 represents the number 37 
in the desired way. 

7.1 .29 (Bay Area Mathematical Olympiad 2006) 
Since 24 = 3 + 5 + 7 + 9, the number 24 can be writ­
ten as the sum of at least two consecutive odd positive 
integers. 

(a) Can 2005 be written as the sum of at least two 
consecutive odd positive integers? If yes, give 
an example of how it can be done. If no, provide 
a proof why not. 

(b) Can 2006 be written as the sum of at least two 
consecutive odd positive integers? If yes, give 
an example of how it can be done. If no, provide 
a proof why not. 

7.1.30 A polynomial with integer coefficients is called 
primitive if its coefficients are relatively prime. For 
example, 3x2 +9x+ 7 is primitive while I Ox2 - 5x+ IS 
i s  not. 

(a) Prove that the product of two primitive polyno­
mials is primitive. Hint: extreme principle. 

(b) Use this to prove Gauss's Lemma: If  a poly­
nomial with integer coefficients can be factored 
into polynomials with rational coefficients, it 
can also be factored into primitive polynomials 
with integer coefficients. (See also page 1 70.) 

7.1.31 True or false and why: 

(a) The product of two consecutive positive inte­
gers cannot be equal to a perfect square. 

(b) The product of three consecutive positive inte­
gers cannot be equal to a perfect square. 

7.1 .32 (Russia 1 995) The sequence at , a2 , ' " of natu­
ral numbers satisfies 

GCD(ai , aj ) = GCD ( i , j) 

for all i i= j. Prove that ai = i for all i. 
7.1.33 (USAMO 1 973) Show that the cube roots of 
three distinct prime numbers cannot be three terms 
(not necessarily consecutive) of an arithmetic progres­
sion. 
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7.2 Cong ruence 

Congruence notation was introduced on page 44. Recall that if a - b is a mUltiple of 
m, we write a == b (mod m) (read "a is congruent to b modulo m"). 

7.2. 1 Here are several facts that you should verify immediately. 

(a) If you divide a by b and get a remainder of r, that is equivalent to saying that 
a == r  (mod b) . 

(b) There are only m "different" integers modulo m, since there are only m different 
remainders 0, 1 , 2 , . . .  , m - 1 .  We call these m numbers the integers modulo m 
or Zm . For example, in Z6 we have 5 + 5 = 4, 25 = 2, etc . Another term that is 
used is residue modulo m. For example, one might say that 7 and 3 are different 
residues modulo 5 ,  but equal residues modulo 4. 

(c) The statement a == b (mod m) is equivalent to saying that there exists an integer 
k such that a = b + mk . 

(d) If a == b  (mod m ) and c == d  (mod m ) , then a + c == b + d (mod m) and ac == bd 
(mod m) .  

The last statement i s  especially useful. For example, suppose we  wanted t o  find 
the remainder when we divide 2 \000 by 1 7 .  Note that 24 = 1 6  == - 1  (mod 1 7 ) .  Thus 
2 \ 000 = (24 ) 250 == ( - 1 ) 250 == 1 ,  so the remainder is 1 .  

7.2.2 Two more examples of this method yield the following well-known divisibility 
rules. Prove them and learn them ! 

(a) If a number is written in base 1 0, then it is congruent to the sum of its digits 
modulo 9 and modulo 3 .  

(b) I f  a number is written i n  base 1 0, then i t  i s  congruent modulo 1 1  t o  the units digit 
- tens digit + hundreds digit - thousands digit, etc . 

Viewing a problem modulo m for a suitably chosen m is a wonderful simplification 
tactic because it reduces the infinite universe of integers to the finite world of Zm . You 
have encountered this idea before with parity (page 94), which is just the case m = 2, 
as well as other values of m (page 1 00). Often (but not always) we turn to prime values 
of m, since primes are simpler, more "fundamental" objects that are generally easier to 
understand. In general , 

When beginning a number theory investigation, assume that the vari­
ables are prime or at least relatively prime. Often the general case 
follows from the prime case, with just a few "technical" details . 

Example 7.2.3 Fermat's Last Theorem. Let n 2: 3 .  Prove that the equation 

has no non-zero integer solutions. 



7.2 CONGRUENCE 231 

We are not going to prove this; Fermat 's Last Theorem was perhaps the most 
famous outstanding problem in all of mathematics. The French mathematician Fermat 
conjectured its truth over 300 years ago, and the problem remained unsolved until 
1 995. But we shall point out two simplifications. 

• Without loss of generality, n is prime. For example, if ..J + y3 = z3 has no non­
zero integer solutions, the same will be true of x 1 2 + y 1 2 = z 1 2 , since this latter 
equation can be rewritten as 

• Likewise, we may assume that x, y, z is a primitive solution; i .e . ,  x, y, z have 
no common factor (other than 1 ) . To see why, suppose that g is the greatest 
common divisor of x, y, z .  Then x = ga, y  = gb, z = gc for some integers a, b ,  c. 
Notice that a, b, c have no common factor, and 

:x!' + yn = zn {:::=} (ga) n + (gb t = (gc t {:::=} an + bn = cn , 

where the third equality followed from the second after division by gn . 

What's So Good About Primes? 

One reason that primes are so convenient is that unique "multiplicative inverses" exist. 
For example, in Z6, the number 5 has a multiplicative inverse, namely itself, since 
5 · 5 = 1 (mod 6 ) .  However, 2 has no multiplicative inverse, nor does 4. In contrast, 
all the non-zero elements of Z7 have inverses, and they are unique. We have 

1 · 1  = 2 · 4  = 3 · 5  = 6 · 6  = 1 (mod 7 ) ,  

s o  the inverses o f  1 , 2 , 3 , 4 , 5 , 6  i n  Z7 are respectively 1 , 4 , 5 , 2 , 3 , 6 . In general , 

If p is prime, and x is not a multiple of p, then there is a unique y E 
{ 1 , 2 , 3 , . . . , p - 1 } such that xy = 1 (mod p) . 

This was proven in Example 2 .3 .4 on page 44. The penultimate step was the very 
useful fact that 

If p is prime, and x =1- 0 (mod p) , then the (p - 1 )  numbers 

x, 2x, 3x, . . . , (p - 1 )x 

are distinct in Zp . 

Equivalently, if p is prime, and x =1- 0 (mod p) , then in Zp , 

{x, 2x, 3x, . . .  , (p - 1 )x} = { 1 , 2 , 3 , . . .  , p - 1 } . 

For example, if p = 7 and x = 4, then we have (mod p) 

4 · 1 = 4, 4 · 2 = 1 , 4 · 3 = 5 , 4 · 4 = 2, 4 · 5 = 6, 4 · 6 = 3 , 

( 1 )  

verifying that the set of the non-zero mUltiples of 4 in Z7 i s  just a permutation of the 
non-zero values of Z7 . 
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Fermat's Little Theorem 

Let 's derive a nice consequence of ( 1 ) . Let p be a prime and let a ..1 p. Since the sets 

{a , 2a , 3a , . . .  , (p - I )a} and { 1 , 2 , 3 , . . .  , p  - I } 

are equal in Zp , the products of their elements are equal in Zp . In other words, 

a . 2a . 3a . . .  (p - I )a == 1 . 2 . 3 . . .  (p - I )  (mod p) , 

which is equivalent to 

aP- I (p - I ) ! == (p - I ) ! (mod p) . 

Since p is a prime, (p - I ) ! ..1 p and consequently, we can "cancel out" the (p - I ) ! 
from both sides,3 obtaining Fermat's little theorem: 

aP- 1 == 1 (mod p) . 

(The word "little" is used to distinguish it from Fermat 's Last Theorem.)  We can also 
eliminate the hypothesis that a be non-zero4 modulo p by mUltiplying by a, producing 
the equivalent statement that 

aP == a  (mod p) 

for all a, if p is prime. 
The next example shows how one can use Fermat 's little theorem to create com­

posite numbers . 

Example 7.2.4 (Germany 1 995) Let a and b be positive integers and let the sequence 
(xn ) n2:0 be defined by Xo = 1 and Xn+ I = aXn + b for all non-negative integers n. Prove 
that for any choice of a and b, the sequence (xn ) n2:0 contains infinitely many composite 
numbers . 

Solution : First, let 's experiment. Try a = 5 ,  b = 7 and the sequence is 

1 , 1 2 , 67 , 342 , 1 7 1 7 , 8592, . . . .  

Clearly, every other term will be even, and that will always hold if a and b are both 
odd. If a and b have opposite parity, for example, a = 2, b = 3, our sequence is 

1 , 5 , 1 3 , 29, 6 1 , 1 25 , 253 , 509 , 1 02 1 , 2045 , . . . .  

Notice that, starting with a2 = 5 ,  every 4th term appears to be a multiple of 5 .  Can we 
prove this? Let u = ak be a mUltiple of 5 .  Then the next terms are 

ak+ I = 2u + 3 , 
ak+2 = 2(2u + 3 )  + 3 = 4u + 9, 
ak+3 = 2 (4u + 9) + 3 = 8u + 2 1 , 
ak+4 = 2 (8u + 2 1 ) + 3 = 1 6u + 45 . 

3 See Problem 7 .2.5 on page 233 . 
4The phrases "non-zero modulo p," "relatively prime to p," "not a mUltiple of p," and "non-zero in Zp" are all 

equivalent. 
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So indeed, ak+4 will be a multiple of 5 . It seems that we can generate composite num­
bers in this sequence if we are careful . Let 's try a formal argument by contradiction, 
using any given values of a and b. 

Assume that the conclusion is false, i .e . ,  that the sequence only contains finitely 
many composite numbers. This means that "eventually" the sequence is only primes; 
i.e., there exists some M such that an is prime for all n > M. This statement has 
"footholds," since prime numbers are often easier to deal with than composite num­
bers, and in particular, we have nice tools we can use with them, like Fermat 's little 
theorem. Now we need to use our experimentation to produce a contradiction that 
works for any values of a and b !  

Let n > M and let Xn = p ,  a prime. What happens later i n  the sequence? We have 
xn+ l = ap + b,xn+2 = a2p + ab + b,xn+3 = a3p + a2b + ab + b, etc . In general , for 
any k we have 

xn+k = akp + b(ak- 1 + ak-2 + . . .  + 1 ) = akp + b  ( ak - 1 ) . 
a - I 

It would be nice if we could show that Xn+k is not a prime for some k. Since p is 

already in the picture, let's use it: if we could show that b (ak - 1 ) was a mUltiple of 
a - I 

p, we'd be done ! Now Fermat 's little theorem comes to the rescue: As long as a is not 
a multiple of p, we have aP- 1 == 1 (mod p) , so if we choose k = P - 1 ,  then ak - 1 is 
a mUltiple of p. However, we are dividing this by a - I . What if p divides a - I ? Then 
we'd be in trouble. So we won ' t  worry about that for now ! Just assume that p doesn 't 
divide a - 1 .  

Recapping, if we assume that p divides neither a nor a - I ,  then Xn+p- l will be a 
multiple of p, which is a contradiction. How do we ensure that p satisfies these two 
conditions? We are given a; it is fixed. Hence there are only finitely many primes p 
that either divide a or divide a - I .  But by assumption, for n > M, the values of an are 
all primes, and there will be infinitely many primes, since the sequence is increasing. 
Since we have infinitely many primes to pick from, just pick one that works ! _ 

Problems and Exercises 

7.2.5 Let ar :: br (mod m) , with r J.. m. Show that we 
can "cancel out" the r from both sides of this congru­
ence and conclude that a :: b (mod m). What happens 
if (m, r) > I ?  
7.2.6 Show that i f  a2 + b2 = c2 • then 3 lab. 
7.2.7 If .x3 + y3 = z3 , show that one of the three must 
be a multiple of 7. 
7.2.8 Find all prime x such that x2 + 2 is a prime. 

7.2.9 Prove that there are infinitely many positive in­
tegers which cannot be represented as a sum of three 

perfect cubes. 

7.2. 10 Let N be a number with nine distinct non-zero 
digits, such that, for each k from I to 9 inclusive, the 
first k digits of N form a number that is divisible by k. 
Find N (there is only one answer) . 

7.2. 1 1  Let f(n) denote the sum of the digits of n . 
(a) For any integer n, prove that eventual ly the se­

quence 

f(n) , f (f(n) ) , f(f(f(n) ) ) ,  . . . 
will become constant. This constant value is 
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called the digital sum of n. 
(b) Prove that the digital sum of the product of 

any two twin primes, other than 3 and 5, is 8 .  
(Twin primes are primes that are consecutive 
odd numbers, such as 17 and 1 9. )  

(c )  ( IMO 1 975) Let N = 44444444 . Find 

l(f(f(n ) ) ) , without a calculator. 

7.2. 12 Prove, using the pigeonhole principle, that 
there must be a power of 1 7  that ends with the digits 
0000 I .  Can you generalize this? 

7.2. 13 The order of a modulo p is defined to be the 
smallest positive integer k such that ak = I (mod pl . 
Show that the order of a must divide p - I ,  if p is a 
prime. 

7.2. 14 Let p be a prime. Show that if J< = I (mod p) 
for all nonzero x, then p - I divides k. 
7.2.15 Let {an } n::o:O be a sequence of integers satisfy­
ing an+ I = 2an + I .  Is there an ao so that the sequence 
consists entirely of prime numbers? 

7.2.16 Prove Fermat's little theorem by induction on 
a (you ' l l  need the binomial theorem). 

7.2.17 Our discussion of Fermat 's little theorem in­
volved the quantity (p - I ) ! ,  Please reread the proof of 
Wilson 's theorem (Example 3 . 1 .9 on page 68), which 
states that if p is prime, then (p - I ) !  = - I (mod p) . 
7.2.18 The Chinese Remainder Theorem. Consider 
the following simultaneous congruence. 

x = 3  (mod I I ) ,  
x = 5 (mod 6) . 

It is easy to find a solution, x = 47, by inspection. 
Here 's another method. Since 6 1- I I , we can find a 
l inear combination of 6 and I I  that equals one, for ex­
ample, ( - I )  . I I  + 2 · 6  = I . Now compute 

5 · ( - 1 ) · 1 1 + 3 · 2 · 6 = - 1 9 .  

This number is a solution, modulo 66  = 6 ·  I I . Indeed, 
47 = - 1 9  (mod 66) .  

(a) Why does this work? 

(b) Note that the two moduli (which were I I  and 6 
in the example) must be relatively prime. Show 

by example that there may not always be a so­
lution to a simultaneous congruence if the two 
moduli share a factor. 

(c) Let m 1- n, let a and b be arbitrary, and let 
x simultaneously satisfy the congruences x = a 
(mod m) and x = b (mod n ) . The algorithm 
described above will produce a solution for x. 
Show that this solution is unique modulo mn. 

(d) Show that this algorithm can be extended to any 
finite number of simultaneous congruences, as 
long as the moduli are pairwise relatively prime. 

(e) Show that there exist three consecutive num­
bers , each of which is divisible by the 1 999th 
power of an integer. 

(f) Show that there exist 1 999 consecutive num­
bers , each of which is divisible by the cube of 
an integer. 

7.2.19 (USAMO 1 995) Let p be an odd prime . The 
sequence (an )n::o:O is defined as follows: ao = 0, a , = 
1 ,  . . . , ap_2 = p - 2  and, for all n "2 p - l , an is the 
least integer greater than an- , that does not form an 
arithmetic sequence of length p with any of the pre­
ceding terms .  Prove that, for all n, an is the number 
obtained by writing n in base p - I and reading the 
result in base p. 
7.2.20 (Putnam 1 995) The number dl d2 . . . d9 has 
nine (not necessarily distinct) decimal digits. The 
number e I e2 . . . e9 is such that each of the nine 9-digit 
numbers formed by replacing just one of the digits di 
is d, d2 " . d9 by the corresponding digit ei ( 1  :S i :S  9) 
is divisible by 7. The number !lh . . .  19 is related 
to e l  e2 . . .  e9 in the same way : that is, each of the 
nine numbers formed by replacing one of the ei by 
the corresponding Ii is divisible by 7 .  Show that, 
for each i, di - Ii is divisible by 7. (For example, if 
d, d2 " . d9 = 19950 1 996, then e6 may be 2 or 9, since 
1 99502996 and 1 99509996 are multiples of 7 . )  

7.2.21 (Putnam 1 994) Suppose a, b, c ,  d are integers 
with 0 :S a :S b :S 99, 0 :S c :S d :S 99. For any integer 
i, let ni = IO l i  + 1 00i . Show that if na + nh is congru­
ent to nc + nd mod 10 1 00, then a = c and b = d. 
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7.3 Number Theoretic Functions 

Of the infinitely many functions with domain N, we wil l  single out a few that are 
especially interesting. Most of these functions are mUltiplicative. A function 1 with 
this property satisfies 

I(ab) = l(a)/(b) 

whenever a ..1 b. 

7.3.1 Show that if I :  N ---4 N is multiplicative, then 1 ( 1 ) = 1 .  
7.3.2 If a function 1 is multiplicative, then in order to know all values of I, it is 
sufficient to know the values of I(pr ) for each prime p and each r E N. 

Divisor Sums 

Define 

where r can be any integer. For example, 

0'2 ( 10) = 1 2 + 22 + 52 + 1 02 = 1 30. 

In other words, O'r (n) is the sum of the rth power of the divisors of n. Although it is 
useful to define this function for any value of r, in practice we rarely consider values 
other than r = 0 and r = 1 .  
7.3.3 Notice that O'o (n) is equal to the number of divisors of n .  This function is usually 
denoted by d(n) . You encountered it in Example 3 . 1 on page 68 and Problem 6. 1 .2 1  
on page 1 95 .  Recall that if 

n = p� l p�2 . . .  p�' 

is the prime factorization of n, then 

d(n) = (e \  + 1 ) (e2 + 1 ) . . .  (et + 1 ) . 

From this formula we can conclude that d(n) is a multiplicative function. 

7.3.4 Show by examples that d(ab) does not always equal d(a)d(b) if a and b are not 
relatively prime. In fact, prove that d(ab) < d(a)d(b) when a and b are not relatively 
prime. 

7.3.5 The function 0'\ (n) is equal to the sum of the divisors of n and is usually denoted 
simply by O'(n) . 

pr+ \ 
_ 1 

(a) Show that O'(pr ) = for prime p and positive r. 
p - 1 

(b) Show that 0' (pq) = (p + 1 )  (q + 1 ) for distinct primes p, q. 
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7.3.6 An Important Counting Principle. Let n = ab, where a ..1 b. Show that if 
d in then d = uv, where u la and v l b. Moreover, this is a 1 -to- 1 correspondence: each 
different pair of u ,  v satisfying u la , v l b produces a different d : =  uv that divides n. 

7.3.7 Use (7 .3 .6) to conclude that O"(n) is a multiplicative function. For example, 
1 2  = 3 · 4, with 3 ..1 4, and we have 

0"( 1 2) = 1 + 2 + 4 + 3 + 6 +  1 2  
= ( 1  + 2 + 4) + ( 1 · 3 + 2 · 3 + 4 · 3 )  
= ( 1 + 2 + 4) ( 1  + 3 ) 
= 0"(4)0" (3 ) . 

7.3.8 Notice in fact, that (7 .3 .6) can be used to show that O"r (n) is multiplicative, no 
matter what r is .  

7.3.9 In fact, we can do more. The counting principle that we used can be reformu­
lated in the following way: Let n = ab with a ..1 b, and let f be any multiplicative 
function. Carefully verify (try several concrete examples) that )J(d) = ) ()J(UV)) din * � 

� � (�f(U)f(V)) 
� (�f(U)) (�f(V)) .  

We have proven the following general fact. 

Let 

F (n ) := )f(d) . din If f is multiplicative then F will be multiplicative as well. 

Phi and Mu 

Define cp (n) to be the number of positive integers less than or equal to n that are 
relatively prime to n. For example, cp ( 1 2) = 4, since 1 , 5 , 7 , I I  are relatively prime to 
1 2 . 

We can use PIE (the principle of inclusion-exclusion; see Section 6.3) to evaluate 
cp (n) . For example, to compute cp ( 1 2) ,  the only relevant properties to consider are 
divisibility by 2 or divisibility by 3 because 2 and 3 are the only primes that divide 1 2. 
As we have done many times, we shall count the complement; i .e . ,  we will count how 
many integers between 1 and 1 2  (inclusive) share a factor with 1 2 . If we let Mk denote 
the mUltiples of k up to 1 2 , then we need to compute 

IM2 U M3 1 ,  
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since any number that shares a factor with 12 will be a mUltiple of either 2 or 3 (or 
both) .  Now PIE implies that 

1M2 U M3 1 = IM2 1 + IM3 1 - IM2 nM3 1 · 
Because 2 1- 3 ,  we can rewrite M2 n M3 as M6 . Thus we have 

cp ( 1 2) = 1 2  - 1M2 UM3 1 = 1 2  - ( IM2 1 + 1M3 ! ) + IM6 1 = 1 2  - (6 + 4) + 2 = 4. 

7.3.10 Let p and q be distinct primes. Show that 

(a) cp (p) = p - l , 

(b) cp (pr ) = pr _ pr- l = pr- l (p _ l ) = pr ( 1 - �) . 
(c) cp (pq) = (p - 1 ) (  q - 1 )  = pq ( 1 - �) ( 1 - � ) . 
(d) cp (prl) = pr- l (p _ l )qS- l (q _ l ) = prqs ( I _ �) ( 1 - �) . 

These special cases above certainly suggest that cp is multiplicative. This is easy to 
verify with PIE. For example, suppose that n contains only the distinct primes p, q, w. 
If we let Mk denote the number of positive multiples of k less than or equal to n, we 
have 

cp (n) = n - ( IMp l + IMq l + IMw l )  + ( IMpq l + IMpw l + IMqw l )  - IMpqw l · 
In general, 

but since p, q, w all divide n, we can drop the brackets; 

cp (n) = n - (� + � + �) + (� + � + �) - � , 
p q w pq pw qw pqw 

and this factors beautifully as 

If we write n = pr qSw ,  we have 

cp (n) = pr ( 1 - �) qS ( 1 - �) w ( 1 _ ± ) = cp (pr ) cp (qs ) cp (w1 ) ,  

(2) 

using the formulas in 7 .3 . 1 0. This argument certainly generalizes to any number of 
distinct primes, so we have established that cp is multiplicative. And in the process, we 
developed an intuitively reasonable formula. For example, consider 360 = 23 . 32 . 5 .  
Our formula says that 

cp (360) = 360 ( 1 - �) ( 1 - �) ( 1 - �) , 
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and this makes sense; for we could argue that half of the positive integers up to 360 
are odd, and two-thirds of these are not multiples of three, and four-fifths of what are 
left are not multiples of five. The final fraction ( !  . � . � )  of 360 will be the numbers 
that share no divisors with 360. This argument is not quite rigorous .  It tacitly assumes 
that divisibility by different primes is in some sense "independent" in a probabilistic 
sense. This is true, and it can be made rigorous, but this is not the place for it. 5 

Let us pretend to change the subject for a moment by introducing the Mobius 
function J1 (n) . We define 

J1 (n) = { � 
( - I t 

if n = 1 ;  
if p2 1n for some prime p; 
if n = P I P2 · · ·  Pr , each P a distinct prime. 

This is a rather bizarre definition, but it turns out that the Mobius function very conve­
niently "encodes" PIE. Here is a table of the first few values of J1 (n) . 

7.3.1 1  Verify that J1 is multiplicative. 

7.3. 12 Use 7 .3 . 1 1  and 7.3 .9 to show that 

tJ1(d) = { 6 if n = 1 ;  
if n > 1 . 

The values of J1 (n) alternate sign depending on the parity of the number of prime 
factors of n. This is what makes the Mobius function related to PIE. For example, we 
could rewrite equation (2) as 

(3) 

This works because of J1 's "filtering" properties. If a divisor d in the sum above con­
tains powers of primes larger than 1 ,  J1 (d) = 0, so the term is not present. If d is equal 

to a single prime, say P, the term will be _ !!.. . Likewise, if d = pq, the term becomes p 
+ � ,  etc . And of course (3) is a general formula, true for any n. pq 

Problems and Exercises 

7.3.13 Make a table, either by hand or with the aid of 
a computer, of the values of den ) ,  iP (n ) ,  cr(n) , J.l (n) for, 
say, 1 :S n :S 1 00 or so. 

7.3.14 Prove that iP (n ) = 14 has no solutions. 

7.3.15 In 7.3.4, you showed that d(ab) < d(a)d(b) 

whenever a and b are relatively prime. What can you 
say about the cr function in this case? 

7.3. 16 Find the smallest integer n for which iP (n) = 6. 
7.3. 17 Find the smallest integer n for which den) = 
1 0. 

5 See [24] for a wonderful discussion of this and related issues. 



7.3.18 Find n E N such that J.l (n) + J.l (n + I )  + J.l (n + 
2) = 3 .  

7.3.19 Show that for all n , r E N, 
Gr (n) r -- - n G-r (n) -

. 

7.3.20 For n > I ,  define 

ro(n) = � I ,  
Pm 

where the p in the sum must be prime. For n = I ,  let 
ro(n) = 1. In other words, ro(n) is the number of dis­
tinct prime divisors of n. For example, ro( 12 ) = 2 and 
ro(7344) = 1 .  

(a) Compute ro(n) for n = 1 ,  . . .  , 25. 
(b) What is ro( 1 7 ! ) ? 
(c) I s  ro multiplicative? Explain. 

7.3.21 Likewise, for n > I ,  define 

.Q (n) = �. e, 
ptrrn 

where again, p must be prime. For n = I ,  we define 
.Q (n) = 1 .  Thus .Q (n) is the sum of all the exponents 
that appear in the prime-power factorization of n. For 
example, .Q ( 1 2) = 2 + I = 3, because 1 2  = 223 1 • 

(a) Compute .Q (n) for n =  1 ,  . . . , 25 . 
(b) Show, with a counterexample, that .Q is not 

multiplicative. 

(c) However, there is a simple formula for .Q (ab) ,  
when (a , b) = 1 .  What i s  it? Explain. 

7.3.22 Define 

F (n) = �g(d) , 
� 

where g( l )  = I and g(k) = ( _ 1 ).o (k ) if k > 1 .  Find a 
simple rule for the F . 
7.3.23 There are two very different ways to prove 
7.3 . 1 2. One method, which you probably used already, 
was to observe that F (n) := }:dln J.l (d) is a multiplica­
tive function, and then calculate that F(pr ) = 0 for all 
primes. But here is another method: ponder the equa­
tion 1: (ro�n)) ( _ I )k = ( 1 _ I ) oo(n) = 0, 

where ro(n) was defined in 7.3 .20. Explain why this 
equation is true, and also why it proves 7 .3 . 1 2 . 
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7.3.24 Prove that tfJ (n) + G(n) = 2n if and only if n is 
prime. 

7.3.25 Euler's Extension of Fermat 's Little Theo­
rem. Emulate the proof of Fermat's little theorem 
(page 232) to prove the following : 

Let m E N, not necessarily prime, and let 
a 1. m. Then 

a4' (m) == I (mod m) . 

7.3.26 Let f(n ) be  a strictly increasing multipl icative 
function with positive integer range satisfying f( I )  = 
I and f(2) = 2. Prove that f(n) = n for all n . 

7.3.27 Find the last two digits of 999 without using a 
machine. 

The Mobius Inversion Formula 
Problems 7 .3 .28-7 .3 .3 1 explore the Mobius inversion 
formula, a remarkable way to "solve" the equation 
F (n) = }:dl n f(d) for f· 
7.3.28 In 7.3 .9, we showed that if F (n) := }:d l" f(d) , 
and f is mUltiplicative, then F will be multiplicative as 
well. Prove the converse of this statement: Show that 
if F (n) := }:d ln f(d) , and F is multiplicative, then so 
f must be multiplicative as well .  Suggestion : strong 
induction. 

7.3.29 Another Counting Principle. Let F (n ) : =  
}:dl n f(d ) , and let g be an arbitrary function. Consider 
the sum 

�g (d)F G) = �g(d) � f(k) . 
� � k lWd) 

For each k S n, how many of the terms in this sum will 
contain the factor f(k)? First observe that k i n . Then 
show that the terms containing f(k) will be 

Conclude that 

f(k) � g(u ) . 
u lWk) 

� g (d)F G) = � f(k) � g(u ) . 
� tin u lWk) 

The above equations are pretty hairy; but they are not 
hard if you get your hands dirty and work out several 
examples! 
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7.3.30 The above equation used an arbitrary func­
tion g.  If we replace g with /1 , we can use some 
special properties such as 7 .3 . 1 2 . This leads to 
the Mobius inversion formula, which states that if 
F (n) := 2,d ln f(d) , then 

f(n) = )/1 (d)F ( � ) . 
am 

7.3.31 An Application. Consider all possible n-Ietter 
"words" that use the 26-letter alphabet. Call a word 
"prime" if it cannot be expressed as a concatenation 

7.4 Diophanti ne Equations 

of identical smaller words. For example, booboo i s  
not prime, while booby is prime. Let p(n) denote the 
number of prime words of length n. Show that 

p(n) = ). /1 (d)26n/d . 
am 

For example, this formula shows that p( 1 )  = /1 ( 1 ) · 
26 1 = 26, which makes sense, since every single-letter 
word is prime. Likewise, p(2) = /1 ( 1 )  . 262 + /1 (2) . 
26 1 = 262 - 26, which also makes sense since there 
are 262 two-letter words, and all are prime except for 
the 26 words aa, bb, . . .  , z z .  

A diophantine equation i s  any equation whose variables assume only integral values. 
You encountered linear diophantine equations in Problem 7 . 1 . 1 3  on page 228, a class 
of equations for which there is a "complete theory." By this we mean that given any 
linear diophantine equation, one can determine if there are solutions or not, and if there 
are solutions, there is an algorithm for finding all solutions. For example, the linear 
diophantine equation 3x + 2 1y  = 1 9  has no solution, since GCD(3 , 2 1 )  does not divide 
1 9 . On the other hand, the equation 3x + 1 9y = 4 has infinitely many solutions, namely 
x = -24 + 1 9t , 4 - 3t, as t ranges through all integers . 

Most higher-degree diophantine equations do not possess complete theories. In­
stead, there is a menagerie of different types of problems with diverse methods for 
understanding them, and sometimes only partial understanding is possible . We will 
just scratch the surface of this rich and messy topic, concentrating on a few types of 
equations that can sometimes be understood, and a few useful tactics that you will use 
again and again on many sorts of problems. 

General Strategy and Tactics 

Given any diophantine equation, there are four questions that you must ask: 

• Is the problem in "simple" form? Always make sure that you have divided out 
all common factors, or assume the variables share no common factors , etc . See 
Example 7 .2 .3  on page 230 for a brief discussion of this. 

• Do there exist solutions? Sometimes you cannot actually solve the equation, 
but you can show that at least one solution exists. 

• Are there no solutions ? Quite frequently, this is the first question to ask. As with 
argument by contradiction, it is sometimes rather easy to prove that an equation 
has no solutions. It is always worth spending some time on this question when 
you begin your investigation. 

• Can we find all solutions ? Once one solution is found, we try to understand 
how we can generate more solutions. It is sometimes quite tricky to prove that 
the solutions found are the complete set. 
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Here is a simple example of a problem with a "complete" solution, illustrating one 
of the most importance tactics: factoring. 

Example 7.4.1 Find all right triangles with integer sides such that the area and perime­
ter are equal . 

Solution : Let X, y be the legs and let z be the hypotenuse. Then z = J x2 + y2 by 
the Pythagorean theorem. Equating area and perimeter yields 

Basic algebraic strategy dictates that we eliminate the most obvious difficulties, which 
in this case are the fraction and the radical. Multiply by 2, isolate the radical, and 
square. This yields 

or 

�i - 4xy(x +y) + 4(� +l + 2xy) = 4(� + i) .  

After we collect like tenns, we have 

�i - 4xy(x +y) + 8xy = O. 

Clearly, we should divide out xy, as it is never equal to zero. We get 

xy - 4x - 4y + 8  = O. 

So far, everything was straightforward algebra. Now we do something clever: add 8 to 
both sides to make the left-hand side factor. We now have 

(x - 4) (y - 4) = 8 ,  

and since the variables are integers , there are only finitely many possibilities .  The only 
solutions (x, y) are (6 , 8 ) , ( 8 , 6) , (5 , 1 2 ) ,  ( 1 2 , 5 ) ,  which yield just two right triangles, 
namely the 6-8- 1 0  and 5- 1 2- 1 3  triangles. _ 

The only tricky step was finding the factorization. But this wasn 't  really hard, as 
it was clear that the original left-hand side "almost" factored. As long as you try to 
factor, it usually won 't be hard to find the proper algebraic steps. 

The factor tactic is essential for finding solutions. Another essential tactic is to 
"filter" the problem modulo n for a suitably chosen n. This tactic often helps to show 
that no solutions are possible, or that all solutions must satisfy a certain fonn.6 You 
saw a bit of this already on page 230. Here is another example. 

6Use of the division algorithm is closely related to the factor tactic. See Example 5.4. 1 on page 1 65 for a nice 
il lustration of this. 
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Example 7.4.2 Find all solutions to the diophantine equation x2 + y2 = 1 000003 . 

Solution : Consider the problem modulo 4. The only quadratic residues in Z4 
are 0 and 1 ,  because 

02 = 0, 1 2 = 1 , 22 = 0, 32 = 1  (mod 4) . 

Hence the sum x2 + y2 can only equal 0, 1 or 2 in Z4 . Since 1 000003 = 3 (mod 4) ,  we 
conclude that there are no solutions. In general , x2 + y2 = n will have no solutions if 
n = 3  (mod 4) . _ 

Now let 's move on to a meatier problem: the complete theory of Pythagorean 
triples . 

Example 7.4.3 Find all solutions to 

(4) 

Solution : First, we make the basic simplifications. Without loss of generality, 
we assume of course that all variables are positive. In addition, we will assume that 
our solution is primitive, i .e . ,  that the three variables share no common factor. Any 
primitive solution will produce infinitely many non-primitive solutions by mUltiplying; 
for example (3 , 4 , 5 )  gives rise to (6 , 8 , 1 0) ,  (9 , 1 2 , 1 5 ) ,  . . . . 

In this particular case, the assumption of primitivity leads to something a bit 
stronger. If d is a common divisor of x and y, then d2 1x2 + y2 ; in other words, d2 1 z2 so 
d l z. Similar arguments show that if d is a common divisor of any two of the variables, 
then d also divides the third. Therefore we can assume that our solution is not just 
primitive, but relatively prime in pairs. 

Next, a little parity analysis; i .e . ,  let 's look at things modulo 2. Always begin with 
parity. You never know what you will discover. Let 's consider some cases for the 
parity of x and y . 

• Both are even. This is impossible, since the variables are relatively prime in 
pairs . 

• Both are odd. This is also impossible. By the same reasoning used in Exam­
ple 7 .4.2 above, if x and y are both odd, it will force z2 = 2 (mod 4) , which 
cannot happen.  

We conclude that if the solutions to (4) are primitive, then exactly one of x and y is  
even . Without loss of generality, assume that x is even. 

Now we proceed like a seasoned problem solver. Wishful thinking impels us to try 
some of the tactics that worked earlier. Let 's make the equation factor! The obvious 
step is to rewrite it as 

(5) 

In other words, the product of z - y and z + y is a perfect square. It would be nice to 
conclude that each of z - y and z + y are also perfect squares, but this is not true in 
general . For example, 62 = 3 . 1 2 . 
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On the other hand, it is true that if v .l w and u2 = VW, then v and W must be perfect 
squares (this is easy to check by looking at PPFs). So in our problem, as in many 
problems, we should now focus our attention on the GCDs of the critical quantities, 
which at this moment are z + y and z - y. 

Let g := GCD(z + y, z - y). Since z - y and z + y are even, we have 2 1g . On the 
other hand, g must divide the sum and difference of z - y and z + y. This means that 
g l 2z and g l 2y. But y .l z, so g = 2. 

Returning to (5) ,  what can we say about two numbers if their GCD is 2 and their 
product is a perfect square? Again, a simple analysis of the PPFs yields the conclusion 
that we can write 

z + y = 2r2 , z - y = 2i , 

where r .l s. Solving for y and z yields y = r2 - s2 , z = r2 + s2 . We're almost done, but 
there is one minor detail :  if r and s are both odd, this would make y and z both even, 
which violates primitivity. So one of r, s must be even, one must be odd. 

Finally, we can conclude that all primitive solutions to (4) are given by 

x = 2rs y = r2 - s2 z = r2 + s2 , , , 

where r and s are relatively prime integers , one odd, one even. • 

Factoring, modulo n filtering (especially parity) ,  and GCD analysis are at the heart 
of most diophantine equation investigations, but there are many other tools available. 
The next example involves inequalities, and a very disciplined use of the tool of com­
paring exponents of primes in PPFs. We will use a new notation. Let l i i n mean that t 
is the greatest exponent of p that divides n. For example, 32 1 1 360. 

Example 7.4.4 (Putnam 1 992) For a given positive integer m, find all triples (n ,x, y) 
of positive integers , with n relatively prime to m, which satisfy 

(6) 

Solution : What follows is a complete solution to this problem, but we warn you 
that our narrative is rather long. It is a record of a "natural" course of investigation: we 
make several simplifications, get a few ideas that partially work, and then gradually 
eliminate certain possibilities. In the end, our originally promising methods (parity 
analysis, mostly) do not completely work, but the partial success points us in a com­
pletely new direction, one that yields a surprising conclusion. 

OK, let 's get going. One intimidating thing about this problem are the two expo­
nents m and n. There are so many possibilities ! The AM-GM inequality (see page 1 76) 
helps to eliminate some of them. We have 

� +i 2 2xy, 

which means that 
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so we can conclude that n > m. That certainly helps. Let 's consider one example, with, 
say, m = 1 ,  n = 2. Our diophantine equation is now 

.x2 +i = .x2i· 
Factoring quickly establishes that there is no solution, for adding 1 to both sides yields 

(.x2 - 1 ) (i - 1 )  = 1 ,  

which has no positive integer solutions. But factoring won 't work (at least not in an 
obvious way) for other cases . For example, let 's try m = 3 , n = 4. We now have 

(7) 

The first thing to try is parity analysis. A quick perusal of the four cases shows that the 
only possibility is that both x and y must be even. So let's write them as x = 2a, y  = 2b. 
Our equation now becomes, after some simplifying, 

(a2 + b2 )3 = 4(ab)4 . 

Ponder parity once more. Certainly a and b cannot be of opposite parity. But they 
cannot both be odd either, for in that case the left-hand side will be the cube of an 
even number, which makes it a multiple of 8. However, the right-hand side is equal to 
4 times the fourth power of an odd number, a contradiction. Therefore a and b must 
both be even. Writing a = 2u, b = 2v transforms our equation into 

(u2 + i )3 = 1 6 (uv)4 . 

Let 's try the kind of analysis as before. Once again u and v must have the same 
parity, and once again, they cannot both be odd. If they were odd, the right-hand side 
would equal 1 6  times an odd number; in other words, 24 is the highest power of 2 that 
divides it. But the left-hand side is the cube of an even number, which means that the 
highest power of 2 that divides it will be 23 or 26 or 29 , etc . Once again we have a 
contradiction, which forces u ,  v to both be even, etc . 

It appears that we can produce an infinite chain of arguments showing that the 
variables can be successively divided by 2, yet still be even ! This is an impossibility, 
for no finite integer has this property. But let 's avoid the murkiness of infinity by using 
the extreme principle. Return to equation (7) .  Let r, s be the greatest exponents of 2 
that divide x, y respectively. Then we can write x = 2r a, y = 2s b, where a and b are 
odd, and we know that r and s are both positive. There are two cases : 

• Without loss of generality, assume that r < s. Then (7) becomes 

(22r a2 + 22Sb2) 3 = 24r+4sa4b4 , 

and after dividing by 26r , we get 

(a2 + 22r-2sb2 )3 = 24s-2r a4b4 . 

