Homework 10, Honors Calculus II
 11/15/2018

Problem 1. Show that the generalized Newton binomial series (see previous HW sheet 9)

$$
(1+x)^{1 / 2}=\sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k} x^{k}
$$

converges for all $x \in(-1,1]$. Use this to calculate an approximate value for $\sqrt{2}$ by summing the first 5 terms of the series. How good is this approximation (compare to the value of $\sqrt{2}$ the calculator provides).

Problem 2. The curve $\gamma:[0,2 \pi] \rightarrow \mathbb{R}^{2}$ given by $\gamma(t)=(a \cos t, b \sin t)$ traces out an ellipse. We assume $0<b<a$, so that a is the main axis.
(i) Write down the integral which gives you a quarter of the length of the ellipse's circumference. This is called an elliptic integral and people have long tried to find an antiderivative without success. In fact, the antiderivative is a new type of function, called an elliptic function, which I believe was first properly understood by Riemann. So don't waste time trying to solve the integral by our methods.
(ii) Putting the eccentricity $k=\frac{a^{2}-b^{2}}{b^{2}}$ (so a cricle has $k=0$), you should have obtained $L=b \int_{0}^{\pi / 2} \sqrt{1+k(\sin t)^{2}} d t$ for the quarter length of the ellipse. Now use Newton's generalized binomial formula (see previous problem) to expand the integrant into a series and then integrate term by term. There will be a restriction on k for this series to converge (what is this restriction?).
(iii) Choose $a=2$ and $b=3 / 2$ (then the series will converge, why?), and calculate an approximate quarter length L by summing the first 3 terms of your series expansion. Can you get a sense how the eccentricity influences the circumference of an ellipse?

Problem 3. Find a power series expansion for

$$
\tan ^{-1} x=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

Hint: $\int \frac{d x}{1+x^{2}}=\tan ^{-1}(x)+c$ and expand the integrant into a series, integrate term by term, and determine what the constant c has to be. Find all x for which this series converges.

Problem 4. Determine all values for x such that the series

$$
\sum_{k=1}^{\infty} \frac{x^{k}}{k}
$$

converges.
Problem 5. Determine and provide proof of whether the following series of numbers converge or diverge:
(i) $\sum_{n=1}^{\infty} \frac{n^{2 n}}{(1+n)^{3 n}}$
(ii) $\sum_{k=1}^{\infty}(-1)^{k} \frac{k^{4}}{4^{k}}$
(iii) $\sum_{k=1}^{\infty} \tan (1 / k)$

2
(iv) $\sum_{n=0}^{\infty} n^{2} e^{-n^{2}}$
(v) $\sum_{n=1}^{\infty} \frac{\sin n}{n \sqrt{n+1}}$
(vi) $\sum_{n=1}^{\infty} \frac{n \ln n}{(n+1)^{3}}$
(vii) $\sum_{n=1}^{\infty} \frac{(n!)^{n}}{n^{4 n}}$
(viii) $\sum_{n=1}^{\infty} n \sin (1 / n)$
(ix) $\sum_{n=1}^{\infty}(-1)^{n} \frac{\sqrt{n}}{n+3}$

