FALL 2016
Problem 1. Consider the ODE

$$
y^{\prime}=y(y-4) .
$$

(i) Determine the equilibrium solutions and characterize them as stable, unstable or semi-stable.
(ii) Draw a slope line picture, indicate the equilibrium solutions, and sketch the overall behavior of the solutions.
(iii) Find the general solution of this ODE.
(iv) Find the solution with initial condition $y(0)=1$.

Problem 2. Solve the ODE

$$
y^{\prime}+5 y=e^{2 t} \cos (t)
$$

with $y(0)=0$.
Problem 3. Find the general solution to the ODE

$$
y^{\prime \prime}-6 y^{\prime}+9 y=\frac{e^{3 t}}{t}
$$

Problem 4. Find the general solution to the ODE

$$
y^{\prime \prime}+4 y^{\prime}+4 y=e^{-t}
$$

Problem 5. Find the solution to the ODE

$$
y^{\prime \prime}+2 y^{\prime}+5 y=\sin (t)
$$

with initial condition $y(0)=0$ and $y^{\prime}(0)=0$. If this ODE presents a harmonic oscillator, is it over/under or critically damped?

Problem 6. Consider the 2nd order ODE

$$
y^{\prime \prime}+4 y^{\prime}+4 y=0
$$

(i) Rewrite the ODE as a 2-dimensional 1st order system.
(ii) Find the general solution to the system of ODEs.
(iii) Characterize whether the origin is a sink, source, saddle or spiral point.

Problem 7. Consider the ODE

$$
\vec{y}^{\prime}=\left(\begin{array}{cc}
1 & 1 \\
-4 & 1
\end{array}\right) \vec{y}
$$

(i) Find the solution with initial condition $\vec{y}(0)=\binom{0}{1}$.
(ii) Draw a picture of the general behavior of the solutions (in particular eigensolutions if there are any).
(iii) Characterize whether the origin is a source, sink, saddle or spiral point.

Problem 8. Consider the matrix ODE

$$
\vec{y}^{\prime}=\left(\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right) \vec{y}
$$

(i) Find the general solution.
(ii) Sketch the eigensolutions (if there are any) and sketch the general behavior of the solutions.
(iii) Characterize whether the origin is a source, sink, saddle or spiral point.