Notice that the exponent 4s - 2r is positive, making the right-hand side even. 
But the left-hand side is the cube of an odd number, which is odd. This is an 
impossibility; there can be no solutions. 
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• Now assume that r = s. Then (7) becomes 

(a2 + b2 ) 3 = 22r a4b4 . (8) 

It is true that both sides are even, but a more subtle analysis wil l  yield a con­
tradiction. Since a and b are both odd, a2 == b2 == 1 (mod 4f' so a2 + b2 == 2 
(mod 4) , which means that 2 1 1 I a2 + b2 . Consequently, 23 1 1 (a + b2 ) 3 . On the 
other hand, 22r l 1 22r a4b4 , where r is a positive integer. It is impossible for 2r = 3 ,  
so  the left-hand and right-hand sides of  equation (8) have different exponents 
of 2 in the PPFs, an impossibility. 

We are finally ready to tackle the general case. It seems as though there may be 
no solutions, but let 's keep an open mind. 

Consider the equation (.x2 + y2 )m = (xy t .  We know that n > m and that both x and 
y are even (using the same parity argument as before) . Let 2r l lx, 2s l ly . We consider the 
two cases: 

1 .  Without loss of generality, assume that r < s . Then 22rm I I  (.x2 + y2 )m and 
2nr+ns l l (xy)n . This means that 2rm = nr + ns, which is impossible, since m 
is strictly less than n. 

2 .  Assume that r = s. Then we can write x = 2r a,y = 2rb, where a and b are both 
odd. Thus 

(x2 + i)m = 22rm (a2 + b2 )m , 

where a2 +b2 == 2 (mod 4) and consequently 22rm+m l l (x2 +y2 )m . Since 22nr l l (xy) n , 
we equate 

2rm + m  = 2rn , 

and surprisingly, now, this equation has solutions. For example, if m = 6, 
then r = 1 and n = 9 work. That doesn 't  mean that the original equation has 
solutions, but we certainly cannot rule out this possibility. 

Now what? It looks like we need to investigate more cases. But first, let 's think 
about other primes. In our parity analysis, could we have replaced 2 with an arbitrary 
prime p? In case 1 above, yes: Pick any prime p and let pU l lx, pV l ly . Now, if we 
assume that u < v, we can conclude that p2um l l  (x2 + y2 )m and pnu+nv i l (xy) n , and this 
is impossible because n > m. What can we conclude? Well, if it is impossible that u 
and v be different, no matter what the prime is, then the only possibility is that u and v 

are always equal, for every prime. That means that x and y are equal ! 
In other words, we have shown that there are no solutions, except for the possible 

case where x = y. In this case, we have 

so 2m.x2m = .x2n , or x2n-2m = 2m . Thus x = 21 , and we have 2nt - 2mt = m, or 

(2t + l )m = 2nt . 

Finally, we use the hypothesis that n ..1 m. Since 2t ..1 2t + 1 as well, the only way that 
the above equation can be true is if n = 2t + 1 and m = 2t . And this finally produces 
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infinitely many solutions. If m = 2( , and n = m + 1 ,  then it is easy to check that 
x = y = 2t indeed satisfies (x2 + l)m = (xy) n .  

And these will be the only solutions. I n  other words, i f  m i s  odd, there are no 
solutions, and if m is even, then there is the single solution 

n = m + 1 ,x = y = 2m/2 . 

Problems and Exercises 

7.4.5 Prove rigorously these two statements, which 
were used in Example 7.4.3 : 

(a) If u 1. v and uv = x2 , then u and v must be per­
fect squares. 

(b) If p is a prime and GCD(u, v) = p and uv = x2 , 
then u = pr2 , v = ps2 , with r 1. s. 

7.4.6 (Greece 1 995) Find all positive integers n for 
which -54 + 55 + 5" is a perfect square.  Do the same 
for 24 + 27 + 2" .  
7.4.7 (United Kingdom 1 995) Find all triples of posi­
tive integers (a , b , c ) such that 

7.4.8 Show that there is exactly one integer n such that 
28 + 2 1 1  + 2" is a perfect square. 

7.4.9 Find the number of ordered pairs of positive in­
tegers (x, y) that satisfy 

xy -- - n x+ y  - . 
7.4. 10 (USAMO 1 979) Find all non-negative integral 
solutions ( n l , n2 , . . . , n I4 ) to 

ni + n� + . . .  + ni4 = 1 ,599. 
7.4. 1 1  Find all positive integer solutions to abc - 2 = 
a + b + c. 
7.4.12 (Germany 1 995) Find all pairs of nonnegative 
integers (x, y) such that x3 + 8x2 - 6x + 8 = y3 . 
7.4. 13 (India 1 995) Find all positive integers x,y such 
that 7x - 3Y = 4. 
7.4. 14 Develop a complete theory for the equation 
x2 + 2y2 = z2 . Can you generalize this even further? 

• 

7.4. 15 Twenty-three people, each with integral 
weight, decide to play football ,  separating into two 
teams of I I  people, plus a referee. To keep things fair, 
the teams chosen must have equal total weight. It turns 
out that no matter who is chosen to be the referee, this 
can always be done. Prove that the 23 people must all 
have the same weight. 

7.4. 16 (India 1 995) Find all positive integer solutions 
x,y, z ,  p, with p a prime, of the equation xP + yP = pz . 

Pel l 's Equation 
The quadratic diophantine equation x2 - dy2 = n, 
where d and n are fixed, is called Pell's equation. 

Problems 7 .4. 1 7-7.4.22 will introduce you to a few 
properties and applications of this interesting equation. 
We will mostly restrict our attention to the cases where 
n = ± I .  For a fuller treatment of this subject, includ­
ing the relationship between PeWs equation and con­
tinued fractions, consult just about any number theory 
textbook. 

7.4. 17 Notice that if d is negative, then x2 - dy2 = n 
has only finitely many solutions. 

7.4. 18 Likewise, if d is perfect square, then x2 -
dy2 = n has only finitely many solutions. 

7.4. 19 Consequently, the only "interesting" case is 
when d is positive and not a perfect square . Let us 
consider a concrete example : x2 - 2y2 = I .  

(a) It i s  easy to see by inspection that ( 1 , 0) and 
( 3 , 2 ) are solutions. A bit more work yields the 
next solution : ( 1 7 , 1 2 ) . 

(b) Cover the next line so you can 't read it ! Now, 
see if you can find a simple l inear recurrence 
that produces ( 3 , 2 ) from ( 1 , 0) and produces 
( 1 7 , 1 2) from ( 3 , 2 ) . Use this to produce a new 
solution, and check to see if it works. 
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(c) You discovered that if (u , v) is a solution to 
.xl - 2y2 = I , then so is (3u +4v, 2u + 3v) . Prove 
why this works. It is much easy to see why it 
works than to discover it in the first place, so 
don't feel bad if you "cheated" in (b). 

(d) But now that you understand the lovely tool 
of generating new solutions from clever lin­
ear combinations of old solutions, you should 
try your hand at x2 - sy2 = I .  In general, this 
method will furnish infinitely many solutions to 

Pell 's equation for any positive non-square d . 
7.4.20 Notice that (3 + 2v2)2 = 1 7 + 1 2V2. Is this a 
coincidence? Ponder, conjecture, generalize . 

7.4.21 Try to find solutions to x2 - dy2 = - I ,  for a 
few positive non-square values of d. 
7.4.22 An integer is called square-full if each of its 
prime factors occurs to at least the second power. 
Prove that there exist infinitely many pairs of consec­
utive square-full integers . 

7.5 M iscel laneous Instructive Examples 

The previous sections barely sampled the richness of number theory. We conclude 
the chapter with a few interesting examples. Each example either illustrates a new 
problem-solving idea or illuminates an old one. In particular, we present several 
"crossover" problems that show the deep interconnections between number theory and 
combinatorics. 

Can a Polynomial Always Output Primes? 

Example 7.5. 1 Consider the polynomial f{x) : =  x2 + x + 4 1 ,  which you may remem­
ber from Problem 2.2 .35 on page 39. Euler investigated this polynomial and discov­
ered that f{n) is  prime for all integers n from 0 to 39. The casual observer may 
suspect after plugging in a few values of n that this polynomial always outputs primes, 
but it takes no calculator to see that this cannot be: just let x = 4 1 ,  and we have 
f( 4 1 )  = 4 1 2 + 4 1  + 4 1 ,  obviously a multiple of 4 1 .  (And it is easy to see that it will 
also be a multiple of 41 if x = 40) . So now we are confronted with the "interesting" 
case: 

Does there exist a polynomial f(x) with integral coefficients and con­
stant term equal to ± 1 ,  such that f(n) is a prime for all n E N? 

Investigation : Let u s  write 

f{x) = an:x;'l + an_ l:x;'l- l + . . .  + ao , (9) 

where the ai are integers and ao = ± 1 .  Notice that we cannot use the trick of "plugging 
in ao" that worked with x2 + x + 4 1 .  Since we are temporarily stumped, we do what 
all problem solvers do: experiment ! Consider the example f(x) := x3 + x + 1 .  Let 's 
make a table: 

I f(n) I ; I i i I 3i I 6� 1 1 3� I 22� I 35i I 
This polynomial doesn 't output all primes; the first x-value at which it "fails" is 

x = 4. But we are just looking for patterns. Notice that f (4) = 3 · 23 ,  and the next 
composite value is f(7) = 33 . 1 3 . Notice that 4 = 1 + 3 and 7 = 4 + 3. At this point, 
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we are ready to make a tentative guess that f(7 + 3) will also be a multiple of 3 .  This 
seems almost too good to be true, yet 

f( l O) = 1 03 + 1 0 +  1 = 1 0 1 1 = 3 · 337 . 
Let 's attempt to prove this conjecture, at least for this particular polynomial .  Given 
that 3 If(a) , we'd like to show that 3 lf(a + 3 ) .  We have 

f(a + 3 ) = (a + 3 )3 + (a + 3) + 1 = (a3 + 9a2 + 27a + 27) + (a + 3) + 1 .  

Don 't even think of adding up the like terms-that would be mindless "simplification." 
Instead, incorporate the hypothesis that f( a) is a multiple of 3. We then write 

f(a + 3 ) = (a3 + a + 1 ) + (9a2 + 27a + 27 + 3 ) ,  
and we  are done, since the first expression i n  parenthesis i s  f(a) ,  which i s  a mUltiple 
of 3, and all of the coefficients of the second expression are multiples of 3 .  

Solution: Now we are ready to  attempt a more general argument. Assume that 
f(x) is the generic polynomial defined in (9). Let f(u) = p for some integer a, where 
p is prime. We would like to show that f(u + p) will be a mUltiple of p. We have 

f(u + p) = an (u +  pt + an- I (u + pt- I + . . . + aI (u + p) + ao · 
Before we faint at the complexity of this equation, let 's think about it. If we expand 
each (u + p)k expression by the binomial theorem, the leading term will be uk . So we 
can certainly extract f(u) . We need to look at what 's left over; i .e . ,  

f(u + p) - f(u) = an ( (u + pt - un) + an- I ( (u + pt- I - un- I ) + . . .  + aI P. 

Now it suffices to show that 

(u + p)k _ uk 

is divisible by p for all values of k. This is a simple exercise in congruence notation, 
for 

u + P == u (mod p) 

implies 

(U + p)k == Uk (mod p) . 

We aren 't completely done, because of the possibility that f(u + p) - f(u) = O. 
In this case, f( u + p) = p, which is not composite. If this happens, we keep adding 
multiples of p. By the same argument used, f(u + 2p) , J(u + 2p) , . . . will all be multi­
ples of p. Because f(x) is a polynomial, it can only equal p (or -p) for finitely many 
values of x [for otherwise, the new polynomial g(x) := f(x) - p would have infinitely 
many zeros, violating the Fundamental Theorem of Algebra] . _ 

Incidentally, we never used the fact that p was prime. So we obtained a "bonus" 
result: 

If f(x) is a polynomial with integer coefficients ,  then for all integers a, 
f(a + f(a) ) is a multiple of f(a) . 
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If You Can Count It, It's an Integer 

Example 7.5.2 Let k E N. Show that the product of k consecutive integers is divisible 
by k ! . 

Solution : It is possible to solve this problem with "pure" number theoretic rea­
soning, but it is far simpler and much more enjoyable to simply observe that 

m(m + l ) (m + 2) · · · (m + k - l ) = (m + k - l ) 
k ! k ' 

and binomial coefficients are integers ! • 

The moral of the story: Keep your point of view flexible. Anything involving 
integers is fair game for combinatorial reasoning. The next example continues this 
idea. 

A Combinatorial Proof of Fermat's Little Theorem 

Recall that Fermat 's little theorem (page 232) states that if p is prime, then 

aP == a (mod p) 

holds for al l  a. Equivalently, FLT says that aP - a is a multiple of p. The expression 
aP has many simple combinatorial interpretations. For example, there are aP different 
p-Ietter words possible using an alphabet of a letters . 

Let 's take the example of a = 26, p = 7, and consider the "dictionary" � of these 
267 words. Define the shift function s : � ---* � to be the operation that moves the last 
(rightmost) letter of a word to the beginning position. For example, s ( fermats )  = 
s fermat. We will call two words in � "sisters" if it is possible to transform one into 
the other with finitely many applications of the shift function. For example, integer 
and gerinte are sisters , since s3 (integer) = gerinte. Let us call all of the 
sisters of a word its "sorority." Since any word is its own sister, the sorority containing 
integer consists of this word and 

rintege , erinteg, gerinte,  egerint, tegerin ,  ntegeri .  

7.5.3 Show that i f  s (U )  = U,  then U i s  a word all o f  whose letters are the same. There 
are of course exactly 26 such "boring" words, 

aaaaaaa, bbbbbbb , . . .  , z z z z z z z .  

7.5.4 Show additionally that if sr (u) = U where 0 < r < 7 ,  then U must be a boring 
word. 

7.5.5 Show that all sororities have either one member or exactly seven members. 

7.5.6 Conclude that the 267 - 26 non-boring words in � must be a multiple of 7. 

7.5.7 Finally, generalize your argument so that it works for any prime p. What simple 
number theory principle is needed to carry out the proof? 



250 CHAPTER 7 NUMBER THEORY 

Sums of Two Squares 

We shall end the chapter with an exploration of the diophantine equation 

Y- + i = n. 
We won 't produce a complete theory here (see [30] for a very readable exposition), 
but we will consider the case where n is a prime p. Our exploration will use several 
old strategic and tactical ideas, including the pigeonhole principle, Gaussian pairing, 
and drawing pictures. The narrative will meander a bit, but please read it slowly and 
carefully, because it is a model of how many different problem-solving techniques 
come together in the solution of a hard problem. 

First recall that Y- + i = p will have no solutions if p == 3 (mod 4) (Example 7.4.2 
on page 242). The case p = 2 is pretty boring. So all that remains to investigate are 
primes that are congruent to I modulo 4. 

7.5.8 Find solutions to .x2 + y2 = p, for the cases p = 5, 1 3 ,  1 7 , 29 , 37 , 4 1 .  

B y  now you are probably ready to guess that x2 + y2 = p will always have a solu­
tion if p == 1 (mod 4) .  One approach is to ponder some of the experiments we just did, 
and see if we can deduce the solution "scientifically," rather than with trial-and-error. 
Let 's try p = 1 3 . We know that one solution (the only solution, if we don 't count sign 
and permuting the variables) is x = 3, y = 2. But how do we "solve" 

Y- +i = 1 3? 

This is a diophantine equation, so we should try factoring. "But it doesn 't factor," you 
say. Sure it does ! We can write 

(x + yi) (x - yi) = 1 3 ,  

where i i s  of course equal to the square root of - 1 .  The only problem, and it i s  a huge 
one, is that i is not an integer. 

But let 's stay loose, bend the rules a bit, and make the problem easier. It is true 
that the square root of - 1 is not an integer, but what if we looked at the problem in 
Z13 ? Notice that 

52 = 25 == - 1 (mod 1 3 ) . 

In other words, i "makes sense" modulo 1 3 . The square root of - 1 is equal to 5 modulo 
1 3 . 

If we look at our diophantine equation modulo 1 3 , it becomes 

x2 + i  == 0 (mod 1 3 ) ,  

but the left-hand side now factors beautifully. Observe that we can now write 

x2 + i == (x - 5y) (x + 5y) (mod 1 3 ) ,  

and therefore we can make x2 + y2 congruent to 0 modulo 1 3  as long as x == ±5y 
(mod 1 3 ) .  For example, y = 1 , x = 5 is a solution (and sure enough, .x2 + y2 = 26 == 0 
(mod 1 3 ) .  Another solution is y = 2, x = 1 0, in which case .x2 + y2 = 104, which is 
also a multiple of 1 3 .  Yet another solution is y = 3, x = 1 5 .  If we reduce this modulo 
1 3 , it is equivalent to the solution y = 3, x = 2 and this satisfies .x2 + y2 = 1 3 . 
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This is promising. Here is an outline of a possible "algorithm" for solving x2 + 
y2 = p. 

1 .  First find the square root of - 1 in Zp . Call it u. 
2. Then we can factor x2 + y2 = (x - uy) (x + uy) (mod p) , and consequently the 

pairs y = k, x = uk , for k = 1 , 2 , . . . will solve the congruence 

x2 + l = 0  (mod p) . 

In other words, x2 + y2 will be a multiple of p. 
3 .  If we are lucky, when we reduce the values of these solutions modulo p, we 

may get a pair of x and y that are sufficiently small so that not only will x2 + y2 

be a mUltiple of p, it will actually equal p. 

There are two major hurdles. First, how do we know if we can always find a square 
root of - 1 modulo p? And second, how do we ensure that the values of x and y will 
be small enough so that x2 + y2 will equal p rather than, say, 37 p? 

Do some experiments with primes under 50, and a calculator or computer if you 
wish, to determine for which primes p will the square root of - 1  exist modulo p. You 
should discover that you can always find R in Zp if p = 1 (mod 4) , but never if 
p = 3 (mod 4) . 

Sure enough, it seems that it may be true that 

x2 = - 1 (mod p) 

has a solution if and only if p = 1 (mod 4 ) . But of course, numerical experiments 
only suggest the truth. We still need to prove something. 

For the time being, let's not worry about this, and just assume that we can find the 
square root of - 1 modulo p whenever we need to. Let 's return to the second hurdle . 
We can produce infinitely many pairs (x, y) such that x2 + y2 is a multiple of p. All we 
need to do is get the values small enough. Certainly, if x and y are both less than .jj5, 
then x2 + y2 < 2p , which forces x2 + y2 = p. That is helpful, for if u < yip, we are 
immediately done. The pair y = 1 , x = u will do the trick. 

On the other hand, what if u > .jj5 (notice that it cannot equal .jj5, since p is 
prime and hence not a perfect square)? Let t := l.jj5 J .  Then the problem is reduced 
to showing that one of 

±u, ±2u , ±3u, . . .  , ±tu, 

when reduced modulo p, will be less than .jj5 in absolute value. 
Let 's try an example for p = 29. We have t : = l J29J = 5 ,  and u = 17 (found by 

trial and error; verify that it works ! ) .  Since u > t ,  we need to look at the sequence 

u, 2u, 3u ,  4u, 5u ,  

reduced modulo 29 .  Draw a picture: 

I I I I I o 
2u 

I I I 
4u 

- I I 
u 

I I I I II _ I I I I I I I 
5u 

r I �9 



252 CHAPTER 7 NUMBER THEORY 

The small ticks are the integers from 0 to 29, while the long ticks are placed at the 
locations 

y'p, 2y'p, 3y'p, 4y'p, 5y'p. 
Notice that both 2u = 34 = 5 (mod 29) and 5u = 85 = -2 (mod 29) work, yielding 
respectively the solutions y = 2, x = 5 and y = 5 ,  x = -2. But why did it work? In 
general, we will be dropping dots onto the number line, and would like to see a dot 
land either to the left of the first long tick, or to the right of the last long tick. The dots 
will never land exactly on these ticks, since they correspond to irrational values. We 
are assuming without loss of generality that u > .,;p. In general , there are t long ticks. 
The sequence u, 2u, . . .  , tu consists of distinct values modulo p (why?), so we will be 
placing t different dots on the number line. There are three possibilities. 

1 .  One of the dots lands to the left of the first long tick. 
2. One of the dots lands to the right of the last long tick. 
3. The dots don 't  land in either of the above locations. 

In cases 1 or 2, we are immediately done. In case 3 ,  we have t dots that lie in 
t - 1 intervals (separated by long ticks). By the pigeonhole principle, one of these 
intervals must contain two dots. Suppose mu and nu lie in one interval. This means 
that (m - n)u will be an integer (perhaps negative) , but smaller than .,;p in absolute 
value. Since 1m - n l ::; t ,  we can just choose k := 1m - n l and we are guaranteed that 
y = k and x = ku (when reduced modulo p) will both be less than .,;p. So we 're done ! 

That was a fun application of the pigeonhole principle. All that remains is to prove 
that we can always obtain the square root of - 1 .  We have one tool available, something 
proven earlier that seemed a curiosity then: Wilson 's theorem. Recall that Wilson 's 
theorem (Example 3 . 1 .9 on page 68) said that if p is a prime, then (p - I ) ! = - 1 
(mod p) .  A small dose of Gaussian pairing can reorganize (p - I ) ! into a perfect 
square modulo p, provided that p = 1 (mod 4) . In that case p - 1 will be a mUltiple 
of 4, so the individual terms in (p - I ) ! can be arranged in an even number of pairs . 
For example, let p = 1 3 .  We can then write 

1 2 ! = ( 1 · 1 2) (2 · 1 1 ) (3 · 1 0) (4 · 9) (5 · 8) (6 · 7) . 

Each pair has the form k ·  (-k) modulo 1 3 , so we have 

1 2 ! = ( _ 1 2 ) (  _ 22 ) (  _ 32 ) (  _42 ) (  _ 52 ) (  _62 ) (mod 1 3 ) ,  

and since there are an even number of minus signs i n  this product, the whole thing is 
congruent to (6 ! ) 2 modulo 1 3 .  Combining this with Wilson 's theorem yields 

(6 ! ) 2 = - 1  (mod 1 3 ) . 
The argument certainly generalizes to any prime p of the form 4k + 1 .  Not only have 
we shown that the square root of - 1 exists, we can compute it explicitly. Our general 
result is that 

If p is prime and p = 1 (mod 4) . then ( p � 1 ) 2 
= - 1 (mod p) . 
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This concludes our exploration of the equation x2 + y2 = p. We have succeeded in 
proving that solutions can always be found if p == 1 (mod 4) . • 

Problems and Exercises 

Below are a wide variety of problems and exercises, arranged in roughly increasing order of diffi­
culty. 

7.5.9 Example 7.5 . 1 on page 247 stated that one could 
prove that (u + p)k - uk is divisible by p for all values 
of k using induction. 

(a) Do this induction proof. It is an easy exercise. 

(b) Even easier: Think about the factorization of 
x" - y" . You should know this by heart, but if 
not, consult formula 5.2.7 on page 148. 

7.5.10 Show that (a + b)P == aP + bP (mod p) for any 
prime p. 

7.5.11  Use the multinomial theorem (Problem 6. 1 .29 
on page 1 96) to examine 

(�y, 
a l 's 

and thus derive yet another combinatorial proof of Fer­
mat 's little theorem. Explain why this proof is really 
equivalent to the one we discussed on page 249. 
7.5.12 (Putnam 1 983) How many positive integers n 
are there such that n is an exact divisor of at least one 
of the numbers 1040 , 2030? 

7.5.13 (Russia 1 995) Let m and n be positive integers 
such that 

LCM[m, nj + GCD[m, nj = m + n. 
Prove that one of the two numbers is divisible by the 
other. 

7.5.14 (Russia 1 995) Is it possible for the numbers 
1 , 2, 3, . . . , 100 to be the terms of 1 2  geometrical pro­
gressions? 

7.5. 15 (Kiran Kedlaya) Let p be an odd prime and 
P(x) a polynomial of degree at most p - 2. 

(a) Prove that if P has integer coefficients, then 
P(n) + P(n + 1 ) + · · · + P(n + p - l ) is an in­
teger divisible by p for every integer n. 

(b)  If P(n) + P(n + 1 ) + · · · + P(n + p - l ) is an in­
teger divisible by p for every integer n, must P 
have integer coefficients? 

7.5.16 (lMO 1972) Let m and n be arbitrary non­
negative integers. Show that 

is an integer. 

(2m) ! (2n) ! 
m !n ! (m + n) !  

7.5.17 Find all integer solutions to 

x2 +i + z2 = 2xyz. 
7.5.18 (USAMO 1 98 1 )  The measure of a given angle 
is 1 800 / n where n is a positive integer not divisible by 
3 . Prove that the angle can be trisected by Euclidean 
means (straight edge and compasses). 

7.5.19 Show that 

are all even if and only if n is a power of 2 . 
7.5.20 Use Problem 7.5 . 1 9 as a starting point for the 
more interesting open-ended question: What can you 
say about the parity of the numbers in Pascal 's trian­
gle? Are there patterns? Can you find a formula or 
algorithm for the number of odd (or even) numbers in 
each row? And can you say anything meaningful about 
divisibility modulo m for other values of m? 

7.5.21 Show that given p, there exists x such that 
d(px) = x and also y such that d(p2y) = y. 
7.5.22 Show that the number of solutions to d(nx) = n 
is I if and only if n equals 1 , 4, or a prime; is finite if 
n i s  a product of distinct primes; and otherwise is infi­
nite. 

7.5.23 Show that the sum of the odd divisors of n is 
equal to - � ( - l r/dd. 

� 
7.5.24 Let co(n) be the number of distinct primes di­
viding n. Show that 

� l.u (d) I = 2co(n) . 
� 
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7.5.25 Does there exist an x such that 

J.l (x) = J.l (x+ 1 )  = J.l (x + 2) = . . . = J.l (x + 1996)? 
7.5.26 (Putnam 1 983) Let p be an odd prime and let 

F (n) := 1 + 2n + 3n2 + . . .  + (p - l )nP-2 • 

Prove that if a , b  are distinct integers in {O, 1 , 2 , . . . , p ­
I }  then F (a) and F (b) are not congruent modulo p. 
7.5.27 Recall the definition of the inverse image of a 

function (page 1 45) . Show that for each n E N, 

L J.l (k) = 0. 
kEtfJ- l (n ) 

For example, if n = 4, then rl (n) = {5 , 8 ,  10 , 12 } [of 

course, you need to verify why there are no other k 
such that iP (k) = 4] and 

J.l (5) + J.l (8 ) + J.l ( 1O) + J.l ( 12) = - I  + 0 +  1 + 0  = o.  

7.5.28 Does there exist a row of Pascal 's Triangle con­

taining four distinct elements a, b, c and d such that 

b = 2a and d = 2c? 
7.5.29 (lMO 1974) Prove that the number 

f (2n + 1) 23k �o 2k + 1 
is not divisible by 5 for any integer n � O. 
7.5.30 (Romania 1 995) Let f :  N \  {O, I }  --> N be the 

function defined by 

f(n) = LCM[ I , 2 , . . .  , n] .  
(a) Prove that for all n ,  n � 2 ,  there exist n consec­

utive numbers for which f is constant. 

(b) Find the greatest number of elements of a set of 

consecutive integers on which f is strictly in­

creasing, and determine all sets for which this 

maximum is realized. 

7.5.3 1 For a deck containing an even number of cards, 

define a "perfect shuffle" as follows:  divide the deck 

into two equal halves, the top half and the bottom half; 

then interleave the cards one by one between the two 

halves, starting with the top card of the bottom half, 

then the top card of the top half, etc . For example, if 

the deck has six cards labeled " 123456" from top to 

bottom, after a perfect shuffle the order of the cards 

will be "4 1 5263." Determine the minimum (positive) 

number of perfect shuffles needed to restore a 94-card 

deck to its original order. Can you generalize this to 

decks of arbitrary (even) size? 

7.5.32 (Iran 1 995) Let n > 3 be an odd integer with 

prime factorization 

If 

prove that there is a prime p such that p divides 2m - I ,  
but does not divide m. 

Perfect Numbers 
Problems 7.5 .33-7.5.35 explore some simple ideas 

about a topic that has fascinated and perplexed mathe­

maticians for at least 2000 years. 

7.5.33 Prove the following two facts about the a func­

tion: 

(a) A positive integer n is prime if and only if 

a(n) = n + ! . 
(b) If a(n) = n + a and a ln and a < n, then a must 

equal ! .  

7.5.34 An integer n is called perfect if a(n) = 2n. For 

example, 6 is perfect, since 1 + 2 + 3 + 6 = 2 · 6. 
(a) Show that if 2k - 1 is a prime, then 2k- 1 (2k - 1 )  

is perfect. This fact was known to the an­

cient Greeks, who computed the perfect num­

bers 28 , 496, 8 1 28 . 
(b) I t  was not until the 1 8th century that Euler 

proved a partial converse to this:  

Every even perfect number must be 
of the form 2k- 1  (2k - I ) ,  where 2k -
I is a prime. 

Now you prove it. 

7.5.35 What can you say about odd perfect numbers? 

(Incidentally, no one has ever found one, or proven that 

they do not exist. But that doesn 't  mean that you can't 

say something meaningful about them.) 

Primitive Roots of Unity and Cyclotomic Poly­
nomials 
Problems 7.5 .36-7.5 .41 explore some fascinating con­

nections among polynomials, number theory, and 

complex numbers. You may want to read about roots 

of unity (page 1 26) before attempting these problems. 

7.5.36 Primitive nth Roots of Unity. The complex 

number ' is called a primitive nth root of unity if n is 
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the smallest positive integer such that Sn = 1. For ex­
ample, the 4th roots of unity are 1 ,  i , - 1 ,  -i, but only 
i and -i are primitive 4th roots of unity. 

(a) If p is a prime, then there are p - I primitive pth 
roots of unity, namely all the pth roots of unity 
except for 1 :  

S , S2 , S3 ,  . . .  , Sp- l , 
where S = Cis 2; . 

(b) If S = Cis 2:: , then Sk is a primitive nth root of 
unity if and only if k and n are relatively prime. 
Consequently, there are q, (n) primitive nth roots 
of unity. 

7.5.37 Define <Pn (x) to be the polynomial with lead­
ing coefficient I and degree q, (n) whose roots are 
the q, (n) different primitive roots of unity. This 

polynomial is known as the nth cyclotomic polyno­

mial . Compute <Pl (X) , � (x) , , , , , <P1 2 (X) , and <Pp (x) 
and <Pp2 (for p prime). 

7.5.38 Prove that � - 1 = Il <Pd (X) for all positive 
d in 

integers n. 
7.5.39 Prove that <Pn (x) = Il (� - 1 )JL (njd) . 

d in 
7.5.40 Prove that for each n E N, the sum of the prim­
itive nth roots of unity is equal to Jl (n ) . In other words, 
if S := Cis 2:: ' then 

}: Sa = Jl (n ) . 
al.n 

l $a<n 
7.5.41 Prove that the coefficients of <Pn (x) are integers 
for all n. Must the coefficients only be ± I ?  
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Geometry for Americans 

8.1  Three " Easy" Problems 
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We call this chapter "Geometry for Americans" instead of "Geometry for Dummies" 
so as not to offend. The sad truth is that most mathematically inclined Americans know 
very little geometry, in contrast to their luckier peers in Eastern Europe and Asia. But 
it is never too late to learn. Geometry is a particularly fun topic to study, because you 
are compelled to draw lots and lots of pictures. 

Indeed, before you begin seriously studying this chapter, we recommend that you 
procure the following drawing supplies: 

• Compass (good quality) ,  
• Protractor/ruler, 
• Mechanical pencil with good eraser, 
• Colored pencils, 
• Pencil sharpener, 
• Plenty of unlined paper. 

When you put your drawing materials into a pencil case, you may feel as though you 
are back in elementary school. That 's fine; you may as well start with few assumptions, 
and little ego about your skill. There 's nothing like a few nicely sharpened, brightly 
colored pencils to reduce inhibitions, which we all know is good for creative problem 
solving. 

We highly recommend that you supplement your low-tech drawing tools with a 
computer program such as Geometer's Sketchpad, Geometer, or Geogebra. Programs 
of this kind allow you to quickly draw flexible, accurate pictures that can be easily 
modified, which greatly facilitates investigation. I 

We shall begin with a review of the basic facts of plane geometry: definitions and 
theorems about points, lines, circles, etc . Few of these facts will be new to you, but 
most likely, it has been a while-if ever-since you proved them. Once we are done 

I Geometer's Sketchpad is commercially available from Key Curriculum Press (http : / /www • keypress . 
coml sketchpad! )  and Geometer and Geogebra are both currently free (http : / /www . geometer . org I 
geometer I index . html and http : / /www . geogebra . at / .  respectively). 
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with the basic facts, we will explore a few more advanced ideas , many of them con­
nected by the deep concept of transformations. This idea, pioneered by Felix Klein 
and Henri Poincare and others in the 1 9th century, revolutionized geometry, and con­
nected it with many other branches of mathematics. We will only scratch the surface 
of this subject, though. 

This is just a single chapter, so we are compelled to omit many topics . Rather 
than cover many concepts, we prefer to revisit the classical ones carefully, so that you 
can master them from a problem solver's perspective . Consequently, we leave out 
fascinating topics such as projective, solid, and hyperbolic geometry. But we will not 
hesitate to temporarily replace classical methods with algebra or trigonometry. After 
all, problem solving is our goal ! 

The typical geometry problem consists of two parts. First, a diagram is specified, 
usually with words; it is often quite challenging to actually draw the diagram correctly. 
This initial stage often frustrates beginners, who do not expend enough energy and 
investigation to draw a picture carefully. 

The second stage of the problem generally asks to prove a "rigidity" statement 
about the diagram; some property or properties that do not change no matter how the 
diagram is drawn. 

Here are three examples. All are "elementary," but none are really easy to prove. 
These three problems are a diagnostic test of your skill in geometrical problem solving. 
If you have little difficulty with them, you can safely skim the next section (but do 
carefully check your work on pages 275-278 ,  where we show the solutions, and look 
at all of the problems at the end of the section) .  Otherwise, you should read this next 
section very slowly and carefully, doing as many problems as you can. 

8.1.1 The Power of a Point Theorem. Given a fixed point P and a fixed circle, draw 
a line through P that intersects the circle at X and Y .  The power of the point P with 
respect to this circle is defined to be the quantity PX . PY . 

The Power of a Point Theorem (also known as POP) states that this quantity is 
invariant; i .e., does not depend on the line that is drawn. For example, in the picture 
below, 

PX · PY = PX' · Py' . 

Prove POP. (There are three cases to consider, depending on whether P lies on, inside, 
or outside the circle . )  
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8.1.2 The Angle Bisector Theorem. Let ABC be a triangle and let the angle bisector of 
LA intersect side CB at D. Prove that 

A 

CD AC 
DB AB · 

B 

8.1.3 The Centroid Theorem. A median of a triangle is a line segment from a vertex 
to the midpoint of the opposite side. Prove that the medians of a triangle meet in a 
single point, and moreover, that this intersection point divides each median in a 2 : 1 
ratio. For example, in the figure below, 

BG/GD = AG/GF = CG/GE = 2 . 

A 

c B 

8.2 Survival Geometry I 

When you attempt Problems 8 . 1 . 1-8 . 1 .3 ,  you may wonder just what you may assume 
and what you must prove. As you know, Euclidean geometry is based on a very small 
set of undefined objects (including "points" and "lines") and postulates or axioms 
(theorems that are assumed to be true, that lie "above" proof) . In the interest of time, 
we will play fast and loose with this, and start you out with a much larger collection 
of "facts" that you can safely assume for now. 

Together with these facts, we will introduce some simple lemmas and theorems 
that are consequences of them. Some of these we will prove, to begin illustrating some 
of the most important geometrical problem-solving techniques. The others you should 
prove on your own, as essential exercises (not problems) to master the material . We 
will label "facts" that you need not prove as such; any unlabeled problem is begging 
for you to solve it. 
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Please do not read passively. The more of these simple problems that you do now, 
the better off you will be when confronted with genuinely tricky questions. 

We call Sections 8 .2-8 .3 "survival geometry" because they contain a lean but ade­
quate stock of facts and techniques that will allow you to get started on most problems.  
If you master the facts and lemmas and fearlessly employ the problem-solving ideas 
presented in the next two sections, you will be able to tackle an impressive variety of 
challenging questions. 

Points, Lines, Angles, and Triangles 

We assume that you know, at least intuitively, the meaning of points, lines, angles, 
triangles, and polygons, and that you know that parallel lines are "lines that never 
meet." A straight angle is the angle made by three points on a line; i .e . ,  an angle with 
magnitude n or 1 80° (we will use radians and degrees interchangeably, depending on 
convenience). A right angle is, of course, half of a straight angle, or 90° ; four right 
angles are produced when two perpendicular lines meet. 

Lines are understood to extend infinitely in both directions .  If a line extends only 
in one direction, it is a ray, if it begins and ends at two points, it is a line segment. 
Using precise notation, the symbols 

AB , AB , AB , AB 

denote, respectively, the line passing through A and B, the ray starting at A and passing 
through B, the line segment between A and B, and the length of this line segment. 
However, we may informally write "line AB" or just "AB," and it should be obvious 
by context whether we refer to a line, a line segment, or a length. 

Likewise, three points A, B, C, taken in order, determine an angle. The angle itself 
is denoted by LABC, but its measure is more precisely denoted by mLABC. For ex­
ample, we may write mLABC = 80° . Informally, we will write LABC to denote either 
the angle or its measure, and sometimes just write ABC; again, it should always be 
clear from context. When a figure is simple and uncluttered, we may even get away 
with referring to an angle by a single point. For example, in the figure below, LA is 
unambiguous, but L.C is not. The interior angle of MBC at C is L.ACB, while the 
exterior angle is LACD. 

A 

G 
B C 'D 

Two triangles are congruent if it is possible to move one and superimpose it exactly 
over the other, possibly after rotating it in space. Congruent triangles are the "same" in 
that all corresponding angles and lengths are equal . Using precise notation, we would 
write 

MBC � l:::.DEF, 



260 CHAPTER 8 G EOMETRY FOR AMERICANS 

but in practice we omit the f':.. symbol unless the context is ambiguous. 

Fact 8.2. 1 Congruence Conditions. If you travel around a triangle, say, counterclock­
wise, starting at an angle, you will encounter, in order, a side, then an angle, etc. 
Suppose that you travel around a triangle and record the length of a side, the measure 
of the angle, then of the next side. Then suppose you do the same thing with another 
triangle, and the values recorded are the same. Then the two triangles are congruent. 
This condition is often abbreviated as SAS. There are several congruence conditions: 

SAS, ASA ,  SSS , AAS. 

Fact 8.2.2 Note that ASS does not guarantee congruence (give a counterexample), 
unless the angle is greater than or equal to 90° or the second side is longer than the first. 
And of course AAA does not mean congruence; it indicates similarity (see page 274). 

Fact 8.2.3 The Triangle Inequality. In a triangle, the sum of the lengths of any two 
sides is strictly greater than the third side. 

Fact 8.2.4 Angle Inequalities in Triangles. Let ABC be a triangle. If mLA > mLB, 
then BC > AC, and conversely. 

8.2.5 Vertical Angles. When two lines meet in a point, four angles are formed in 
two pairs of opposite angles .  These opposite angles are also called vertical angles. 
Vertical angles are equal . For example, LECD = LACB in the figure below. 

(Remember, the absence of the label "Fact" means that this is an exercise for you to 
prove. It should be rather easy.) 

