
Homework 5, Differential Geometry
due 3/3/17

Please hand in your home work before class, have it neatly written, organized (the
grader will not decipher your notes), stapled, with your name and student ID on
top.

Problem 1. We need some basic linear ODE results. Let A : I → gl(n,R) be a
smooth function where I ⊂ R is an interval and gl(n,R) denotes the vector space
of all n× n matrices.

(i) If F : I → gl(n,R) satisfies the matrix ODE F ′ = FA , then detF satisfies
the scalar ODE (detF )′ = trAdetF . Here trB denotes the trace (the sum
of the diagonal elements) of an n× n matrix B.

(ii) If F : I → gl(n,R) satisfies the matrix ODE F ′ = FA and for some t0 ∈ I
we have F (t0) ∈ GL(n,R), where GL(n,R) denotes the group of invertible
matrices, then F : I → GL(n,R).

(iii) If F : I → gl(n,R) satisfies the matrix ODE F ′ = FA and trA = 0 then
detF (t) is constant in t. In particular, if detF (t0) = 1 then detF (t) = 1
for all t ∈ I.

(iv) If F : I → gl(n,R) satisfies the matrix ODE F ′ = FA and A : I → so(n,R)
takes values in skew-symmetric matrices, then F (t)FT (t) is constant in t.
In particular, if F (t0) ∈ O(n,R) then F : I → O(n,R). The analogous
statement holds for F (t0) ∈ SO(n,R).

We assume from ODE theory that given a smooth A : I → gl(n,R) there exists a
unique smooth solution F : I → gl(n,R), defined on the same interval I on which
A is defined, of the initial value problem F ′ = FA and F (t0) = F0 ∈ gl(n,R) given.

(i) Show that two solutions Fi : I → GL(n,R) of the ODE F ′ = FA satisfy
F2 = CF1 for a constant invertible matrix C ∈ GL(n,R).

(ii) Show that for A a constant matrix F (t) = exp(tA) is a solution of F ′ = FA

where exp(B) =
∑∞

k=0
Bk

k! for B ∈ gl(n,R) is the matrix exponential map
(show that the sum converges absolutely and uniformly on compact sets of
matrices – take as a norm on matrices the Euclidean norm, i.e. the square
root of the sum of the squares of the entries; thus one can do term by term
differentiation; be careful about the non-commutativity of matrices).

(iii) If A : I → gl(n,R) is not constant, why is F (t) = exp(
∫ t

t0
A(s)ds) not

solving F ′ = FA, or is it? Explain.

Problem 2. Let γ : I → R3 be an arclength parametrized curve whose image lies
in the 2-sphere S2 , i.e. ||γ(t)||2 = 1 for all t ∈ I. Consider the “moving basis”
{T, γ × T, γ} where T = γ′.

(i) Writing the moving basis as a 3 × 3 matrix F := (T, γ × T, γ) (where we
think of T and etc. as column vectors) show that F : I → SO(3,R);

(ii) Define the curvature κ :=< T ′, γ×T > in analogy to plane curves (noting
that γ × T is normal to T and tangent to the 2-sphere–so γ × T takes the
role of JT for plane curves). Calculate A := F−1F ′ and show that A : I →
so(3,R) takes values in skew-symmetric matrices so(3,R), depends only
on κ, and has a very special form (which one).

(iii) Calculate the curvature κ for the circles C in S2 obtained by slicing S2 by
the planes z = c with 0 ≤ c < 1, and calculate

∫
C
κ.
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(iv) Let κ : I → R be a smooth function. Show that there is a curve γ : I → S2

whose curvature is κ. Hint : build the matrix function A out of κ (see (ii))
and consider the linear matrix ODE F ′ = FA; use Problem 1 to solve;
take the 3rd column of F as a candidate for γ...

(v) The curve constructed in (iii) is unique up to a rotation of S2. (The group
of rotations SO(3,R) of R3 preserve S2–why?)

Problem 3. The Frenet frame of a curve in R3. For a regular plane curve (and
more generally for a regular curve on a 2-dimensional surface - e.g. the 2-sphere
above) we could construct a unique adapted frame F . This is not the case for
curves in higher dimensional spaces. Besides the curve being regular we need more
conditions to ensure the existence of a unique adapted frame, which then will give
invariants of the curve, which in turn reconstruct the curve up to Euclidean motions.
Let γ : I → R3 be an arclength parametrized curve. Then T = γ′ has unit length.

(i) Show that < γ′′, T >= 0. Thus, provided that γ′′ is nowhere vanishing,
we can define N := γ′′/||γ′′|| and obtain a moving basis {T,N, T ×N}. A
regular space curve for which γ′′ is nowhere vanishing is called a Frenet
curve.

(ii) Let γ be an arclength parametrized Frenet curve. Define the curvature
function to be κ := ||γ′′|| > 0 and the torsion function τ :=< T ×N,N ′ >.
Show that the adapted frame F = (T,N, T × N) : I → SO(3,R) and
calculate A = F−1F ′ in terms of κ and τ .

(iii) If γ is am arclength parametrized plane curve, we can regard it a a space
curve. Show that this space curve has τ ≡ 0. Also prove the converse: if
a space curve has τ ≡ 0 then it lies in a plane in R3.

(iv) Show that given κ : I → R, τ(t) > 0 for all t ∈ I, and τ : I → R smooth,
there exists a unique (up to Euclidean motion) Frenet curve in R3 whose
curvature and torsion are κ and τ respectively.

(v) Classify the Frenet space curves which have curvature and torsion constant.