Parallel Lines 

In the figure below, lines AB and CD are parallel, i .e. AB I I  CD. The line BC that 
intersects the two parallel lines is called a transversal.  

A 

D 
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There is one critical fact about parallel lines that leads to many interesting lemmas .2 

Fact 8.2.6 

(a) Alternate interior angles cut by a transversal are equal. In other words,  
LBCD = LABC in the figure above. Notice that this equality is indicated in 
the figure by the arcs that are drawn in .  

(b) The converse of (a) is also true; i .e . ,  if two lines are cut by a third, and the 
alternate interior angles are equal, then these two l ines are parallel. 

Here are some corollaries of Fact 8.2 .6 . 

8.2.7 The sum of the (interior) angles of a triangle equals 1 80° . Hint: Let ABC be a 
triangle. Consider line BC (not the line segment), and construct a line parallel to BC 
that passes through point A.  

8.2.8 For any triangle, the measure of  an exterior angle is equal to  the sum of  the two 
other interior angles. 

This example below is quite simple, but we are showing a fairly complete solution in 
order to review basic problem-solving ideas and introduce new techniques that can be 
used in much more elaborate ways later. 

Example 8.2.9 A parallelogram is a quadrilateral whose opposite edges are parallel . 

Prove that 

(a) The opposite edges of a parallelogram have equal length. 
(b) The opposite angles of a parallelogram are equal, and adjacent angles are 
supplementary (add to 1 80° ) . 

(c) The diagonals of a parallelogram bisect each other. 

Solution : For (a), we need to show that AB = CD and AC = BD. What is the 
penultimate step that allows us to conclude two lengths are equal? Our only tools so 
far are congruent triangles. Hence we must force some triangles into existence. To do 
so, we draw in a diagonal . 

2 Parallel l ines are a very rich and interesting topic, and we are deliberately simplifying the story in favor of a 
strict "Euclidean" point of view. It turns out that Fact 8.2.6 is actually dependent on a postulate that is independent 
of Euclid's other postulates. Modifying this postulate leads to different yet mathematically consistent alternatives 
to Euclidean geometry, the so-called non-Euclidean geometries. See [ 1 9) ,  [4 1 ) ,  and [29) for more details. 
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Now we search for equal angles . Since the diagonal BC is a transversal intersecting 
parallel lines AB and CD, we have 

LDCB = LABC. 

Likewise, 

LACB = LDBC, 

since AC and BD are also parallel. Finally, we use the trivial observation that BC = BC 
to use ASA to conclude that 

MCB � l:::.DBC. 

Consequently, the opposite sides have equal length and the opposite angles LA and 
LD have equal measure. To show that the other pair of opposite angles are equal, we 
need to draw diagonal AD and show that MCD � l:::.DBA . 

To show that adjacent angles are supplementary, we either appeal to Fact 8 .2.6 
(AC is a transversal of the parallel lines AB and CD), or use the fact that the sum of the 
angles in a quadrilateral is 3600 (Example 2.3 .5 on page 45) .  

Finally, once the second diagonal AD is drawn, observing vertical angles and us-
ing congruence easily yields (c) . • 

This example used perhaps the most productive technique: drawing an auxiliary 
object. Sometimes, as above, drawing a single line is enough to get the job done. This 
method is powerful, but not always easy. It takes skill, experience, and luck to find the 
right objects to add to a given figure. And if you add too many objects, your figure 
becomes hopelessly confused. Always let the penultimate step be your guide, and keep 
in mind what "natural" entities will help you. Triangles? Circles? Symmetry? 

Here 's an easy exercise. 

8.2.10 A triangle is isosceles if two of its sides have equal length. Prove that if a 
triangle is isosceles, the angles opposite the equal sides have equal measure. 

8.2.1 1  Let ABC be isosceles, with AB = AC. We call A the vertex angle of the isosce­
les triangle, and B and C are called the base angles. A nearly trivial consequence of 
Fact 8 .2 . 1 0  is 

B = C = 90 - A/2 ; 

in other words, the base angles of an isosceles triangle are complementary to half 
the vertex angle (two angles are called complementary if they sum to a right angle; 
contrast this with supplementary angles . )  
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The next example presents a simple result that can easily be generalized, using 
powerful methods of similar triangle analysis. Nevertheless, it is very instructive to see 
just how much we can do by manipulating the concepts of angles, parallel lines, and 
congruent triangles. Although our proof is rather simple, it features a subtle strategy 
that you should master, the phantom point method. 

Example 8.2.12 Let ABC be an arbitrary triangle, and let D,  E , F be the midpoints 
of sides BC,AC, AB, respectively. Lines DE , EF, FD dissect the original triangle into 
four congruent triangles. 

Solution : Avoid the temptation of similar triangle facts (for example, Fact 8 .3 . 8  
on page 274) . They aren't  necessary. 

We could join midpoints and try to get angle equalities, but we have no tools (at 
present, without using similar triangles) that allow us to analyze angles by joining two 
midpoints . Instead, let 's draw lines that do yield angular information. Start at the 
midpoint F, and draw a line through F that is parallel to Be. We know in our heart 
that this line will intersect AC at E, but we haven 't  proven it yet. So, for now, cal l this 
intersection point E' . Likewise, draw another line through F, parallel to AC, meeting 
BC at D' . Since BF = FA, that suggests we try to show that 6F D' B � 6AE' F . 

A 

c 

Since FE' I I  BC, L.AF E' = L.B and FE' A = L.e. Likewise, F D' I I  AC implies L.F D' B = 
L.C . Thus L.F E' A = L.BD' F ,  which allows us to use the AAS congruence condition to 
conclude that 6FD'B � 6AE'F .  Thus BD' = FE' and D'F = E'A .  

Since E'FD'C i s  a parallelogram, CE' = D'F and FE' = D'C. Combining these 
two equalities with the other pair of equalities yields BD' = D'C and CE' = E' A. In 
other words, D' and E' coincide, respectively, with D and E .  

Now we  can conclude that the line joining the midpoints F and E i s  paral lel to 
BC, since E = E' . And now our proof can proceed smoothly, since the same argument 
tells us that F D II AC and ED II AB. Repeating the first argument yields 

6AEF � 6F DB � 6ECD, 

and SSS shows that 6DEF � F BD. • 

The "phantom" points D' and E' were ugly constructions, but absolutely nec­
essary. Their purpose is similar to that of the "contrary assumption" in a proof by 
contradiction, namely something concrete that one can work with. And like contrary 
assumptions, phantom points bow out once their work is done. 
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Circles and Angles 

Circles are the most important entities in Euclidean geometry. You cannot learn too 
much about them. We shall refer to the figure below to review the most important 
terms. 

r 

We denote the circle by r. Its center is 0, so L.COB is called a central angle. Line 

segment BC is called a chord, while BC refers to the arc from B to C. As usual ,  we 
may informally write "arc BC" in its place.3 The measure of arc BC is defined to be 
equal to the measure of the central angle that subtends it, i .e. 

m BC= mL.COB. 

Because A lies on the circle, we call L.CAB an inscribed angle; we also say that this 
angle subtends arc BC at the circle. 

Line DB intersects the circle in exactly one point, namely B, so this line is called 
a tangent. 

Fact 8.2.13 Relationship Between Chords and Radii.4 Consider the following three 
statements about a line, a circle, and a chord of the circle: 

1 .  The line passes through the center of the circle. 

2. The line passes through the midpoint of the chord. 

3. The line is  perpendicular to the chord. 

If any two of these statements are true, then all three are true. 

Fact 8.2. 14 A tangent line to a circle is perpendicular to the radius at the point of 
tangency; conversely, the perpendicular to a tangent line at the point of tangency will 
pass through the center of the circle. 

8.2.15 Let A be a point outside a circle. Draw lines AX ,  AY tangent to the circle at X 
and Y .  Prove that AX = AY . 

3Notice that there is an ambiguity about arcs. Does arc Be mean the path along the circumference going 
clockwise or counterclockwise? If it is the former, the central angle will be more than 1 800 • We will use the 
convention that arcs are read counterclockwise. 

4We are indebted to Andy Liu, who used this clever "three for two sale" formulation in [28] .  
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The following lemma is perhaps the first interesting and unexpected result proven 
in high-school geometry. 

Example 8.2.16 The Inscribed Angle Theorem. The measure of an arc is twice the 
measure of the inscribed angle that subtends it. (In other words, for any arc , the angle 
subtended at the center is twice the angle subtended at the circle . )  

This is truly remarkable. I t  says that no matter where we place the point A on the 
circumference of the circle r below, the measure of the angle CAB will be fixed (and 
moreover, equal to half of the central angle COB). 

Solution : Let (J = LCOB. We wish to show that LCAB = (J /2. In order to do 
this, we need to gather as much angular information as we can. It certainly makes 
sense to draw in one auxiliary object, namely, line segment AO, since this adds two 
new triangles that have a vertex at A. And moreover, these triangles are isosceles, since 
AO, BO, and CO are radii of circle r. 

r 

�c 

B 

Let f3 = LAOB. Our strategy is simple: we will compute LCAB by finding LCAO and 
LBAO. And these are easy to find, since by Fact 8 .2 . 1 1 ,  we have 

and 

f3 LBAO = 90 - -

2 ' 

LCAO = 90 _ 

360 
-

f3 
-

(J 
= Ii + � 

-

90. 
2 2 2 

Adding these, we conclude that 

LCAB = LCAO + LBAO = � . • 

That wasn 't too hard ! A single, fairly obvious auxiliary line, followed by as much 
angular information as possible, led almost inexorably to a solution. This method is 
called angle chasing. The idea is to compute as many angles as possible, keeping the 
number of variables down. In the above example, we used two variables, one of which 
cancelled at the end. 

Angle chasing is easy, fun, and powerful. Unfortunately, many students use it 
all the time, perhaps with trigonometry and algebra, to the exclusion of other, more 
elegant tactics. A key goal of this chapter is to teach you how to get the most from 
angle chasing, and when you should transcend it. 

Here are a few simple and useful corollaries of the inscribed angle theorem. 
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8.2.17 Inscribed Right Triangles. Let AB be the diameter of a circle, and let C be an 
arbitrary point on the circle. Then LBCA = 90° . Conversely, if AB is a diameter and 
LBCA = 90° , then C must lie on the circle. (See left figure below.) 

I!------"T B A c 

B 

8.2.18 Cyclic Quadrilaterals. The quadrilateral ABCD is cyclic if its vertices lie on a 
circle. The points A,  B ,  C, D are called concyclic. (See right figure above. )  

(a) A quadrilateral is cyclic if and only if a pair of opposite angles are supplementary. 

(b) Points A ,  B, C, D are concyclic if and only if LACB = LADB. 

With cyclic quadrilaterals you automatically get circles and pairs of equal angles "for 
free." This extra structure often provides useful information. Get in the habit of locat­
ing (or creating) cyclic quadrilaterals .  

Circles and Triangles 

One can spend a lifetime exploring the interplay between circles and triangles . First 
we shall look at the inscribed and circumscribed circles of a triangle. 

In the diagram below, triangle ABC is inscribed in circle n ,  since each vertex of 
the triangle lies on this circle. We call n the circumscribed circle or circumcircle 
of triangle ABC. The center of n ,  or circumcenter, is 0, and the length OA is the 
circumradius. 

Likewise, circle 12 is inscribed in triangle ABC because it is tangent to each side of 
the triangle. We call it the inscribed circle or incircle. The center of 12, the incenter, 
is I, one point of tangency is D, and thus the length of I D is the inradius. 
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It is not immediately obvious that an arbitrary triangle even has an inscribed or 
circumscribed circle. Nor is it obvious that if such circles exist, that they be unique. 
Let 's explore these questions, starting with the circumscribed circle. 

8.2. 19 Suppose a triangle possesses a circumscribed circle. Then the center of this 
circle is the intersection point of the perpendicular bisectors of the sides of the triangle. 
(Consequently, if there is a circumscribed circle, then it is unique.) 

8.2.20 Given any triangle, consider the intersection of any two perpendicular bisectors 
of its sides. This intersection point will be equidistant from the three vertices; hence 
will be the center of the circumscribed circle. 

8.2.21 Thus the circumcenter is the intersection point of all three perpendicular bisec­
tors . (So we get, "for free," the interesting fact that the three perpendicular bisectors 
intersect at a single point. ) 

Likewise, there is a (unique) inscribed circle whose center is the intersection point 
of three special lines. Again, our strategy is to first assume that the inscribed circle 
exists, and explore its properties. The tricky part, as above, is uniqueness. 

8.2.22 Every triangle has a unique inscribed circle. The center is the intersection point 
of the three angle bisectors of the triangle. (Hint: Suppose the inscribed circle exists. 
Show that its center is the intersection of two angle bisectors , using Fact 8.2 . 14. Then 
show that the converse is true; i .e . ,  the intersection of any two angle bisectors is the 
center of an inscribed circle. Finally, show that there cannot be more than one such 
circle, and hence all three bisectors meet in a single point.) 

The existence of the circumcircle and incircle led to the wonderful facts that in 
any triangle, the three angle bisectors are concurrent (meet in a single point) , and 
the three perpendicular bisectors of the sides are concurrent. There are many other 
"natural" lines in a triangle. Which of them will be concurrent? 

We will explore this is greater detail in Section 8 .4, but here is  a nice example that 
uses an ingenious auxiliary construction, and not much else. 

Example 8.2.23 Show that, for any triangle, the three altitudes are concurrent. This 
point is called the orthocenter of the triangle. 

Solution : An altitude is  a line (not a line segment) that passes through a vertex 
and is perpendicular to the opposite side (extended, if necessary). Informally, the word 
refers to a line or a segment, or a segment length, depending on context. For example, 
in the figure below, the altitude from B to side AC is the actually the line BD, but 
it is not uncommon for the segment BD or its length (also written BD) to be called 
the altitude. The point D at which the altitude intersects the side is called the foot 
of the altitude. In standard usage, the foot is not explicitly mentioned; for example, 
"altitude BD" instead of the more precise "drop a perpendicular from vertex B to side 
AC, intersecting it at D." 

Notice that altitudes may not always lie inside the triangle. The altitude through C 
meets the extension of side AB at E, outside the triangle. Notice also that altitudes CE 
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and BD intersect outside the triangle (remember, they are lines, not line segments). 

A 

�c 
/ 

/ 
/ 

�E 

How do we show that the three altitudes meet in a single point? Well, what other lines 
are concurrent? The perpendicular bisectors are almost what we want, and they meet 
in a single point, the circumcenter. However, altitudes are perpendicular to opposite 
sides. In general, they do not bisect them. But is there any way to make them bisect 
something? Yes !  The ingenious trick is to make the point of bisection be the vertex, 
not the side. 

In the figure below, we start with an arbitrary triangle ABC, and then draw lines 
through each vertex that are parallel to the opposite sides. These three parallel lines 
form a larger triangle, E F D, that contains ABC. 

F 

Let m be the altitude of triangle ABC that passes through B. Certainly, m is per­
pendicular to AC, by definition. But since DE I I  AC, then m is also perpendicular to 
DE . 

Notice that ADBC is a parallelogram, so AC = BD by Example 8 .2.9. Likewise, 
AC = BE .  Thus B is the midpoint of DE , so m is the perpendicular bisector of DE. 

By the same reasoning, the other two altitudes of triangle ABC are perpendicular 
bisectors of EF and F D. Consequently, these three altitudes meet in a point, namely 
the circumcenter of triangle DEF ! • 
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The problems below are elementary, in that no geometric facts other than those developed in this 
section are needed for their solution. Of course, "elementary" does not mean "easy." Some of them 
may be easier to do after you read the next section. But do try them all .  The problems include 
many formulas and important ideas that will be used in later sections. 

8.2.24 Let ABC be isosceles with vertex angle A, and I .  Centroid 
let E and D be points on AC and AB, respectively, so 2. Circumcenter 
that 

AE = ED = DC = CB . 
Find LA .  
8.2.25 In  the previous problem, we  chose points on 
the equal sides of an isosceles triangle to create a 
"chain" of four equal segments, including the base of 
the triangle. Can you generalize to n-segment chains? 

8.2.26 Prove that the midpoints of the sides of an arbi­
trary quadrilateral are the vertices of a parallelogram. 

8.2.27 Let ABC be a right triangle, with right angle 
at C. Prove that the length of the median through C 
is equal to half the length of the hypotenuse of ABC. 
Thus if CE is the median, we have the nice fact that 
AE = BE = CE. 
8.2.28 Compass-and-Ruler Constructions. Undoubt­
edly, you learned at least a few compass-and-ruler con­
structions (also called Euclidean constructions). Re­
view this important topic by finding the following con­
structions (make sure that you can prove why they 
work). You may use a compass and an unmarked ruler. 
No other tools allowed (besides a pencil) . 

(a) Given a line segment, find its midpoint. 

(b) Given a line segment, draw its perpendicular bi­
sector. 

(c) Given a line e and a point P not on e, draw a line 
parallel to e that passes through P. 

(d) Given a line e and a point P not on e, draw a line 
perpendicular to e that passes through P. 

(e) Given an angle, draw its bisector. 

(f) Given a circle, find its center. 

(g) Given a circle and a point exterior to it, draw the 
tangent to the circle through the point. 

(h) Given a line segment of length d, construct an 
equilateral triangle whose sides have length d. 

(i) Given a triangle, locate the 

3. Orthocenter 

4. Incenter 

U)  Given a circle, with two given points P. Q in its 
interior, inscribe a right angle in this circle, such 
that one leg passes through P and one leg passes 
through Q. The construction may not be possi­
ble, depending on the placement of P, Q. 

(k) Given two circles, draw the lines tangent to 
them. 

8.2.29 The triangle formed by joining the midpoints 
of the sides of a given triangle is called the medial tri­
angle. 

(a) Prove that the medial triangle and the original 
triangle have the same centroid. (For a much 
harder variation on this, see Problem 8 . 3 .4 1 . ) 

(b) Prove that the orthocenter (intersection of alti­
tudes) of the medial triangle is the circumcenter 
of the original triangle. 

8.2.30 Let e ,  and e2 be parallel lines, and let OJ and 
y be two circles lying between these lines so that P I is 
tangent to OJ, OJ i s  tangent to y, and y is tangent to P2 . 
Prove that the three points of tangency are collinear, 
i .e . ,  lie on the same line. 

8.2.3 1 (Leningrad Mathematical Olympiad 1 987) Al­
titude CH and median BK are drawn in an acute trian­
gle ABC, and it is known that BK = CH and LKBC = 
LHCB. Prove that triangle ABC is equilateral . 

8.2.32 (Leningrad Mathematical Olympiad 1 988)  
Acute triangle ABC with LBAC = 30° is given. Alti­
tudes BB , and CC, are drawn; B2 and C2 are the mid­
points of AC and AB, respectively. Prove that segments 
B ,C2 and B2C, are perpendicular. 

8.2.33 (Mathpath 2006 Qualifying Quiz) Consider the 
following "recipe" for folding paper to get equilateral 
triangles (see the figure below) :  



270 CHAPTER 8 GEOMETRY FOR AMERICANS 

I . Start with a long strip of paper, and visualize 
a crease for folding (thin line). The crease can 
have any angle. 

2. Hold the top left comer and fold it down on this 
crease so that the comer is now below the bot­
tom of the strip. 

3 . Unfold. You now actually have a crease (shown 
by thin line) .  

4. Now grab the right end of the strip and fold 
DOWN so that the top side of the strip is along 
this crease. 

5. Unfold. You now have two creases. 

6. Now grasp the right end and fold UP so that the 
bottom side of the strip is along the most re­
cently created crease. 

7. Unfold. You now have three creases. 

8 . Repeat steps 4--7 .  Your creases will now be 
equilateral triangles !  

Comment on this procedure. Does it work? Does i t  
almost work? Explain !  

� 
6) � 7) 1::2/\::;ZZ:::::: 

1 )  I I  I 2)f==l 

4) 5)1 1\ 

8.2.34 (Bay Area Mathematical Olympiad 1 999) Let 
C be a circle in the xy-plane with center on the y-axis 
and passing through A = (O, a) and B = (O , b) with 
° < a < b. Let P be any other point on the circle, let Q 

8.3 Survival  Geometry I I  

Area 

be the intersection of the line through P and A with the 
x-axis, and let 0 = (0, 0 ) . Prove that LBQP = LBOP. 

8.2.35 (Canada 1 99 1 )  Let C be a circle and P a given 
point in the plane. Each line through P that intersects 
C determines a chord of C. Show that the midpoints of 
these chords lie on a circle. 

8.2.36 (Bay Area Mathematical Olympiad 2000) Let 
ABC be a triangle with D the midpoint of side AB, E 
the midpoint of side BC, and F the midpoint of side 
AC. Let kl be the circle passing through points A, D, 
and F; let k2 be the circle passing through points B, E, 
and D; and le t  k3 be the circle passing through C, F,  
and E. Prove that circles k I , k2 ' and k3 intersect i n  a 
point. 

8.2.37 Let ABC be a triangle with orthocenter H (re­
call the definition of orthocenter in Example 8.2.23) . 
Consider the reflection of H with respect to each side 
of the triangle (labeled HI , H2 , H3 below). 

• 
HI 

B 

Show that these three reflected points all lie on the cir­
cumscribed circle of ABC. 

We shall treat the notion of area intuitively, considering it to be "undefined," like points 
and lines. But area is not an "object," it is a/unction: a way to assign a non-negative 
number to each geometric object. Everyone who has ever cut construction paper has 
internalized the following axioms. 

• Congruent figures have equal areas . 
• If a figure is a union of non-overlapping parts, its area is the sum of the areas of 

its component parts . 
• If a figure is a union of two overlapping parts, its area is the sum of the areas of 

the two parts, minus the area of the overlapping region. This is the geometric 
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version of the Principle of Inclusion-Exclusion (Section 6.3) .  

But how do we compute area? We need just  one more axiom, which can serve to 
define area: 

The area of a rectangle is the product of its base and height. 

Long ago, you learned that the area of a triangle is "one-half base times height." 
Let 's rediscover this, using the axioms above. The first fact we need is that area is 
invariant with respect to shearing. 

Example 8.3.1 Two parallelograms that share the same base and whose opposite sides 
lie on the same line have equal area. 

Proof' In the diagram below, parallelograms ABCD and ABEF share the base AB 
with opposite sides lying on the same line (which of course is parallel to AB). 

We use the notation [ . ] for area. Notice that 

[ABCD] = [ABG] + [BCE] - [EGD] ' 

and 

[ABEF] = [ABG] + [ADF] - [EGD] . 

It is easy to check that triangles ADF and BCE are congruent (why?), and hence 
[ADF] = [BCE] . Thus [ABCD] = [ABEF] . • 

Since we know how to find the area of a rectangle, and since we can always "glue" 
two copies of a triangle to form a parallelogram, we easily deduce the classic area 
formulas below, along with a very important corollary. 

8.3.2 The area of a parallelogram is the product of the base and the height (where 
"height" is the length of the perpendicular from a vertex opposite the base to the base). 

8.3.3 The area of a triangle is one-half of the product of base and height. 

8.3.4 If two triangles share a vertex,  and the bases opposite this  common vertex lie on 
the same line, then the ratio of the areas is equal to the ratio of the bases. For example, 
if BD = 4 and BC = 15 below, then 

4 
[ABD] = B [ABe] . 
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~ 
B D C 

We should point out that 8 .3 . 1 and 8 .3 .2 are intuitively obvious by visualizing 
a parallelogram as a "stack" of lines (like a deck of cards, but with infinitely many 
"cards" of zero thickness) : sliding the stack around, as long as it stays parallel to the 
base, shouldn 't  change the area. The area should equal the base length (which is the 
constant cross-sectional length) times the height. In the figure below, the two areas are 
equal . 

Let 's employ this idea-the shearing tool-to prove the most famous theorem in ele­
mentary mathematics . 

Example 8.3.5 Prove the Pythagorean Theorem, which states that the sum of the 
squares of the legs of a right triangle equals the square of the hypotenuse. 

Proof· Let ABC be a right triangle with right angle at B. Then we wish to prove 
that 

This is something new: an equation involving lengths multiplied by lengths. So far, 
only one geometrical concept allows us to think about such things, namely area. So we 
are naturally led to the most popular recasting of the Pythagorean Theorem: to show 
that the sum of the areas of the two small squares below is equal to the area of the 
largest square. 
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The beautiful crux idea is an auxiliary line m drawn through the right angle (B), per­
pendicular to the hypotenuse AC. Line m divides the big square-on-the-hypotenuse 
into two rectangles, RSIA and RCHS. If we slide the line segment RS along m, these 
rectangles will shear into parallelograms, but their areas will not change. 

In particular, we can slide RS so that R coincides with B. Meanwhile, we can play 
a similar game with the two smaller squares-on-the-legs. If we shear BAFG into a 
parallelogram by sliding segment FG straight down to m (so that G lies on m), the area 
will not change. Likewise, shear BDEC by sliding DE to the left. The result is below. 

Now it's obvious-the two "leg" squares, and the two "hypotenuse" rectangles sheared 
into congruent parallelograms ! So of course the areas are equal ! _ 

8.3.6 OK, it's not quite obvious. Prove rigorously that the parallelograms are indeed 
congruent. You 'll need to do a little angle chasing to get congruent copies of the 
original triangle. 

The Pythagorean Theorem has literally hundreds of different proofs .  Perhaps the sim­
plest, discovered in ancient India, uses nothing but "cutting and pasting." 

Example 8.3.7 A "dissection" proof of the Pythagorean Theorem. The picture below 
should make it clear. The area of the first square is a2 + b2 plus four times the area of 
the right triangle. The area of the second square is c2 plus four times the area of the 
right triangle. Since the squares are congruent, their areas are equal , so we conclude 
that a2 + b2 = c2 . _ 
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Similar Triangles 

Contemplating area gives our geometric investigations a powerful "multiplicative" in­
sight. The concept of similar triangles lets us include division as well . 

Triangles ABC and DEF are similar (denoted ABC rv DEF) if their respective 
angles are equal and respective sides are proportional . In other words, 

LA = LD, LB = LE , LC = LF 

and 

AB/DE = AC/DF = BC/EF. 

In other words, the two triangles "have the same shape." 

Fact 8.3.8 We can relax the "equal angles" and "proportional sides" conditions in the 
definition of similarity: 

(a) If the angles of two triangles are respectively equal , then the triangles are similar. 

(b) If the sides of two triangles are respectively proportional, then the triangles are 
similar. 

(c) "Proportional SAS." If two corresponding sides of two triangles are in pro­
portion, and the angles between these corresponding sides are equal, then the 
two triangles are similar. For example, in the picture below, LC = LF and 
CB/FE = CA/FD, and this is enough to guarantee that MBC rv 6.DEF. 

C F 

L:1 L2 
E D 

B A 

Many geometric investigations depend on finding pairs of similar triangles. Often, 
auxiliary constructions such as parallel or perpendicular lines are employed, because 
of the following (which you should have no trouble proving). 
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8.3.9 Let ABC be a triangle and let m be a line parallel to BC, intersecting AB and AC 
respectively at D and E. Then ADE "-' ABC. 

Conversely, if points D and E lie on sides AB and AC, respectively, and divide 
these sides proportionately (AD / AB = AE / AC), then DE II BC. 

A 

« m u--Esu o> 

B C 

8.3.10 Consider a right triangle with legs a and b and hypotenuse c. Drop a perpen­
dicular from the right angle to the hypotenuse, dividing it into segments with lengths 
x and y. 

c 

(a) Prove that the two small triangles formed are similar, and similar to the large 
triangle. 

(b) Show that h = .;xy. 
(c) Show that cx = a2 and cy = b2

. 

If a geometry problem involves ratios, it is almost certain that you will need to 
investigate similar triangles .  Look for them, and if they are not there at first glance, try 
to produce them with auxiliary lines. 

Solutions to the Three " Easy" Problems 

With this  strategy in mind, and the elementary review of geometry under your belt, you 
should be able to solve the three "easy" problems (8 . 1 . 1-8 . 1 .3) given on pages 257-
258. Try them now, and check your solutions with the discussion below. 

Example 8.3.11  Proof of The Power of A Point Theorem (8.1 . 1 ) .  The problem asks us 
to prove an equality of products. This will involve either equating areas, or producing 
similar triangles, equating ratios, and cross-multiplying. Let 's try the second strategy. 
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We need to include two obvious auxiliary lines (XY' and X'Y )  in order to find similar 
triangles. 

Indeed, these similar triangles are very easy to find. Whenever two triangles share an 
angle, then they will be similar if we can find just a single pair of equal angles (since 
that will force the third pair of angles to be equal , since the sum of the angles in each 
triangle is 1 80° ) .  

So our candidates are the two triangles that contain angle P. The next step is to 
apply 8 .2 . 1 6 , which says that inscribed angles in a circle are equal to half the arc they 
subtend. The measure of the inscribed angles is generally of less importance than the 
fact that 

Two inscribed angles that subtend the same arc must be equal. 

Consequently, angles Y and Y' are equal , because they subtend the same arc XX' . We 
conclude that 

PYX' rv PY'X . 
(Note that the order of the points is crucial. Triangles PX'Y and PXY' are not similar. ) 
It follows that 

PX' /PY = PX/PY' , 
and cross-multiplying yields 

PX · PY = PX' · Py' . 
There are two other configurations, since P may also be on or inside the circle. In 
the first case, the products simply equal zero. The second case is handled in exactly 
the same way as before, by drawing two obvious auxiliary lines and then finding two 
similar triangles. _ 

Example 8.3.12 Two Proofs of the Angle Bisector Theorem (8.1 .2) .  There are many 
ways to prove this. We will give two proofs with very different flavors . 

The first proof uses the strategy of creating similar triangles out of thin air. We 
are given an angle bisector, so we already have two triangles with one pair of equal 
corresponding angles. If only we had another pair of equal angles !  We are given that 
LCAD = LDAB = a. Our trick is to find point E on AD so that LACE = LABC, which 
we denote by f3 .  



A 

8.3 S U RVIVAL G EOM ETRY I I  277 

B 

This gives us two similar triangles : ACE rov ABD. What do we do next? Investigate the 
diagram further, and hope that there is more information. We now have ratios to play 
with. 

Remember, we want to prove that CD/DB = AC/AB. Using our similar triangles, 
we know that AC/AB = CE/DB. If we can prove that CE = CD, we 'll be done ! 

How to show CE = CD? We need to show that triangle CED is isosceles. This 
follows from easy angle chasing. It is easy to check that L.CDE = a + /3, since it 
is an exterior angle of triangle ABD. Likewise L.CED = a + /3. So triangle CED is 
isosceles, and we're done. _ 

The second proof also uses similar triangles, but the crux idea involves area. We 
want to investigate the ratio of lengths CD /DB = x/y. (See the figure below for labeled 
lengths.) We equate this with a ratio of areas, by using 8 .3 .4. Triangles ACD and ADB 
share the vertex A, so the ratio of their areas is 

[ACD] x 

[ADB] y 

Next, we compute the two areas a different way, so as to involve the lengths AC = b 
and AB = c. Let rn = AD be the length of the angle bisector. Consider the altitudes 
u = CF and v = DG as shown. Then 

[ACD] 

[ADB] 

1 urn 2 

l vc 2 

urn 
vc 

B 

Now let 's get a handle on the ratio u/v. This suggests looking at similar triangles, 
and indeed, because AD is the angle bisector, L.CAF = L.DAG, and thus the two right 
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triangles CAF and DAG are similar. (If two right triangles have a single pair of equal 
angles, they will be similar, since already the two right angles are equal ! )  

But CAF r-v DAG implies that u/v = b/m. Hence 

Therefore, 

x [ACD] b 
Y [ADB] c 

-

The converse of this theorem is also true; i .e . ,  if D is placed on BC so that 
CD/DB = AC/AB, then AD bisects LCAB. We leave the proof of this important fact 
to you (Problem 8 .3 .28) .  

Example 8.3.13 Proof of the Centroid Theorem (8. 1 .3) .  Let us start by temporarily 
removing one of the medians (after all, we do not know if the three medians actually 
meet in a single point) and adding an auxiliary line connecting the midpoints E and F.  

A 

c B 

Line EF is sometimes called a midline of triangle ABC, and cuts off triangle AEF 
which is clearly similar to ABC by 8 .3 .9 . The ratio of similitude is 1 : 2, so EF : AC = 
1 : 2 . 

Furthermore (also by 8 .3 .9) , EF is parallel to AB. Thus LFEG = LGCA and 
LEFG = LCAG, so D"FEG r-v D"GCA . Again, the ratio of similitude is 1 : 2, since 
EF : AC = 1 : 2. Consequently, EG : GC = FG : GA = 1 : 2. 

There was nothing special about the two medians that we used; we have shown 
that the intersection of any two medians cuts them into segments with a 1 : 2 ratio. 
When we draw the third median BD, it will intersect median AF in a point, say G', 
such that G'D :  G'B = G'F : G'A = 1 : 2. But there is only one point that divides me­
dian AF in this way, namely G. So G' = G and we are done. _ 

Note the interplay of ratios, parallels, and similar triangles, and the subtle use of a 
"phantom point" (G') to show that the intersection point was unique. 
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Here is a wide selection of elementary problems and exercises. No geometric facts other than those 
developed in this and the previous section are needed for their solution. Of course, "elementary" 
does not mean "easy." However, most of the problems below should succumb to patient investiga­
tion, judicious choice of auxiliary objects, persistant angle chasing, location of similar triangles, 
etc. You should attempt every problem below, or at the very least, read each problem, since many 
of the ideas developed in the problems will be used later. 

8.3.14 Let line e intersect three parallel lines at A , B, 
and C. Let line t intersect the same three lines at D, E, 
and F ,  respectively. Show that AB / BC = DE / EF . 

8.3.15 (New York State Mathematics League 1 992) 
Let ABC be a triangle with altitudes CD and AE, with 
BD = 3 , DA = 5 , BE = 2. Find EC. 

8.3.16 Let ABC be a right triangle with right angle at 
B. Construct a square on the hypotenuse of this trian­
gle (externally to the triangle). Let M be the midpoint 
of this square. Show that M B bisects LABC. 
8.3.17 Prove Euler's Inequality : The circumradius 
of a triangle is at least twice the inradius. 

8.3.18 A Tangent Version of the Inscribed Angle The­
orem. Consider the diagram illustrating circle termi­
nology on page 264. Prove that LABD = LACB. 

8.3.19 Let P be an arbitrary point in the interior of an 
equilateral triangle. Prove that the sum of the distances 
from P to each of the three sides is equal to the altitude 
of this triangle. 

8.3.20 Carry out the proof in Example 8 .3 . 1 on 
page 27 1 ,  but for the figure below: 

F D E C 

\CSJ 
A B 

8.3.21 Recall that a trapezoid is a quadrilateral with 
two parallel sides, called bases. The height of a trape­
zoid is the distance between the bases. Suppose a 
trapezoid has base lengths a, b and height h. 

(a) Find the area of the trapezoid in terms of a,  b, h. 
(b) Find the length of the line segment parallel to 

the bases that passes through the intersection of 
the diagonals, and is bounded by the two other 
(non-base) sides. 

8.3.22 Recall that a rhombus is a quadrilateral , all of 
whose sides have equal length. 

(a) Prove that rhombuses are parallelograms. 

(b) Prove that the diagonals of a rhombus are per­
pendicular bisectors of each other. 

(c) Prove that the area of a rhombus is equal to half 
the product of the lengths of the diagonals. 

8.3.23 (Hungary 1 933) Let circles Ii ,  12 be tangent to 
one another at P. A line through P intersects Ii , 12 at 
A I , A 2 , respectively. Another line through P intersects 
Ii , 12 at B 1 , B2 , respectively. Prove that M1PB 1 '" 
M2PB2 . (The circles may be tangent internally or 
externally). 

8.3.24 (Hungary 1 936) Let P be a point inside triangle 
ABC such that 

[ABP] = [BCP] = [ACP] . 
Prove that P is the centroid of ABC. 
8.3.25 Let r be the inradius of a triangle with sides 
a, b, c,  and let K and s denote , respectively, the area of 
the triangle and the semi-perimeter (half the perime­
ter) . Prove that K = rs. 
8.3.26 Prove the Power of a Point theorem (8 . 1 . 1 )  for 
the other two cases: P inside the circle, and P on the 
circle. 

8.3.27 The Distance from a Point to a Line. Let 
ax + by + c = 0 be the equation of a line in the cartesian 
plane, and let (u , v) be an arbitrary point in the plane. 
Then the distance d from (u , v) to this line is given by 
the well-known formula 

d _ lau + bv + cl - v'a2 + b2 . 

This can be proven with standard analytic geometry: 
Find the coordinates of the foot of the perpendicular 
from (u , v) onto the line by finding an equation for the 
perpendicular (its slope will be the negative reciprocal 
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of the slope of ax + by + c = 0), then use the distance 

fonnula. But this method is horribly ugly. 

(0,0) 

Instead, use similar triangles for a neat and elegant 

two-line proof. Here 's the proof; you supply the jus­

tification. (Don 't forget to explain why absolute value 

is  needed.) 

1 .  d/ l h l = I b l /v'a2 + b2 . 
2. I bh l = lau + bv + c I -

8.3.28 Prove the converse t o  the angle bisector the­

orem (8 . 1 .2) : If ABC is a triangle, and D is a point 

placed on on side BC so that CD/DB = AC/AB, then 

AD bisects L.CAB. 
8.3.29 Prove the converse to the Power of a Point the­

orem (8 . 1 . 1 ) : If P is the intersection of lines XY and 

X'Y' and PX . PY = PX' . PY' , then X , Y, X' , y' are 

concyclic. 

8.3.30 Similar Subtriangles. Suppose DABC � 

b.DEF, and let X and Y be points on AB and DE, re­

spectively, cutting these sides in the same ratios. In 

other words, AX/X B = DY /Y E. Prove that b.AXC � 

MY F . We call these "similar subtriangles" since 

ACX is contained within ABC and DY F is contained 

with DEF in "similar" ways. It seems completely 

obvious-"proportional" subsets of similar objects 

should be similar-but you 'll need to do a little work 

to prove it rigorously. 

Similar subtriangles crop up often. See, for ex­

ample, Problem 8 .4.32 and Example 8 .4.4. 
8.3.3 1 Compass-and-Ruler Constructions. Find the 

following constructions (make sure that you can prove 

why they work). 

(a) Given a line segment of unit length, construct a 

segment of length 

I .  k, where k is an arbitrary positive integer. 

2. alb, where a, b are arbitrary positive inte­

gers . 

(b) Given line segments of length I and x, construct 

a segment with length y'X. 
(c) Given the midpoints of the sides of a triangle, 

construct the triangle. 

8.3.32 Trigonometry Review. Some geometry purists 

look down on trig as "impure," but that 's just silly. Cer­

tainly, there are many elegant geometric methods that 

bypass messy trigonometric manipulations, but some­

times trigonometry saves time and effort. After all, the 

trig functions essentially encode ratios of similar tri­

angles .  Consequently, whenever you deal with similar 

triangles, you should at least be aware that trigonom­

etry may be applicable. At this point, you should 

review, if you don 't  know already, the definitions of 

sin, cos, tan and the basic angle-addition and angle­

subtraction fonnulas. And then (without looking them 

up ! )  do the following exercises/problems. 

(a) If the lengths of two sides of a triangle are a and 

b, and 8 is the angle between them, prove that 

the area of the triangle is �ab sin 8 .  

(b) Use this fonnula to get a third proof o f  the angle 

bisector theorem (8 . 1 .2).  

(c) Prove the law of sines: Let ABC be a triangle, 

with a = BC, b = AC, c = AB. Then 

a b c  
-- = -- = --
sinA sinB sinC 

(d) Prove the extended law of sines, which says 

that the ratios above are equal to 2R, where R 
denotes the circumradius. 

(e) Prove the law of cosines, which says (using the 

triangle notation in (c) above) 

c2 = a2 + b2 - 2abcosC . 

8.3.33 Use the law of cosines to prove the useful 

Stewart's theorem: Let ABC be a triangle with point 

X on side BC. If AB = c, AC = b, AX = p, BX = m, 
and XC = n, then 

ap2 + amn = b2m + c2n . 

8.3.34 Use 8 . 3 . 1 0  t o  find yet another proof o f  the 

Pythagorean Theorem, using similar triangles. 

8.3.35 Let a, b, c be the sides of a triangle with area 

K, and let R denote the circumradius. Prove that 

K = abc/4R. 



8.3.36 Here is an example of the utility of trigonom­
etry. Use the !absin 8 area fonnula to prove the fol­
lowing surprising fact: Any trapezoid is divided by its 
diagonals into four triangles. Two of these are similar, 
and the other two have equal area. For example, in the 
picture below, the shaded triangles have equal area. 

B B C 

8.3.37 Ponder the figure below which depicts right tri­
angle ABC, with right angle at B and AB = 1 .  Let D be 
a point on AC such that AD = 1 .  Let DE II CB. 

c 

A 

(a) Recall that the length of an arc of a circle with 
radius r subtended by a central angle of 8 is r8 . 
(Of course, 8 is measured in radians.) Use this 
to prove that for acute angles 8 ,  

sin 8 < 8 < tan 8 .  

(b) Prove, without calculus, that lim 
Sin

8

8 
= 1 .  

6-0 

8.3.38 (Putnam 1 999) Right triangle ABC has right 
angle at C and LBAC = 8; the point D is chosen on AB 
so that AC = AD = 1 ;  the point E is chosen on BC so 
that LCDE = 8. The perpendicular to BC at E meets 
AB at F. Evaluate lim6_o EF . Hint: The answer is 
not I ,  or 0, or 1 /2. 
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A �--------��--�B 

8.3.39 The figure below suggests another "dissection" 
proof of the Pythagorean Theorem. Figure out (and 
prove) why it works. 

8.3.40 Escribed circles. The inscribed circle of a tri­
angle is tangent to the three sides, and the incenter, of 
course, lies in the interior of the triangle. Yet there 
are three more circles that are each tangent to all three 
sides of the triangle-just allow the center to lie in the 
exterior of the triangle, and extend sides as needed ! 
For example, here is one escribed circle, with radius 
ra (since it is opposite vertex A) .  

In  a similar fashion, we can define the other two es­
cribed circles-also called excircles-with radii rb 
and rc . 

(a) Prove that the center of each excircle is the in­
tersection of the three bisectors of the angles of 
the triangle (one interior angle and two exterior 
angles). 
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(b) Fol lowing the notation of Problem 8 .3 .25, prove 
that 

K = (S - a)ra = (s - bh = (s - c)rc . 
(c) Prove the remarkable formula 

I I I I - + - + - = - .  ra r
b 

rc r 
8.3.4 1 (Bay Area Mathematical Olympiad 2006) In 
triangle ABC, choose point A l  on side BC, point B I 
on side CA, and point CI on side AB in such a way 
that the three segments AA I ,  BB I ,  and CC I intersect in 
one point P. Prove that if P is the centroid of triangle 
ABC if and only if P is the centroid of triangle A I B I C I .  
(This is an "if and only if' statement; one part is much 
easier than the other. ) 

8.3.42 In the figure below, D, E, and F are midpoints, 
respectively, of AF, BD, and CE o If [ABC] = I ,  find 

8.4 The Power of Elementary Geometry 

[DEF] .  

A 

8.3.43 (Putnam 1 998) Let s be any arc of the unit cir­
cle lying entirely in the first quadrant. Let A be the 
area of the region lying below s and above the x-axis 
and let B be the area of the region lying to the right of 
the y-axis and to the left of s. Prove that A + B depends 
only on the arc length, and not on the position, of s. 

Let 's regroup from the high-speed review of the last section. After covering many 
topics, we will now revisit the most important ones. This section develops several new 
theorems and tools, but mostly, its focus is geometric problem-solving strategies and 
tactics, by using simple ideas in creative ways. 

The previous section introduced many problem-solving concepts, at all three lev­
els (strategies, tactics, tools) .  Let 's formalize some of them into a checklist. This 
list is by no means complete, but it is a good start, and will help the beginner to get 
organized. 

1 .  Draw a careful diagram. 
2. Draw auxiliary objects, but sparingly. 
3 .  Start with angle chasing. Don 't rely on it for everything ! 
4. Seek out your best friends: right triangles, parallel lines, and concyclic points. 
5. Compare areas. 
6 . Relentlessly exploit similar triangles. 
7. Look for symmetry and "distinguished" points or lines. 
8 .  Create a "phantom" point with a desired property, and show that it coincides 

with an existing point. 

Let 's look at some of these in more detail , with some problem examples and some 
new ideas . We have little to say about items 1-3 besides restating the obvious: with­
out a careful diagram, your time will be wasted; auxiliary objects are miraculous, but 
sometimes require real artistry to find; angle chasing is fun, but will not solve all prob­
lems. Starting with item 4, there is much to learn by looking at some good examples. 
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Let 's begin with a problem that explicitly asks us to find concyclic points. We will give 
a leisurely treatment of two solutions, taking the time to reflect on strategies, tactics, 
and tools. 

Example 8.4.1 (USAMO 1 990) An acute-angled triangle ABC is given in the plane. 
The circle with diameter AB intersects altitude CC' and its extension at points M and 
N, and the circle with diameter AC intersects altitude BB' and its extension at P and Q. 
Prove that the points M, N, P, Q l ie on a common circle. 

Solution : We cannot overstate the importance of carefully drawing a diagram, and 
keeping it as uncluttered as possible, at least intitially. The picture below contains no 
additional objects, although we label the circles with diameters AC and AB by COl and 
IDl ,  respectively. 

Our careful drafting--computer-assisted, in our case-immediately rewards us 
with the observations that C' lies on COl and 8' lies on IDl. Are we just lucky? Of 
course not ! AB' B is a right triangle with right angle at 8' (the foot of altitude BB') with 
hypotenuse AB, the diameter of IDl .  By the inscribed right triangles fact (8 .2 . 1 7) , 8' 
must lie on IDl .  By the same reasoning, C' lies on COl . This was an easy geometric 
observation, but it might have escaped our notice had our diagram been poorly drawn ! 

Now it is time to think strategically. We wish to prove that M, N,  P, Q lie on a 
circle. Let 's list a few options, in increasing order of sophistication, for a penultimate 
step. 

1 .  Look for a likely center of the alleged circle, and prove that the four points are 
all equally distant from it. 

2. By the cyclic quadrilaterals lemma (8 .2 . 1 8) , if we can show that angles QMP 
and QNP are supplementary, we're done. 

3 . Using the same lemma, another approach is to show that LQPM = LQNM. 

4. Use the converse of the Power of a Point theorem (Problem 8 .3 .29) to deduce 
that M, N, P, Q are concyclic. We will need to label the intersection of PQ and 
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MN; let 's call this X .  Then we will need to show that 

QX · XP = MX · XN . 

5 .  Use the converse of Ptolemy's Theorem (8.4.30 below) to show that the four 
points are concyclic. To do so, we must show that 

QM · NP + MP · NQ = QP · MN . 

All of these ideas have merit, but the second and third demand many more lines to 
be drawn in, and that 's too confusing for now. Likewise, Ptolemy's Theorem seems 
pretty complicated. 

On the other hand, option #1  looks very promising, as it does seem natural that one 
of the points already labeled may in fact be the center. If M, N, P, Q are concyclic, then 
MN and PQ will be chords in some circle, and by the relationship between chords and 
radii (8 .2 . 1 3), the perpendicular bisector of these chords will pass through the center 
of the circle. 

Notice that AB is the perpendicular bisector of MN, since MN is perpendicular to 
AB (because M and N are points on the altitude perpendicular to AB), and MN is a 
chord of circle i»2 (whose diameter is AB) .  Likewise, AC is the perpendicular bisector 
of QP. 

Hence, the only viable candidate for center is A. We know that AQ = AP and 
AM = AN. We have reduced the problem to showing that AM = AP. Notice that AM 
and AP are each legs of right triangles inscribed in COl and i»2 ,  respectively. Here is a 
diagram showing this, eliminating some of the prior lines to avoid clutter. 

A 

B 

The problem reduces to something quite doable. Using similar triangles, or re­
membering 8 .3 . 1 0, we have 

AM2 = AC' · AB 

and 

AP2 = AB' · AC . 

Since C' and B' are the feet of altitudes of triangle ABC, they have fixed locations 
and their lengths can be calculated with routine trigonometry: AC' = AC cosA and 
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AB' = AB cosA .  Substituting, we have 

AM2 = AC' · AB = AC · AB cosA 

and 

AP2 = AB' · AC = AB · AC cosA ,  

and we're done ! • 

But we promised two solutions !  Let 's look at option #4, using the converse of 
POP. At first, it seems complicated, because POP requires four different segments . 
However, we have two circles to work with, so we have a decent chance of using POP 
several times on overlapping circles. We need to label the now-critical intersection 
of QP and MN; call it X in the diagram below. Notice that X is the orthocenter of 
ABC. Also observe-thanks again to the carefully drawn diagram-that COl , IDl, and 
CB intersect at a single point, which we naturally label A' , since it is none other than 
the foot of the altitude through A. (The three altitudes meet at X ,  and AA' B is a right 
triangle inscribed in IDl, while AA'C is a right triangle inscribed in COl . )  

We need to prove that QX . X P = MX . X N. These four segments do not live in a 
single circle, unfortunately. However, the dashed line AXA' saves the day, since it is a 
chord in both COl and IDl .  

Applying POP to  COl , we have 

AX · XA' = QX · XP. 

But in IDl ,  POP yields 

AX · XA' = MX · XN,  

and once again, we 're done. • 

Notice how much easier the POP solution was. But the first solution was not too 
bad, either. Both required some bravery, careful diagrams, and systematic observations 
about perpendiculars, right triangles inscribed in circles, etc . Also, both solutions 
hinged upon finding the "crux object." In the first solution, we zeroed in on point A. In 
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the second solution, line AA' was key. This was no accident, either: since the problem 
was set up "symmetrically" with diameters AC and AB, it makes sense that the objects 
of interest would involve A. This type of strategic reasoning requires large doses of 
peripheral vision and wishful thinking, and is certainly more of an art than a craft. But 
it makes the difference between focused investigation and random constructions that 
hopelessly clutter one's diagrams ! 

Area, Cevians, and Concurrent Lines 

A line segment joining a vertex of a triangle with a point on the opposite side (ex­
tended, if necessary) is called a cevian. Many figures involve cevians, which can be 
investigated by using the principle that two triangles sharing a vertex with bases on the 
same line have areas in the same ratio as the base lengths (8 .3 .4). We have used this 
idea several times, but can still squeeze more out of it. Let 's use it to solve a famous 
puzzle.5 

Example 8.4.2 Points D,  E ,  and F are the first trisection points of BC, CA, and AB, 
respectively (i .e . ,  AF = ABI3 ,  DB = BC/3 ,  CE = CAI3). If [ABC] = 1 ,  find [GHI] , 
the area of the shaded triangle. 

A��--�--------�B 

Solution : As we did with the centroid problem (Example 8 .3 . 1 3), let's begin by 
considering just two intersecting cevians. We remove BE, but add the auxiliary line I B 
so that we can compare areas . Thus if [F I A] = x, then [FBI] = lx, since AF : F B = 1 : 2 .  
Likewise, if [DI B ]  = 2y, then [CID] = 4y (we let the first area be 2y instead of y in  order 
to avoid fractions later) . 

c 

5For several more solutions, see [ 1 0] and [28].  
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But there are other area ratios known to us. Since 

[CAF] : [CFB] = I :  2 , 

and 

[CFB] = 6y + 2x, 

we see that [CAF] = 3y +x, and thus [CIA] = 3y. 
Now we can go in the reverse direction. The ratio of areas 

[CIA] : [CID] = 3y : 4y = 3 : 4 

yields a ratio of lengths 

AI :  ID = 3 :  4. 

We're not done. We can extract more information in this way. Since 

[BAD] : [CAD] = I : 2 ,  

we have 

2(3x + 2y) = 3y + 4y, 

so 2x = y. This means that 

[FIA] : [CIA] = 1 : 6 ,  

so we conclude that 

FI : IC = 1 :  6 .  

Going back to the original diagram, with three cevians, we see that each is divided 
in the ratio 1 : 3 : 3. For example, FI : IH : HC = I : 3 : 3. More important, the 
vertices G, H, I of the shaded triangle bisect, respectively, the segments H B, CI , AG. 
This situation is shown without any clutter (but with some important auxiliary lines) 
below. 

The auxiliary lines should make it evident that the large triangle has been dissected 
into seven triangles, each with area equal to that of the shaded triangle ! So we con­
clude that [GHI] = 1 /7. • 
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It should be possible, with the techniques we have acquired, to determine when 
three cevians are concurrent. A very elegant answer was discovered in the 1 7th century 
by Giovanni Ceva (now you know where "cevian" came from) .  

Example 8.4.3 Ceva's Theorem. The cevians AD, BE , CF are concurrent if and only 
if 

c 

AF BD CE 
FB DC EA = 1 .  

A 

B 

Proo!' First we need to recall a simple algebra lemma involving proportions: 

Suppose that 

Then it is also true that 

x a 
y b 

x x + a  x - a  
y y + b  y - b ' 

This lemma is very easy to check, even though it seems surprising at first. We are 
conditioned to expect a fraction to stay the same when we mUltiply the numerator and 
denominator by the same number, but we expect trouble when we add or subtract from 
the numerator and denominator. 

With this lemma, Ceva's theorem is pretty simple. Suppose that the cevians are 
concurrent at G. Converting to areas, as labeled above, we have 

AF y x + y + z  x + z  
FB u + v + w  u + v  , w 
BD v y + w + v y + w  -- , DC u x + z + u  x + z  
CE z z + u + v  u + v  
EA x +y + w  y + w  

, 
x 

and the product of these expressions is clearly 1 .  We leave the converse (if the product 
is 1 ,  then the cevians are concurrent) as an exercise. _ 
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Similar Triangles and Collinear Points 

You have noticed, no doubt, that similar triangles are crucial ingredients in almost ev­
ery geometry problem. Finding the "crux" similar triangles can be tricky. Sometimes 
you have to conjure up similar triangles out of thin air, and sometimes you have to 
wade through a complex and cluttered diagram to find the "natural" correspondences 
that shed genuine light on the problem. Here are some examples. 

Example 8.4.4 Let ABC be an isosceles triangle with AB = AC. Drop a perpendicular 
from A to BC, meeting BC at D. Then drop a perpendicular from D to AC, meeting it 
at E. Let F be the midpoint of ED. Prove that AF ..1 BE . 

A 

B c 

Solution : Angle chasing is tempting, as always, but it is doomed to failure here. 
One of the intersecting lines of interest, AF, is a median of triangle AED. Medians, in 
contrast, say, to angle bisectors or altitudes, do not yield useful angular information, 
without very messy trigonometry. 

We need to think strategically. What is a penultimate step for perpendicular lines? 
Inscribed right triangles ! By 8 .2 . 1 7 ,  if a side of a triangle is a diameter of a circle, and 
the opposite vertex is on the circle, then that vertex is a right angle. Notice that ADB 
is such an animal : a right triangle inscribed in the circle with diameter AB. Thus, we 
will be done if we can prove that G lies on this circle, for then AGB would also be a 
right triangle. 

In other words, we must show that A, G, D,  B are concyclic points . By 8 .2 . 1 8 ,  this 
is true if and only if 

LGAD = LGBD. 

At this point, almost tasting success, we 'd be silly not to try more desperate angle 
chasing. But we need more: we have to incorporate the fact that F is the midpoint of 
DE in an "angular" way. We need another triangle that interacts with a midpoint in a 
similar (pun intended) fashion. 

Notice that AF is the median of a right triangle. Are there any other midpoints 
floating around? Yes, D is the midpoint of BC, since ABC is isosceles-the first time 
we used this fact ! If only DE were a midline of a triangle. Wishful thinking comes to 
the rescue: Draw line BH parallel to DE. 
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B c 

Now BHC is a right triangle with midline DE and median BE . And sure enough, it is 
obvious that 

l:::.BHC "" l:::.AED . 

It immediately follows (using the similar subtriangle reasoning of Problem 8 .3 .30) that 

l:::.FAD "" l:::.EBC, 

so LGAD = LGBD, as we hoped. • 

Drawing the auxiliary line BH was a clever, albeit very natural crux move. In the 
next example, we have much more clutter in our diagram, with many more choices, so 
we must take special care to think about the "natural" auxiliary object, which in this 
case is not a line, but a triangle. 

Example 8.4.5 The Euler Line. Prove that the orthocenter, circumcenter, and centroid 
of any triangle are collinear, and that moreover, the centroid divides the distance from 
orthocenter to circumcenter in the ratio 2 : I .  These three points determine a line called 
the Euler line of the triangle. 

Solution : How to prove this? It is important to draw a careful diagram, as always, 
and also, we must try not to clutter up the diagram. Here is a start. The orthocenter, 
centroid, and circumcenter of triangle ABC are respectively, H,  M, and K. We drew in 
two altitudes to fix H,  but we did not draw any median lines, circumradii, or perpendic­
ular bisectors . We did include one auxiliary construction: we connected the midpoints 
E ,  G, and I of the sides of triangle ABC to form the medial triangle EGI. Indeed, this 
is our crux move. If you don 't  know why, you probably have not done Problem 8.2 .29 
yet. So do it now, before you read further ! 
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Our strategy for proving that H, M, and K are collinear is to show that H M and 
M K have equal "slopes." This demands that we find equal angles somewhere. We will 
do so by finding similar triangles. 

We drew in the medial triangle, because it "connects" points K and H in an intrigu­
ing way: the medial triangle is similar to ABC, and (have you done Problem 8 .2 .29 
yet?) the circum center is the orthocenter of the medial triangle. In other words, K is 
the orthocenter of D,.EGI, and D,.EGI "-' D,.ABC, with a ratio of similitude of I : 2. 

Furthermore, the centroid of D,.EGI is also M, so at this point, we are nearly done. 
Segments H M and KM are "sisters ," each connecting the orthocenter and centroid of 
similar triangles . Let's formalize this . 

A 

C 

Draw a line through K perpendicular to IG. Since K is the orthocenter of D,.EGI and 
the circumcenter of D,.ABC, this perpendicular line passes through E, the midpoint of 
BC. Draw median AE, and we see that 

LHAM = LKEM, 

since AD I I  EK. 
Finally, draw segments HM and MK. We'd like to show that they form a straight 

line, which would be implied by D,.HAM "-' D,.KEM (which would then imply, for 
example, LAHM = LEKM, so lines HM and MK have the same slope) . We are al­
most able to prove this, since we have the angle equality; all we need are proportional 
lengths. And this is easy. We have EK/AH = 1 /2 , because D,.EGI "-' MBC. And 
EM / MA = 1 /2, by the centroid theorem (8 . 1 .3 ) .  So by "proportional SAS" (8 .3 .8)  we 
conclude that D,.HAM "-' D,.KEM, and we 're done. _ 
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Phantom Points and Concurrent Lines 

You have seen the method of phantom points before, where we invent a point with a 
desired property or location. We can also use phantom points explicitly in a proof­
by-contradiction argument, where the phantom plays the role of a straw man whose 
demise yields the desired conclusion. Here is a beautiful and instructive example that 
uses two phantom points to show that three lines meet in a point. 

Example 8.4.6 Place three circles COl , ID2 ,  COJ in such a way that each pair of circles 
intersects in two points, as shown below. These pairs of points are the endpoints 
of three chords (that are each common to two circles). Prove that these chords are 
concurrent, in other words, that chords AB , CD, and EF below intersect in a single 
point. 

Solution : This is a beautiful result; both surprising and natural at the same time. 
How do we show that three lines concur? Ceva's theorem comes to mind, but that 
requires a triangle. The picture is already crowded, so the prospect of adding auxiliary 
constructions seems daunting. 

Instead, we will emulate our proof of the centroid theorem on page 278 .  We 
showed that the three medians concurred by first inspecting the intersection of two 
medians, and characterizing this point. 

Let 's do the same with the problem at hand. Temporarily remove chord EF, and 
let X be the intersection point of AB and CD. These are both chords in COJ, so it is 
natural to apply POP, and we get 

AX · XB = CX · XD. 

This suggests a strategy: suppose the third chord didn 't  concur with the first two. We 
would still have intersection points (phantoms) to work with; perhaps we can POP 
them? 

There are two fundamentally different ways of drawing the third chord so that it 
fails to concur. One way is to join E and F with a "line" that misses X, and hence meets 
AB and CD in two different points. The problem with this approach is subtle. We can 
generate two new POP equalities, but it is hard to find an algebraic contradiction. Try 
this yourself! 
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Another way to draw a false "line" is to start at F, intersect X (so as to use a 
point we have equations for), and then go on to miss E,  intersecting COl and i»2 at 
the phantom points E I ,  E2 , respectively. This is depicted below with a dashed "line." 
(Notice that it is actually two line segments, since a straight line actually does pass 
through E. That's the price we pay for accurate computer-drawn diagrams.) 

Applying POP to COl yields 

AX · XB = FX · XEI , 

while POP on i»2 produces 

ex · XD = FX · XE2 . 

Combine these with AX . XB = ex . x D, and we get 

FX · XEI = FX · XE2 , 

so XEI = XE2, which forces EI and E2 to coincide. But that would mean that this 
common point is a point of intersection of COl and i»2. In other words, E I = E2 = E, 
and we are done. _ 

Problems and Exercises 
The problems below use no new techniques other than those introduced in this section, and several 
rely only on the "survival geometry" ideas of Sections 8.2-8 .3 .  You may want to first go back to 
the problems from this section that you did not solve yet and try them again. You may now find 
that you have become more resourceful. 

8.4.7 Two circles intersect in points A and B. Let l 
be a line that passes through A, intersecting the two 
circles at X and Y. What can you say about the ratio 
BX/BY? 
8.4.8 (Canada 1 969) Let ABC be an equilateral trian­
gle, and P an arbitrary point within the triangle. Per-

pendiculars P D, P E, P F are drawn to the three sides of 
the triangle. Show that, no matter where P is chosen, 

PD + PE + PF I 
AB + BC + CA = 2yS '  

8.4.9 (Canada 1 969) Let ABC be a triangle with sides 
of lengths a,  b and c. Let the bisector of the angle C 
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cut AB in D. Prove that the length of CD is 

2ab cos (C /2) 
a + b  

8.4. 10 (Canada 1 986) A chord ST of constant length 
sl ides around a semicircle with diameter AB. M is the 
midpoint of ST and P is the foot of the perpendicular 
from S to AB. Prove that angle SPM is constant for all 
positions of ST . 
8.4. 1 1  Finish the proof of Ceva's theorem by estab­
lishing the converse : if the product of the ratios (see 
picture on page 288) is 

AF BD CE 
FB DC EA = I ,  

then the cevians AD, BE , C F are concurrent. Hint: 
proof by contradiction. 

8.4. 12 (Putnam 1 997) A rectangle, HOMF , has sides 
HO = 1 1  and OM = 5. A triangle ABC has H as the 
intersection of the altitudes, 0 the center of the cir­
cumscribed c ircle, M the midpoint of BC, and F the 
foot of the altitude from A. What is the length of BC? 
8.4. 13 Use Ceva's theorem to prove the following al­
ready proven concurrences. 

(a) The three angle bisectors of a triangle all meet 
in a single point. 

(b) The three medians of a triangle all meet in a sin­
gle point. 

(c) The three altitudes of a triangle all meet in a 
single point. 

8.4. 14 (AIME 2003 ) Find the area of rhombus ABCD 
given that the radii of the circles circumscribed around 
triangles ABD and ACD are 1 2 .5 and 25, respectively. 

8.4. 15 (Canada 1 990) Let ABCD be a convex quadri­
lateral inscribed in a circle, and let diagonals AC and 
BD meet at X. The perpendiculars from X meet the 
sides AB, BC, CD, DA at A' , 8' , C' , D' , respectively. 
Prove that 

A'B' +C'D' = A'D' +B'C' . 

8.4. 16 (Bay Area Mathematical Olympiad 200 I )  Let 
J H IZ be a rectangle, and let A and C be points on sides 
Zl and ZJ, respectively. The perpendicular from A to 
CH intersects line HI in X, and the perpendicular from 
C to AH intersects line H J in Y .  Prove that X ,  Y and Z 
are collinear. 

8.4. 17 The Orthic Triangle. Let ABC be a triangle. 
The triangle whose vertices are the feet of the three 
altitudes of ABC is called the orthic triangle of ABC. 

(a) Show that the measures of the angles of the or­
thic triangle of ABC are 11: - 2A ,  11: - 2B , 11: - 2C. 

(b) Show that if ABC is acute (and hence its orthic 
triangle lies inside it), the altitudes of ABC bi­
sect the angles of the orthic triangle. In other 
words, the orthocenter of an acute triangle is the 
incenter of its orthic triangle. 

8.4. 18 Draw lines from each vertex of a parallelogram 
to the midpoints of the two opposite sides. An eight­
sided figure will appear in the center of the parallelo­
gram. Find the ratio of its area to that of the parallelo­
gram. 

8.4. 19 Let ABCD be a convex quadrilateral ("convex" 
means that every line segment joining two vertices lies 
entirely on or inside the quadrilateral; a non-convex 
polygon has "indentations"). Let P be an arbitrary 
point on side AB. Draw a line through A that is par­
allel to PD. Likewise, draw a line through B parallel 
to Pc. Let Q be the intersection of these two lines. 
Prove that 

[DQCJ = [ABCD] . 

8.4.20 Consider the diagram used in the proof of 
Ceva 's theorem on page 288 . Prove that 

8.4.21 The Method of "Weights." In Example 8 .4.2 on 
page 286, comparing areas gave us information about 
segment ratios. Here is another method, using infor­
mal physical intuition. Imagine placing weights on 
the vertices of triangle ABC. (Refer to the figure on 
page 286) . Start with a weight of 2 units at vertex B. 
We can place any weight we want at A, but if we as­
sume that F is the balancing point, we must place 4 
units at A, since the product of each weight times the 
distance to the balance point must be equal. We can 
then imagine that the two weights at A and B are equiv­
alent to a single weight of 6 units, at F . 

Continue this process, now looking at side CB, 
with a balancing point at D. We already have a weight 
of 2 units at B, so this forces a weight of I at C, in or­
der to balance. We place the sum, 3, at the balancing 
point. Here is the result. 



8.4 THE POWER OF ELEMENTARY G EOM ETRY 295 

Our weight assignment appears to be consistent, since 
the interior balancing point I receives 7 units, regard­
less of whether we use AD or C F .  

Now, looking at the endpoint weights on AD, we 
deduce that the length ratio AI : ID must equal 3 : 4 if 
the configuration is to balance properly at I .  Likewise, 
F I : IC = I : 6. This was much easier than comparing 
areas ! 

This wonderful and intuitively plausible proce­
dure seems like magic. Can you prove, rigorously, that 
it works? 

8.4.22 Can the method of weights be used to prove 
Ceva's theorem? 

8.4.23 (AIME 1 988) Let P be the intersection of ce­
vians AD, BE , CF of triangle ABC. If PD = PE = 
PF = 3 and AP + BP + CP = 43,  find AP · BP · CP. 

8.4.24 Example 8 .4.6 on page 292 can be general­
ized to include cases where the circles do not intersect. 
Given a point P and a circle with center 0 and radius 
r, define the power of P with respect to the circle to be 
(OP + r) (OP - r) . Then, given two circles 0)1 and W,z ,  
define their radical axis t o  be  the set of points P such 
that the power of P with respect to 0)1 is the same as 
the power of P with respect to W,z .  

(a) Explain what this definition of  power has to  do 
with the Power of a Point theorem. What does 
it mean when the power is positive, negative, or 
zero? 

(b) Prove that the radical axis is a line that is per­
pendicular to the line joining the centers of the 
two circles. 

(c) Following Example 8 .4.6, prove that in general , 
the radical axes of three circles will either be 
concurrent, coincide, or be parallel. Draw pic­
tures to illustrate these different cases. 

8.4.25 Let AB and CD be two different given diame­
ters of a given circle. Let P be a point chosen on this 

circle, and drop perpendiculars from P to the two di­
ameters, meeting them in points X and Y. Prove that 
XY is invariant; i .e . ,  its value does not change no mat­
ter where P is placed on the circle. 

8.4.26 A sister theorem to Ceva is Menelaus's theo­

rem, which you should now have no trouble proving 
on your own. Let ABC be a triangle, and let line m in­
tersect the sides (extended, if necessary) at D, E,  and 
F. Then 

AD CF BE 
= 1 . 

DC FB EA 

Hint: Draw a line through C that is parallel to AB, and 
hunt for similar triangles. 

8.4.27 Formulate and prove the converse of 
Menelaus's theorem, which is a useful tool for proving 
that points are collinear. 

8.4.28 (USAMO 1 994) A convex hexagon ABCDEF 
is inscribed in a circle such that AB = CD = EF and 
diagonals AD, BE ,CF are concurrent. Let P be the in­
tersection of AD and CE . Prove CP/PE = (AC/CE)2 . 

8.4.29 (Bulgaria 200 1 )  Given a convex quadrilateral 
ABCD such that OA = OB · OD/(oe + OD) ,  where 0 
is the intersection of the diagonals . The circumcircle 
of /::,ABC intersects the line BD at the point Q. Prove 
that CQ is the bisector of LDCA. 
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8.4.30 Ptolemy's Theorem is a lovely formula relat­

ing the sides and diagonals of a cyclic quadrilateral: 

The sum of the products of the lengths of the oppo­

site sides is equal to the product of the lengths of the 

diagonals .  In other words, the diagram below satisfies 

AD · BC +DC · AB = AC · DB. 
There are many proofs o f  this remarkable equality. 

Perhaps the shortest uses similar triangles,  plus the 

very clever auxiliary construction suggested below 

(LDAE = LFAB). Don 't be ashamed to get such a 

good hint. Just finish the proof! When you are done, 

prove the converse: that the equality above forces the 

four points to be concyclic. 

A 

8.4.31 Let Ii and 12 be two non-intersecting circles 

external to each other (i .e. ,  one does not lie inside the 

other). Let their centers, respectively. be P and Q. 
Through P, draw line segments PA and PB that are 

tangent to 12 (so A and B are on 12).  Let C, D be the 

intersection of PA and PB with Ii .  Likewise, draw tan-

8.5 Transformations 

Symmetry Revisited 

gents QE, QF to Ii ,  intersecting 12 at G and H. Prove 

that CD = GH. 
8.4.32 (Bay Area Mathematical Olympiad 1 999; orig­

inally a proposal for the 1 998 IMO) Let ABCD be 

a cyclic quadrilateral (a quadrilateral that can be in­

scribed in a circle). Let E and F be variable points on 

the sides AB and CD, respectively, such that AE / EB = 
CF /FD. Let P be the point on the segment EF such 

that PE/PF = AB/CD. Prove that the ratio between 

the areas of triangle AP D and BPC does not depend on 

the choice of E and F. 
8.4.33 (Leningrad Mathematical Olympiad 1 987) 
Given /::,ABC with B = 60° . Altitudes CE and AD in­

tersect at point O. Prove that the circumcenter of ABC 
lies on the common bisector of angles AOE and COD. 
8.4.34 (Leningrad Mathematical Olympiad 1 987) 
Two circles intersect at points A and B, and tangent 

lines to these circles are perpendicular at each of points 

A and B (in other words, the circles "meet at right an­

gles"). Let M be an arbitrary point chosen on one of 

the circles so that it lies inside the other circle. Denote 

the intersection points of lines AM and BM with the 

latter circle by X and Y , respectively. Prove that XY is 

a diameter of this circle. 

8.4.35 (lMO 1 990) Chords AB and CD of a circle in­

tersect at a point E inside the circle. Let M be an in­

terior point of the segment EB. The tangent line of E 
to the circle through D, E , M intersects the lines BC 
and AC at F and G, respectively. If AM / AB = t, find 

EG/EF in terms of t.  

We first discussed symmetry in Section 3 . 1 ,  and by now you have seen how important 
it is .  Why is symmetry so ubiquitous? Many mathematical situations, when suit­
ably massaged, reveal structures that are invariant under carefully chosen "transforma­
tions ." For example, the sum 

1 + 2 + 3 + · · · + 100 

is not symmetrical, but if we place the reverse sum underneath it, we create something 
that is symmetric with respect to rotation about the center: 

1 + 2 
1 00 + 99 

+ . . .  + 99 
+ . . .  + 2 

+ 
+ 

1 00, 
1 .  
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And of course, what makes this particular symmetry useful is the fact that the sums of 
each column are identical ! 

Here is a geometric problem with a similar flavor. 

Example 8.5.1 Hexagon ABCDEF is inscribed in a circle, with AB = BC = CD = 2 
and DE = EF = FA = I .  Find the radius of the circle. 

Solution: The length- l and length-2 segments are segregated on opposite sides 
of the circle, making a shape with only modest bilateral symmetry (figure on the left 
below).  However, each of these segments is the base of an isosceles triangle (whose 
vertex is the center of the circle).  The entire hexagon is the union of three triangles of 
one type and three of the other type, and the side lengths of these isosceles triangles 
are the same (i.e. ,  the radius of the circle) . 

So, why not rearrange these six triangles in a more symmetrical way? If we al­
ternate the length- l and length-2 segments, we get a much more symmetrical hexagon 
(figure on the right below).  

F 

Denote the center of the circle by 0, with XY = 1 and YZ = 2 adjacent sides of the 
rearranged hexagon. Notice that quadrilateral X ozr is exactly one-third of the entire 
hexagon. Let the radius of the circle be r; thus OX = OY = OZ = r. Since X OZY is 
exactly one third of the entire hexagon, we know that LXOZ = 360/3 = 120° . Like­
wise, by the symmetry of the rearranged hexagon, all of its interior angles are equal, so 
LXYZ = 720/6 = 120° . (We could have also deduced this with angle chasing, using 
the fact XOY and YOZ are isosceles.) 

Now the problem has been reduced to routine trigonometry. Verify that two ap­
plications of the law of cosines (which you proved in Problem 8.3 .32, right?) yield 
XZ = .J7 and then r = J773. • 

We easily solved this relatively simple problem by imposing a single symmetri­
cal structure on it, making it easier to understand. More complicated problems may 
have several different structures, each with competing symmetries.  If you can find one 
symmetry and apply a transformation that leaves one structure invariant, while chang­
ing the other structures, you may learn something new.6 That, in a nutshell is why 

6See Example 3 . 1 .4 on page 63 for a simple but striking illustration of this. 
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symmetry is important. 
The great German mathematician Felix Klein introduced this "transformational" 

viewpoint in 1 872, when he proposed that studying the algebraic properties of geo­
metric transformations would shed new light on geometry itself (and by "geometry," 
he did only mean Euclidean geometry) .  This seemingly innocent suggestion changed 
mathematics-and not just geometry-profoundly. 

This section is a very brief survey of some of the most useful transformations in 
Euclidean geometry. We will start with rigid motions that leave distances invariant, 
and then move on to more exotic transformations that leave angles alone, but drasti­
cally change everything else. In the interest of time, we will omit the proofs of some 
statements, because we are anxious that you begin applying the concepts as soon as 
possible. We leave the proofs,  some of them rather challenging, to you . 

Rigid Motions and Vectors 

A transformation is a mapping, i .e . ,  a function, from the points of the plane to itself. 
Transformations can take many forms and can be defined in many ways, using, for 
example, coordinates, complex numbers, matrices, or words. The rigid motions are 
those transformations that preserve length. In other words, if a rigid motion takes an 
arbitrary point X to the point X' , then A'B' = AB for all points A ,  B. There are four 
types of rigid motions: translations, reflections, glide reflections, and rotations. In 
other words, the composition of any two of these four transformations must be one of 
the four types. This is not at all obvious; we will prove parts of it in this section. 

Translations 

A translation moves each point in the plane by a fixed vector. Here are some equivalent 
notations for the same translation T :  

• Cartesian coordinates :  T (x,y) = (x + 2 , y - l ) .  
• Complex numbers : T (z) = z + a, where a = 2 - i. 

• Vectors : T (1) = 1 + ii, where ii is the vector with magnitude v's and direction 
(J = - arctan ( 1 /2) . 

• Words: T moves every point two units to the right and one unit down. 

We may also omit the T ( . ) notation, writing z f---> z + a, etc . 
Generally, the vector form, or rather the vectorial point of view, is most useful. 

Think of translations as dynamic entities, in other words, as actual "motions." Re­
member that vectors have no fixed starting point; they are relative motions. In any 
vector investigation, one must be aware of or carefully choose the location of the ori­
gin. For example, suppose the vertices of a triangle are the points A, B, C. We can 
think of A ,  B ,  C as vectors as well, but with respect to an origin O. This allows us to 
use vector notation for positions; we thus have a flexible notation where we can move 
between position and relative motion whenever convenient. 

Hence A,li ,c mean the motions from the origin 0 to A ,B ,C, respectively, shown 
with dashed lines in the figure below (on the left) . We can also write , for example 
oA = A . 
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To indicate the motion along a side of triangle ABC, we need vector subtraction. The 
vector OC denotes the (relative) motion from B to C. This can also be written as 

OC = C - B. 
Remember that these are all relative motions . We can interpret C - B to mean, "travel 
from the origin to C, then perform the vectorial motion of B, only going backwards." 
We start at 0, travel to C, then end up at P. Notice that OP and BC are parallel 
segments with equal length. Thus the relative motion "start at 0, end up at P" is equal 
to the relative motion "start at B, end up at C." As vectors , the two are absolutely the 
same: oP = OC. 

The shaded triangles in the figure above (on the right) illustrate translation by A. 
If we denote this translation by T ,  we have 

T (f::::.EFG)  = f::::.E'F'G' , 

since 

£' - £  = F' - F  = 8' - 8  = A. 
Now let 's recall vector addition. Undoubtedly, you recall the "parallelogram rule." 

But first, think of vector addition merely as composition of motions. In other words, 
the vector sum X + Y means, "do the (relative) motion X, followed by the motion Y .  
For example, i n  the figure above, it should be clear that oP + B = C. One way to see 
this is with the parallelogram rule (OC is the diagonal of the parellelogram with sides 
OP and OB), and another way is compose motions: First perform oP, which is the 
(relative) motion from the origin to P; then perform B. SO if we started at 0, we end 
at C. (Of course, if we started somewhere else, we'd end up somewhere else, but the 
motion would be parallel and equal in length to the motion from from 0 to C. 

Here are two simple and well known consequences of these ideas : 

• The vector sum along the sides of a closed polygon is zero. For example, in the 
figure above, we have 
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We can write AB = B - A, etc . ,  and everything will cancel, or we can think 
dynamically: The sum above means, "start at A, travel to B, then to C, then 
back to A." We end up where we started; the relative motion is zero . 

• Since the diagonals of a parallelogram bisect each other (8.2.9), the midpoint 
of the line segment AB has the vector position (A + B) 12. 

The next two examples show how we can use this dynamical approach to investi­
gate more challenging problems .  

Example 8.5.2 Why is the centroid of a triangle the center of mass of i t s  vertices? 

Solution : Let n equal point masses be placed at vector positions xi ,ii ,  . . . ,� .  We 
define their center of mass to be (Xi + i2  + . . .  + �)In. Thus we must show that the 
centroid of a triangle with vertices A ,B ,C is (A + B + C)/3 .  In the picture below, the 
centroid of triangle ABC is denoted by K, and the midpoint of AB is M. 

c 

We know by the centroid theorem that KM ICM = 1 /3 .  Now let 's "travel" to K. Start­
ing at M, we just go one-third of the way to C. In other words, 

_ - 1 �  
K = M + 3Ml.. 

- 1 - -
= M + 3 (C - M) 

2M + C 

3 
A + B + C 

3 

where the final step used the fact that M = (A + B) 12. • 

Example 8.5.3 (Hungary 1 935) Prove that a finite point set S cannot have more than 
one center of symmetry. (A center of symmetry of a set S means a point 0, not 
necessarily in S, such that for every point A E S, there is another point B E  S such that 
o is the midpoint of AB. We say that B is symmetric to A with respect to 0.) 

Solution : Suppose, to the contrary, that there were two centers of symmetry, P 
and Q. Let S = {A l , A2 , . . .  ,An } . For each k = 1 , 2 , . . .  , n, let Bk denote the point in 



8.5 TRANSFORMATIONS 301 

S that is symmetric to Ak with respect to P. (Note that Bk = Aj for some j.) By the 
definition of symmetry, we have 

Summing this from k = 1 to k = n implies that 

By the same reasoning, we also have 

� --:----t � -
QA t + QA2 + " ' + QAn = 0 . 

Subtracting, we get nQP = 0, so Q = P. • 

Besides adding, subtracting, and multiplying vectors by scalars, we can "multiply" 
two vectors with the dot-product operation. Recall the formula A . 8/ ( IA I · 18 1 )  = cos e ,  
where IX I denotes the magnitude o f  the vector X and e i s  the angle needed t o  rotate A 
so that it is parallel with 8 ( i .e . ,  the "angle between" the two vectors) .  The dot-product 
can be easily computed using coordinates, but coordinates should be avoided when 
possible. Three things make dot products occasionally helpful in Euclidean geometry 
problems. 

• Dot product is commutative and algebraically acts like ordinary multiplication 
in that it obeys a "distributive law :" 

• The dot product of a vector with itself equals the square of the vector's magni­
tude: AB . AB = AB2 . 

• A .-l  8 if and only if A . 8 = O. 

You may want to apply these ideas to Problems 8 .5 .24-8.5 .26. 

Reflections and Gl ide Reflections 

A reflection across a line 1! maps each point X to a point X' such that 1! is the perpen­
dicular bisector of XX' . You are an old hand at reflections from Section 3 . 1 .  Notice 
that each point in 1! is invariant with respect to reflection across 1!; this contrasts with 
translations, which have no invariant points (unless the translation is the zero vector, 
i .e . ,  the identity transformation, which fixes every point) .  

A glide reflection along a line 1! is a composition of two maps: first a reflection 
across 1!, followed by a translation parallel to 1!. Unlike reflections, a glide reflection 
has no fixed points .  However, the entire line 1! is fixed; in other words, every point in 1! 
gets mapped to another point in 1!. 
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Rotations 

A rotation with center C and angle 8 does just what you 'd expect :  rotates every point 
counterclockwise by the angle 8 , about the center C. Rotations can be expressed in 
matrix form, using trigonometry, but complex numbers are much better. Recall that 
multiplying by ei8 

rotates a complex vector by the angle 8 . Thus if c is the center, then 
the rotation is the mapping z 1--+ c + (z - c )ei8 • 

In contrast to translations and reflections/glide reflections, each rotation has ex­
actly one fixed point, namely, the center. 

Example 8.5.4 What transformation results from the composition of two reflections? 

Solution: Let TI , T2 denote reflections across the lines .e I ,  .e2 , respectively. There 
are three cases to consider. 

• If .e 1 = .e2 , then clearly the composition T2 0 TI is the identity transformation. 
• If .el I I .e2 , we have the following situation. TI takes X to X', and T2 takes X' to 

X". It should be clear that the net result is a translation by the vector 2A]}, where 
A ,  B are points on .el , .e2 respectively such that the line AB is perpendicular to 
both .el and .e2 . (In other words, AB is the translation that that takes line .el to 
line fz . )  

x 

• If .e l  and .e2 intersect in a point C, then this point will be fixed by each of the 
reflections, and hence fixed by the composition. This suggests that the compo­
sition is a rotation about the center C, and indeed a quick dose of angle chasing 
on the diagram below easily verifies that the composition is indeed a rotation 
about C, by 28 , where 8 is the angle from .e 1 to .e2 (i .e. , in the picture below, the 
angular direction is clockwise). 

In summary, the composition of two reflections is either a translation (including the 
identity translation) or a rotation. _ 

As we mentioned earlier, transformations shed light on a problem when they are 
used selectively, i .e . ,  when only part (presumably, the "symmetrical" part) of a diagram 
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is transformed and the rest is  left alone. Here is a dramatic example of a problem that 
is quite thorny without transformations, yet nearly trivial once we focus on the natural 
symmetries involved. 

Example 8.5.5 Lines f1 , f2 , f3 are parallel . Let a and b be the distance between fl 
and f2 , and f2 and f3 , respectively. The point A is given on line fl . Locate points B ,C  
on f2 , f3 , respectively, so that triangle ABC i s  equilateral. 

Solution : This is certainly doable with cartesian coordinate geometry. There are 
just two variables (the coordinates of B, for example; or the length AB and the angle 
AB makes with line f 1 ) , and plenty of equations determined by the angles and inter­
sections. But it will be ugly and unilluminating. 

In the diagram, we are assuming we have solved the problem (wishful thinking ! )  so 
we have a nice equilateral triangle to ponder. The natural transformations to ponder 
are rotations that leave parts of this triangle invariant. Consider clockwise rotation by 
60° about A.  This takes AC to AB. Now imagine letting f3 go along for the ride as 
well. Thus AC plus f3 will be rotated into a line segment plus a line. Since f3 intersects 
C, the image of f3 will intersect f2 at B. So we 're done: all we need to do is rotate f3 
by 60° clockwise ! In the diagram below, f4 is the image of f3 under this rotation. The 
intersection of f4 with f2 is the point B, and once we know the location of B, we can 
easily construct the equilateral triangle ABC. We drew in the perpendiculars from A to 
f3 and f4 to suggest a Euclidean construction. 

« 

« 

A 

• Drop a perpendicular from A to f3 . 
• Rotate this perpendicular segment by 60° , which should be easy since you know 
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how to construct an equilateral triangle, right? (If not, do Problems 8 .2.28 and 
8 .3 .3 1 ! )  

• Construct a line perpendicular t o  this rotated segment that pases through its 
endpoint. This will be f4 , and its intersection with f2 is the point B. • 

That was fun and rather easy, but we won 't always be so lucky. Sometimes we 
will need to combine more than one rotation . What happens when we compose two 
rotations? First, a simple lemma. 

Fact 8.5.6 Let f be a line and let f' be its image under rotation by e about the center 
C. Then the angle between f' and f is also e .  

This i s  not at all surprising. We are asserting that LX PY = e i n  the picture below. 
This follows from easy angle chasing. Do it !  

, , , , e , 
4-..' , , , , 
·c 

This lemma should allow you to easily prove the following composition facts. 

Fact 8.5.7 The composition of a rotation by a with a rotation by f3 (possibly about a 
different center) is 

• a rotation by a + f3, if a + f3 =I- 360° . 

• a translation (not the identity) ,  if a + f3 = 360° and the centers are different. 

• the identity transfonnation, if a + f3 = 360° and the centers are the same. 

Fact 8.5.8 When the composition of two rotations is another rotation, here is a way to 
find the center. Let RA ,a denote rotation by a about A. Likewise, define the rotation 
RB,{3 . Draw rays AX , BY so that BAX = a /2 and Y BA = f3 /2. The intersection of AX 
and BY is the center of the rotation RB,{3 0 RA ,a .  (Remember that composition T o  S 
means "do S, then T .") 

Fact 8.5.9 The composition of a rotation and a translation (taken in either order) is 
a rotation by the same angle, but with a different center. (Finding the center is an 
exercise . )  

We conclude our discussion of rotations with a special case of a wonderful classic 
problem. 

Example 8.5.10 Let XYZ be a triangle. Erect exterior isosceles triangles on the sides 
XY, YZ, XZ, with vertex points A ,  B ,  C, respectively, such that LA = 60° , LB =  1 20° , LC =  
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90° . Given just the location of points A , B, e, show how to locate the points X ,  Y, Z. 
Solution : Begin with wishful thinking, and assume that we have located the un­

known points X , Y, Z. In reality, we don 't know where to draw any of the line segments 
shown in the picture below. But there is some structure to grab onto. The triangles with 
vertex angles at the points A ,  B ,  e are isosceles. Isosceles triangles are symmetrical :  
one can rotate one side so  that it coincides with the other side. 

A 
, 

, 
, 

, 
, 

, 

X 

Y 

, 
, 

, , 

C 

B 
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, 
, 
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Now that we are thinking about rotations, we search for fixed points. Denote the 
rotation about A by 60° counterclockwise (Le. ,  the rotation that takes AX to AY )  by 
RA . Likewise, define RB and Re . Then RA (X ) = Y, RB (Y ) = Z, and Rc (Z) = X .  In 
other words, Re 0 RB 0 RA takes X to itself! 

By 8 .5 .7 ,  Re 0 RB 0 RA is a rotation by 60 + 1 20 + 90 = 270° . Rotations have ex­
actly one fixed point, namely, their center, so X is the center of Re 0 RB 0 RA . Two 
applications of 8 .5 .8 locate X .  Once we find X,  we can easily locate the other two 
points , since RA (X ) = Y and RB (Y ) = Z. • 

Homothety 

Many important transformations are not rigid motions. For example, a similarity is 
any transformation that preserves ratios of distances. The simplest of these are the 
homotheties, also called central similarities. A homothety with center e and ratio 
k maps each point X to a point X' on the ray ex so that ex' /ex = k. Here is an 
example, with center at e and k = 1 /2. 

A '  _f/j-- -c:<:: : :KfJ, - -
B' - - - _ _ _ _ 

B 



306 CHAPTER 8 GEOMETRY FOR AMERICANS 

Homotheties are a transfonnational way of thinking about similarity. Not all similari­
ties are homotheties, but all homotheties are similarities. 

As with other transformations, it is crucial to think about invariants . Clearly, 
they have just one fixed point-the center-but homotheties leave other things un­
changed. 

Fact 8.5 .11  Homotheties map lines to parallel lines. Consequently, homotheties pre­
serve angles.? Conversely, if two figures are directly similar, non congruent, and cor­
responding sides are parallel, then they are homothetic.8 

Fact 8 .5 . 1 1 gives us a nice criterion for concurrence. If two figures are directly 
similar, with corresponding sides parallel , the lines joining corresponding points con­
cur, namely at the center of the homothety. 

Whenever a problem involves midpoints , look for a homothety with ratio 1 /2. 
Let 's apply this idea to get a new solution to a problem that we solved in Exam­
ple 4.2 . 1 4  using complex numbers . 

Example 8.5.12 (Putnam 1 996) Let CI and C2 be circles whose centers are 1 0  units 
apart, and whose radii are 1 and 3 .  Find, with proof, the locus of all points M for which 
there exist points X on C I and Y on C2 such that M is the midpoint of the line segment 
XY .  

Solution : Let A ,  B denote the centers ofCI and C2 , respectively. For the time being, fix 
X on C I and let Y move along C2 . Notice that M is the image of Y under a homothety 
with center X and ratio 1 /2 .  Thus, as Y moves about C2, the point M traces out a circle 
whose radius is 3/2 .  Where will this  circle be located? Its center will be the image of 
B under this homothety, in other words, the midpoint of the line BX . 

Now that we know what happens when X is fixed and Y moves freely around CI , 
we can let X move freely around C I .  Now the locus of points M will be a set of circles, 
each with radius 3/2 .  What is the locus of their centers? Each center is the midpoint 

7 For those of you who understand directed length, we are assuming that the ratio k is positive here. 

8Two figures are called directly similar, as opposed to oppositely similar, if corresponding angles are equal 

in magnitude as well as orientation. In other words, if you can tum one figure into the other by translating, 

rotating, and then shrinking or magnifying, they are directly similar. If you have to lift the figure off the page and 

tum it over, or equivalently, perform a reflection, then they are oppositely similar. 
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of BX as X ranges freely about Cl . In other words, the centers are the image of Cl 
under the homothety with center B and ratio 1 /2 .  But this is just another circle, one 
with radius 1 /2, located halfway between the circles. 

As in Example 4.2 . 14 ,  we can now see that the locus of points M forms an annular 
region with center halfway between the circles , with inner radius 1 and outer radius 2 . •  

There is a third solution, similar to the one above, that uses vectors . Find i t !  

Inversion 

The inversion transformation, discovered in the 1 9th century, drastically alters lengths 
and shapes. Yet it is almost magically useful, because it provides a way to interchange 
lines with circles. 

An inversion with center a and radius r takes the point X i= a to a point X' on ray 
OX so that OX . OX' = r2 . Since a and r uniquely determine a circle co, equivalently 
we speak of inversion with respect to the circle co. Inversion is sort of a homothety­
with-variable-ratio, where the ratio varies inversely with respect to the distance to the 
center. Hence the name. Now let 's see how it works, with a diagram that also suggests 
an easy Euclidean construction for inversion. 

X' 

Consider circle co with center a and radius r. Place point X inside the circle. We 
wish to find its inverse X I .  Draw chord BC through X and perpendicular to ray OX , 
and then draw a line perpendicular to OB through B. This line meets ray OX at the 
point X' . By similar triangles , we easily see that 

OB OX 
OX' OB 

Thus OX . OX' = OB2 = r2 , and indeed X' is the image of X under the inversion about 
co. Conversely, X is the inverse of X' . (It is clear by the definition that the inverse of 
the inverse of any point P is P.) The algorithm for inversion, then is the following : 

If X lies inside co, draw the chord through X that is perpendicular to 
OX . This chord intersects CO in two points : the intersection of the tan­
gents at these two points is X' . Conversely, if X lies outside the circle 
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co, draw the two tangents to co. The two points of tangency determine 
a chord whose midpoint is X'.  

The following facts should be evident from the figure above. 

Fact 8.5.13 Let T denote inversion with respect to a circle co with center O. 

(a) If A is on co, then T (A) = A. Thus, T (co) = co. 

(b) T takes points inside co into points outside co, and vice versa. 

(c) As a point X moves toward 0, the image T (X)  moves out "towards infinity." 
Conversely, as X moves further and further away from 0, its image T (X)  moves 
closer and closer towards O. 

(d) For any point X,  T (OX) = OX. (Note that OX is a ray, not a vector, in this 
context.) 

(e) Let y be a circle concentric with co, with radius t. Then T(y) will also be a circle 
concentric with co, with radius r2 It . 

Inversion encourages us to include the "point at infinity" since that is the limit 
of the image of a point as it approaches the inversion center. This concept can be 
made rigorous (and is a standard idea in projective geometry), but we will keep things 
informal for now. Therefore, we can amend statement (d) above to read 

Iff is a line passing through 0, then T (f) = f. 

Try to visualize this .  Imagine a point X traveling on a l ine f that passes through 
o in a north-south direction. Simultaneously, imagine T (X ) .  Start on the northern 
intersection of f with circle co, and move south toward the center o. The image T (X)  
will move north on f ,  towards (northern) "infinity." When we pass through 0 and begin 
moving towards the southern boundary of the circle, the image swoops north towards 
the circle boundary from the southern "infinite" location on f, reaching the boundary 
just as X does. Then, as X continues on its path, towards "southern infinity," the image 
T (X)  crawls north, toward O. This "point at infinity" is not north or south, but all 
directions at once. We denote it by 00 and thus T (oo) = 0 and T (O) = 00. 

Now that we have 00, we can generalize the notion of circles to include lines . 
This is not insane: A line can be thought of as a "circle" that passes through oo !  Its 
radius is infinite, which explains the zero curvature (flatness). Every ordinary circle is  
determined by three points .  Likewise, we can think of a line as just a circle specified 
by three points: two on the line and one at 00. So now we will refer to the set of 
ordinary circles and ordinary lines as "circles ." Using this definition, we can also say 
that two lines are tangent if and only if they coincide or are parallel. In the latter case, 
they are "circles" whose point of tangency is 00. 

We have seen that, in some cases, inversion takes circles to circles and lines to 
lines. It turns out that this is always the case ! 

Fact 8.5.14 Fundamental Properties of Inversion. Let X' denote the image of the 
point X by inversion with respect to a circle co with center 0 and radius r. 

(a) For any points X, Y, the triangles OXY and OX'Y' are oppositely similar. In other 
words, .6.0XY rv .6. OY 'X' . 



(b) For any points X ,  Y , 
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X'y' 
= 

Xy 
r2 . 

OX · Oy 

(c) The image of any "circle" is a "circle." 

(d) The image of any (ordinary) circle y that does not intersect 0 is an image of y 
by a homothety centered at O. 

Statements (a) and (b) are easy to prove, using similar triangles , and (d) is  a simple 
consequence of (c). Even (c), remarkable as it is, is not too hard to prove. There are 
several cases to consider. Let us consider one. 

Example 8.5.15 Let co be a circle with center 0, and let y be a circle that passes 
through 0 and intersects co in points A and B. Under inversion with respect to co, the 
image of y is the line passing through A and B.  

Solution: Let X be a point on y and outside co, as shown below. Using the algo­
rithm on page 307, we draw the tangents from X to co, intersecting CO at C and D; the 
midpoint of CD is the image X' .  We wish to show that X' lies on AB. 

� - - - - - - - -

This is easy, since we are hands-on geometers . How did we draw those tangents in the 
first place? We erected a right triangle with hypotenuse on OX and right angle C on co. 
To do this ,  we drew a circle with diameter OX; it intersected co at C and D. In other 
words, implicit in our diagram are three circles: co, y, and the circle 1C with diameter 
OX. 

Now CD is a common chord of CO and 1C; OX is a common chord of 1C and r. and 
AB is common to CO and y. That is exactly the situation of Example 8.4.6 on page 292; 
so we conclude that these three chords are concurrent. Hence X' must lie on AB. • 
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Actually, our proof is incomplete, since our diagram only handles the case when 
X is outside co. If X lies on r, but inside co, the image X, will be on the line AB, not on 
the segment AB . The proof is similar; we leave it to you. 

While we strongly encourage you to completely prove that inversion takes "cir­
cles" to "circles," assuming this as a fact gives you tremendous new powers to simplify 
problems.  The basic strategy is to look for a point that involves several circles , and 
invert about this point, striving to make a simpler image. Usually lines are simpler 
than circles, so try to turn some of the circles into lines. If the inversion image is easier 
to understand, it may shed light on the original figure. Here is a spectacular example; 
we defy you to prove it without inversion ! 

Example 8.5. 16 Let Cl , C2 , q ,  q be circles tangent "cyclically;" i .e . ,  C }  is tangent to 
C2 , C2 is tangent to C3 , C3 is tangent to q, and C4 is tangent to Cl . Prove that the four 
points of tangency are concyclic. 

Solution : We wish to show that A, B, C, D are concyclic . Without loss of gener­
ality, we invert about C, choosing an arbitrary radius. Denote the inversion circle by 
co. Let < denote the image of q under this inversion. 

What happens to our diagram? By Example 8 .5 . 1 5 , c; is the common chord of C} and 
co, extended to a line; likewise, c� is another line, parallel to c; . This makes sense, 
since these image "circles" are still tangent-at oo !  

What are the fates of C2 and C3 ? Since neither circle intersects C ,  their images are 
ordinary c ircles, homothetic images of the originals about the center C. Furthermore, 
c2 is tangent to both c; and c; , and c; is tangent to c� . Again, this makes sense, since 
inversion will not disturb tangency. Here is the result. 
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After the inversion, we still have four "circles," but the situation is easy to analyze. 
Circles c2 and c; are sandwiched between the parallel lines c� and c4 . Straightforward 
angle chasing (Problem 8 .2 .30) verifies that in this situation, the three points of tan­
gency D' , A' , B' are collinear. The fourth point of tangency is C' = 00. Again, it all 
makes sense. The images of A ,  B, C, D are points on a line, i .e . ,  a "circle." If we repeat 
the inversion, we will restore these back to A ,  B, C, D. But images of "circles" are 
"circles," so A ,  B ,  C, D must be either collinear or concyclic . Obviously, they are not 
collinear. We 're done ! _ 

Problems and Exercises 

Many of these problems have multiple solutions. However, all of them can be solved using trans­
formations. Some of the problems are rather challenging, so feel free to consult the hints appendix 
(available online at www . wi ley . com/ col lege /  zei  tz ) .  

8.5. 17 Let ABCD be a square with center at X and side 
length 8. Let XYZ be a right triangle with right angle 
at X with XY = 10 ,  XZ = 24. If XY intersects BC at 
E such that CE = 2 and EB = 6, find the area of the 
region that is common to the triangle and the square . 

8.5.18 Let ABCDEF be a hexagon, with AB = 
DE , BC = EF, CD = FA, and AB I I DE , BC I I EF, CD I I  
FA. Prove that AD, BE , CF are concurrent. 

8.5.19 For the following, either discover how to per­
form the given task, or explain why it may not be pos­
sible. 

(a) Find the vertices of a triangle, given the mid­
points of the sides. 

(b) Find the vertices of a pentagon, given the mid-

points of the sides. 

(c) Find the vertices of a parallelogram, given the 
midpoints of the sides. 

(d) Find the vertices of a quadrilateral , given the 
midpoints of the sides. 

(e) Find the vertices of a hexagon, given the mid­
points of the sides. 

(f) Find the vertices of a 17 -gon, given the mid-
points of the sides. 

8.5.20 Let a triangle have a fixed area and base . Prove 
that the perimeter is minimal when the triangle is 
isosceles. 

8.5.21 Let ABCDE be a pentagon (not necessarily 
regular) inscribed in a circle. Let A' be the midpoint 
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of CD, B' the midpoint of DE, C' the midpoint of EA, 
D' the midpoint of AB, and E' the midpoint of BC. 
Show that the midpoints of A'C' , C' E' , E' B', B'D' and 
D' A' all lie on a circle. 

8.5.22 Solve Example 8 .4.2 using translation: trans­
late the triangle with parallel motions, to create par­
allelograms, and translate the trisection lines as well. 
Look for congruent shapes that can be reassembled. 
If that seems too daunting, try the following eas­
ier problem first: Let ABCD be a rectangle, and let 
E, F, G, H be the midpoints of AB,BC,CD,DA, re­
spectively. Lines AF, BG,CH ,DE intersect pairwise to 
form a quadrilateral inside ABCD. Prove that the area 
of this quadrilateral is [ABCD] /5. 
8.5.23 (Hungary 1 940) Let T be an arbitrary triangle. 
Define M(T ) to be the triangle whose sides have the 
lengths of the three medians of T . 

(a) Show that M(T) actually exists for any triangle 
T. Show how to construct M (T) with compass 
and ruler, given T . 

(b) Find the ratio o f  the areas o f  M(T) and T . 
(c) Prove that M(M(T ) )  is similar to T . 

8.5.24 Prove that the lines AB and CD are perpendic­
ular if and only if AC2 -AD2 = BC2 - BD2 . 
8.5.25 Let ABC be a triangle with a = BC, b = 

AC, c = AB. Denote the incenter, circumcenter, and 
orthocenter by [, K, and H, respectively. 

(a) Show that A + E +C = 2K + ii. (In other words, 
if the origin is located at the circumcenter, then 
the orthocenter is given by the vector sum of the 
vertices.) 

(b) Sh h [- aA + bE + cC 
ow t at = . a + b + c  

8.5.26 Prove that for any parallelogram ABCD, the 
following holds :  

2 (AB2 +AD2 ) = AC2 + BD2 . 
8.5.27 Let p, q, r be lines meeting in a single point, 
and let Fa denote reflection across line a. Show that 
there is an unique line t such that Fp 0 Fq 0 Fr = Ft . 
8.5.28 Carefully prove Facts 8.5 .7 and 8.5 .9. Also, 
show how to find the centers of the new rotations pro­
duced. 

8.5.29 We proved most of the statement, "all rigid 
motions are translations, rotations, reflections, or glide 

reflections." What was left out of the proof? Supply 
the rest. 

8.5.30 Given an arbitrary triangle ABC, construct 
equilateral triangles on each side (externally), as 
shown below. 

A 
......... --- y 

z 

Show that AX = BY = CZ. 
8.5.31 Using compass and ruler, construct an equilat­
eral triangle whose vertices lie on three given concen­
tric circles. 

8.5.32 Prove that if squares are erected externally on 
the sides of a parallelogram, then their centers are the 
vertices of a square. 

8.5.33 (Canada 1 989) Let ABC be a right triangle of 
area 1 .  Let A' , B' , C' be the points obtained by reflect­
ing A, B, C, respectively, in their opposite sides. Find 
the area of 6.4' B'C' . 
8.5.34 Given a triangle ABC, construct (with ruler and 
compass) a square with one vertex on AB, one vertex 
on AC, and two (adjacent) vertices on BC. 
8.5.35 Rotate an arbitrary triangle ABC about its cen­
troid M by 1 800 to get a six-pointed star as shown be­
low. 

A 

A '  

Find the area of this star in terms of [ABC] . 
8.5.36 The Pantograph. The diagram below depicts 
a pantograph, a device used for making scale copies, 
still found in engraving shops. The pantograph lies on 
a planar surface (possibly a sheet of paper or plastic 
or metal) ,  fixed to it at F . Segments F B and BP are 
fixed lengths,  hinged at B. Likewise, AP' and P'C are 
fixed lengths, hinged at P'. Points A and C are also 



hinges, with fixed locations along FB and BP, respec­
tively, so that FA = Api and AB = piC = CPo At P and 
pi, pens (or etching tools) point down onto the surface. 
The pantograph operator draws something on the sur­
face by moving point P, and pi automatically moves 
as well. What does pi draw, and why? Explain how 
you can adjust this device to copy at different scales . 

h F P' P 

8.5.37 (USA Team Selection Test 20(0) Let ABCD be 
a cyclic quadrilateral and let E and F be the feet of per­
pendiculars from the intersection of diagonals AC and 
BD to AB and CD, respectively. Prove that EF is per­
pendicular to the line through the midpoints of AD and 
Be. 
8.5.38 Example 8 .5 . 1 0 on page 304 can be general­
ized in many ways. Try these. 

(a) Let the given isosceles vertex angles be arbi­
trary measures a ,  f3 , y. 

(b) What happens if you are given n points, each 
the vertex of an isosceles triangle with vertex 
angles a i , a2 , . . .  , an . and we must locate the 
vertices of an n-gon? 

(c) What happens if the sum of the angles is 360°? 
Can we use the same argument as before? 

(d) What happens when the angles are all equal to 
1 80°? 

8.5.39 (Putnam 2004) Let n be a positive integer, n � 
2, and put 8 = 2tt/n . Define points Pk = (k, O) in the 
xy-plane. for k = 1 , 2 , . . .  , n. Let Rk be the map that ro­
tates the plane counterclockwise by the angle 8 about 
the point Pk . Let R denote the map obtained by apply­
ing. in order. RI , then R2 , . . .  , then Rn . For an arbi­
trary point (x, y) ,  find, and simplify, the coordinates of 
R(x, y) .  
8.5.40 Use Fact 8 .5 . 1 1  to show that the composition 
of two homotheties is another homothety. Can you find 
the center of the composition? 

8.5.41 (Bulgaria 200 1 )  Points A l ,B I ,C I are chosen 
on the sides BC, CA, and AB of triangle ABC. Point G 
is the centroid of !:::ABC, and Go , Gb , Gc are the cen­
troids of !:::AB ICI , 6BA ICI , 6CA IB I , respectively. 
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The centroids of !:::A IB ICI and 6GaGbGc are denoted 
by G I and G2 , respectively. Prove that G, G I , G2 are 
collinear. 

8.5.42 (Hungary 1 94 1 )  Hexagon ABCDEF is in­
scribed in a circle. The sides AB, CD, and EF are all 
equal in length to the radius. Prove that the midpoints 
of the other three sides are the vertices of an equilat­
eral triangle. (There are many possible solutions to this 
problem. You may want to also try complex numbers. 
if you have mastered the material in Section 4.2 . )  

Inversion Problems 
We are putting many inversion problems together, as 
a hint for you to try inversion on them. However, you 
may want to experiment with inversion on other prob­
lems. You may discover interesting alternative solu­
tions, and at the very least, you will have fun practicing 
this sophisticated skill. 

8.5.43 Find a Euclidean construction method for in­
verting a point X with respect to a c ircle ro .  as sug­
gested by the diagram on page 307 . 
8.5.44 Complete the proof that inversion takes "cir­
cles" to "circles" by examining the following cases (at 
the very least, draw careful pictures to convince your­
self) .  Let the inversion be with respect to the circle 
ro with center O. Find (and prove that your picture is 
correct) the image of: 

(a) A line that is tangent to ro. 

(b) A line that intersects ro in two points. not pass-
ing through O. 

(c) A line that passes through O. 

(d) A line that does not intersect ro .  

(e) A circle exterior to ro. 

(f) A circle interior to ro ,  passing through O. 

(g)  A circle intersecting ro in two points, not pass­
ing through O. 

(h) A circle tangent to ro (there are several sub-
cases here ! ) .  

8.5.45 Can you design a "machine," similar to  the 
pantograph (Problem 8.5 .36) , that draws the inverse of 
a point P as the operator draws P? This machine would 
have the useful engineering property of converting cir­
cular to linear motion, and vice versa. 

8.5.46 Using compass and ruler, draw a circle passing 
through a given point P tangent to two given circles. 
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8.5.47 Using compass and ruler, draw a circle that is 

externally tangent to three given mutually external cir­

cles. 

8.5.48 (USAMO 1 993) Let ABCD be a convex 

quadrilateral such that diagonals AC and BD intersect 

at right angles, and let E be their intersection. Prove 

that the reflections of E across AB, BC, CD, DA are 

concyclic. (There is also a non-inversive solution, us­

ing homothety.) 

8.5.49 Ptolemy's Theorem via Inversion. Prob­

lem 8.4.30 suggested a way to prove Ptolemy's the-

orem using similar triangles. Now find an inversive 

proof. Hint: Invert about one of the vertices, sending 

the other three onto a line. Now the image distances of 

are more easily handled; then use the image-distance 

formula of 8.5.  1 4(b) to relate these with the original 

side lengths. 

8.5.50 (USAMO 2000) Let A IA2A3 be a triangle and 

let COl be a circle in its plane passing through A I and 

A2 . Suppose there exist circles CO2 ,  CO] , • • •  , CI>7 such 

that for k = 2 , 3 ,  . . .  , 7 , circle COk is externally tan­

gent to COk- 1 and passes through Ak and Ak+ I ,  where 

An+3 = An for all n � I .  Prove that CI>7 = COl . 



Chapter 9 

Calcu l us 

In this chapter, we take it for granted that you are familiar with the basic calculus ideas 
like limits, continuity, differentiation, integration, and power series .  On the other hand, 
we assume that you may have have heard of, but not mastered: 

• Formal " 0 - e" proofs 
• Taylor series with "remainder" 
• The mean value theorem 

In contrast to, say, Chapter 7, this chapter is not a systematic, self-contained treatment. 
Instead, we concentrate on just a few important ideas that enhance your understanding 
of how calculus works. Our goal is twofold: to uncover the practical meaning of some 
of the things that you have already studied, by developing useful reformulations of old 
ideas; and to enhance your intuitive understanding of calculus, by showing you some 
useful albeit non-rigorous "moving curtains ." The meaning of this last phrase is best 
understood with an example. 

9.1 The Fundamental Theorem of Calculus 

To understand what a moving curtain i s ,  we shall explore, in  some detail , the most 
important idea of elementary calculus. This example also introduces a number of 
ideas that we will keep returning to throughout the chapter. 

Example 9.1 .1  What is the fundamental theorem of calculus (FTC), what does it 
mean, and why is it true? 

Partial Solution : You have undoubtedly learned about the FTC. One formulation 
of it says that if f is a continuous function, l then 

lb f(x)dx = F (b) - F (a) , ( 1 )  

where F i s  any anti derivative of f; i .e . ,  F' (x) = f(x) . This i s  a remarkable state­
ment. The left -hand side of ( 1 )  can be interpreted as the area bounded by the graph 

I In this chapter we will assume that the domain and range of all functions are subsets of the real numbers. 

31 5 
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of y = f(x) , the x-axis, and the vertical lines x = a and x = b. The right-hand side 
has a completely different meaning, since it is related to f(x) by differentiation, the 
computation of the slope of the tangent line to the graph of a function. How in the 
world are areas and slopes related? 

Stating it that way makes the FTC seem quite mysterious. Let us try to shed 
some light on it. On one level, the FTC is an amazing algorithmic statement, since in 
practice, antiderivatives are sometimes rather easy to compute. But that explains what 
it is, not why it is true. Understanding why it is true is a matter of choosing the proper 
interpretation of the entities in ( 1 ) . 

We start with the very useful define a function tool, which you have seen before 
(for example, 5 .4.2). Let 

g (t) : = l f(x)dx. 

We chose the variable t on purpose, to make it easy to visualize g(t )  as a function 
of time. As t increases from a, the function g(t )  is computing the area of a "moving 
curtain," as seen below. Notice that g (a) = O. 

y 

y=/(x) 

L-------------�---------L------� x 
a 

Differentiation is not just about tangent lines-it has a dynamic interpretation as in­
stantaneous rate of change. Thus g' (t ) is equal to the rate of change of the area of the 
curtain at t ime t. With this in mind, look at the picture below: what does your intuition 
tell you the answer must be? 

6.( 

t+6.t 

The area grows fast when the leading edge of the curtain is tall, and it grows slowly 
when the leading edge is short. It makes intuitive sense that 

g' (t ) = f(t) , (2) 
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since in a small interval of time .1t,  the curtain's area will grow by approximately 
f(t}.1t.  Equation (2) immediately yields the FTC, because if we define F (t )  := g(t)  + 
C, where C is any constant, we have F' (t) = f( t )  and 

F (b) - F (a) = g(b) - g(a) = lb f(x)dx. 

The crux move was to interpret the definite integral dynamically, and then observe 
the intuitive relationship between the speed that the area changes and the height of 
the curtain. This classic argument illustrates the critical importance of knowing many 
possible alternate interpretations of both differentiation and integration. 

You may argue that we have not proved FTC rigorously, and indeed (2) deserves 
a more careful treatment. After all . the curtain does not grow by exactly f(t ).1t .  The 
exact amount is equal to jt+.1t t f(x)dx, 

which is  equal to f(t ).1t + E (t ) ,  where E (t)  is the area of the "error," shown shaded 
below [note that E (t) is negative in this picture] . 

Hilt 

Everything hinges on showing that 

lim 
(E (t) ) 

=
0 . .11->0 .1t 

This requires an understanding of continuity; we will prove (3 )  in  9.2 .7 .  

9.2 Convergence and Conti nuity 

(3) 

You already have an intuitive understanding of concepts like limits and continuity , but 
in order to tackle interesting problems, you must develop a rigorous wisdom. Luckily, 
almost everything stems from one fundamental idea: convergence of sequences. If 
you understand this, you can handle limits, and continuity, and differentiation, and 
integration. Convergence of sequences is the theoretical foundation of calculus. 
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Convergence 

We say that the real-valued sequence (an ) converges to the limit L if 

lim an = L . n->oo 
What does this mean? That if we pick an arbitrary distance e > 0, then eventually, and 
forever after, the ai will get within e of L. More specifically, for any e > 0 (think of e 
as a really tiny number), there is an integer N (think of it as a really huge number, one 
that depends on e) such that all of the numbers 

lie within e of L. In other words, for all n 2 N, 

If the context is clear, we may use the abbreviation an ---t L for lim an = L. n->oo 
In practice, there are several possible methods of showing that a given sequence 

converges to a limit. 

1 .  Draw pictures whenever possible. Pictures rarely supply rigor, but often fur­
nish the key ideas that make an argument both lucid and correct. 

2. Somehow guess the limit L, and then show that the ai get arbitrarily close to L. 
3. Show that the ai eventually get arbitrarily close to one another. More precisely, 

a sequence (an ) possesses the Cauchy property if for any (very tiny) e > 0 
there is a (huge) N such that 

l am - an i < e 

for all m, n 2 N. If a sequence of real numbers has the Cauchy property, it 
converges.2 The Cauchy property is often fairly easy to verify, but the disad­
vantage is that one doesn't get any information about the actual limiting value 
of the sequence. 

4. Show that the sequence is bounded and monotonic. A sequence (an ) is 
bounded if there is a finite number B such that I an I ::; B for all n. The sequence 
is monotonic if it is either non-increasing or non-decreasing. For example, (an ) 
is monotonically non-increasing if an+ l ::; an for all n. 
Bounded monotonic sequences are good, because they always converge. To 
see this, argue by contradiction : if the sequence did not converge, it would not 
have the Cauchy property, etc. But please note: the limit of the sequence need 
not be the bound B !  Construct an example to make sure you understand this . 

5. The Squeeze Principle. Show that the terms of the sequence are bounded above 
and below by the terms of two convergent sequences that converge to the same 
limit. For example, suppose that for all n, we have 

0 <  Xn < (0.9t . 

2See [36] for more information about this and other "foundational" issues regarding the real numbers. 
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This forces Xn -t O. Conversely, if the tenus of a sequence are greater in ab­
solute value than the corresponding tenus of a sequence that diverges (has 
infinite limit), then the sequence in question also diverges. 

6 .  Use Big-Oh and Little-oh Analysis. Most convergence investigations require 
estimates and comparisons. The big- and little-oh notations give us a system­
atic way to describe growth rates of functions as the variable tends towards 
infinity or zero. 
We say that f(x) = O(g(x) ) ("f is big-Oh g") if there exists a constant C such 
that If(n) 1 ::; qg(n) 1 for all sufficiently large n. We say that f(x) = o(g(x) ) 
if limx--->oo f(x) /g(x) = O. For example, f(x) = O(x3 ) means that, for large 
enough x, we can bound f(x) by a cubic. On the other hand, f(x) = o(x3 ) 
means that f(x) grows fundamentally slower than a cubic. 
We can also use this notation to describe behavior near zero. If we say f(x) = 
O(g(x) )  "as x -t 0," this means that f(x) is bounded by a constant multiple of 
g(x) for sufficiently small, but nonzero values of x. Likewise, we can define 
f(x) = o(g(x) ) as x -t O. 
This notation is useful for two reasons :  it allows us to focus on the parts of a 
function "that matter." For example, when x is small, it may be very helpful 
to know that f(x) = x + O( v'x) as x -t 0, especially if we are comparing it, 
say, with another function that is x + O( V'x) as x -t O. Also, we can do simple 
algebra with the "oh" functions. For example, If f(x) = O(xl ) ,  then xf(x) = 
O(x3 ) ,  etc . 

The next few examples illustrate some of these ideas . In the first example, our 
goals are modest-just to find some decent bounds for an infinite sequence. However, 
the process is instructive. 

Example 9.2.1 Let an = ( I  + 1 /2) ( 1  + 1 /4) · · ·  ( 1  + 1 /2n ) . Find upper and lower 
bounds a, b such that a ::;  lim an ::; b. n--->oo 

Solution : Define the product 

S(x, n) = ( 1  + x) ( 1 + xl )  . . .  ( 1  + � ) ,  

where 0 < x < 1 . What we are interested in i s  the limiting value of S(x, n) a s  n -t 00, 
which we wil l  denote by S(x) . 

By mUltiplying out but ignoring repeated tenus, it is clear that 

(4) 

since all powers of x will appear in the product (with coefficients of at least I ) . 
To get an inequality going the other direction, we need a more subtle analysis . We 

claim that for any integer m, we have 
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To see why this is true, use the binomial theorem3 to get 

1 + - = I + m- + - +  - +  - +  . . .  
( 1 ) m 1 (m) 1 (m) 1 (m) 1 

m m 2 m2 3 m3 4 m4 

m(m - I )  m (m - I ) (m - 2) m(m - l ) (m - 2) (m - 3 )  
= I + I + 

2 '  2 + 
3 ' 3 + 

4 ' 4 + . . .  
. m .m .m 

I 1 I 
< 1 + 1 + - + - + - + · · ·  

2 !  3 !  4 !  
= e. 

Consequently, ( I  + m)  < em , so we have 

S (x , n) = ( I  + x) ( 1  + �) . . .  ( I  + XZ) 

< (/(/2 . . .  (/" 

= (/+xZ+ . . .  +x" . 
Summing the geometric series, we conclude that 

_1_ < S(x) < (/I( I -x) , I - x 

for 0 < x < 1 .  Can these bounds be improved? • 

Example 9.2.2 Fix a > I ,  and consider the sequence (xn )n?:O defined by Xo = a, and 

Xn+ 1 = � (xn + :) , n = O, I , 2 , . . . .  

Does this sequence converge, and if so, to what? 

Solution : Let us try an example where a = 5 . Then we have 

Xo = 5 ,  

X I = � (5 + �) = 3 

X2 = � (3 + �) = � .  
Observe that the values (so far) are strictly decreasing. Will this always be the case? 
Let us visualize the evolution of the sequence. If we draw the graphs of y = 5/ x and 
y = x, we can construct a neat algorithm for producing the values of this sequence, 
for Xn+ 1 is the average of the two numbers Xn and 5/xn .  In the picture below, the y­
coordinates of points B and A are respectively Xo and 5/ Xo . Notice that the y-coordinate 
of the midpoint of the line segment AB is the average of these two numbers, which is 
equal to XI . 

30r use the fact that Iimm�"" ( I + I /m)m = e along with an analysis of the derivative of the function f(x) = 

( I + I lx)x to show that this limit is attained from below. 
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y = x  

2 � � 4 • 6 8 

y = 5/x 

Next, draw a horizontal line left from this midpoint until it intersects the graph of 
y = x (at C) .  The coordinates of C are (Xl , Xl ) ,  and we can drop a vertical line from C 
until it meets the graph of y = 51x (at D). By the same reasoning as before, X2 is the 
y-coordinate of the midpoint of segment CD. 

Continuing this process, we reach the point E = (X2 , X2 ) ,  and it seems clear from 
this picture that if we keep going, we will converge to the intersection of the two 
graphs, which is the point ( v's, v's) .  

Thus w e  conjecture that limn-.oo xn = v's. However, the picture i s  not a rigorous 
proof, but an aid to reasoning. To show convergence with this picture, we would 
need to argue carefully why we will never "bounce away" from the convergence point. 
While it is possible to rigorize this, let's change gears and analyze the general problem 
algebraically. 

The picture suggests two things : that the sequence decreases monotonically, and 
that it decreases to Va. To prove monotonicity, we must show that Xn+ l :S Xn • This is 
easy to do by computing the difference 

_ _ _ (x� + a ) _ 2x� - x� - a  _ � - a  
Xn Xn+ l - Xn 2xn 

-
2xn - 2xn ' 

which is non-negative as long as x� 2 a .  And this last inequality is true; it is a simple 
consequence of the AM-OM inequality (see page 1 76) :  

so Xn+ l 2 Va no matter what Xn is equal to.4 Since Xo = a > Va, all terms of the 
sequence are greater than or equal to Va. 

4 Instead of studying the difference Xn - Xn+ 1 ,  it is just as easy to look at the ratio xn+ 1 /  Xn • This is always less 

than or equal to I (using a little algebra and the fact that Xn � Va). 
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Since the sequence is monotonic and bounded, it must converge. Now let us show 
that it converges to Va. Since 0 is a much easier number to work with, let us define 
the sequence of "error" values En by 

En : =  Xn - Va, 

and show that En -+ O. Note that the En are all non-negative. Now we look at the ratio 
of En+ !  to En to see how the error changes, hoping that it decreases dramatically. We 
have (aren ' t  you glad you studied factoring in Section 5 .2?) 

Thus 

En+ !  = Xn+ !  - Va 

= � (xn + �) - Va  2 Xn 
x� + a - 2xn Va  

2xn 
(xn - Va)2 

2xn 
E2 n 
2xn 

En+ !  En Xn - Va Xn 1 
-- = - =  < - = - .  En 2xn 2xn 2xn 2 

Since this ratio is also positive, we are guaranteed that limn-+oo En = 0, using the 
squeeze principle on page 3 1 8 . 

We are done; we have shown that Xn -+ Va. • 

The trickiest part in the example above was guessing that the limit was Va. What 
if we hadn 't been lucky enough to have a nice picture? There is a simple but very 
productive tool that often works when a sequence is defined recursively. Let us apply 
it to the previous example. If Xn -+ L, then for really large n, both Xn and xn+ ! approach 
L. Thus, as n approaches infinity, the equation Xn+ !  = (xn + a/xn ) /2 becomes 

L = � (L + I) ' 

and a tiny bit of algebra yields L = Va. This solve for the limit tool does not prove 
that the limit exists, but it does show us what the limit must equal if it exists. 

Here is a tricky problem that has several solutions. We will present one that em­
ploys big-Oh estimates. 

Example 9.2.3 (Putnam 1 990) Is v'2 the limit of a sequence of numbers of the form 
ifJi - Tm (n , m  = 0, 1 , 2 , . . .  )? 

Partial Solution: Your intuition should suggest that the answer is yes, because, 
for "large enough integers, cube roots get closer to each other, so we can approach any 
number." Let 's sketch a solution that formalizes this idea. 
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1 . First, show that V'n + 1 - Tn = O(n-2/3 ) .  
2. All that matters about O(n-2/3 ) i s  that i t  can be made arbitrarily small for large 

enough n. So now let 's try to get differences of cube roots close to a particular 
number, say, n. If we wanted to get just moderately close, we could look at the 
sequence 

?fil, ?/28, m, V'3Q, . . .  
that begins at 3 < n and partitions the rest of the number line into intervals that 
are no wider than V'28 - 3. If we wanted to get even closer, we could start at 
3, as before, but represented by the difference V'103 - .j73. So now we have 
the more finely spaced sequence 

3 ,  V'l OO I  - 7 , V'1 002 - 7 ,  . . . .  

3 .  Make this rigorous, and general (not just for n) and you 're done. 

Continuity 

Informally, a function is continuous if it is possible to draw its graph without lifting the 
pencil. Of the many equivalent formal definitions, the following is one of the easiest 
to use. 

Let f :  D � IR and let a E D. We say that f is continuous at a if 

lim f(xn ) = f(a) 
n-+oo 

for all sequences (xn ) in D with limit a .  

We call f continuous on the set D if f is continuous at al l  points in D.  
Continuity is a condition that you probably take for granted. This i s  because virtu­

ally every function that you have encountered (certainly most that can be written with a 
simple formula) are continuous .5 For example, all elementary functions (finite combi­
nations of polynomials, rational functions, trig and inverse trig functions, exponential 
and logarithmic functions, and radicals) are continuous at all points in their domains . 

Consequently, we will concentrate on the many good properties that continuous 
functions possess. Here are two extremely useful ones . 

Intermediate-Value Theorem (IVT) If f is continuous on the closed inter­
val [a , b] ,  then f assumes all values between f(a) and f(b) . In other words, if y 
lies between f(a) and f(b) , then there exists x E [a , b] such that f(x) = y. 
Extreme-Value Theorem If f is continuous on the closed interval [a , b] ,  then 
f attains minimum and maximum values on this interval . In other words, there 
exists u, v E [a , b] such that f(u) � f(x) and f(v) ? f(x) for all x E [a , b] . 

The extreme-value theorem seems almost without content, but examine the hy­
pothesis carefully. If the domain is not a closed interval, then the conclusion can fail . 

SNotable exceptions are the floor and ceiling functions LxJ and rxl -
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For example, f(x) := l /x is continuous on (0, 5 ) ,  but achieves neither maximum nor 
minimum values on this interval . 

On the other hand, the IVT, while "obvious" (see Problem 9.2.22 for hints about 
its proof) , has many immediate applications. Here is one simple example. The crux 
move, defining a new function, is a typical tactic in problems of this kind. 

Example 9.2.4 Let f : [0 , 1] ---+ [0, 1] be continuous. Prove that f has a fixed point; 
i .e . ,  there exists x E [0, 1] such that f(x) = x. 

Solution : Let g (x) := f(x) - x. Note that g is continuous (since it is the difference 
of two continuous functions), and that g(O) = f(O) 2: 0 and g( 1 )  = f( 1 )  - 1 :S O. By 
the IVT, there exists u E [0, 1 ]  such that g( u) = O. But this implies that f( u) = u. • 

Uniform Continuity 

Continuous functions on a closed interval (i .e . , the domain is a closed interval) possess 
another important property, that of uniform continuity. Informally, this means that 
the amount of "wiggle" in the graph is constrained in the same way throughout the 
domain. More precisely, 

A function f : A ---+ B is uniformly continuous on A if, for each e > 0, 
there exists 8 >  0 such that if XI , X2 E A satisfy IX I - x2 1  < 8 ,  then 
If(x t }  - f(X2 ) I < e . 

The important thing in this definition is that the value of 8 depends only on e 
and not on the x-value. For each positive e, there is a single 8 that works everywhere 
on the domain. Because it is rather difficult to prove that all continuous functions on 
closed intervals are uniformly continuous, the concept of uniform continuity is not 
often introduced in elementary calculus classes. But it is such a useful idea that we 
will accept it, for now, on faith.6 

Example 9.2.5 The function f(x) = x2 is uniformly continuous on [-3 , 3] . As long 
as IX I  - x2 1 < 8, we are guaranteed that If (xt } - f(X2 ) I < 68 . It is easy to see why: 
For any Xl , X2 E [- 3 , 3] , the largest possible value for IXI + x2 1 is 6, and then 

If(xt }  - f(X2 ) I = IXI + x2 1 · lx l - x2 1 :S 6 1x l - x2 1 · 
Consequently, if we want to be sure that the function values are within e, we need only 
require that the x-values be within e/6 . 

Example 9.2.6 The function f(x) = l /x defined on (0, 00)  is not uniformly continu­
ous. For x-values close to 0, the function changes too fast. Given an e, no single 8 
will do, if the x-values are sufficiently close to O. Note, however, that on any closed 
interval, f(x) is uniformly continuous. For example, verify that if we are restricting 
our attention to x E [2 , 1 000] , then the "8 response" to the "e challenge" is 8 = 4e. 
In other words, if we are challenged to constrain the f-values to be within e of each 
other, we need only choose x-values within 4e of one another. 

6Consult any of the texts mentioned on page 357.  
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Uniform continuity is just what we need to complete our proof of the FTC. 

Example 9.2.7 Show that 

lim 
(E (t ) ) 

= 0, .11-+0 .1t 

where E (t )  was the shaded area in  the diagram on page 3 17 . 

Solution: Since f is defined on the closed interval [a , b] and is continuous, it is 
uniformly continuous. Pick e > 0. By uniform continuity, there is a small enough .1t 
so that no matter what t is, the distance between f(t )  and f(t + .1t) is less than e .  In 
other words, 

I f(t + .1t)  - f(t ) 1 < e . 
Thus the area of the "error" E (t )  (in absolute value) is at most e . .1t,  and hence 

IE (t ) 1 e · .1 t -- < -- = e . .1t .1t  
In  other words, no  matter how small we  pick e,  we can pick a small enough .1t to 
guarantee that E (t )  /.1t is less than e . Hence the limit is 0, and we have proven the 
FTC. • 

Uniform continuity, as you see, is a powerful technical tool. But remember, the 
crux idea in our proof of the FTC was to picture a moving curtain. This simple picture 
is easy to remember and immediately leads to a one-sentence "proof' that lacks tech­
nical details. The details are important, but the picture--or at least, the idea behind the 
picture-is fundamental. 

Problems and Exercises 

The problems in this chapter are among the most challenging in the book, because "calculus" is a 
huge, open-ended subject that quickly speeds off into higher mathematics . We highly recommend 
that you supplement your reading by perusing some of the calculus texts mentioned on 357. 

9.2.8 Arnie plays Scrabble with Betty. He has kept 
track of the percentage of games that he has won since 
they began playing. He told his friend Carla, "Some 
time ago, my win percentage was less than p percent, 
but as of today, it is more than p percent." Carla said, "I 
can prove that at some time in the past, your win per­
centage was exactly p percent." Assuming that Carla's 
assertion is correct, what can you assert about p? (In­
spired by a 2004 Putnam problem.) 

9.2.9 Define the sequence (an ) by a l = 1 and an = 

1 + 1 /  an- I for n 2': 1 .  Discuss the convergence of this 
sequence. 

both converge. What can you say about the conver­
gence of the sequence (bn ) ? 
9.2. 1 1  Interpret the meaning of 

9.2.12 Fix a > I ,  and consider the sequence (xn )n�O 
defined by Xo > va and 

Xn + a Xn+ 1  = Xn + 1 ' n = 0, 1 , 2 , . . . . 

9.2.10 Suppose that the sequences (an ) and (an /bn ) Does this sequence converge, and if so, to what? Re­
late this to Example 9.2.2 on page 320. 
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9.2.13 Let (an ) be a (possibly infinite) sequence of 
positive integers . A creature like 

ao + -----;---

a ( + I a2 + --I­a3 + -

is called a continued fraction and is sometimes de­
noted by [ao , a ( , a2 , " ' ] ' 

(a) Give a rigorous interpretation of the number 
[ao , a (  , a2 , · ·  . ] .  

(b) Evaluate [ 1 , 1 , 1 , . . . ] .  
(c) Evaluate [ 1 , 2 , 1 , 2 , . . . ] .  
(d) Find a sequence (an ) o f  positive integers such 

that v'2 = [ao , a ( , a2 , . . .  ]. Can there be more 
than one sequence? 

(e) Show that there does not exist a repeating se­
quence (an ) such that 

V'2 = [ao , a ( , a2 , "  . ] .  

9.2. 14 Carefully prove the assertion stated on 
page 3 1 8 , that all bounded monotonic sequences con­
verge. 

9.2.15 Dense Sets. A subset S of the real numbers is 
called dense if, given any real number x, there are ele­
ments of S that are arbitrarily close to x. For example, 
Q is dense, since any real number can be approximated 
arbitrarily well with fractions ( look at decimal approx­
imations) .  Here is a formal definition: 

A set of real numbers S is dense if, given 
any x E lR and e > 0, there exists s E S 
such that Is - xl < e .  

More generally, we say that the set  S is dense in the 
set T if any t E T can be approximated arbitrarily well 
by elements of S. For example, the set of positive frac­
tions with denominator greater than numerator is dense 
in the unit interval [0, I ] .  

(a) Observe that "S i s  dense i n  T" i s  equivalent 
to saying that for each t E T, there is an in­
finite sequence (sk l of elements in S such that 
lim Sk = t . 

k .... oo 

(b) Show that the set of real numbers that are zeros 
of quadratic equations with integer coefficients 
is dense. 

(c) Let D be the set of dyadic rationals, the ratio­
nal numbers whose denominators are powers of 
two (some examples are 1 /2 , 5/8 , 1037/256). 
Show that D is dense. 

(d) Let S be the set of real numbers in [0, I ] whose 
decimal representation contains no 3s. Show 
that S is not dense in [0, I ] .  

9.2. 16 Define (x) : =  x- lxJ . I n  other words, (x) i s  the 
"fractional part" of x; for example (n) = 0. 1 4 1 59 . . . . 
Let 

a = 0. 1 23456789 10 1 1 1 2 1 3 1 4 1 5 . . . ; 
in other words, ao is the number formed by writing 
every positive integer in order after the decimal point. 
Show that the set 

{ (a) , ( l Oa) , ( l 02a) , . . . } 
is dense in [0, 1 ] (see Problem 9.2. 1 5  for the definition 
of "dense"). 

9.2. 17 Let a be irrational . 

(a) Show that the sequence 

(a) , (2a) , (3a) , . . . 
contains a subsequence that converges to zero. 
Hint: First use the pigeonhole principle to show 
that one can get two points in this sequence ar­
bitrarily close to one another. 

(b) Show that the set 

{ (a ) , (2a) , (3a) , . . .  } 
is dense in [0 , I ] .  (See Problem 9.2. 1 5 for the 
definition of "dense" and Problem 9.2. 1 6 for the 
definition of (x) .) 

9.2. 18 Consider a circle with radius 3 and center at 
the origin. Points A and B have coordinates (2 , 0) and 
(-2 , 0) ,  respectively. If a dart is thrown at the circle, 
then assuming a uniform distribution, it is clear that 
the probabilities of the following two events are equal. 

• The dart is closer to A than to B. 
• The dart is closer to B than to A . 

We call the two points "fairly placed." Is is possible to 
have a third point C on this circle, so that A, B, C are  
all fairly placed? 

9.2. 19 Define the sequence (an ) by ao = a and 
an+ ( = an - a� for n � I .  Discuss the convergence 
of this sequence (it will depend on the initial value a). 



9.2.20 Draw two nonintersecting circles on a piece of 
paper. Show that it is possible to draw a straight line 
that divides each circle into equal halves. That was 
easy. Next, 

(a) What if the two shapes were arbitrary noninter­
secting rectangles, instead of circles? 

(b) What if the two shapes were arbitrary noninter­
secting convex polygons, instead of circles? 

(c) What if the two shapes were arbitrary noninter­
secting "amoebas," possibly not convex? 

9.2.21 (Putnam 1 995) Evaluate 

8 2207 _ 
I 

2207 - 220L 
Express your answer in the form (a + by'C) / d, where 
a, b, c , d are integers . 

9.2.22 Here is an allegory that should provide you 
with a strategy (the "repeated bisection method") for a 
rigorous proof of the intermediate value theorem. Con­
sider the concrete problem of trying to find the square 
of 2 with a calculator that doesn't have a square-root 
key. Since 1 2 = I and 22 = 4, we figure that v'2, if 
it exists, is between I and 2. So now we guess 1 .5 . 
But 1 .52 > 2, so our mystery number lies between I 
and 1 .5 . We try 1 .25. This proves to be too small, so 
next we try � ( 1 . 25 + 1 .5 ) , etc . We thus construct a se­
quence of successive approximations, alternating be­
tween too big and too small, but each approximation 
gets better and better. 

9.2.23 (Leningrad Mathematical Olympiad 1 99 1 )  Let 
1 be continuous and monotonically increasing, with 
1(0) = 0 and I( I )  = 1 .  Prove that 

1 ( /0 ) +1 ( 120 ) + . . .  + / ( �o ) + 

r l ( /0 ) + r l C2
0 ) + · · · + r l ( �o )  � �� . 

9.2.24 (Leningrad Mathematical Olympiad 1 988) Let 
I :  JR -+ JR be continuous, with I(x) · l(f(x) ) = I for 
all x E JR. If I( 1 000) = 999, find 1(500) . 
9.2.25 Let 1 : [0, I ] -+ JR be continuous, and sup­
pose that 1(0) = 1( 1 ) . Show that there is a value 
x E [0, 1 998/ 1 999] satisfying I(x) = I(x + 1 / 1 999) .  
9.2.26 Show that v'n+T - Vri = O( Vri). 
9.2.27 Fill in the details for Example 9.2.3. 
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9.2.28 Use Problem 9.2. 1 7 to get a different solution 
to 9.2.3, by showing that the set 

{ V'n - Vm :  n , m  = 0, 1 , 2 , . . . } 
is dense. 

9.2.29 (Putnam 1 992) For any pair (x, y) of real num­
bers , a sequence (an (x, y) k:::o is defined as follows: 

ao (x, y) = x, 

( ) (an (X, y) )2 + l  an+ 1  x, y = 2 
Find the area of the region 

for n � o. 
{ (x, y) l (an (x, y) k?:o converges } . 

9.2.30 Let (xn ) be a sequence satisfying 

lim (xn - Xn- I ) = O. n--->OO 
Prove that 

lim 
Xn = O. n-+OO n 

9.2.3 1 (Putnam 1 970) Given a sequence (xn ) such that 
lim (xn - Xn-2 ) = O. Prove that n--->oo 

lim 
Xn - Xn- I = O. n---"oo n 

Infin ite Series of Constant Terms 
If (an ) is a sequence of real numbers, we define the in-

00 

finite series � ak to be the limit, if it exists, of the se­
k= 1 n 

quence of partial sums (sn ) ,  where sn := � ak . Prob-
k= 1  

lems 9.2.32-9.2.38 below play around with infinite se-
ries of constant terms. (You may want to reread the 
section on infinite series in Chapter 5, and in particu­
lar Example 5.3 .4 on page 1 6 1 . ) 
9.2.32 Show rigorously that if I r l < I ,  then 

a + ar + ar2 + ar3 + . . .  = _a_ . l - r 
00 

9.2.33 Let � ak be a convergent infinite series, i .e . ,  
k= 1  

the partial sums converge. Prove that 

(a) lim an = 0; n--->oo 
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00 

9.2.34 (Putnam 1 994) Let (an ) be a sequence of posi­
tive reals such that. for all n. an ::; a2n + a2n+ I . Prove 

that the sum � an converges if and only if the product 
n=O 

00 00 

that � an diverges . il ( 1  + an ) converges. 
n= 1 

9.2.35 Let (an ) be a sequence whose terms alter­
nate in sign. and whose terms decrease monoton­
ically to zero in absolute value. (For example. 

9.2.38 Let (ak ) be the sequence used as in Prob-
00 

lem 9.2.35. This problem showed that � an con­
n= 1 00 

1 , - 1 /2 , + 1 /3 , - 1 /4 , . . . . ) Show that � an con-
n= 1 verges .  

00 

9.2.36 Suppose that an > 0 for all n and � an di-
n=O 

verges. Prove that it is possible for f � to ei-
n=O 1 + nan 

ther converge or diverge. depending on the choice of 
the sequence (an ) . 
9.2.37 Sums and Products. Let an > 0 for all n. Prove 

9.3 Differentiation and I ntegration 

00 

verges .  Notice also that � I an I diverges (it is the har-
n= 1 

monic series. after all) .  Use these two facts to show 
that given any real number x. it is possible to rearrange 
the terms of the sequence (an ) so that the new sum 
converges to x. By "rearrange" we mean reorder. For 
example. one rearrangement would be the series 

1 I 1 1 
3" + 19 - 100 + liT - 1  + . . . . 

9.2.39 Can you improve the bounds found in Exam­
ple 9.2. 1 ?  

Approximation and Curve Sketching 

You certainly know that the derivative f' {X) of the function f{x) has two interpreta­
tions :  a dynamic definition as rate of change [of f{x) with respect to x] , and a geometric 
definition as slope of the tangent line to the graph of y = f{x) at the point (x, f{x) ) .  

The rate-of-change definition i s  especially useful for understanding how functions 
grow. More elaborate infonnation comes from the second derivative f"{x) , which of 
course measures how fast the derivative is changing. Sometimes just simple analysis 
of the signs of f' and f" is enough to solve fairly complicated problems.  

Example 9.3.1 Reread Example 2 .2 .7 on page 34,  in which we studied the inequality 
p{x) � p' (x) for a polynomial function p. Recall that we reduced the original problem 
to the following assertion : 

Prove that if p{x) is a polynomial with even degree with positive lead­
ing coefficient, and p{x) - p" {x) � o for all real x, then p{x) � O for 
all real x. 

Solution : The hypothesis that p{x) has even degree with positive leading coeffi­
cient means that 

lim p{x) = lim p{x) = +00; 
x--+-oo x--++oo 

therefore the minimum value of p{x) is finite (since p is a polynomial , it only "blows 
up" as x ---+ ±oo). Now let us argue by contradiction, and assume that p{x) is negative 
for some values of x. Let p{a) < 0 be the minimum value of the function. Recall 
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that at relative minima, the second derivative is non-negative . Thus p" (a) 2 o. But 
p(a) 2 p" (a) by hypothesis, which contradicts p(a) < O. • 

Here is another polynomial example which adds analysis of the derivative to stan­
dard polynomial techniques . 

Example 9.3.2 (United Kingdom 1 995) Let a, b, e be real numbers satisfying a < b < 
e, a + b + e = 6 and ab + be + ea = 9 . Prove that 0 < a < 1 < b < 3 < e < 4. 

Solution: We are given information about a + b + e and ab + be + ea , which sug­
gests that we look at the monic cubic polynomial P (x) whose zeros are a, b ,  e. We 
have 

P (x) = x3 - 6.x2 + 9x - k, 

where k = abe, using the relationship between zeros and coefficients (see page 1 68) . 
We must investigate the zeros of P (x) , and to this end we draw a rough sketch of the 
graph of this function. The graph of P (x) must look something like the following 
picture. 

----f----------:-..-----'---+---- x 

We have not included the y-axis, because we are not yet sure of the signs of a, b, e .  
But what we are sure of is that for sufficiently large negative values of x, P (x) will 
be negative, since the leading term x3 has this behavior, and it dominates the other 
terms of P (x) if x is a large enough negative number. Likewise, for sufficiently large 
positive x, P (x) will be positive. Since the zeros of P (x) are a < b < e, P (x) will 
have to be positive for x-values between a and b, with a relative maximum at some 
point U E (a, b) , and P (x) will attain negative values when b < x < e, with a relative 
minimum at some point v E (b, e) . 

We can find u and v by computing the derivative 

P' (x) = 3.x2 - 12x + 9  = 3 (x - 1 ) (x - 3 ) .  

Thus u = 1 ,  v = 3 and w e  have /( 1 )  > 0, /(3)  < 0 ,  s o  a < 1 < b < 3 < e. 
It remains to show that a > 0 and e < 4. To do so, all we need to show is that 

P(O) < 0 and P (4) > O. We will be able to determine the signs of these quantities if we 
can discover more about the unknown quantity k. But this is easy: P ( 1 )  = 4 - k > 0 and 
P (3 ) = -k < 0, so O < k < 4. Therefore we have P (O) = -k < 0 and P (4) = 4 - k  > 0, 
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as desired. • 

The tangent-line definition of the derivative stems from the formal definition of 
the derivative as a limit. One of the first things you learned in your calculus class was 
the definition 

f' (a) :=  lim f(x) - f(a) 
= lim f(a + h) - f(a)

. x--->a x - a h--->O h 

The fractions in the definition compute the slope of "secant lines" that approach the 
tangent line in the limit . This suggests a useful, but less well-known, application of 
the derivative, the tangent-line approximation to the function. For example, suppose 
that f(3 )  = 2 and f' (3 )  = 4. Then 

lim 
f(3 + h) - f(3 )  

= 4. 
h--->O h 

Thus when h is small in absolute value, (/(3  + h) - f(3 ) ) /h will be close to 4; there­
fore, 

f(3 + h) � f(3)  + 4h = 2 + 4h . 

In other words, the function 1!(h) : =  2 + 4h is the best linear approximation to f(3 + h) ,  
in the sense that i t  is the only linear function 1!( h) that satisfies 

I · 
f(3 + h) - 1!(h) _ 0 1m 

h 
- . 

h--->O 

In other words, 1!(h) is the only linear function that agrees with f(3 + h) and f' (3 + h) 
when h = 0. 

In general , analyzing f(a + h)  with its tangent-line approximation f(a) + hf' (a) 
is very useful, especially when combined with other geometric information, such as 
convexity. 

Example 9.3.3 Prove Bernoulli 's Inequality: 

( 1  + x)a 2: 1 + ax, 

for x > - 1  and a 2: 1 ,  with equality when x = O. 

Solution : For integer a, this can be proven by induction, and indeed, this was 
Problem 2.3 .33 on page 5 1 .  But induction won 't work for arbitrary real a. Instead, 
define f(u) := ua , and note that f' (u)  = aua- I and J" (u ) = a(a - 1 )ua-2 • Thus f( 1 )  = 
I , !, ( 1 )  = a and J" (u ) > 0 as long as u > 0 (provided, of course, that a 2: 1 ) . Thus the 
graph y = f(u)  is concave-up, for all u 2: 0, as shown below. 
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y = j(x) 

slope = <X  

1 .5 2 

Therefore, the graph of y = f(u) lies above the tangent line for all u 2: O. An­
other way of saying this (make the substitution x = u - 1 )  is that f( 1 + x) is always 
strictly greater than its linear approximation 1 + ax, except when x = 0, in which case 
we have equality [corresponding to the point ( 1 ,  1 )  on the graph] .  We have established 
Bernoulli 's inequality.7 _ 

The Mean Value Theorem 

One difficulty that many beginners have with calculus problems is confusion over what 
should be rigorous and what can be assumed on faith as "intuitively obvious." This is 
not an easy issue to resolve, for some of the simplest, most "obvious" statements in­
volve deep, hard-to-prove properties of the real numbers and differentiable functions .8 

We are not trying to be a real analysis textbook, and will not attempt to prove all of 
these statements. But we will present, with a "hand-waving" proof, one important the­
oretical tool that will allow you to begin to think more rigorously about many problems 
involving differentiable functions. 

We begin with Rolle's theorem, which certainly falls into the "intuitively obvi­
ous" category. 

If f(x) is continuous on [a , b] and differentiable on (a, b) ,  and f(a) = 
f(b) , then there is a point u E (a, b) at which f' (u) = O. 

The "proof' is a matter of drawing a picture. There will be a local minimum or maxi­
mum between a and b, at which the derivative will equal zero. 

7The sophisticated reader may object that we need Bernoulli's inequality (or something like it) in the first 

place in order to compute I' (u) = au"- l when a is not rational. This is not true; for example, see the brilliant 

treatment in [29), pp. 229-23 1 ,  which uses the geometry of complex numbers in a surprising way. 

SA function 1 is called differentiable on the open interval (a, b) if I' (x) exists for all x E (a, b) .  We won 't 

worry about differentiability at the endpoints a and b; there is a technical problem about how limits should be 
defined there. 
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a u b 

Rolle 's theorem has an important generalization, the mean value theorem. 

If f(x) is continuous on [a , b] and differentiable on (a, b) , then there is 
a point u E  (a, b) at which 

f' (u)  = 
f(b�=�(a)

. 

In geometric terms, the mean value theorem asserts that there is an x-value u E (a, b) 
at which the slope of the tangent line at (u , j(u) ) is parallel to the secant line joining 
(a , j(a) ) and (b , j(b) ) .  And the proof is just one sentence: 

Tilt the picture for Rolle 's theorem! 

a u b 

The mean value theorem connects a "global" property of a function (its average rate of 
change over the interval [a , b] ) with a "local" property (the value of its derivative at a 
specific point) and is thus a deeper and more useful fact than is apparent at first glance. 
Here is an example. 

Example 9.3.4 Suppose f is differentiable on ( - 00 , 00 ) and there is a constant k < 1 
such that If' (x) I :S k for all real x. Show that f has a fixed point. 

Solution : Recall from Example 9 .2.4 on page 324 that a fixed point is a point x 
such that f(x) = x. Thus we must show that the graphs of y = f(x) and y = x will 
intersect. Without loss of generality, suppose that f(O) = v > 0 as shown. 
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y = f( x) (fantasy) 

.

•

.
. .

•

•
•

.
. . y = x  

.
.

.
. . . . 

�--- y = f(x) (reality) 

. . . . . � 

The picture gives us a vague idea. Since the derivative is at most k in absolute value, 
and since k < 1 ,  the graph of y = f(x) to the right of the y-axis will be trapped within 
the dotted-line "cone," and will eventually intersect the graph of y = x. The mean 
value theorem lets us prove this in a satisfying way. Suppose that for all x 2: 0, we 
have f(x) =1= x . Then (IVT) we must have f(x) > x. Pick b > 0 (think large). By the 
mean value theorem, there is a u E (O, b) such that 

Since f(b) > b, we have 

f' ( ) =
f(b) - f(O)

=
f(b) - v

. u 
b - O b 

b - v V f' (u) > -b-
= 1 - b '  

Since b can be arbitrarily large, we can arrange things so that the minimum value of 
f' (u) becomes arbitrarily close to 1 .  But this contradicts If' (u) 1 � k < 1 .  Thus f(x) 
must equal x for some x > O. 

If f(O) < 0, the argument is similar (draw the "cone" to the left of the y-axis, etc . ) _ 

The satisfying thing about this argument was the role that the mean value theorem 
played in guaranteeing exactly the right derivative values to get the desired contradic­
tion. 

The next example is a rather tricky problem that uses Rolle 's theorem infinitely 
many times. 

Example 9.3.5 (Putnam 1 992) Let f be an infinitely differentiable real-valued func­
tion defined on the real numbers . If 

n = 1 , 2 , 3 , . . . , 



334 CHAPTER 9 CALCULUS 

compute the values of the derivatives f(k) (0) , k = 1 , 2 , 3 , . . . . (We are using the nota­
tion f(k) for the kth derivative of f.) 

Partial Solution : At first you might guess that we can let n = 1 /  x and get 

1 
x2 1 f(x) = -1 - = x2 + 1 - + 1  x2 

for all x. The trouble with this is that it is only valid for those values of x for which 
l /x is an integer ! So we know nothing at all about the behavior of f(x) except at the 
points x = 1 , 1 /2 , 1 /3 ,  . . . . 

But wait ! The limit of the sequence 1 ,  1 /2 ,  1 /3 ,  . . .  is 0, and the problem is only 
asking for the behavior of f(x) at x = O. So the strategy is clear: wishful thinking 
suggests that f(x) and its derivatives agree with the behavior of the function w(x) := 
1 /  (x2 + 1 )  at x = O. 

In other words, we want to show that the function 

v(x) : = f(x) - w(x) 
satisfies 

V(k) (O) = 0, k = 1 , 2 , 3 , . . . . 
This isn ' t  too hard to show, since v(x) is "almost" equal to 0 and gets more like 0 as x 
approaches 0 from the right. More precisely, we have 

o = v( 1 )  = v ( �) = v ( �) = . . . . 

Since v(x) is continuous, this means that v(O) = O. Here's why: Let 

Then lim Xn = 0 and 
n-tOO 

1 1 Xl = 1 ,  X2 = 2" '  X3 = 3" '  . . . .  

lim v (xn ) = lim 0 = 0, 
n-+oo n-i'OO 

and v(x) = 0 by the definition of continuity (see page 323). 

(5) 

Now you complete the argument ! Use Rolle 's theorem to get information about 
the derivative, as x ---t 0, etc .9 

A Useful Tool 

We will conclude our discussion of differentiation with two examples that illustrate a 
useful idea inspired by logarithmic differentiation. 

9See Example 9.4.3 on page 346 for a neat way to compute the derivatives of I / (r + I ) at O. 
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n 

Example 9.3.6 Logarithmic Differentiation. Let f(x) = 1] (x + k) . Find f' ( I ) .  

Solution : Differentiating a product is not that hard, but a more elegant method is 
to convert to a sum first by taking logarithms. We have 

log (f(x) ) = logx + log (x + 1 )  + . . . + log (x + n) , 

and differentiation yields 

Thus 

f' (x) 1 1 1 
-- = - + -- + . . .  + -- . f(x) x x + 1 x + n 

f' ( I ) = (n + l ) !  ( 1 + ! + . . .  + _
1
_ ) . 

2 n + l 
• 

Logarithmic differentiation is not just a tool for computing derivatives. It is part of 
a larger idea: developing a bank of useful derivatives of "functions of a function" that 
you can recognize to analyze the original function. For example, if a problem contains 
or can be made to contain the quantity f' (x) /f(x) , then antidifferentiation will yield 
the logarithm of f(x) , which in turn will shed light on f(x) . Here is another example 
of this style of reasoning. 

Example 9.3.7 (Putnam 1 997) Let f be a twice-differentiable real-valued function 
satisfying 

f(x) + f" (x) = -xg(x)J' (x) , (6) 

where g(x) � 0 for all real x. Prove that If(x) I is bounded, i .e . ,  show that there exists 
a constant C such that If(x) 1 � C for all x. 

Partial Solution : The differential equation cannot easily be solved for f(x) , and 
integration likewise doesn't seem to help. However, the left-hand side of (6) is similar 
to the derivative of something familiar. Observe that 

! (f(x)2 ) = 2f(x)f' (x) . 

This suggests that we multiply both sides of (6) by f' (x) , getting 

f(x)J' (x) + f' (x)f" (x) = -xg (x) (f' (x) )2 . 

Thus 

(7) 

Now let x � O. The right-hand side of (7) will be nonpositive, which means that 
f(x)2 + f' (x)2 must be non-increasing for x � O. Hence 

f(x)2 + J' (x)2 � f(0)2 + J' (0) 2 
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for all x 2 o. This certainly implies that [(x)2 � [(Of + [' (0) 2 . Thus there is a 
constant 

C := J [(0)2 + [' (0) 2 , 

for which I[ (x) I � C for all x 2 o. We will be done if we can do the argument for 
x < o. We leave that as an exercise. 

Integration 

The fundamental theorem of calculus gives us a method for computing definite inte­
grals .  We are not concerned here with the process of antidifferentiation-we assume 
that you are well versed in the various techniques-but rather with a better understand­
ing of the different ways to view definite integrals .  There is a lot of interplay among 
summation, integration, and inequalities; many problems exploit this. 

n n 
Example 9.3.8 Compute lim � -k2 2 . n--->oo gl + n 

Solution : The problem is impenetrable until we realize that we are faced not with 
a sum, but the limit of a sum, and that is exactly what definite integrals are. So let us 
try to work backwards and construct a definite integral whose value is the given limit. 

Recall that we can approximate the definite integral lb [(x)dx by the sum 

1 
Sn :=  - (/(a) + [(a + L1 ) + [(a + 2L1 ) + . . .  + [(b - L1 ) ) , n 

where L1 = 
b - a . Indeed, if [ is integrable, 

n 

a 

lim Sn = rb [(x)dx. n---+oo Ja 

b 

n 
Now it is just a matter of getting � k2 

n 
2 to look like Sn for appropriately gl + n 

chosen [(x) , a, and b. The crux move is to extract something that looks like L1 = 
(b - a) / n. Observe that 
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If k ranges from 1 to n, then k2 / n2 ranges from 1 / n2 to 1 ,  which suggests that we 
should consider a = O, b = 1 ,  and f(x) = 1 / (x2 + 1 ) .  It i s  easy to verify that this 
works; i .e . ,  

� t _

n 
= � (f (�) + f (�) + . . .  + f (�) ) . n t:l k2 + n2 n n n n 

Thus the limit as n ---+ 00 is equal to 

r 1 r l dx ] 1 1r 1r 
io f(x)dx = io 1 + x2 = arctanx 

0 
= 4 - 0 = 4 ·  • 

Even finite sums can be analyzed with integrals .  If the functions involved are 
monotonic, then it is possible to relate integrals and sums with inequalities, as in the 
next example. 

Example 9.3.9 (Putnam 1 996) Show that for every positive integer n, 

( 2n; 1 ) 2";1 < 1 . 3 . S . . .  (2n - l ) < ( 2n: 1 ) ¥ 

Solution : The es in the denominator along with the ugly exponents strongly sug­
gest a simplifying strategy: take logarithms ! This transforms the alleged inequality 
into 

2n - l 2n + l 
-

2
- (log(2n - l ) - 1 ) < S < -

2
- ( log (2n + 1 )  - 1 ) ,  

where 
S = log 1 + log 3 + log S + . . .  + log (2n - 1 ) .  

Let us take a closer look at S. Because logx i s  monotonically increasing, i t  i s  apparent 
from the picture (here L1 = 2) that 

r2n- 1  r2n+ 1 
il 

logxdx < 2S < 
il logxdx. 

�""-r-1 Y = log x 

3 5 7 2n - 1 2n + l  

The inequality now follows, since an easy application of integration by parts yields 
f logxdx = x logx - x + c. • 
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Symmetry and Transformations 

Problem 3 . 1 .26 on page 73 asked for the evaluation of the preposterously nasty integral 

r/2 dx 
Jo 1 + (tanx) V2 · 

We assume you have already solved this--on your own after studying the similar-but­
easier Example 3 . 1 .7 or with the assistance of the hint online. If not, here is a brief 
sketch of a solution. 

Obviously, the v'2 exponent is a red herring, so we make it an arbitrary value a 
and consider 

dx f (x) := 1 + (tanx)a 

The values of f(x) range from 1 to 0 as x ranges from 0 to n/2, with f(n/4) = 1 /2 
right smack in the middle. This suggests that the graph y = f(x) is "symmetric" with 
respect to the central point (n/4, 1 /2 ) ,  which in turn suggests that we look at the 
transformed image of f(x) , namely 

g (x) := f(n/2 - x) . 

Armed with trig knowledge [for example, tan (n/2 - x) = cotx = l / tanx] the problem 
resolves quickly, for it is easy to check that f(x) + g (x) = 1 for all x. Since 

rn/2 rn/2 
Jo f(x)dx = Jo g (x)dx, 

we 're done; the integral equals n / 4. 
Why beat this easy problem to death? To remind you that symmetry comes in 

many forms. For example, we can say that two points are symmetric with respect to 
circle inversion (introduced on page 307) .  This is just as valid a symmetry as a mere 
reflection or rotation. So let 's extract the most from the solution to Problem 3 . 1 .26. 
It worked because there was a transformation x � n /2 - x that was invariant with 
respect to integration, and that allowed us to simplify the integrand in the problem. 

The moral of the story : search for "symmetry," by looking for "natural" transfor­
mations and invariants . Here 's a challenging example . 

Example 9.3.10 (Putnam 1 993) Show that l-l O ( x2 _ X ) 2 jir ( X2 _ x ) 2 r hl ( x2 - x  ) 2 

- 100 x3 - 3x + 1 
dx + 

Ibl x3 - 3x + 1 
dx + Jf&\ x3 - 3x + 1 

dx 

is a rational number. 

Partial Solution : We sketch the idea, leaving the details to you. This is a very 
contrived problem; the limits of integration are not at all random. Call the square root 
of the integrand (same for all three terms) f (x) = (x2 - x) / (x3 - 3x + 1 ) .  Can you find 
a transformation that either leaves f(x)2 alone, or changes it in an instructive way, and 
that does something sensible to the limits of integration? 
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Notice that x � I / ( I -x) maps 1 / 1 1  and 1 / 10 1  respectively to 1 1 / 1 0  and 1 0 1 / 1 00. 
That 's promising. Call this map 'L And miraculously (verify ! ) ,  f( -r(x) ) = f(x) . Thus 
the integral substitution x � -r(x) transforms the second integral into the third. 

Fortified by this triumph, we play around more with -r and discover that it trans­
forms the first integral into the second and the third into the first ! 

So it's easy (with a fair bit of algebra) to write the sum of the three integrals as a 
single integral. The mess has been reduced to 

1- 1 0 
(f(x) ) 2 ( 1  + r (x) + q (x) )  dx, 

- 1 00 

where r (x) , q(x) are rational functions (derivatives of -r, -r 0 -r, etc .) 
Since we are in the miraculous universe of a highly contrived problem, we expect 

another miracle. Perhaps 1 + r + q is the derivative of f. That would make the inte­
grand be f2df , which integrates to f3 /3 .  If that doesn 't happen, don ' t  give up. Look 
for something similar. The problem is ugly, but quite instructive. You may want to 
ask, is there any "geometric" realization of this "symmetry?" _ 

Problems and Exercises 

9.3. 1 1  Prove that if the polynomial P(x) and its 
derivative pI (x) share the zero x = r, then x = r is zero 
of multiplicity greater than I .  [A zero r of P(x) has 
multiplicity m if (x - r) appears m times in the fac­
torization of P(x) . For example, x = I is a zero of 
multiplicity 2 of the polynomial x2 - 2x + I . J 
9.3.12 Let a, b, c, d, e  E lR such that 

b c d e a + - + - + - + - = o. 2 3 4 5  
Show that the polynomial a + bx + cx2 + dx'3 + ex4 has 
at least one real zero. 

9.3.13 A Fable. The following story was told by Doug 
Jungreis to his calculus class at UCLA. It is not com­
pletely true. 

A couple of years ago, I drove up to 
the Bay Area, which is 400 miles, and I 
drove fast, so it took me five hours. At 
the end of the trip, I slowed down, be­
cause I didn 't want to get a ticket, and 
when I got off the freeway, I was trav­
eling at the speed limit. Then a police 
officer pulled me over, and he said, "You 
don 't look like no Mario Andretti," and 
then he said, "You were going a little fast 
there." I said I was going the speed limit, 

but he responded, "Maybe you were a 
little while ago, but earlier, you were 
speeding." I asked how he knew that, and 
he said, "Son, by the mean value theo­
rem of calculus, at some moment in the 
last five hours, you were going at exactly 
80 m.p.h." 

I took the ticket to court, and when 
push carne to shove, the officer was un­
able to prove the mean value theorem be­
yond a reasonable doubt. 

(a) Assuming that the officer could prove the mean 
value theorem, would his statement have been 
correct? Explain. 

(b) Let us change the ending of the story so that 
the officer said, "I can' t  prove the mean value 
theorem, your Honor, but I can prove the in­
termediate value theorem, and using this, I can 
show that there was a time interval of exactly 
one minute during which the defendant drove at 
an average speed of 80 miles per hour." Explain 
his reasoning. 

9.3. 14 Finish up Example 9.3 .7 by discussing the x < 
o case. 

9.3.15 (Putnam 1 994) Find all c such that the graph of 
the function x4 + 9x'3 + cx2 + ax + b meets some line in 
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four distinct points. 

9.3.16 Convert the statement "the tangent line is 
the best linear approximation to the function" into 
a rigorous statement that uses Iittle-oh notation (see 
page 3 19). 

9.3. 17 Let f(x) be a differentiable function that satis­
fies 

f(x + y) = f(x)f(y) 
for all x, y E JR. If f' (0) = 3 , find f(x) . 
9.3.18 Let f(x) be a differentiable function that satis­
fies 

f(xy) = f(x) + f(y) 
for all x , y > O. If f' ( 1 )  = 3 , find f(x) . 
9.3.19 (Putnam 1946) Let f(x) : =  ax2 + bx+ c, where 
a , b , c E JR. If If(x) I :S 1 for Ix l :S I ,  prove that If' (x) I :S 
4 for Ix l :S 1 .  
9.3.20 More About the Mean Value Theorem. 

(a) The "proof' of the mean value theorem on 
page 332 was simply to "tilt" the picture for 
Rolle 's theorem. Prove the mean value theo­
rem slightly more rigorously now, by assuming 
the truth of Rolle 's theorem, and defining a new 
function in such a way that Rolle 's theorem ap­
plied to this new function yields the mean value 
theorem. Use the tilting-picture idea as your 
guide. 

(b) If you succeeded in (a) , you may still grumble 
that you did merely an algebra exercise, really 
nothing new, and certainly achieved no insight 
better than tilting the picture. This is true, but 
the algebraic method is easy to generalize. Use 
it to prove the generalized mean value theo­

rem, which involves two functions :  

Let f(x) and g(x) be continuous 
on [a, b] and differentiable on (a, b) . 
Then there is a point u E (a, b) such 
that 

!' (u) (g(b) - g(a) ) = g' (u) (f(b) -f(a) ) . 
(c) The regular mean value theorem is a special 

case of the generalized mean value theorem. 
Explain why. 

(d) It is still worthwhile to understand the gener­
alized mean value theorem pictorially. Draw a 

picture to illustrate what it says. Can you de­
velop a pictorial proof, similar to the one we 
did for the mean value theorem? 

9.3.21 In Example 9.2.3, you were asked to show that 
�n + 1 - � = O(n-2/3 ) .  Presumably you have done 
so, most l ikely using algebra. Show it again, but this 
time, use the Mean Value Theorem! 

9.3.22 Use the generalized mean value theorem 
(9.3 .20) to prove the following variant of L'Hopital's 

Rule: 

Let f(x) and g(x) be differentiable on an 
open interval containing x = a. Suppose 
also that 

Then 

lim f(x) = lim g(x) = O. 
x-+a x--+a 

lim 
f(x) = lim 

!, (x) 
x-+a g(x) x-+a g' (x) , 

provided that neither g(x) nor g' (x) 
equal zero for x i- a. 

9.3.23 The Mean Value Theorem for Integrals. This 
theorem states the following: 

Let f(x) be continuous on (a, b) . Then 
there is a point u E (a, b) at which 

f(u) (b - a) = lb f(x)dx. 
(a) Draw a picture to see why this theorem is plau­

sible, in fact "obvious." 

(b) Use the regular mean value theorem to prove it 
(define a function cleverly, etc.) .  

9.3.24 (Putnam 1 987) Evaluate 

f4 v'ln(9 - x) dx 
12 yln(9 - x) + yln(x + 3) 

9.3.25 (Putnam 1946) Let f : JR --+ JR have a continu­
ous derivative, with f(O) = 0, and If' (x) 1 :S If(x) I for 
all x. Show that f is constant. 

9.3.26 Find and prove (using induction) a nice for­
mula for the nth derivative of the product f(x)g(x) . 
9.3.27 (Putnam 1993) The horizontal line y = c inter­
sects the curve y = 2x - 3� in the first quadrant as in 
the figure. Find c so that the areas of the two shaded 
regions are equal. 



y 

�--------------------�----� x 

9.3.28 (Putnam 2(02) Let k be a fixed positive inte­
ger. The nth derivative of I / (J!< - I ) has the form 
Pn (x)/ (J!< _ l )n+ 1  where Pn (x) is a polynomial. Find 
Pn ( I ) . 

9.3.29 (Putnam 1 998) Let f be a real function on the 
real line with continuous third derivative. Prove that 
there exists a point a such that 

f(a) . !, (a) · f" (a) · fill (a) � o. 
9.3.30 (Putnam 1 964) Find all continuous functions 

f(x) : [0, I] -+ (0, 00 ) such that 

101 
f(x)dx = I 

l Xf(x)dx = a  

l �I(x)dx = a2 , 

where a is a given real number. 

9.3.3 1 (Bratislava 1 994) Define f :  [0, 1 ] -+ [0, I ]  by { 2x 0 :s; x :s; 1 /2 , f(x) = -2x+ 2  1 /2 < x :S; 1 .  
Next, define a sequence fn of functions from [0, 1 ] to 
[0, I ] as follows: Let fl (x) = f(x) and let fn (x) = 
f(tn- I  (x) ) for n > l .  Prove that for each n, 

f l fn (x)dx = � . Jo 2 
9.3.32 Compute the limit 

lIm - + -- + -- + . . .  + -- . 
. ( I 1 1 1 ) 

n ..... oo n n + I n + 2 2n - 1 
9.3.33 (Putnam 1 995) For what pairs (a , b) of positive 
real numbers does the improper integral 
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converge? 

9.3.34 In Example 9.3 .4, there was a constant k that 
was strictly less than I ,  and II' (x) 1 :s; k.  Notice that 
this is not the same as saying that If' (x) I :s; I . What 
would happen in this case? 

9.3.35 (Putnam 1 994) Let f(x) be a positive-valued 
function over the reals such that I' (x) > f(x) for all x. 
For what k must there exist N such that f(x) > eU for 
x > N? 

9.3.36 Let f be differentiable on ( - 00 , 00 ) and suppose 
that I' (x) =I- I for all real x. Show that f can have either 
zero or one fixed point (but not more than one) .  

9.3.37 Compute the limit 

9.3.38 (Putnam 1 99 1 )  Suppose f and g are non­
constant, differentiable, real-valued functions defined 
on (-00, 00 ) . Furthermore, suppose that for each pair 
of real numbers x and y, 

f(x + y) = f(x)f(y) - g (x)g(y) , 
g (x + y) = f(x)g (y) + g (x)f(y) ·  

If 1' (0) = 0 ,  prove that (f(x) ) 2 + (g(x) ) 2 = I for all x. 
9.3.39 Let f :  [O, I ] -+ lR satisfy If(x) - f(y) l :S; (x ­
y)2 for all x, y E [0, I ] .  Furthermore, suppose f(O) = O. 
Find all solutions to the equation f(x) = O. Hint: as­
sume that f(x) is differentiable if you must, but this 
isn 't really a differentiation problem. 

9.3.40 Complete the proof started in Example 9.3 .5 
on page 333. 
9.3.41 (Putnam 1 976) Evaluate 

Express your answer in the form log a - b, with a, b 
both positive integers , and the logarithm to base e. 
9.3.42 (Putnam 1 970) Evaluate 

9.3.43 (Putnam 1 939) Prove that 

la lxJ !' (x)dx = laJ f(a) - (t( i )  + . . .  + f( l a J ) ) ,  
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where a >  I .  

9.3.44 The Schwarz Inequality. The Cauchy-Schwarz 
inequality has many generalizations. Here is one for 
integrals, known as the Schwarz inequality : 

Let f(x) , g (x) be nonnegative continuous 
functions defined on the interval [a , bj . 
Then 

(lb f(x)g (X)dX) 
2 

� lb (f(x) )2dx lb (g(x) )2dx. 

(a) First, examine the Cauchy-Schwarz inequality 
(see page 1 82) to verify that the integral in­
equality above is a very plausible "version," 
since after all, integrals are "basically" sums. 

(b) Proving the Schwarz inequality is another mat­
ter. Using the "integral-as-a-sum" idea is prob­
lematic, since limits are involved. However, we 
presented two other alternate proofs of Cauchy-

Schwarz in Problems 5.5.35-5 .5.36. Use one 
(or both) of these to come up with a nice proof 
of Schwarz 's inequality. 

(c) Generalize the inequality a tiny bit: remove the 
hypothesis that f and g are nonnegative, and re­
place the conclusion with 

(lb If(x)g (x) ldX) 
2 

� lb(f(x) )2dx lb (g (x) )2dx. 

(d) Under what circumstances is Schwarz 's in­
equality actually an equality? 

9.3.45 (Turkey 1 996) Given real numbers 

O = XI < X2 < . . . < X2n < x2n+ 1 = I 
with Xi+ 1 - Xi � h for I � i � 2n , show that 

I - h n l + h 
-

2
- < � X2i (X2i+ 1 - X2i- t l < --. 

1 = 1 2 

9.4 Power Series and Eu lerian Mathematics 

Don't Worry! 

In this final section of the book, we take a brief look at infinite series whose terms 
are not constants, but functions. This very quickly leads to technical questions of 
convergence. 

Example 9.4.1 Interpret the meaning of the infinite series 

x2 X2 X2 
-- + + + . . .  
1 + x2 ( 1  + x2 )2 ( 1  + x2 ) 3 ' 

where x can be any real number. 

Solution : The only sensible interpretation is one that is consistent with our defi­
nition of series of constant terms. Thus we let 

x2 
an (x) := 

( 1  + x2 )n ' n = 1 , 2 , 3 ,  . . .  , 

and define the function S (x) to be the limit of the partial sum functions. In other words, 
if 

then for each x E JR, we define 

n 
Sn (x) :=  }: ak (x) , 

k= 1  

S (x) : =  lim Sn (x) , n-->oo 
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provided that this limit exists. 
Note that the an (x) are all defined for all real x, so the same is true for each Sn (x) . 

In fact, we can explicitly compute Sn (x) , using the formula for a geometric series (see 
page 1 58); we have 

x2 x2 x2 
Sn (x) = 1 + x2 + ( 1  + x2 ) 2 

+ . . . + ( 1  + x2 ) n 

x2 x2 
( 1  + x2 ) ( 1  + x2 )n+ 1  

1 1 - --

1 + x2 

Multiply numerator and denominator by 1 + x2 and we get 

x2 
x2 _ �_=-

S ( ) _ ( 1 + x2 ) n n x - 2 X 

This formula is not defined if x = O. As long as x =I- 0, we can simplify further to get 

1 
Sn (x) = 1 -

( 1  + x2 )n · 

Fix a real number x =I- O. As n -+ 00, the second term above will vanish, no matter 
what x is .  Therefore S(x) = 1 for all nonzero x. But if x = 0, then each an (0) = 0; this 
forces Sn (O) = 0 and we conclude that S(O) = O. • 

That wasn 't  too bad, but something disturbing happened. Each an (x) is continuous 
(in fact, differentiable), yet the infinite sum of these functions is discontinuous. This 
example warns us that infinite series of functions cannot be treated like finite series .  
There are plenty of other "pathologies :"  for example, a function f(x) is  defined to be 
the infinite sum of fi (X) , yet f' (x) is not equal to the sum of the ff (x) . l0 The basic rea­
son behind these troubles is the fact that properties like continuity and differentiation 
involve taking limits, as does finding the sum of a series . It is not always the case that 
a "limit of a limit" is unchanged when you interchange the order. 

Luckily, there is one key property that prevents most of these pathologies :  uni­
form convergence, which is defined in the same spirit as uniform continuity (see 
page 324). We say that the sequence of functions Un (x) ) converges uniformly to 
f(x) if the "N response" to the "e challenge" is independent of x. We shall not discuss 
many details here (see [36] for a clear and concise treatment, and [29] for a fresh and 
intuitive discussion) because the punch line is, "Don ' t  worry." Here 's why . 

• If fn (x) -+ f(x) uniformly, and the fn are continuous, then f(x) will also be 
continuous. 

I OSee Chapter 7 of [36] for a nice discussion of these issues. (Our Example 9.4. 1 was adapted from this 

chapter.) 
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• If fn (x) ---t f(x) unifonnly, then J fn (x)dx ---t J f(x)dx . 

• Unifonnly convergent power series can be differentiated and integrated tenn by 
tenn. 

The last item is important. A power series is a special case of a series of functions, 
namely one where each tenn has the fonn an (x - c)n . In your elementary calculus 
courses, you learned about the radius of convergence. I I  For example, the series 

l + x + � + x3 + . . . 

converges to _

1
_ ,  provided that Ix l  < 1 .  In other words, the values of x for which the 

I - x 
series converge lie within 1 unit of O. The center of convergence is 0 and the radius 
of convergence is I .  What makes power series so useful is the fact that they converge 
unifonnly as long as you contract the radius of convergence a bit. More fonnally, 

Let 

ao + alx + a2� + ' "  = f(x) 

for all x such that Ix - cl < R. Thenfor any positive e, the convergence 
is uniform for all x such that Ix - cl :s; R - e .  

Thus, once you are in  possession of  a unifonnly convergent power series, you can 
abuse it quite a bit without fear of mathematical repercussions. You can differentiate 
or integrate tenn by tenn, multiply it by other well-behaving power series , etc . ,  and be 
sure that what you get will behave as you think it should. 

Taylor Series with Remainder 

Most calculus textbooks present Taylor series, but the proof is rarely mentioned, or is 
relegated to a technical appendix that is never read. This is a shame, because it is as 
easy as it is important. Let us derive the familiar Taylor series fonnula (including the 
remainder tenn) in a way that is both easy to understand and remember, with a simple 
example. 

Example 9.4.2 Find the second-degree Taylor polynomial for f(x) , plus the remain­
der. 

Solution : Assume that f(x) is infinitely differentiable on its domain D, and all 
derivatives are bounded. In other words, for each k � 1 there is a positive number Mk 
such that If(k) (x) 1 :s; Mk for all x in the domain. We shall construct the second-degree 
Taylor polynomial about x = a (where a E D). To do this , we start with the third 
derivative. All that we know for sure is that 

-M < f"' (t) < M 3 _ _ 3 

1 1  To really understand radius of convergence, you need to look at the complex plane. See [29] for an illumi­

nating discussion. 
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for all t E D. Integrating this with respect to t from a to x yields 1 2 

-M3 (x - a) ::; lx 

fill (t)dt ::; M3 (x - a) . 

By the fundamental theorem of calculus, the integral of fill is f", so the above becomes 

-M3 (x - a) ::; f" (x) - f" (a) ::; M3 (x - a) . 
Now let us replace x with the variable t and integrate with respect to t once again from 
a to x. We have 

(x - af '
( )  

'
( )  " ( ) (  (x - a)2 -M3 2 ::; f x - f a - f a x - a) ::; M3 2 

Repeat the process once more to get 

(x - a)3 , ,, (x - a)2 (x - a)3 -M3 2 . 3 ::; f(x) - f(a) - f (a) (x - a) - f (a) 2 ::; M3 2 . 3 . 

Finally, we conclude that 

(x a)2 
f(x) = f(a) + J

'
(a) (x - a) + f" (a) � 

plus an error term that is at most equal to 

in absolute magnitude. 

M (x - a)3 
3 6 

• 

The general method is simple: just keep integrating the inequality If(n+ 1 ) (x) I ::; 
Mn until you get the nth-degree Taylor polynomial. The general formula is 

where 

n (x a) i  
f(x) = f(a) + � f(i) (a) � + Rn+ l , 

1= 1 l .  

(x _ a)n+ l 
IRn+ l l ::; Mn+ l (n + l ) ! 

(8) 

From this remainder formula it is clear that if the bounds on the derivatives are 
reasonable (for example, Mk does not grow exponentially in k), then the power series 
will converge. And that is an amazing thing. For example, consider the familiar series 

x3 x? sinx = x - - + - - . . .  
3 !  5 !  ' 

which converges (verify ! )  for all real x. Yet the coefficients for this "global" series 
come only from knowledge about the value of sin x and its derivatives at x = O. In 

Example 9.4.3 
12We are using the fact that u(x) ::; v(x) implies J: u(x)dx ::; J: v(x)dx. 
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other words, complete "local" information yields complete global information ! This 
is worth pondering. 

In practice, it is not always necessary to use (8). As long as you know (or suspect) 
that the series exists, you can opportunistically extract terms of a series . 

Expand -2_
1
- into a power series about x = o. 

x + 1 
Solution : We simply use the geometric series tool (see page 1 33) :  

1 

and thus 
1 2 4 6 

-- = 1 - x +x  - x  + . . . . 
x2 + 1 

Example 9.4.4 Expand � into a power series about x = o. 
Solution : Just substitute t = x2 into the familiar series 

t2 t3 
et = l + t + - + - + · · ·  

2 !  3 !  
. 

• 

• 

You may wonder about these last two examples, asking, "Yes, we got a power 
series, but how do we know that we actually got the Taylor series that we would have 
gotten from (8)?" Once again, don 't worry, for the power series expansion is unique. 
The essential reason is just a generalization of the "derivative is the best linear approxi­
mation" idea mentioned on page 330. For example, let P2 (X) denote the second-degree 
Taylor polynomial for f(x) about x = a. We claim that P2 (X) is the best quadratic 
approximation to f(x) for the simple reason that 

lim 
f(x) - P2 (X) 

= 0, 
x---->a (x - a)2 

while if Q(x) -I- P2 (X) is any other quadratic polynomial, then 

lim 
f(x) - Q(x) 

-I- O. 
x---->a (x - a? 

(9) 

Thus P2 (X) is the only quadratic function that agrees with f(x) , f' (x) , and f" (x) when 
x = a. 

This is one reason why power series are so important. Not only are they easy to 
manipulate, but they provide "ideal" information about the way functions grow. 

Eulerian Mathematics 

In the last few pages, we have been deliberately cavalier about rigor, partly because 
the technical issues involved are quite difficult, but mostly because we feel that too 
much attention to rigor and technical issues can inhibit creative thinking, especially at 
two times: 
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• The early stages of any investigation, 
• The early stages of any person's mathematical education. 

We certainly don 't  mean that rigor is evil , but we do wish to stress that lack of rigor 
is not the same as nonsense. A fuzzy, yet inspired idea may eventually produce a 
rigorous proof; and sometimes a rigorous proof completely obscures the essence of an 
argument. 

There is, of course, a fine line between a brilliant, non-rigorous argument and 
poorly thought-out silliness. To make our point, we will give a few examples of "Eu­
lerian mathematics," which we define as non-rigorous reasoning that may even be (in 
some sense) incorrect, yet leads to an interesting mathematical truth. We name it in 
honor of the 1 8th-century Swiss mathematician Leonhard Euler, who was a pioneer 
of graph theory and generatingfunctionology, among other things. Euler 's arguments 
were not always rigorous or correct by modem standards, but many of his ideas were 
incredibly fertile and illuminating. 

Most of Euler's "Eulerian" proofs are notable for their clever algebraic manipula­
tions, but that is not the case for all of the examples below. Sometimes a very simple 
yet "wrong" idea can help solve a problem. 1 3 We will begin with two examples (by 
students at the University of San Francisco) that help to solve earlier problems. They 
are excellent illustrations of the "bend the rules" strategy discussed on page 20. 

Example 9.4.5 Solve Problem 1 .3 . 8  on page 9 :  

For any sequence of real numbers A = (a I , a2 , a3 , . . .  ) , define ..1A to be 
the sequence (a2 - a l , a3 - a2 , a4 - a3 , . . .  ) whose nth term is an+ 1 - an . 
Suppose that all of the terms of the sequence ..1 (..1A ) are 1 ,  and that 
a l 9 = a94 = O. Find a l . 

Partial Solution : Even though this is not a calculus problem-the variables are 
discrete, so notions of limit make no sense-we can apply calculus-style ideas . Think 
of A as a function of the subscript n. The ..1 operation is reminiscent of differentiation; 
thus the equation 

..1 (..1A ) = ( 1 , 1 , 1 ,  . . .  ) 
suggests the differential equation 

d2A 
dn2 = 1 . 

Solving this (pretending that it makes sense) yields a quadratic function for n. None 
of this was "correct," yet it inspires us to try guessing that an is a quadratic function of 
n. And this guess turns out to be correct !  

Example 9.4.6 Solve Problem 1 .3 . 1 2  on  page 9 :  

1 3The 20th-century king o f  algebraic Eulerian thinking was the self-educated Indian mathematician S .  Ra­

manujan, who worked without any rigor, yet made many incredible discoveries in number theory and analysis .  

See [38] for details. Recently, mathematics has begun to see a movement away from rigor and toward intuition 

and visualization; perhaps the most eloquent statement of this approach is the preface to [29] .  
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Determine, with proof, the largest number that is the product of positive 
integers whose sum is 1976. 

Partial Solution : Once again, we shall inappropriately apply calculus to a discrete 
problem. It makes intuitive sense for the numbers whose sum is 1 976 to be equal (see 
the discussion of the AM-GM inequality in Section 5.5) .  But how large should these 
parts be? Consider the optimization question of finding the maximum value of 

where S is a positive constant. An exercise in logarithmic differentiation (do it ! )  shows 
that S / x = e. Thus, if the sum is S each part should equal e and there should be S / e 
parts. 

Now this really makes no sense if S = 1976 and the parts must be integers, and 
having a non-integral number of parts makes even less sense. But it at least focuses 
our attention on parts whose size is close to e = 2.7 1 828 . . .  . Once we start looking 
at parts of size 2 and 3, the problem is close to solution (use an algorithmic approach 
similar to our proof of the AM-GM inequality) .  

The next example, due to Euler, i s  a generatingfunctionological proof of the infini­
tude of primes .  The argument is interesting and ingenious and has many applications 
and generalizations (some of which you will see in the problems and exercises below). 
It can be rigorized pretty easily by considering partial sums and products , but that 
obscures the inspiration and removes the fun. 

Example 9.4.7 Prove that the number of primes is infinite. 

Solution : Consider the harmonic series 

1 1 1 1 1 + "2 + 3 + 4 + :5 + · · · ·  
Let us try to factor this sum, which doesn't really make sense, since it is infinite. Define 

1 1 1 
Sk := 1 + k + 

k2 + 
k3 + . . .  , 

and consider the infinite product 

S2S3SSS7S 1 1  . . .  , 

where the subscripts run through all primes. The first few factors are 

( 1 + ! + � +  . . .  ) ( 1 + ! + � +  . . .  ) ( 1 + ! + � +  . . .  ) . . . 2 22 3 32 5 52 . 

When we expand this infinite product, the first few terms will be 

1 1 1 1 1 1 + "2 + 3 + 4 + :5 + "6 + · · · '  
and we realize that for each n, the term 1 / n will appear. For example, if n = 360, then 
l /n will appear when we multiply the terms 1 /23 , 1 /32 , and 1 /5 . Moreover, l /n will 
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appear exactly once, because prime factorization is unique (see the discussion of the 
fundamental theorem of arithmetic in Section 7 . 1 ) . Thus 

1 1 1 1 
1 + 2" + "3 + 4" + :5 + . . .  = S2S3S5S7S I I . . . . 

For each k, we have Sk = 1 / (  I - 1 / k) = k/ (k - I ) , which is finite. But the harmonic 
series is infinite. So it cannot be a product of finitely many Sk . We conclude that there 
are infinitely many primes ! _ 

Our penultimate example is also due to Euler. Here the tables are turned: ideas 
from polynomial algebra are inappropriately applied to a calculus problem, resulting in 
a wonderful and correct evaluation of an infinite series (although in this case, complete 
rigorization is much more complicated) .  Recall that the zeta function (see page 1 62) 
is defined by the infinite series 

I I 1 
�(s) := TS + 

2s + 
3s + . . . . 

Example 9.4.8 Is there a simple expression for � (2) = 1 + ;2 + 
3
1
2 + . . . ? 

Solution : Euler's wonderful, crazy idea was inspired by the relationship between 
zeros and coefficients (see Section 5 .4), which says that the sum of the zeros of the 
monic polynomial 

;(I + an_ I;(I- l ;(I- I + . . .  + alx + ao 
is equal to -an- I ;  this follows from an easy argument that examines the factorization 
of the polynomial into terms of the form (x - n) , where each ri is a zero. 

Why not try this with functions that have infinitely many zeros? A natural can­
didate to start with is sinx, because its zeros are x = k1r for all integers k. But we 
are focusing on squares, so let us modify our candidate to sin y'X. The zeros of this 
function are 0,  1r2 , 41r2 , 91r2 , . . . . Since we will ultimately take reciprocals ,  we need to 
remove the 0 from this list. This leads to our final candidate, the function 

f( ) .= sin y'X 
x .  y'X ' 

which has the zeros 1r2 , 41r2 , 91r2 , . . . . Using the methods of Example 9.4.4, we easily 
discover that 

x x2 x3 f(x) = 1 -
3 !  

+ 
5 !  

-
7 !  

+ . . . . ( 1 0) 

Since we know all the zeros of f (x) , we can pretend that the factor theorem for poly­
nomials applies, and write f(x) as an infinite product of terms of the form x - n21r2 . 
But we need to be careful . The product 
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won't work; the constant term is infinite, which is horribly wrong. The power series ( 1 0) tells us that the constant term must equal 1 .  The way out of this difficulty is to 
write the product as 

f{x) = ( 1 - �) ( 1 - �) ( 1 - �) . . .  �2 4�2 9�2 ' ( 1 1 ) 
for now the constant term i s  1 ,  and when each factor 1 - x / (n2 �2 ) i s  set equal to zero, 
we get x = n2 �2 , just what we want. 

Now it is a simple matter of comparing coefficients. It is easy to see that the 
coefficient of the x-term in the infinite product ( 1 1 )  is 

_ (� + _1_ + _1_ + . . .  ) . 

�2 4�2 9�2 

But the corresponding coefficient in the power series ( 1 0) is - 1 /3 ! .  Equating the two, 
we have 

and thus 

1 1 1 1 - +- +-+  . . . = -
�2 4�2 9�2 6 ' 

1 1 �2 
� (2) = 1 + 22 + 32 + . . . = 6 ·  

Beauty, Simplicity, and Symmetry: The Quest for a Moving Curtain 

• 

Our final example is an intriguing probability question that we used in a math con­
test. We are indebted to Doug Jungreis for bringing it to our attention. This problem 
has several solutions. One, using calculus and generating functions, is startling in its 
beauty. Yet another, more prosaic argument, sheds even more light on the problem. 

Example 9.4.9 (Bay Area Math Meet 20oo) Consider the following experiment: 

• First a random number p between 0 and 1 is chosen by spinning an arrow around 
a dial that is marked from 0 to 1 .  (This way, the random number is "uniformly 
distributed"-the chance that p lies in the interval, say, from 0.45 to 0.46 is 
exactly 1 / 100; and the chance that p lies in the interval from 0.324 to 0.335 is 
exactly 1 1 / 1 000, etc . )  

• Then an unfair coin is built so that it lands "heads up" with probability p. 
• This coin is then flipped 2000 times, and the number of heads seen is recorded. 

What is the probability that exactly 1 000 heads were recorded? 

Solution 1 :  Generating Functions. Suppose there are n tosses . If the value p were 
fixed, basic probability theory would tell us that the probability of seeing k heads in n 
tosses i s  just 
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However, p was randomly generated, so the correct probability is the average-i.e. ,  
the integral--of the above quantity. Thus, we seek to calculate 

U (n, k) :=  101 (:) pk ( 1 - p)n-kdp, ( 1 2) 

the probability of seeing k heads in n tosses. 
In the actual problem, we are asked to compute U (20oo, 1000) . This is  a nasty 

integral, so rather than trying to figure out U (2000, 1 000) from scratch, it is worthwhile 
to check small values of n and k. Experimentation leads to the intriguing conjecture 
that for any fixed n, 

1 
U(n, k) = -1 n + 

for all values of k! Thus, the answer to the problem appears to be 1 /200 1 ,  and this 
is also the probability of seeing 0 heads, or 2000 heads, or 1 345 heads, etc . In other 
words, the probabilities appear to be unifonnly distributed ! 

One can, with ingenuity, crank out the integral. There are several methods that 
work, and we invite you to try. And indeed, the answer is 1 /  (n + I ) .  But these methods 
are messy, and they only show us how, not why. 

John Kao, a colleague of the author's, when challenged to find out why the answer 
is 1 /  (n + 1 ) , came up with the following beautiful proof, using generating functions .  

Fix n, and set Uk := U (n, k) . Define the generating function 

f(x) := UO + UIX + U2� + · · · + un� . 
Using ( 1 2), we have the imposing equation 

f(x) = k�O (101 (:) pk ( 1 - p)n-kdp ) xk . 

Next, we interchange the summation and integration, a common tactic. 14 This yields 

Notice that G) pkxk ( l - pt-k = (:) (px)k ( 1 - p)n-k , 

so we can use the binomial theorem to simplify the summation: 

�
O 
(:) pkxk ( l - p)n-k = ( 1 - p + px)n . 

14Interchanging the order of two commutative operations (in this particular case, integration and summation) 

is a standard tactic. It is equivalent, for example, to the combinatorial tactic of counting the same thing in two 

different ways. In this case, we interchanged a limit operation (integration) with a finite sum, which is always 

safe. When interchanging two limit operations (e.g., infinite sums, integrals, limits), extra care is needed to prove 

that the value is unchanged. 
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Thus we have 

f(x) = 101 ( 1 - p + pxtdp 

= ( I  - p + px )n+ I ] I 
(n + l ) (x - l ) 0 
I (�+ I - I ) =

n + 1  x - I 
I ( _J! n- I ) = -- .t + x  + · · · + x + l . 

n + 1 

In other words, all the coefficients Uk are equal to 1 /  (n + I ) .  • 

Solution 2: Algorithmic Proof The above proof was a thing of beauty, and you 
should definitely make a note of the important tactics used (generating functions, in­
terchanging order of sum and integral, extracting a binomial sum). Yet the magical 
nature of the argument is also its shortcoming. Its punchline creeps up without warn­
ing. Very entertaining, and very instructive in a general sense, but it doesn 't  shed quite 
enough l ight on this particular problem. It showed us how these n + I probabilites 
were uniformly distributed. But we still don ' t  know why. 

With any mathematical truth, you should strive to find a "moving curtain" argu­
ment that teaches and reminds you why it is true. Moving curtains literally explained 
the truth of the FTC (Example 9. 1 . 1 ) . Can we do something similar for this problem? 

Indeed we can, without calculus, binomial coefficients, or fancy sums. We will 
perform a thought experiment, inspired by a computer simulation. 

Imagine simulating four tosses on a computer, for example, with a spreadsheet 
program. The figure below shows a Microsoft Excel worksheet. Cell A2 contains a 
command producing a uniformly distributed random number; that is the value for p. 
To simulate the four tosses, we generate four more random numbers in cells B2 : E2, 
and in row 3 ,  we check to see if they are greater than or less than p, i .e. , greater than 
or less than the value in A2. For example, cell C3 contains the command, 

If cell C2 < A2, output "H;" otherwise, output "T." 

This clearly accomplishes the simulation. 

1 
2 
3 

A 
P 

0 . 8424 

B 
toss 1 
0 . 4426 

H 

C 0 E 
toss 2 toss 3 toss 4 
0 . 8563 0 . 4 1 92 0 . 8407 

T H H 

How many heads will we see? If all the cells in the range B2:E2 were greater than 
A2, there would be zero heads. On the other hand, if they were all smaller than A2, 
there would be four heads. If, as in the picture, only one is greater than A2, then there 
are three heads. In other words, 
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The number of heads depends purely on the relative ranking of A2 
among the five random numbers . 

But since these numbers are all uniformly distributed, the rank of any one number 
is also uniformly distributed; i .e . ,  it is just as likely that A2 is the largest as it is the 
smallest as it is the 3rd largest, etc . So the probabilities for all five outcomes are the 
same, namely, 1 /5 . 

Integration and generatingfunctionology obscured a relatively simple situation. 
The probabilities were uniform because the numbers were uniform, and thus their 
rankings were uniform. 

The underlying principle, the "why" that explains this problem, is no stranger to 
you . It has explained so much in this book, so it is fitting that it is the word we end 
with : Symmetry. _ 

Problems and Exercises 

9.4.10 Verify that the sum in Example 9.4. 1 does not 
converge uniformly (look at what happens near x = 0). 

9.4.1 1  Consider the series 

2 3 I I +x+x- + x + . . .  = -- , I - x 

which converges for Ix l < I . 

(a) Show that this series does not converge uni­
formly. 

(b) Show that this series does converge uniformly 
for Ix l S 0.9999. 

9.4.12 Prove an important generalization of the bino­
mial theorem, which states that 

where (a) .. = a(a - I ) · · · a - r +  I , r r !  
r = I , 2 , 3 , . . . . 

Notice that this definition of binomial coefficient 
agrees with the combinatorial one that is defined only 
for positive integral a. Also note that the series above 
will terminate if a is a positive integer. Discuss con­
vergence. Does it depend on a? 
9.4. 13 (Putnam 1 992) Define C( a) to be the coef­
ficient of xl992 in the power series about x = 0 of 

( I  +x)a . Evaluate 

101 (C( -y - I )  j� y � k ) dy. 
9.4. 14 Prove the assertion on page 346 that concluded 
with (9), which stated that the second-degree Taylor 
polynomial is the "best" quadratic approximation to a 
function . 

9.4. 15 Use power series to prove that e'+Y = e'eY . 
9.4.16 (Putnam 1 998) Let N be the positive integer 
with 1 998 decimal digits, all of them I ;  that is ,  

N = I I I I · · · l l . 
Find the thousandth digit after the decimal point of 

VN. 
9.4. 17 Let x >  1 .  Evaluate the sum 

x x2 -- + -,----.,--,----=--x +  1 (x + l ) (x2 + I )  
x4 + (x + 1 ) (x2 + 1 ) (x4 + I )  + 

. . . . 

9.4. 18 (Putnam 1 990) Prove that for Ix l < I ,  Iz l > I ,  
00 

1 + }; ( I  + xj )Pj = 0, 
J= I 

where Pj is 

( l - z) ( l - zx) ( l - zx2 ) · · · ( I - zxj- l ) 
(z - x) (z - x2 ) (z - x3 ) . . . (z - xj ) 
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9.4. 19 (Putnam 1 997) Evaluate 

r [ (x _ X3 
+ � _ � + . . .  ) 

Jo 2 2 · 4  2 · 4 · 6 

x ( 1 + �� + 
2t42 + 

22 . � . 62 + . .  -) ] dx. 

9.4.20 (Putnam 1 990) Is there an infinite sequence 

ao , a I , a2 ,  . . .  of nonzero real numbers such that for 
n = 1 , 2 , 3 , . . .  the polynomial 

Pn (x) = ao + a lx + a2..? + . . . + an� 

has exactly n distinct real roots? 

9.4.21 Prove that 

Si;X 
= D cos (; ) , 

(a) using telescoping; 

(b) using power series. 

9.4.22 In Example 9.4.9, U (n , k) was defined by a 
nasty integral . Directly evaluate this integral and show 
that it equals 1 /  (n + 1 )  using 

(a) repeated applications of integration by parts; 

(b) manipulation of the binomial series. 

Eulerian Mathematics and Number Theory 
The following challenging problems are somewhat in­
terrelated, all involving manipulations similar to Ex­
ample 9.4.7. You may need to reread the combina­
torics and number theory chapters, and some familiar­
ity with probability is helpful for the last two prob­
lems. (For the definition of " q" Jl ,  cr, see pages 1 62 , 
236, 238, 235, respectively.) 

9.4.23 Evaluate 

1 1 1 I 
12 + 32 + 

53 + 72 + . . . . 

9.4.24 Let S be the set of integers whose prime factor­
izations include only the primes 3, 5, and 7. Does the 
sum of the reciprocals of the elements of S converge, 
and if so, to what? 

9.4.25 Consider the argument used in Example 9.4.7. 

(a) Did this argument really require the funda­
mental theorem of arithmetic (unique factoriza­
tion)? 

(b) Make this argument rigorous,  by considering 
only finite partial sums and products. 

pS 
9.4.26 Show that ' (s) = n ..-=--s . 

p pnme P 

9.4.27 Compute 

( ' (2) - 1 ) + (' (3 ) - 1 ) + (' (4) - 1 ) + · · · .  

9.4.28 Let P = {4, 8 , 9, 1 6, . . . } be the set of perfect 
powers, i .e. , the set of positive integers of the form ab, 
where a and b are integers greater than I .  Prove that 

1 

J� j - l = l . 
9.4.29 Modify the argument used in Example 9.4.8 to 
show that , (4) = n4/90. Can you generalize this to 
find a formula for ' (2n)? How about , (2n + I ) ?  

9.4.30 Find a sequence n I , n2 , . . . such that 

9.4.31 Prove that 

9.4.32 Use the ideas from Problem 9.2.37 and Exam­
ple 9.4.7 to show that, for any positive integer n, the 
sum of the reciprocals of the prime numbers that do 
not exceed n is greater than log(log n) )  - 1 /2. Use this 

to show that 4 ..!.. diverges. 
p pnme P 

9.4.33 Fix a positive integer n. Let P I , . . .  , Pk be 
the primes less than or equal to ..;n. Let Qn := PI . 

P2 · · ·  Pk· Let n(x) denote the number of primes less 
than or equal to x. Show that 

n(n) = - I  + n(..;n) + � Jl (d) l � J . 
diQn 

9.4.34 For n E N,x E R, define q, (n ,x) to equal the 
number of positive integers less than or equal to x that 
are relatively prime to n. For example, q, (n , n) is just 
plain old q, (n) .  Find a formula for computing q, (n ,x) .  
9.4.35 Show that the number of pairs (x, y) , where x 
and y are relatively prime integers between 1 and n in­
clusive, is 

9.4.36 Show that the probability that two randomly 

chosen positive integers are relatively prime is 
62 .  
n 
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9.4.37 Analogous to the concept of perfect numbers 
(see Problems 7.5 .33-7.5.35) are the abundant num­
bers . The natural number n is considered abundant if 
a(n) > 2n. 

(a) How abundant can a number get? In other 
words. what is the largest possible value for the 
ratio a(n) /n? 

(b) What is the expected value of this "abundancy 
quotient" a(n )/n? In other words. if you pick 
an integer n at random. and compute the value 
of a(n) /n. what limiting average value do we 
get if we repeat this experiment indefinitely? 

(c) What relative fraction of positive integers is 
abundant? 
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Here are a few suggestions for expanding your horizons .  This is by no means an 
exhaustive list, but just a few of our personal favorites. 

General Problem Solving 

For recreational math, read anything by Martin Gardner. Another great author is Ray­
mond Smullyan. If you would like to read about problem solving at a lower level than 
this book (either for your own benefit or to teach) ,  there are three excellent choices: 

• Mathematical Circles (Russian Experience) [8] contains many very imaginative 
problems at an elementary level, with interesting teaching ideas . A must-have 
book for teachers of problem solving. 

• The Art of Problem Solving, by Sandor Lehoczky and Richard Rusczyk [27] is 
a very comprehensive two-volume treatment of elementary tactics and tools. It 
is clear, fun to read, and has full solutions ! These books are available from the 
web site www . artofproblemsolving . com. which. at the present time. is 
the preeminent web site on problem solving. This site has a very active forum, 
sponsors online courses ,  etc . 

• A Mathematical Mosaic, by Ravi Vakil [44] , is short and not comprehensive, 
but it more than makes up for this with its exceptional taste in topics and its 
whimsical, fun-loving style. This book is really fun to dip into; it's superb 
bedside reading ! 

At a more advanced level than this book, there are several superb books by Titu An­
dreescu that showcase true art and elegance. The Wohascum County Problem Book 
[ 1 3] has many imaginative problems, and features many calculus problems that are 
not outrageously difficult; perfect for beginners . The Putnam Exam has three books 
of published solutions. The first two, covering the years 1 938-64 [ 14] and 1 965-84 
[ 1 ]  are good, but the latest one, covering the years 1 985-2000 [26] , is magnificent, 
with many alternative solutions, mathematical digressions, and creative ideas about 
problem solving. It is an advanced book, but truly worth perusing. 

Specific Topics 

For algebra, we know of only two really notable books: Barbeau's superb guide to the 
exploration of polynomials [3] and Steele 's somewhat advanced text on inequalities 
[40] . 

In contrast, there is a wealth of terrific combinatorics books. Our favorite choice 
for beginners is by Slomson [38] ,  but it is hard to find. Goodaire and Parmenter's 
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text [ 1 5] is a fine alternative. For more advanced reading, there are three books that 
truly stand out: Concrete Mathematics [ 1 6] ,  generatingfunctionology [47] ,  and Proofs 
that Really Count: The Art of Combinatorial Proof [4] .  The first is an amazingly 
readable and comprehensive text (with full solutions) ,  the second is a poetic guide 
to generating functions (and much more, also with full solutions), and the third is an 
amazingly imaginative exploration of the question: How far can we go by recasting 
combinatorics with pictures? 

There is also no shortage of excellent number theory books. However, none of 
them stand out as must-reads. We recommend Vanden Eynden [45] for beginners, 
and Niven and Zuckerman [30] or Ireland and Rosen [23] for more advanced readers, 
although we are sure that there are other worthwhile choices. 

For geometry, we hope that our book has prepared you to read the excellent Ge­
ometry Revisited [6] . For more comprehensive coverage, the survey by Eves [ 1 0] is 
unsurpassed. Needham's Visual Complex Analysis [29] , besides its many other trea­
sures, contains a beautiful treatment of transformations and non-Euclidean geometry, 
from a very interesting perspective. Our favorite source of geometry problems (with 
full solutions) is Prasolov 's Problems in Plane Geometry [35] .  Unfortunately, it is in 
Russian. However, we hope to translate this wonderful resource soon ! 

As with combinatorics, we recommend three classic advanced calculus texts that 
stand head and shoulders above the rest: the books by Boas [5] ,  Spivak [39] , and 
Apostol [2] . The book by Boas stands out in particular, because it is less than 200 
pages long ! 

1 .  Gerald L. Alexanderson, Leonard F. Klosinski, and Loren C. Larson, editors. The 
William Lowell Putnam Mathematical Competition. The Mathematical Associa­
tion of America, 1 985 .  

2. Tom M. Apostol . Calculus. Blaisdell, second edition, 1 967-69. 
3 .  E. J. Barbeau. Polynomials. Springer, 2003 . 
4. Arthur T. Benjamin and Jennifer Quinn. Proofs that Really Count: The Art of 

Combinatorial Proof The Mathematical Association of America, 2003 . 
5 .  Ralph Boas. A Primer of Real Functions. The Mathematical Association of Amer­

ica, second edition, 1 972. 
6. H. S .  M. Coxeter and S .  L. Greitzer. Geometry Revisited. The Mathematical 

Association of America, 1 967 . 
7. N. G. de Bruijn. Filling boxes with bricks. American Mathematical Monthly, 

76:37-40, 1969. 
8 .  Ilia Itenberg Dmitri Fomin, Sergey Genkin. Mathematical Circles (Russian Expe­

rience). American Mathematical Society, 1 996. 
9. Heinrich Dorrie. 100 Great Problems of Elementary Mathematics. Dover, 1 965. 

1 0. Howard Eves. A Survey of Geometry, volume 1 .  Allyn and Bacon, 1 963. 
1 1 . Martin Gardner. The Unexpected Hanging. Simon and Schuster, 1 969. 
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I ndex 

AAS condition, 260 

absolute value, 5 1 ,  1 74 

of a complex number, 1 2 1  

o f  terms i n  a series, 345 

of terms of a sequence, 3 1 9, 328 

abundant number, 355 

add zero creatively tool, 149, 228 

Affirmative Action problem, 20-22, 40, 

62, 109 

AGM inequality, see AM-GM inequality 

AHSME, see American mathematical 

contests 

aikido, 23 

AIME, see American mathematical con­

tests 

algebraic closure, 145 

algebraic methods 

add zero creatively, 1 49, 228 

extracting squares, 1 50  

factoring, 6, 34 ,  42 ,  148-149, 1 85 ,  

198 , 241 , 243, 250, 322 

simplification, 140, 1 50-155 , 248 

algorithm, 37 

alternate interior angles, 26 1 

altitude, 267 

foot, 267 

AM-GM inequality, 1 76-1 8 1 , 243, 321 

algebraic proof, 1 77, 1 86 

algorithmic proof, 1 79 

Cauchy 's proof, 1 86 

geometric proof, 1 78 

American mathematical contests, 7 

American Mathematical Monthly, 8 

anagrams, 23 

Andreescu, Titu, 1 83 

Andretti, Mario, 339 

angle bisector theorem, 258 

angle chasing, see strategies, angle chas­

ing 

angle(s) 

alternate interior, 26 1 

central, 264 

complementary, 262 

exterior, 259 

inequalities in triangles, 260 

inscribed, 264, 276 

inscribed right, 266 

360 

interior, 259 

measure, 259 

of a parallelogram, 26 1 

right, 259 

straight, 259 

subtending, 264 

supplementary, 261 

vertex, 262 

vertical, 260 

annulus, 128 

antiderivative, 3 1 5  

antidifferentiation, 335 

Apostol, Tom, 357 

approximation, 1 6 1 , 327, 330, 346, 353 

arc, 264 

area, 270-274, 286-288 

as proof tactic, 277 

axioms, 270 

of parallelogram, 27 1 

of rectangle, 27 1 

of rhombus, 279 

of trapezoid, 279 

of triangle, 27 1 ,  279, 280 

ratios, 27 1 ,  286 

Argand plane, 120 

arithmetic 

sequence, 9, 7 1 , 157 , 229 

series, 1 57 

ARML, see American mathematical con­

tests 

auxiliary object, see strategies, drawing 

an auxiliary object 

average principle 

defined, 176 

physical proof, 179 

AWD, 40 

axioms, 258 

backburner problems, 1 5 ,  22, 37 

backpacking, x 

backward induction, 1 86 

balls in urns formula, 204 

base-2 representation, 5 1 , 14 1  

Bernoulli 's inequality, 5 1 ,  330 

bijection 

defined, 145 

used in combinatorics, 1 96-205 

billiard problem, 72 

binary representation, 5 1 ,  141  

binomial coefficient, 1 90, 249 

binomial theorem, 194 

and generating functions, 1 33 

and number theory, 234, 248 

and Stirling numbers, 22 1 

generalized, 353 

bipartite graph, see graph theory 

bisection method, 327 

Boas, Ralph, 357 

bowling, 23 

box problem, 1 5-16  

brain, 14  

brain teasers, see recreational problems 

brainstorming, 26, 37 

breaking rules, 1 6, 20, 22, 23 

Bugs problem, 65, 72 

butt, sticking out, 6 1  

cardinality o f  a set, 147 

cards, 102 

cards, playing, 2 1 0  

Catalan numbers, 2 1 8  

catalyst tool, 1 60 

Cauchy property, 3 1 8  

Cauchy-Schwarz inequality 

applications, 1 84 

defined, 1 82 

generalizations, 342 

proof, 1 83, 1 87 

cautionary tales, 39 

ceiling function, 146 

Census-Taker problem, 2 

center of symmetry, 300 

centroid 

as center of mass, 300 

centroid theorem, 258 

Ceva, Giovanni, 288 

cevian, 286 

changing point of view strategy, 58 

chaos, creating order out of, 92 

Chebyshev 'S inequality, 1 85 

checker problem, 1 04 

chess, 23 

China, 8 

Chinese remainder theorem, 234 



chord, 264 

and radii, 264 

Chvatal, Vaclav, 55 

circles 

and arcs, 265 

arc, 264 

chord, 264 

general, 264-266 

generalized, 308 

inscribed angle, 264 

inscribed in triangle, 266 

relationship between chords and radii, 

264 

tangent, 264 

circumcenter, 266 

circumcircle, 266 

construction, 267 

existence and uniqueness, 267 

circumradius, 266, 279 

circumscribed circle, see circumcircle 

Cis 8 ,  1 2 1  

climber, 4 ,  13 , 6 1  

coefficients of a polynomial, 36, 69, 1 33 

and zeros, 1 68, 1 70, 1 7 1 , 226 

collinear points, 289-29 1 

and Menalaus 's theorem, 295 

coloring 

of graphs, 2 1 ,  49 

use of, 55,  10 1  

coloring problems, 2 1 ,  49, 55 ,  84, 1 0 1  

combination, 1 9 1  

combinations and permutations, 1 88-- 1 9 1  

combinatorial arguments, 1 9 1  

combinatorial strategies and tactics 

count the complement, 200, 207, 2 1 1 ,  

236 

encoding, 1 97, 199, 203, 2 1 8  

inclusion-exclusion, 207-2 14  

partitioning, 196, 1 99, 206 

complete graph, see graph theory 

complete theory, 1 1 5 , 242, 250 

completing the square tool, 149 

complex numbers, 1 20--132 

absolute value, 1 2 1  

and vectors, 1 2 1 ,  1 22, 1 28 

as transformations, 1 23 

Cis 8 , 1 2 1  

conjugation, 1 2 1  

Euler's formula, 123 

geometric interpretation, 1 20--1 26 

magnitude, 1 20 

Mobius transformations, 1 24 

multiplication, 1 22 

polar form, 1 2 1  

roots o f  unity, 1 26, 1 30 

Conan Doyle, 23 

concentration, 14, 23 

mental calculation , 23 

concurrent lines 

altitudes, 267, 294 

angle bisectors, 267, 294 

chords, 292 

conditions for, 288 

medians, 294 

perpendicular bisectors, 267 

concyclic points, 266, 282-286 

confidence, x ,  14,  1 5 , 27, 1 54 

congruence 

definitions and properties, 44 

multiplicative inverse, 44 

congruence (geometric) 

AAS condition, 260 

conditions for, 260 

SAS condition, 260 

SSS condition, 260 

congruence (number theoretic) 

definitions and properties, 230 

multiplicative inverse, 23 1 

congruence theorems 

Wilson 's, 68 

congruence theorems (number theoretic) 

Chinese remainder, 234 

Euler's extension of Fermat's little, 

239 

Fermat's little, 232-233 

combinatorial proof, 249 

induction proof, 234 

Wilson 's, 252 

congruent triangles, 259 

conjecture, 2,  5 ,  6, 10, 28, 37, 195, 23 1 

conjugation, 1 2 1  

connected component o f  graph, 1 1 1 , 1 1 8 

constructions (compass and ruler), 269, 

280 

contest problems 

American, 7 

other nations, 8 

continued fractions, 246, 326 

continuity, 3 1 7-325 

and fundamental theorem of calculus, 

325 

defined, 323 

uniform, 324 

contradiction, 22, 36, 4 1 ,  43, 74 

contrapositive, 4 1  

convergence 

of sequences, 3 1 7-322 

of sums, 1 62, 344 

uniform, 343 

converse, 4 1  

convex polygon, 294 

Conway, John 
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checker problem of, 1 04 

creativity, 1 7  

crossover, see reformulating a problem 

defined, 54 

examples of, 247 

tactics, 1 09-142 

crossword puzzles, 23 

crux move, 4, 6, 2 1 ,  46, 5 1 ,  70 

culture 

problem solving, xi 

cycles, see graph theory 

cyclic 

permutation, 70, 249 

quadrilateral, 66 

sum, 7 1  

symmetry, 70, 1 0 1 ,  1 54 

cyclic quadrilateral, 266 

cyclic quadrilaterals, 283 

cyclotomic polynomial, 255 

d-function, see functions, number theo-

retic 

de Bruijn, 98, 1 20 

decimal representation, 9 1  

deck o f  cards, 1 02 

deductive argument, 40, 4 1  

definite integral 

as area under a curve, 3 1 7  

as sum, 336 

degree of vertex, see graph theory 

dense sets, 326 

derangement, 2 14, 220 

derivative 

algebraic interpretation, 330 

dynamic interpretation, 328 

geometric interpretation, 328 

determinant, 34, 89 

dice, 8, 1 42 

differentiation of series, 344 

digraph, 1 1 5 

diophantine equations, 240 

Fermat's Last Theorem, 230 

linear, 228 

Pell 's, 246 

strategies and tactics, 240 

sum of two squares, 250--253 

directed length, 306 

Dirichlet, 84 

disjoint sets, 1 96 

dissection, 263 

distance from a point to a line, 279 

distance-time graph, 53 

divisibility 
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rules for, 94, 107 

division algorithm 

for integers, 83, 224, 226 

for polynomials, 1 64  

divisors 

common, 60 

number of, 30, 68, 1 95 

of a product, 236 

sum of, 235 

domain of a function, 145 

draw a picture strategy, 64, 75, 25 1 ,  340 

drawing an auxiliary object, see strate-

gies, drawing an auxiliary object 

drawing supplies, 256 

dyadic rationals, 326 

Eastern Europe, xi, 8 

edge of graph, see graph theory 

ego, 256 

elegant solution, 147, 1 54 

elementary symmetric functions, see 

functions, symmetric 

ellipse, 9, 73 

empty set, 143 

encoding, 196 

Endurance, 23 

equilateral triangle, 66, 84, 132 

escribed circle, 28 1 

essay-proof exam, 7 

Euclid, 5 1  

Euclidean algorithm, 228 

Euler line, 290 

Euler's formula 

for ei6 , 123, 1 3 1  

for polyhedra, 25, 37, 93, 1 08 

Euler's inequality, 279 

Euler, Leonhard, 140, 247, 254, 347-349 

Eulerian mathematics, 346-349 

Eulerian path, 1 1 3-1 1 5  

algorithmic construction, 1 14 

exercise, x, 22 

defined, I 

versus problem, x, 1 , 2, 4, 1 5  

extension of  a side, 267 

exterior angle, 259 

extreme principle, 2 1 ,  42, 62, 73-83, 1 1 2, 

225 , 228, 229, 244 

factor theorem, 152, 1 66, 349 

factoring, see algebraic methods 

Fermat's Last Theorem, 230 

Fermat 's little theorem, 232-233, 239 

combinatorial proof, 249 

induction proof, 234 

Fibonacci numbers, 20, 52 

definition, 1 0  

divisibility properties, 229 

formula, 1 4 1  

i n  Pascal's triangle, 1 0, 24 

recurrence relation for, 2 1 6  

Fisk, S. ,  5 5  

fixed point, 64 ,  324, 332, 34 1 

floor function, 146 

FOIL, 1 68, 1 94 

forest, I I I , 1 1 3 

functions 

bijection, 145 

continuous, 323 

floor and ceiling, 146 

generating, 1 32-142 

graph of, 35 

growth rates, 1 74, 328 

indicator, 146, 2 1 2  

monotonic, 337 

multiplicative, 235 

number theoretic, 235-240 

one-to-one, 1 45 

onto, 145 

symmetric, 7 1  

uniformly continuous, 324 

fundamental theorem, 336 

of algebra, 90, 1 66 

of arithmetic, 223, 354 

of calculus, 3 1 5 , 345 

Gallery problem, 38, 55 ,  1 09 

Galois theory, 93 

Gardner, Martin, 7 

Gauss plane, 1 20 

Gauss's lemma, 1 70, 229 

Gauss, Carl, 26, 44, 67 

Gaussian pairing tool, 67-69, 250 

applications of, 68, 1 57 

GCD, see greatest common divisor 

generating functions, 1 32-142 

and partitions, 1 36-141  

and recurrence relations, 1 34-135 , 2 1 8  

generatingfunctionology, 1 3 8  

Geogebra, 256 

Geometer, 256 

Geometer's Sketchpad, 256 

geometric interpretation, see reformulat­

ing a problem; draw a picture strat­

egy 

of AM-GM inequality, 178 

of Cauchy-Schwarz inequality, 1 87 

of complex numbers, 1 20-1 26, 1 28 

of differentiation, 328 

geometric mean, 1 77, 1 78 

geometric series, see series, geometric 

geometric series tool, 1 33, 346 

geometry problem 

characterization, 257 

glide reflection, see transformations, 

rigid motions, glide reflection 

Gnepp, Andrei, 98 

Go (board game), 23 

golf, 23 

graph (graph theory) 

as opposed to multigraph, 1 09 

bipartite, 1 19 

connected, I I I  

directed, 1 1 5 

existence of cycles, 1 10, I I I , 1 13 

forest, 1 1 1  

tree, I I I  

greatest common divisor, 28, 77, 83, 1 19, 

225 

Halmos, Paul, 1 2  

Hamiltonian paths and cycles, 1 1 5 

handshake lemma, I I I , 1 1 8 

handshake problem, 2, 75, 109 

harmonic series, 1 6 1 ,  1 62, 1 73, 328, 348 

harmony 

and symmetry, 63 

Herrigel, Eugen, 23 

heuristics, 3 

hexagon, 66, 9 1  

hockey stick property, 20 1 ,  205 

Holmes, Sherlock, 23, 4 1  

homothety, see 
tions,homothety 

Hong Kong, 80 

Hunter, Denise, 1 5  

hypothesis, 4 ,  26, 40 

inductive, 45 

need to strengthen, 49 

ideas 

new, 18 , 2 1  

stealing, 1 8  

identity principle, 1 72 

imagination, 4 

transforma-

IMO, see International Mathematical 

Olympaid 

incenter, 266 

incircle, 266 

construction, 267 

existence and uniqueness, 267 

indicator function, 146, 2 12  

indistinguishable objects, 1 89 

induction, 45-50 

standard, 45-47 

strong, 47-50 



inequalities 

AM-OM, see AM-OM inequality 

Bernoulli's, 5 1 ,  330 

Cauchy-Schwan, see Cauchy-

Schwan inequality 

Chebyshev, 1 85 

Euler's, see Euler's inequality 

Ptolemy's, 1 32 

Schwan, 342 

triangle, 5 1 ,  see triangle inequality 

inexperienced problem solver 

attitude, 4, 13 , 6 1 , 200, 33 1 

lack of confidence, 14  

poor concentration, 14  

infinitude of  primes, see prime numbers, 

infinitude of 

information 

free, 63, 99, 202 

inhibitions, reducing, 256 

inradius, 266, 279 

inscribed angle, 264 

inscribed circle, see incircle 

integers (2:), see sets 

integral 

definite, 3 17, 336 

interior angle, 259 

International Mathematical Olympaid, xi, 

8 

invariant, 265 

invariants, 92-106 

inverse 

of a function, 145 

inversion, see transformations,inversion 

invertible matrix, 89 

investigation, x, 4, 13 ,  1 8, 25 , 27, 39, 40, 

43, 75, 347 

irrational numbers, 9, 50, 144, 146, 252, 

326 

proving irrationality, 50, 1 7 1  

irreducibility of polynomials, 83 

isosceles triangle, 92 

ISTS, 40 
iteration, 32, 37 

IVT (Intermediate value theorem), 323 

jazz, 12  

Josephus problem, 39 

judo, 1 02 

Jumble puzzle, 23 

Jungreis, Doug, 339, 350 

Kao, John, 35 1 

karate, 22 

Kedlaya, Kiran, 253 

Klee, Victor, 55 

Klein, Felix, 257 

Lansing, Alfred, 23 

lateral thinking, 23 

lattice point, 38, 52, 53, 90, 1 04, 107, 1 32 

law of cosines, 280 

law of sines, 280 

LCM, see least common multiple 

least common multiple, 77, 79, 83, 224, 

229 

Leningrad, 8 

L'Hopital 's rule, 340 

lightbulb problem, 7 

limit, 330, 343 

of a sequence, 3 1 8, 322 

of a sum, 336, 342 

line segment, 259 

linear approximation, 33 1 ,  346 

linear combination, 224, 225 , 247 

Liu, Andy, 264 

locker problem, 29, 54, 68, 7 1 , 195 

logarithmic differentiation, 334 

magazines 

problems in, 8 

magnitude 

of complex number, 1 20, 228 

of error, 345 

massage, 1 6 1 ,  1 63, 1 75 ,  1 8 1 , 227 

Math Horizons, 8 

Mathematical Association of America, 8 

mathematical induction, see induction 

matrix, 34, 52, 89, 1 08 

mean 

arithmetic, 158  

geometric, 1 77 

medial triangle, 75, 269 

median, 24, 258 

mental calculation, 23 

mental toughness, 15 

midline, 278 

midpoint, 269 

Mississippi formula, 1 89, 190 

Mobius 

function, 238 

inversion formula, 239 

transformation, 124 

modular arithmetic 

as invariant, 100 

modulo m filter, 241 ,  243 

monic polynomial, 1 64, 1 7 1 , 226 

monk problem, 7, 17 , 53 

monotonic function, 176, 327, 337 

monotonic sequence, 3 1 8  

monotonize tactic, 75,  79, 8 1 ,  202 
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monovariant, 1 02-1 06 

Motel Room Paradox, 92 

mountaineering, 3,  43, 6 1  

moving curtain, 3 1 5 ,  325 

,u-function, see functions, number theo-

retic 

multigraph, 1 09 

multinomial theorem, 1 96, 253 

multiplication 

of complex numbers, 122, 1 32 

of polynomials, 1 33 ,  1 64  

multiplicative function, 235 

multiplicative inverse, 44, 23 1 

natural numbers (N), see sets 

Needham, T., 1 20, 1 3 1 , 132 

Newman, Donald, 20 

non-Euclidean geometry, 26 1 

number line, 144, 252 

olympiads 

other olympiads, 8 

one-to-one correspondence, 145 

opportunistic strategy, 43, 346 

optimistic strategy, 1 5 ,  1 7  

optimization, 1 1 5 ,  179, 348 

order, created from chaos, 92 

orthic triangle, 294 

orthocenter, 267 

overcounting, 190, 200, 207 

packing, 1 1  

palindrome, 83 

pantograph, 3 1 2  

parallel lines, 260-26 1 

alternate interior angles, 26 1 

and similar triangles, 275 

parallelogram, 54, 73, 26 1 

angles, 261 

diagonals, 26 1 

edges, 26 1 

parity, 94-99 

partition, 48 

partitioning, 196 

Pascal's Triangle 

binomial theorem and, 192, 2 10  

combinatorial properties of, 193 ,  201 

defined, l O  

Fibonacci numbers and, 1 0, 24, 220 

parity and, 1 0, 39, 253 

patterns, look for, 5 ,  10,  19, 26, 6 1 , 147 

PelI's equation, 228, 246 

penultimate step strategy, 95 

perfect number, 254, 355 
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peripheral vision, 1 8, 1 9, 22, 24, 54, 58 ,  

63 

permutation, 1 9 1  

permutations, see combinations and per­

mutations 

perpendicular, 259 

phantom point, see strategies, phantom 

point 

I/I -function, see functions, number theo-

retic 

piano, 1 2  

Pick's theorem, 52, 54 

picture, draw a, 53 ,  75, 25 1 ,  340 

PIE, see combinatorial strategies and tac-

tics, inclusion-exclusion 

pigeonhole principle, 84-92, 204, 250 

Platonism, 1 7  

Pleiades contstellation, 22 

Poe, Edgar Allan, 23 

Poincare, Henri, 257 

point at infinity, 308 

polar form of complex number, 1 2 1  

P61ya, 14  

P6lya, George, 3 ,  6 

polyhedra, 25,  37, 93 

polynomials, 1 64-173,  see coefficients of 

a polynomial 

division algorithm, 1 65 

factor theorem, 1 66 

fundamental theorem of algebra, 1 66 

monic, 1 64, 1 7 1  

operations, 1 64 

primitive, 1 7 1  

relationship between zeros and coeffi­

cients, 1 68-1 70 

remainder, 1 65 

remainder theorem, 1 66 

postulates, 258 

power of a point (quantity), 257, 295 

power of a point theorem, 93, see theo-

rem, power of a point 

prime numbers, see fundamental theorem 

of arithmetic 

importance of, 23 1 

infinitude of 

classical proof, 5 1 ,  223 

Euler's proof, 348 

Prime Power Factorization (PPF) , 223, 

224, 229, 243 

primitive 

polynomial, 1 7 1 , 229 

root of unity, 254 

solution, 23 1 

principle of inclusion-exclusion, see 

combinatorial strategies and tactics, 

inclusion-exclusion 

problems 

contest, 7 

open-ended, 9 

recreational , 6 

to find, 6 

to prove, 6 

problems to find, 26 

problems to prove, 26 

problemsolvingology, I I  

product 

and Gaussian pairing, 68 

and parity, 95, 97 

Cartesian, 145 

catalyst tool, 1 60 

complex numbers, 1 22, 1 30, 1 3 1  

consecutive integers, 249 

generating functions, 1 36, 1 3 8  

indicator functions, 146, 2 1 2  

notation, 1 5 6  

optimize, 1 77, 179, 1 83 , 1 85 , 348 

polynomial, 1 36 

roots, 1 5 1 ,  1 69 

telescope tool, 1 60 

progression 

arithmetic, 1 57  

geometric,  1 58  

proof by  contradiction, 22 ,  36, 4 1 , 43, 74 

proportions, 288 

Propp, Jim, 2 1 ,  73, 1 30, 205 

psychological strategies, see strategies, 

psychological 

Ptolemy'S theorem, 66, see theo­

rem,Ptolemy 's 

Putnam Exam, see American mathemati­

cal contests 

Pythagorean theorem, see theorem, 

Pythagorean 

Pythagorean triples, 1 50, 242 

QED, 40 

quadratic formula, 1 65 ,  1 87, 2 1 9  

quadratic residue, 242 

quadrilateral 

cyclic, 266 

radical axis, 292, 295 

radius 

and chords, 264 

Ramanujan, S . ,  347 

rate of change, 3 1 6, 328 

ratio of similitude, 278 

rational numbers (1Ql), see sets 

rationalize the denominator, 1 8 1  

ray, 259 

real numbers (lR), see sets 

recasting problems, 54, 1 1 6, 1 95 ,  see re-

formulating a problem 

receptiveness to new ideas, 1 7 ,  1 8, 23 

recreational problems, 6, 23 

reflection, see transformations, rigid mo­

tions, reflection 

reflection tool, 64, 66 

reformulating a problem, 26, 53-55,  58,  

109, 1 36, 1 79, 236,  3 1 5 ,  see geo­

metric interpretation; crossover 

relationship between zeros and coeffi-

cients, 1 68-1 70, 329, 349 

relatively prime, 5 1 ,  224 

remainder 

and Taylor series, 3 1 5 ,  345 

integral, 44, 83, 85, 94, 100, 225, 228, 

230 

polynomial, I 64 

theorem, 1 66 

residue 

modulo m, 230 

quadratic, 242 

restating a problem, 23, 26, 30, 109, 1 79 

retina, 1 8  

rhombus, 279 

right angle, 259 

right triangle, 266 

inscribed in circle, 266 

right triangles 

and similarity, 275 

rigor, 39, 346, 347 

rooted tree, 1 1 2 

roots of unity, 1 26 

and cyclotomic polynomials, 254 

as invariant, 1 30 

filter, 14 1  

rotation, see transformations, rigid mo­

tions, rotation 

routines, 23 

rules, breaking, 1 6, 20, 23 

SAS condition, 260 

Schwarz inequality, 342 

secant line, 330, 332 

semi-perimeter, 279 

sequence 

of functions, 343 

sequences 

and continuity, 323 

and monotonizing, 8 1 ,  1 85 

arithmetic, 1 57  

Catalan, 2 1 8  

Cauchy property, 3 1 8  

convergence of, 3 1 7-322 



defined, I46 

Fibonacci, 2 1 6  

monotonic, 3 1 8  

symmetry, 67 

series 

arithmetic, 1 57  

geometric, 5 1 , 105 , 1 3 1 , 1 33 , 1 5 8  

hannonic, see hannonic series 

Taylor, 3 1 5 ,  344-346 

sets 

Cartesian product, 145 

complex numbers (C), 144 

integers (2:), 144 

natural numbers (!Ii), 1 44 

rational numbers (1Qi), 144 

real numbers (IR), 144 

Seven Sisters, 22 

shearing, 27 1 

shearing tool, 272 

a-function, see functions, number theo­

retic 

similar triangles, 274-275,  289-29 1 

and parallel lines, 275 

and right triangles, 275 

as crux, 289 

conditions for, 274 

definition, 274 

subtriangles, 280 

similarity, 305 

direct, 306 

opposite, 306 

simplification, see algebraic methods, 

simplification 

Siobodnik, S . , 86 

Soifer, A., 86 

Spivak, Michael , 357 

squares 

algebraic manipulation, 149 

and consecutive numbers, 4 

and number of divisors, 30 

and pigeonhole principle, 97 

difference of two, 149 

extracting, 1 50, 1 54, 1 73 

sum of, 159 

SSS condition, 260 

stealing ideas, 1 8 , 22 

stick your butt out, 6 1  

Stirling numbers, 22 1 

straight angle, 259 

strategies 

angle chasing, 265 , 282 

limitations of, 289 

change point of view, 58 

defined, 3 

draw a picture, 53 

drawing an auxiliary object, 262 ,  276 

drawing anauxil iary object, 282 

generalize, 90 

geometric (various), 282 

get your hands dirty, 26 

is there a similar problem?, 37 

make it easier, 1 6  

opportunistic, 43 

optimistic, 1 5  

orientation, 6 ,  25 

penultimate step, 5, 262, 289 

peripheral vision, 54 

phantom point, 263, 278, 282, 292-

293 

produce a contradiction, 43 

psychological , 14-25 

recasting, 54 

wishful thinking, 32 

Stuyvesant High School, xi 

subconscious, 1 5  

substitution, 69, 1 50- 1 55 , 346 

sudoku, 23 

sum, see series 

of divisors, 235 

of squares, 1 59 

supplementary angles, 26 1 

symmetry, 62-73, 282 

applied to calculus, 338-339 

applied to probabilty, 73, 350-353 

center of, 300 

importance of, 298 

imposing it on a problem, 297 

symmetry-product principle, 1 77 ,  1 79 

tactics, see separate entries for each item 

complex numbers, 1 20- 1 32 

defined, 3 

extreme principle, 73-83 

factoring, 1 48- 1 49 

generating functions, 1 32- 1 4 1  

graph theory, 1 09- 1 20 

invariants, 92- 1 06 

modular arithmetic, 1 00 

modulo m filter, 230, 242 

monotonize, 75 

monovariant, 1 02-1 06 

parity, 94-99 

pigeonhole principle, 84-92 

symmetry, 62-73 

Tai Chi, 23 

tangent (to a circle),  264 

tangent line, 264, 3 1 6, 328, 330 

tangent line (to a circle) 

and center, 264 

and radius, 264 

I NDEX 365 

Taylor series, 3 1 5 ,  344-346 

telescope tool ,  1 58- 1 60, 1 62, 1 8 1  

theorem 

angle bisector, 258 

converse, 278, 280 

proof using area, 277 

proof using trigonometry, 280 

proof with auxil iary l ine, 276 

centroid , 258 

proof, 278 

Ceva 's, 288, 294 

converse, 288, 294 

inscribed angle, 265 , 279 

Menalaus's 

converse, 295 

Menelaus's ,  295 

power of a point 

application, 292 

converse, 283,  285 

power of a point (POP), 257 

converse, 280 

proof, 275 

Ptolemy 's 

converse, 284 

proof using auxil iary construction, 

296 

proof using complex numbers , 1 32 

proof using inversion, 3 1 4  

Pythagorean, 272 

proof using dissection, 273, 28 1 

proof using shearing, 272 

proof using similar triangles, 280 

Stewart 's, 280 

tiling, 54, 98, 1 0 1 , 2 1 5  

tools 

add zero creatively, 1 49, 228 

catalyst, 1 60 

completing the square, 1 49 

define a function, 90 

defined, 3 

extracting squares, 1 50 

factorization, 5 

Gaussian pairing, 67-69, 250 

geometric senes, 1 33 , 346 

identity principle, 1 72 

invent a font, 2 1 1 

monic polynomial, 1 7 1  

partial fractions, 1 35 

reflection, 64, 66 

roots of unity filter, 1 4 1  

telescope, 1 58- 1 60, 1 62, 1 8 1  

trigonometric, 57 

undetennined coefficients, 6 

weights, 294 

and Ceva's theorem, 295 



366 I N DEX 

tournament, 95, 102 

transformation, 123 ,  1 24 

transformations, 257, 296-3 1 4  

and Felix Klein, 257, 298 

and Henri Poincare, 257 

composition, 298,  302, 304, 3 1 3  

homothety, 305-307 

and concurrence, 306 

inversion, 307-3 1 1  

algorithm for, 307, 3 1 3  

rigid motions, 298-305 

glide reflection, 301 

reflection, 301  

rotations, 302-305 

translations, 298 

shearing, 27 1 

transversal, 260 

trapezoid, 279 

triangle inequality, 5 1 ,  260 

triangle( s) 

circumcenter, 266 

exterior angle measure, 26 1 

incenter, 266 

inscribed in circle, 266 

isosceles, 262 

medial, 269 

orthocenter, 267 

sum of interior angles, 26 1 

triangles 

congruent, 259 

similar, see similar triangles 

triangulation, 48, 55,  2 17  

trigonometry, 280 

TS, 40 

twin prime, 234 

Two Men of Tibet problem, 1 1 6-1 1 8  

UCLA, 339 

USAMO, see American mathematical 

contests 

Vadala, Derek, 20 

Vandermonde convolution formula, 206 

vectors, 298-301  

and complex numbers, 1 2 1 ,  1 22, 128 

and lattice points, 53 

and triangle inequality, 5 1  

as motions, 298 

basis, 34 

dot product, 301 

vertex of graph, see graph theory 

vertical angles, 260 

Vietnam, 8 

Visual Complex Analysis, 1 20 

W5 , 40 

weights, method of, 294 

well-ordering principle, 74, 102 

Wilf, Herbert, 1 38 

Wilson's theorem, 68, 252 

WLOG, 4 1  

yoga, 23 

Zen in the Art of Archery, 23 

zeta function, 1 62, 1 63, 349, 354 
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